2024 IEEE/ACM 17th International Conference on Cooperative and Human Aspects of Software Engineering
(CHASE)

An Exploratory Study of Programmers’ Analogical Reasoning and
Software History Usage During Code Re-Purposing

John Allen
Caitlin Kelleher
johnjallen@wustl.edu
ckelleher@wustl.edu

Washington University in St. Louis
Saint Louis, MO, USA

ABSTRACT

Background: Software development relies on collaborative problem-
solving. Understanding previously addressed problems in software
is crucial for developers to identify and repurpose functionalities
for new problem-solving contexts.

Objective: We explore the barriers programmers encounter dur-
ing code repurposing and investigate how access to historical con-
text about the original developer’s goals may affect this process.

Method: We present an exploratory study of 16 programmers
who completed two code repurposing tasks in different code bases.
Participants completed these tasks both with and without access
to the historical information of the original developer’s goals. We
explore how programmers use analogical reasoning to identify and
apply existing software artifacts to new goals.

Results: We show that programmers often failed to notice analo-
gies, made false analogies, and underestimated the value of reuse.
Even when useful analogies were made, programmers struggled
to find the relevant code. We also describe the patterns of how
participants utilized code histories.

Conclusion: We highlight the barriers programmers face in
noticing and applying analogies during code reuse. We suggest
design recommendations for future tools to allow lightweight eval-
uation of code to help programmers identify reuse opportunities.

ACM Reference Format:

John Allen and Caitlin Kelleher. 2024. An Exploratory Study of Program-
mers’ Analogical Reasoning and Software History Usage During Code
Re-Purposing. In 2024 IEEE/ACM 17th International Conference on Coop-
erative and Human Aspects of Software Engineering (CHASE ’24), April
14-15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3641822.3641864

1 INTRODUCTION

Code reuse is an integral part of software development. Not only
does reuse allow for more efficient development, it can improve code
quality by leveraging weather-tested software components. While
recent advances in large language models (LLMs) have rapidly

(OO

This work licensed under Creative Commons Attribution International 4.0 License.

CHASE 24, April 14-15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0533-5/24/04.
https://doi.org/10.1145/3641822.3641864

changed the way programmers generate code examples, these snip-
pets are limited in that 1) they are untested, and prone to introduce
errors, and 2) they are small in size and complexity.

In 1991, Barnes and Bollinger argued that “good reuse is not the
reuse of software per se, but the reuse of human problem solving”
[5]. The portfolio of human problem-solving is much larger than
what LLMs are currently capable of generating. Programmers reuse
the problem-solving of others through opportunistic design, mesh-
ing together functionalities of existing software for new purposes
[24, 55]. This type of reuse relies on tested, proven code. However,
reusing small pieces from non-related projects often leads to code
incompatibilities that can be difficult to overcome [17].

Large, existing projects include a wealth of useful software func-
tionalities that are compatible with each other by design. In this
paper, we explore code reuse through re-purposing in which pro-
grammers modify an existing codebase to achieve new high-level
goals.

Reusing the problem-solving of other developers presents its
own challenges; developers struggle to understand the problems
that led to design decisions behind unfamiliar software artifacts
[36]. This information is often not readily apparent in either code
base nor git repository, so developers prefer to consult with the
original developer in order to better understand these artifacts
[36]. However, developers today frequently change employers and
projects, or are otherwise unavailable, and may leave behind little
to no knowledge about their intentions during development.

However, some of this information can be captured as programs
are created. As developers solve problems and write code, they
often consult numerous resources on the Internet. They search for
information and visit official documentation, forums, and other
learning sources online [2]. This activity of information-seeking
provides a rich context of the problems the original developer has
wrestled with through the development process. Currently, we are
not aware of any code history tools that include this information. In
order to better understand how this information may be helpful, we
designed a subgoal-aware code history tool which links developers’
stated intentions, web searches, and website visits during devel-
opment to the code changes they make. In this paper, we explore
the process of how programmers attempt to reuse code, and how
access to this historical information may impact the process.

In this paper, we frame the process of identifying and re-purposing
existing functionalities in a code base to a novel problem as a form
of analogical reasoning. We present an exploratory study of 16
programmers completing two code re-purposing tasks: one in the

CHASE 24, April 14-15, 2024, Lisbon, Portugal

context of each of two distinct code bases. One task has been con-
structed to include obvious surface-level analogies between source
code and target problem, while the other task’s analogies are hidden
within the logic of the code itself. We investigate how programmers
explore each code base, draw analogies between existing functional-
ities and their current goals, and make changes to the code bases to
implement novel functionalities. We also examine how access to the
history of the original developer’s stated subgoals and information
searches impacts this process.

We address two distinct research questions:

1) Where in the process of analogical reasoning does code re-
purposing break down?

2) How can historical information about software improve its
ability to be repurposed?

Programmers in our study frequently performed surface-level
program comprehension, which led to struggles in the analogical
reasoning step of noticing similarities between their goals and the
original developer’s goals. Programmers made false analogies and
invalid assumptions, which often resulted in “insurmountable” pro-
gramming barriers[34]. Further, even when programmers did draw
correct analogies, they struggled to locate the code responsible for
the desired behaviors.

Code histories helped some programmers to notice reusable,
analogical functionalities by surfacing the sub-problems the original
developers solved. Programmers leveraged the histories to link
desired functionalities to relevant, concrete code in the code base.
Specifically, we identify three usage scenarios in which historical
information can be helpful: 1) locating an entry point, 2) scanning
the code for relevant changes, and 3) when struggling and stuck.

We use these findings to guide a discussion on how future code
history tools should be designed to help programmers identify what
problems a code base has already solved, make better analogies be-
tween solved problems and novel problems, and locate the relevant
code in the software. These features, we argue, will improve the
opportunity for “good reuse" to occur.

2 BACKGROUND: ANALOGICAL REASONING

In this paper, we consider the process of code reuse through re-
purposing as a form of analogical reasoning, or reasoning that
applies the structure of understanding one problem towards solving
another problem. Research suggests that people are better at solving
“target" problems with access to analogous “source” problems than
without [19, 28]. Further, the process of Analogical reasoning tends
to be more successful when those analogous problems are very
similar to the target problem [8, 28].

Gick and Holyoak proposed that analogical problem solving is a
three step process:

o Noticing that there is a relationship between the source and
target problems. This step is critical and can be supported
by prompting [19].

e Mapping the parts of the source problem to corresponding
parts of the target problem.

o Applying the problem map in order to create a solution that
is appropriate for the target problem based on the source
solution.

110

Allen and Kelleher

Ostrich Wings

Structural Similarity: Boat Rudder

Figure 1: Surface vs Structural Analogies: While an ostrich’s
wings [3] are analogically similar at a surface level to airplane
wings [56], they are structurally similar to a boat’s rudders
[48], as they help the ostrich turn the same way a rudder
turns a boat. Research shows it is more difficult for people to
notice structural similarities than surface level similarities
between concepts.

2.0.1 Surface vs Structural Analogies. Research suggests that both
the surface details and the underlying structure of the problem can
impact a problem solver’s ability to successfully form an analogy be-
tween the source and target problems [47]. To demonstrate surface
and structural similarity, consider an ostrich’s wings. It may be easy
to notice the analogy between an ostrich’s wings and an airplane’s
wings, as they appear similar on the surface level. However, it may
be more difficult to notice the analogy between an ostrich’s wings
and a boat’s rudder; while they serve the same function, there is
not as much surface similarity between the two, as shown in Figure
1. Lacking similar surface details, problems solvers can struggle
to notice the correspondence between source and target problems
[18]. We replicate this findings within the context of programming,
but also identify a new problem: the use false source-target corre-
spondences that are based on incomplete program comprehension.

3 RELATED WORK

Our work builds on and contributes to prior research in code reuse,
analogical reasoning and programming, and code histories.

3.1 Code Reuse

For successful software reuse to occur, the cost of finding and
reusing software must be less than the cost of creating it from
scratch [4]. Thus, work in this area has focused on program com-
prehension and code adaptation. Researchers have also explored
how to design code to encourage and support subsequent reuse.

3.1.1 Program Comprehension. Before reusing code, programmers
must understand the code, a process that is often inefficient [33] and

An Exploratory Study of Programmers’ Analogical Reasoning and Software History Usage During Code Re-Purposing

cognitively overwhelming [12, 40]. During program comprehen-
sion, programmers inefficiently browse information [34, 58] while
attempting to answer questions about the code base [14, 49]. In par-
ticular, programmers find it hard to understand the reasoning for
the implementation decisions of the original developer [33, 36, 37].

Programmers may employ some combination of bottom-up or
top-down strategies when understanding a program’s behavior
[38, 39]. Bottom-up strategies involve deducing program behaviors
by looking at lines of the lowest level of code in order to build up
their understanding of the software [7, 46]. Top-down strategies
generally consist of programmers mapping high-level steps of the
application domain to functionalities within the software [6, 51].
Often, programmers begin with a top-down approach in order to
find specific functional implementations, and then rely on a bottom-
up approach to understand the implementation itself [11].

3.1.2 Re-purposing Code. Once programmers have an understand-
ing of the source code base, they must begin to reason about con-
nections between the source and target problems [5, 13, 50], and
their corresponding code bases [44].

While past work has identified problems that programmers en-
counter during reuse, little research explores the process of code
reuse. Some work shows that developers may reuse large portions
of software projects as “templates” for new projects [43]. Haefliger
[22] investigates the characteristics of API and library based reuse
by open-source developers using a combination of interviews and
code analysis over time. Other work in this area also evaluates
open-source developers’ likelihood of reusing code based on their
attitudes and organizational characteristics through code analy-
sis [44] and survey data [50]. Code analysis is able to analyze a
large amount of reuse cases, and has shown that code reuse can
lead to increased productivity, but may also introduce bugs [44].
Surveys show that efficient reuse is difficult when trying to solve
challenging problems [50].

Much of this existing work is based on retrospective research,
and, consequently, does not provide a full picture of the process of
reuse. Further, the existing literature has tended to focus more on
reuse via libraries and APIs as it is easier to identify in a code base.
Our study focused on the process of software reuse via re-purposing.
Using a lens of analogical reasoning, we identify challenges that
arise through the reuse process.

3.1.3 Designing to Support Reuse. The final branch of research in
this area focuses on designing software that is more readily reusable.
To date, most code reuse research focuses on the importance of
designing software to be reusable [5, 29, 42], including designing
modular software [5, 42], providing adequate documentation [16],
and reducing costs of searching relevant code [31]. Our work con-
tributes insights into the needs of secondary programmers.

3.2 Analogical Reasoning and Programming

Fundamentally, code reuse requires programmers to reason about
the connections between code they have access to and problems
they are trying to solve [5, 13, 50]. This process can be seen as a
form of analogical reasoning [23]. Research in analogical reasoning
suggests that people are more successful in reusing solutions from
analogous problems that are more similar to their target problem

111

CHASE *24, April 14-15, 2024, Lisbon, Portugal

[8, 28]. Similarly, Krueger [35] suggests effective code reuse prac-
tices should minimize the cognitive gap between the original idea
of a system and its eventual executable implementation. One study
found that programmers were better able to recognize abstract
analogies, but more able to use concrete analogies [53]. Generally,
research around analogical reasoning and programming falls into
two groups: 1) exploring the relationship between analogical rea-
soning and programming skill and 2) proposing tools that leverage
analogical reasoning to support reuse.

Some existing research around analogical reasoning and pro-
gramming has explored the degree to which the underlying skills
are related. Research suggests that analogical reasoning ability pre-
dicts novice programming ability [9] but programming instruction
does not consistently improve analogical reasoning [21] [54].

Some work proposes using analogical reasoning as a basis for
reuse tools and works towards the technical ability to build such
tools [20, 52]. Neither of these tools were directly integrated into a
programming environment or evaluated with programmers.

While prior work has recognized the relationship between ana-
logical reasoning and programming, we are not aware of prior work
that has explored actual code reuse tasks through the lens of ana-
logical reasoning. This paper contributes by 1) identifying several
conditions that lead to programmers failing to make meaningful
analogies between their goals and source code they have access
to, 2) describing barriers programmers face after identifying useful
analogies, and 3) proposing design guidelines for future tools to
improve programmers’ ability to find and use relevant analogies in
source code.

3.3 Code Histories

Research suggests that history information is valuable to developers
during program comprehension and that current ways to capture
it are insufficient.

LaToza and Myers [36] surveyed software developers about the
questions they typically have about code that are difficult to an-
swer. They found that the most commonly reported hard-to-answer
questions involved the design decisions behind the code, which are
typically not documented in a code base [36]. Ko et al corroborates
this finding when observing developers as they worked [33].

Today, historical information for a code base typically comes
through versioning control. Research suggests that git commits are
not enough to answer developers’ questions and highlight several
issues. Developers often incorporate multiple unrelated changes
into a single commit [26, 27, 32]. These “tangled commits" can make
it difficult for programmers to accurately determine the reasoning
for particular code changes [25, 27]. In response, some work ex-
plores capturing more detailed code histories such as keystroke
level data [45, 59, 60]. However, keystroke level data, while arguably
complete, contains a lot of information that is not helpful, leading
to a new challenge: extracting relevant information [40].

We are unaware of any work that explores programmer usage
of code history tools that include the information-seeking web
activities of the original developer, or includes subgoal labels at
this level of granularity. In addition, our work contributes an initial
exploration of how code history information can be used during a
code reuse process.

CHASE 24, April 14-15, 2024, Lisbon, Portugal

4 METHODS

To better understand the reuse through re-purposing process and
the potential impact of code history information, we conducted
an exploratory study of sixteen student-programmers completing
two code re-purposing tasks in a lab setting, with and without
access to code history information. Tasks were designed to repre-
sent a breadth of reuse scenarios, and capture two phases of code
reuse: 1) identifying which functionalities can be reused, and 2)
mapping desired functionalities to the source code responsible. For
one task, participants had access to a web page including historical
information about the related code base.

4.1 Participants

We recruited sixteen participants via a university e-mail list in-
cluding both graduate and undergraduate students in computing
based degree programs at a private university. To ensure that par-
ticipants had adequate computing backgrounds to make progress
on reuse through re-purposing tasks, we recruited only students
who had taken at least four programming classes or who had at
least three months of work or internship experience programming.
In practice, our participants had significant experience, reporting
an average of more than nine computing courses and more than six-
teen months of work experience. Twelve participants were enrolled
in undergraduate programs, and one was concurrently pursuing
a Master’s. The remaining four participants were pursuing their
PhD. All participants were in degree programs focused on either
Computer Science or Computer Engineering.

4.2 Study Procedures

Participants met in person with the researcher in a one-on-one lab
setting, and completed two reuse tasks. For one of their two tasks,
participants had access to a code history. To control for the effects
of task order and story access order, we employed a within-subjects
Latin-squares design to balance the possible combinations of task
and story access order.

A researcher began each session by briefly describing the partici-
pant’s first task and instructing the participant to think-aloud while
working. Participants then had thirty minutes to complete the task.
At either the end of the thirty minutes or upon task completion,
the researcher conducted a brief semi-structured interview. The
interview focused on understanding the participant’s specific strate-
gies and knowledge gaps. The second task followed an identical
structure. On the task in which the user was given code story ac-
cess, the researcher opened the code story in a web browser, briefly
described its purpose, and demonstrated how to browse through
the history information.

4.2.1 Data Collection. During each user test, we logged the web
searches and websites each participant visited, the text of all code
files each time participants saved them, and the times when partici-
pants tested their code or consulted the code history. In addition, we
collected screen and audio recordings of participants’ programming
tasks and interviews, as well as high-level field notes of perceived
or stated activities during each test. All interviews were transcribed
and used for thematic analysis and behavior identification.

112

Allen and Kelleher

4.3 Thematic Analysis

To extract themes from participants’ utterances either while work-
ing on a task or during the interview, we first transcribed the audio
from each user test. One author created a set of quotes for analysis
by excluding utterances that focused on building rapport, contained
incomplete thoughts, consisted of reading something on screen
aloud, focused on syntax, or were unrelated to the reuse task. To
uncover themes in the quotes, we analyzed the quotes in three
distinct passes by 1) reading through them as a team 2) discussing
emergent themes and 3) assigning quotes to groups based on the
themes that emerged. These themes are not directly included in
our results, but were used to identify routes of investigation.

4.4 Labeling Participant Strategies

The research team summarized each user test into discernible goals
and strategies participants took that could be mapped to concrete
actions such as code changes, web searches, or verbalized quotes.
For example, programmers’ “attempted strategies" are based on
either 1) think-aloud verbalization during the task, or 2) tangible
code additions paired with confirmatory post-task interview ques-
tions. We then counted each time these identified strategies were
pursued by programmers.

5 EXPERIMENTAL TASK DESIGN

We designed two tasks which require participants to re-purpose
elements from a given code base, ensuring that each code base
represented a real-world project that was developed in an authentic
way. We presented two tasks in order to capture a wider breadth of
code reuse scenarios, and insights across the range of the steps of
analogical reasoning.

In particular, we designed one task to include deep structural
similarities that are not immediately obvious, and the other task to
contain visually obvious, high surface similarity analogies with
the provided code base.

This dichotomy is intended to highlight barriers within the spe-
cific steps of the analogical reasoning process, from 1) noticing
similarity between target and source problems, to 2) mapping and
applying source code solutions to a target problem.

5.1 Structural Analogy Task: Image Processing
Project

The structural analogy task is intended to identify barriers during
programmers’ processes of noticing analogies between the source
code and a novel problem. This task requires participants to solve
an image processing task when given access to a code base that
already addresses many related image processing problems, but has
few surface-level parallels.

5.1.1 Code base: Photo Mosaic Generator. The Photo Mosaic Gen-
erator code base is a program that takes a target image and creates a
photo mosaic of that target image using a library of images that can
be part of the mosaic. The implementation is written in Python in
a modular style, with functions that handle specific sub-problems.

The Photo Mosaic Generator code base takes two inputs: a
target_photo and a Photos/ directory, which includes several

An Exploratory Study of Programmers’ Analogical Reasoning and Software History Usage During Code Re-Purposing

Source Code: Mosaic Generator Logic
Read in target_photo.jpg Read in husky_laying.jpg
Read all images from Photos/

Resize all Photos/ images to be the
same size the same size
Calculate Average Pixel for each Photo

Downsample target_photo

Ideal Reuse Logic: Identify Similar Photos!

Read all images from PhotoAlbum/

Resize all PhotoAlbum/ images to be

Loop through these images:

Detect if any are potential

duplicates of husky_laying.jpg

Loop through each pixel of
target_photo:

If so, print the filenames to be

excluded from the final album

Find candidate_img from Photos/
with the most similar average pixel

Loop through recently added
images:
Detect if any are potential
duplicates of candidate_img

If no duplicates detected,
append candidate_img to
matrix parallel to target_photo

Figure 2: The “ideal" reuse scenario for the structural analogy
task includes participants reusing this logic from the Mosaic
Generator.

B

1) 2)

Figure 3: Memory Matching Game: This task requires par-
ticipants to transform a Wordle clone (1) into a Memory
Matching game (2). The matching game visually shares many
surface features to the original Wordle game.

hundred images. The code uses these inputs to generate a mosaic
of the target_photo with pictures from Photos/ (see Figure 2).

5.1.2 Experimental Task: Identify Similar Photos! The Photo Mosaic
Generator reuse task challenged participants to create a console
application to identify highly-similar images, so that they can be
excluded from a photo album. As with the original program, the
target program should take a source image and then a directory of
images to scan for similar photographs. The output should be a list
of photographs that are similar to the source image.

5.1.3 Ideal Reuse Strategy: Identify Similar Photos! The function-
alities to complete this task are already implemented in the Photo
Mosaic code base. Figure 2 shows how the task can be implemented
using functionalities from the Mosaic Generator code.

5.1.4 History Capture: Photo Mosaic Generator. This project was
developed by a member of the research team. To capture the history,
we used a history capture tool we developed that is integrated into

113

CHASE *24, April 14-15, 2024, Lisbon, Portugal

VSCode and Chrome. Instead of manually labeling each action and
appending it to a database, the capture tool saved code changes,
web visits, and output automatically.

5.2 Surface Analogy Task: Tile Games

The surface analogy task is designed to identify barriers after the
programmer “notices" an analogy. This task requires participants
to create a tile-matching game when given access to another tile-
based game. In this task, the reuse analogy is easy to identify, but
the program is sufficiently complex such that finding and reusing
specific program features will require more effort.

5.2.1 Code Overview: Wordle Clone. The code base for this task is a
simple implementation of the online word game, “Wordle". The code
is written in HTML, JavaScript, and SASS, and is compiled using
Gulp, a system that automates build tasks in web development. In
the code base, Gulp [41] is used to minify the Javascript and compile
SASS to CSS.

While the structure of the game tiles (shown in Figure 3-1 is
created by index.html, the general interactivity logic of the Wordle
clone, in app/js/script. js, is as follows:

o A) Choose random word from list of possible words

e B) When user types a letter, display the letter

e C) When user “Enters" a five-letter word, update tile styling
to give information about the presence of each guessed letter
in the solution word

The JavaScript file consists largely of helper functions which
are integrated into the logic of a main “keydown" listener, which
controls the flow of logic for the program.

5.2.2 Experimental Task: Memory Matching Game. The high level
reuse through re-purposing task for the Wordle Clone code base
was to create a matching game. Programmers needed to create a
memory tile-matching game in which they have a 4x4 grid of tiles,
with two tiles each assigned with the first 8 letters of the alphabet
at random. The tiles should begin facing down, with their letters
hidden from the player. When the player clicks a tile, it should
flip over, revealing the letter on the tile. When the player clicks
a second tile, the second tile should also flip. If the two revealed
letters match, then they stay in the flipped state. If they do not
match, both letters flip back over and the player tries again. This
process continues until all tiles are matched together. The original
and target program outputs are shown in Figure 3.

5.2.3 Ideal Reuse Strategy: Wordle Clone. The Memory Matching
task requires locating and understanding the code implementation
of desired behaviors. Programmers need to 1) determine where
game elements and interactivity are defined, and 2) figure out how
the different files (JS, HTML, CSS) communicate to implement these
behaviors. To complete the task, participants should:

¢ Find and edit the HTML responsible for the Wordle clone’s
5X7 grid, and transform it into a 4X4 grid.

e Locate the Wordle event-driven structure and change the
main function to be triggered upon a “click" event, rather
than a “keydown" event.

o Reference HTML tiles from the JavaScript side.

o Create new logic for the memory matching game.

CHASE 24, April 14-15, 2024, Lisbon, Portugal

Adjust width of guess tile;

Adjust border styling for guess tile

& tile {
10| = border: rem(2) solid hsl(@, 0%, 46%); CHR
width: rem(52);

& tile {

width: rem(52);

search: javascript es6 detect keypress

border: rem(2) solid hsl(®, 0%, 26%);

javascript detect kevpress javascript esé detect keypress

detecting arrow key
presses in javascript

how to detect keypress
using javascript?

Figure 4: Code history displayed as an interactive webpage
that features collapsible items nested within discretely la-
beled subgoals of the original developer.

5.24 History Capture: Wordle Clone. YouTube now contains a sub-
community of developers who record videos of themselves coding.
The Wordle Clone code was originally created by the popular code
streamer “Coder Coder" [10]. Coder Coder recorded her process in
a nearly five-hour YouTube video, during which she develops this
code for the first time in a raw, unedited recording while describ-
ing to her viewers her current goals and challenges at any given
time. Our team watched the video, captured all code changes, web
searches, web visits, and organized them into developer goals.

5.3 Code History Implementation

The thought processes behind a programmer’s design choices are of-
ten unclear [33, 36], as programmers often attempt and fail various
alternative approaches before implementing their ultimate solution
[57]. In order to explore how programmers referenced this informa-
tion during code reuse, we created a code history tool which reveals
all the sub-problems and solution attempts the original developer
had during the development phase.

For one of their two experimental tasks, participants had access
to the code history corresponding to their source code base. These
code histories were presented through a webpage (see Figure 4)
and featured a list of subgoals the original developer pursued while
building the relevant code base. Each subgoal could be expanded to
reveal activities related to that subgoal, including 1) diffs of changes
to modified code, and 2) thumbnail links for web pages that the
original developer visited while working on that subgoal.

6 RESULTS
We address two distinct research questions:

o 1) Where in the process of analogical reasoning does code
re-purposing break down?

114

Allen and Kelleher

e 2) How can historical information about software improve
its ability to be repurposed?

We find that programmers struggle in noticing re-usability of
structurally-analogical functions that lack surface-level analogical
similarities to their goals, leading them to make false analogies with
the code and attempt to reuse components that are not helpful to
them. When programmers do notice analogical functionalities, they
struggle to identify and modify the code responsible for the desired
behavior. Additionally, we find that participants underestimated the
value of reuse when analogies were not immediately obvious, and
did not always invest time in trying to identify analogies between
their problem and those which the program had already solved.

Second, we find that code histories were helpful when used,
and identified specific scenarios in which history information was
valuable for programmers: 1) locating an entry point, 2) scanning
existing code, and 3) when stuck or struggling.

6.1 Structural Analogy Reuse: distinguishing
relevant functionalities

The first step in successful code reuse is distinguishing which func-
tionalities of a program can be reused [35]. Similarly, the first step
in analogical reasoning is “noticing" the analogy between a source
problem and a target problem [28]. We found that programmers
often failed to make ideal analogies, and thus never “noticed" the
reusability of useful functionalities. This arose in two ways: failing
to select existing code that minimized new development and creat-
ing analogies based on incorrect understanding of code behavior.

6.1.1 Shallow program comprehension led programmers to miss
reuse opportunities. The structural analogy reuse task focused on
identifying similar photos by re-purposing a program for creating
photo mosaics. In the research team’s opinion, the ideal way to
approach the task is to reuse the existing logic that 1) reads in and
resizes the images, and then 2) to compare the similarity of images.
Hereafter, we refer to this as the ideal approach. Using the ideal
approach, a programmer would only need to loop through the im-
ages and print their file names if they are marked as “similar" to the
target image, this process is shown in Figure 2. Participants almost
never holistically studied the code before settling on a strategy, and
thus rarely identified the ideal reuse scenario.

The majority of participants developed an initial plan to solve
the problem and did not revise it throughout the duration of the
task. Participants typically identified one “anchoring” method that
they could envision as part of the solution and attempted to de-
velop a solution based on this anchor. Our observations suggest
participants’ plans were based on a shallow understanding of the
code largely based on method names. For example, after User 4
stated “When I started looking at [the code], and for the first few
minutes, definitely I was like, Oh my lord, like, what does this even
mean?". At the end of the period User 4 describes, they found the
get_avg_pixel method as relevant, and ignored all other helper
functions. When asked how they selected what code to try to reuse,
User 4 responded by admitting “I kind of just stuck to like what I
decided my goal was, which was [to] compare the average pixels."

An Exploratory Study of Programmers’ Analogical Reasoning and Software History Usage During Code Re-Purposing

To successfully use the majority of the program’s methods, users
needed to be able to load and scale the images. Thirteen partic-
ipants (81.25%) reused code to load images into memory. Of the
remaining 3 participants, one made no code changes, and the other
two attempted to load images from scratch.

Only six of the sixteen users (37.5%) correctly identified the func-
tionality for image similarity as an important element to reuse. Of
those, three (18.75%) were able to fully complete an implementation
following the ideal approach. It is worth noting that these were the
only three participants to complete the task, resulting in an 18.8%
overall success rate.

6.1.2 Programmers created false analogies based on incorrect un-
derstanding of code, and stuck with them. Eight of our sixteen par-
ticipants (50%) attempted strategies based on false analogies during
the structural analogy task. We define a false analogy as one in
which the programmer has an incorrect interpretation of how a
given section of code relates to their current problem, and uses it as
the basis for a solution plan. Because the underlying assumptions
about the code’s behavior are incorrect, any plans the programmer
created based on these assumptions were consistently invalid as
well. The plans arose when participants assumed code behavior
based on surface features, often method names.

Five of sixteen participants (31.25%) created a plan based around
reusing the code for comparing the similarity of a pixel within
a photograph to the pixel averages of available photographs in
the image set. User 14 formed an initial plan around comparing
pixel averages. They quickly calculated the average pixel value for
the target image and each of the comparison photos. When they
felt stuck, they turned to the code history and found a subgoal
relating to comparing image distance (the function used in the
ideal approach). They briefly experimented with this code, but did
not pass the right parameters. They quickly reverted back to their
original and ill-fated average pixel approach.

Three participants identified the code for using KMeans to per-
form clustering. These participants assumed, incorrectly, that KMeans
was clustering images. In fact, KMeans was used to cluster the pix-
els within a given image. The participants in this group verbalized
plans to cluster the images, and then identify duplicate images based
on the cluster groupings produced. This is not a feasible solution,
since there is no way to ensure Kmeans clusters will represent dupli-
cate or near-duplicate images. User 2 attempted this approach, and
successfully printed clusters of pixels for each of the comparison
photos but then was unsure of how to proceed. “I don’t necessarily
know how to compare one set of RGB to another set of RGB now
perhaps there’s a method I've forgotten about so I'm gonna go look
for that. I know there’s some comparison methods". Along the way
User 2 notices and rejects the ideal path. “I can compare image to
image, like I can [call] compare_image_distance() but to do that
now I don’t think that works based on what I've built up so far."
They reluctantly continued their approach, later reflecting “The
reason I didn’t want to do that is because that will scale horribly"

In summary, participants made false assumptions that led to
invalid reuse strategies, and were reluctant to switch strategies
even after finding a more promising approach.

115

CHASE *24, April 14-15, 2024, Lisbon, Portugal

6.2 Surface Analogical Reuse: identifying
relevant code

During the surface analogical reuse task, participants successfully
identified analogies between Wordle and a Memory Matching game,
but encountered three barriers: 1) locating interface elements in
code, 2) testing changes, and 3) adapting method calls.

6.2.1 Locating Interface Elements in Code. Participants overwhelm-
ingly began the Wordle clone task by attempting to find where
the tiles are created. Since the tiles contain no characters initially,
searching for interface text is not helpful. Instead, some participants
used a keyword search for numbers matching the dimensions of the
existing board. This led some participants to irrelevant, hard-coded
game logic. When they modified these numbers, they were unable
to observe changes in the output. Others unsuccessfully browsed
the JavaScript and SCSS files looking for the tiles.

User 3 exemplifies a mixture of these approaches. He began
with the goal of converting the 5X7 Wordle grid to a 4X4 grid, and
immediately focused on script. js, which handles the interaction
of the Wordle site. He noticed that there are “for loops" that iterate
five times. Although the loops handle game logic, he believed, based
on the number of iterations, that these loops generated the tile
layout. Accordingly, he modified the loop to iterate 4 times, but
observed no output changes. As in the structural reuse task, a
shallow understanding of the code led to false assumptions and an
unsuccessful solution plan.

6.2.2 Testing Changes. In our surface analogy reuse task, partici-
pants sometimes struggled to evaluate whether their changes were
moving in a productive direction. Participants faced some chal-
lenges with the project’s build structure and the web context. At
the core, these challenges were related to knowing which code was
going to be called and where to find its output.

After editing the for loops and not seeing output changes, User
3 next attempted to print to the console. He checked the terminal
console rather than the browser console and thus did not see any
feedback. He then located dist/script. js, a minified version of
the script intended for web distribution. It is formatted for efficiency
and is not intended to be human readable. Yet, User 3 tried to
reformat it in the hopes of finding a solution starting point.

The Wordle project used a common build structure in which the
local javascript files are compiled into a single distribution file for
efficiency. Five participants (31%) had issues involving the dist/
files. Three of these participants attempted to manually reformat
the dist/script. js file to increase readability. This was a tedious
process that took an average of over 10 minutes.

User 16 exemplifies the frustration programmers felt trying to
trace through minified code, stating “That’s where I got stuck. Be-
cause the [script] that the HTML was calling has only one line [of
minimized code] where apparently everything is being inserted.
Yeah, so I just decided I'll just do it from the scratch instead of me
trying to figure it out what exactly is going on."

6.2.3 Adapting Method Calls. While attempting to modify the Wor-
dle code base into a matching game, participants encountered situ-
ations where they needed something similar to a method call in the
source code base, but struggled to adapt the existing method call to
suit their needs. For example, this arose in the context of reusing a

CHASE 24, April 14-15, 2024, Lisbon, Portugal

JQuery call similar to one created by the original developer. Partici-
pants struggled to understand the naming conventions the original
developer applied to access the tiles and were therefore unable to
adapt the needed JQuery call. Only half (eight participants) were
able to adapt the JQuery call for their new use case.

6.3 Use of Code History

The code histories were used rarely; only half of our participants
ever referenced them. However, when used, participants benefited
substantially from viewing the Code History. We observed that his-
tory information was relevant when participants were: 1) locating
an entry point, 2) scanning existing code, and 3) struggling.

6.3.1 Locating an Entry Point. The provided code histories were
best suited for a top-down style of problem solving in which par-
ticipants could use them at the beginning to find a good starting
point for their current subgoal.

User 15 illustrates one successful use of code history to find an
entry point into the code. User 15 began the structural analogy
reuse task by scrolling through the Photo Mosaic code, noting that
“this is a lot of functions". Perhaps overwhelmed, they turned to
and read through the code history. User 15 noticed the subgoal
associated with ensuring similar-looking images are not placed
adjacently in photo mosaic. They clicked this subgoal and studied
the associated code added by the original developer. Because the
subgoal provided high confidence that this section of code was
relevant, User 15 began trying to understand it. ‘I think this should
give me a number." they stated while highlighting the line of code
responsible for determining if photos are “similar” (“if mse < 90:").
“And if they’re similar, it should print the file". User 15 then copied
the code into their code base and quickly completed the task.

6.3.2 Scanning Existing Code. One of the strategies participants
employed for both tasks was reading and scanning code. Partici-
pants did not refer to the code histories while scanning existing
code, but their behavior and struggles suggest it represents an
opportunity to integrate history information. When faced with
reading an entire code base, even one of modest size, participants
were reluctant to commit to attempting to fully comprehend the
code. Instead, they relied on information scent cues in order to
determine whether code was likely to be helpful. This was a greedy
process in which participants often picked an initial strategy and
stuck with it, even when it was not going well, as described in Sec-
tion 6.1. Yet, the subgoal information contained in the code history
for the sections of code participants scanned could have provided
another form of low cognitive cost evaluation that may have helped
to steer them towards more relevant code sections.

6.3.3 Struggling. Participants who referred to the code histories
when struggling were largely successful, although the successful
strategies of use were different for the structural and surface anal-
ogy reuse tasks.

Participants working on the structural analogy reuse task most
frequently turned to the code history when they couldn’t make
sense of the source code. The most successful uses were ones in
which the participant browsed the history with no particular goal in
mind. This encouraged them to browse through abstracted subgoals
as opposed to raw code, exposing them to an overall sense of what

116

Allen and Kelleher

the developer worked on, and giving them ideas on where to start.
Four programmers identified reuse strategies when browsing the
history without any explicit information goal.

In contrast, users working on the surface analogy reuse task
turned to the code history when they struggled to find the imple-
mentation of a particular element. These uses were most successful
when programmers had a specific information need in mind. Four
users (25%) searched for information in the surface analogy task.
All of these code history uses were successful, revealing needed
information including the locations of elements of interest such as
the tile definitions or a needed event-handler.

For example, User 5 turned to the code history after failing to find
where the tiles were created using the grid size. In reading through
the code history, User 5 found a subgoal related to defining tiles,
and expanded it, revealing modifications to index.html. When
asked about it later, he stated “The HTML file took me a while to
find, because I was looking for this, but I was looking in the wrong
place... I figured it would be somewhere in the... Because I think
CSS is like the look of the site, so I figured it would be there, but it
was in the HTML."

6.4 Underestimating the Value of Reuse

Research shows that programmers will often choose to re-implement
a given functionality over trying to reuse it [4]. In our study, domain
expertise appeared to play a role in this decision.

User 3 went straight to attempting to implement the image simi-
larity task from scratch, without ever consulting Photo Mosaic code,
or its history. When asked why, the participant cited a Master’s
degree in statistics and said “So I'm almost certain that this cross
correlation is the best or close to the best way out of the box to
do [image similarity]. If you showed me something I’ve literally
never seen, 'm gonna read documentation. But if I have a really
good idea of how to do it, 'm just gonna go ahead and try my
best." It is worth noting that User 3 attempted to re-solve multiple
sub-problems completed by the original developer, such as loading
images into Python and resizing them, but did not complete these
sub-goals during the allotted time.

In contrast, User 10 who had not worked with images before,
stated “I have to reuse [the code] because off the top of my head, I
don’t know how to write code to analyze images. So this is the part
that I'm gonna have to pull from this Photo Mosaic code." User 10
ended up successfully reusing code to read in and compare image
similarities, while neither of the two programmers who attempted
the solution from scratch did.

This represents an interesting design challenge going forward.
Even for programmers with significant domain expertise, adapta-
tion has the potential to be more efficient than re-implementation.
Integrating reuse support into developer’s natural workflow better
may help to highlight reuse opportunities for domain experts.

7 DISCUSSION AND DESIGN GUIDELINES

Our findings highlight several opportunities for code histories to
improve the code reuse process. We describe design guidelines for
future code history tools based on our study.

We argue that code history tools should 1) be incorporated into
the natural workflow of developers, 2) allow lightweight evaluation

An Exploratory Study of Programmers’ Analogical Reasoning and Software History Usage During Code Re-Purposing

of code by linking code segments to the relevant subgoals of the
original developer, 3) clearly mark historical code that is no longer
present in the final code, and 4) support noticing reuse opportunities
through search.

7.1 Integrating Code History Tools into the IDE

While the code histories were lightly used during this study, the
usages we observed were largely successful. The sub-goal infor-
mation and its connection to specific code helped programmers
to make higher confidence assessments of code relevance. When
programmers were more confident that a given segment of code
was relevant, they also appeared more willing to invest effort into
program comprehension. However, the code histories were not well
integrated into programmers’ natural workflow. For example, code
history information might enable programmers to make more ac-
curate assessments of code function when searching for potentially
relevant code. Since the code history information was presented in
a separate web page, programmers were not able to leverage it in
their programming context. From a cognitive load perspective, the
separate web page may have introduced extraneous cognitive load,
dividing programmers’ attention and increasing the cost of use.

We suspect that some of the light usage may also have been due
to lack of familiarity. Programmers already had established habits
for exploring unfamiliar code bases. We introduced programmers to
code histories but did not ask them to complete an introductory task
using a code history. Future studies should include warm-up tasks
that more fully introduce code histories. Several of the participants
who explored the code histories commented about how useful the
information was. As user 13 reflected, “Looking at the code history
was useful as a supplement to the actual code. It was telling me
what they (the original developer) were thinking at that time.. Like,
is it similar to what I'm thinking? That’s actually how I found the
[game] tiles, looking at the code history.. I wish I'd looked more
in depth at the code story. "Going forward, our results point to
opportunities to introduce code history information within the
programming environment to align with the reuse strategies we
observed.

7.2 Enable quick evaluation of software by
linking code with relevant subgoals

Participants in our study were frequently overwhelmed by the
amount of irrelevant code they had to sift through in order to find
relevant functionalities. However, the irrelevant code often included
useful information that standalone snippets do not.

As User 1 stated, “Having the irrelevant code is nice in that some-
times it can have like [usage] snippets [of the desired functionality],
but at the same time, I found it really noisy and I find it really hard
to concentrate on the parts that I actually wanted."

Code history tools should allow for lightweight evaluation of a
codebase by maintaining a two-way connection between abstract
subgoals of the original developer(s) and code elements. The subgoal
descriptions provide another source of surface features program-
mers can easily evaluate, as well as a pathway to get more details
relevant to them. As we saw among the code history users, the
availability of subgoals would support programmers in two of the

117

CHASE *24, April 14-15, 2024, Lisbon, Portugal

three history usage scenarios we identified: locating an entry point

and scanning existing code.

7.2.1 Connecting subgoals to code. Code history tools should sup-
port programmers attempting to locate an entry point by allowing
programmers to scan through high-level logic and jump into the
code where they deem appropriate. In the surface analogy task,
participants easily identified reusable functionalities, such as tile
flipping and the board’s design, but struggled to find the relevant
underlying software elements in the code base. Four participants
(50% of those with Wordle history access) were able to use the
code history to identify which files were edited to contribute to
specific functionalities, however, this process could be improved
by tools that directly link historical changes to their existing imple-
mentations in the code. This design goal is in-line with Krueger’s
recommendation that reuse is improved through abstraction [35];
by linking code elements to the abstract subgoals of the original
developer, history tools can improve future programmer’s ability
to reason about abstract functionalities to be reused.

7.2.2 Connecting code to subgoals. Code history tools should ex-
pose relevant subgoals for code segments to enable programmers
to make more accurate assessments of code function.

Digging into an unfamiliar code base is a cognitively demanding
task, one that multiple participants indicated was overwhelming
at times. As User 5 described the matching game task, “There was
like no way I could have done that. I have done matching in Java,
but it was with like my own objects. I had like an object setting up
the board, an object that divides the color, but this [code base] had
nothing like that"

Perhaps in response to the cognitive demands, participants seemed
to scan the code for a shallow understanding of the behavior of
given segments of the code, using cues that required little cognitive
effort such as method names and comments to hypothesize the
code’s function, often leading to incorrect deductions about code
function.

Further, participants used a greedy approach to finding a reuse
plan, often building on the first method they found that seemed
promising. Once programmers had begun to implement a plan
based on a non-ideal starting code selection, they were hesitant to
change course, even when they found other code that seemed more
promising. This behavior is consistent with the sunk cost fallacy.
Taken together, these two tendencies suggest that it is important
to support accurate lightweight evaluation of unfamiliar code.

7.3 Identifying removed code

Code history tools should clearly indicate when historical code
additions are longer incorporated into a code base, and point to
existing code that is related to the deleted code whenever possible.
Two participants found code additions in the software history that
they found relevant, but were no longer included in the final code.
This introduced a few issues. First, participants invested more time
in the hopeless search of trying to find the lines of code they were
interested in within the final code. Second, participants were try-
ing to use code snippets that had been abandoned by the original
developer, which has the potential to lead to errors down the road.
While linking subgoals to code may help prevent these errors, we

CHASE 24, April 14-15, 2024, Lisbon, Portugal

suggest that code history tools also explicitly denote changes that
are no longer included in the present code state, and point to the
moment in the history where they are ultimately discarded. This
may help the user identify how the original developer addressed
the same functionality with a different, more preferred strategy.

7.4 Using search to support for noticing
analogies

Code history tools should detect when programmers make similar
searches as the original developer and help them find related code
that is already integrated into the program.

As a result of not fully comprehending the code base, program-
mers struggled to notice functional analogies between existing code,
and code they wanted to write. During the structural analogy task,
we frequently observed participants attempt to re-solve problems
that had already been solved in the Photo Mosaic code base (7
(43.8%) participants).

When doing this, participants often made similar searches, and
visited websites with semantically similar titles as the original de-
veloper. This happened for two reasons. Users used web resources
to better understand what the code was doing, and second, par-
ticipants turned to web resources in their own attempt to solve a
problem that the original developer already worked on. In either
scenario, identifying searches similar to those in the history may
provide another entry point that helps programmers to make use
of existing codebases.

For example, User 4 attempted to add key listeners dynamically
when the page loaded during the Structural Task. In doing so, he
searched for “document load javascript". Unsatisfied with the re-
sults, re-framed his search to “document load javascript event" and
ultimately “document load javascript event DOM". Eventually, he
found a relevant example and integrated it into the code base.

However, the original Wordle developer of the code base had
already added a similar functionality. When designing the random
letter selection, the original developer searched “javascript run
function on page load", before adding code to her script to generate
a new random word each time the page was loaded. In retrospect,
this was a potential point at which a codebase-grounded search
result could have directed the user towards 1) the relevant resource
the original developer referenced when working on the same prob-
lem, and 2) the code the original developer created after finding
said resource. Future code history tools should consider analyzing
developer searches as an entry point to present relevant history.

8 LIMITATIONS

Internal threats to validity include the task time constraints, and
the potential for programmers to gain experience with code reuse
between the first and second tasks. The Latin-squares design min-
imizes the impact of any experience effect by evenly distributing
task orders. We note that the time limitation may have encouraged
programmers to continue pursuing unsuccessful strategies, due to
the potential time cost of re-starting. Finally, a lack of familiarity
with the history tool may have led to its light usage.

External threats to validity include the small and narrow partici-
pant pool and the limited set of reuse tasks. Our task selection pro-
cess was designed to get participants to recycle real-world projects,

118

Allen and Kelleher

does not account for all reuse scenarios. For example, some forms
of code reuse involve the step of finding and selecting reusable code.
We removed this step in order to focus on the analogical alignment
and code modification aspects of reuse. Future work should include
a broader subject pool and a wider variety of tasks.

9 FUTURE WORK

There is relatively little work exploring the process of reuse and
even less exploring how code history can support reuse. We believe
that future work should concentrate on: 1) broadening research
combining analogical reasoning and code reuse, 2) designing and
evaluating code histories that integrate into the workflow of code
comprehension and reuse tasks in a variety of domains, and 3)
exploring techniques for fully automatic code history generation.

9.1 Analogical Reasoning and Code Reuse

Our study explored reuse through repurposing, but analogical rea-
soning is a potentially useful lens through which to consider a
broader cross section of code reuse activities. In our study, ana-
logical reasoning helped highlight the problem of false analogies
due to incomplete program comprehension. Future studies should
consider other types of code reuse through the lens of analogical
reasoning to generalize these results and identify differences in
programmers’ needs based on reuse type.

9.2 Integrating code histories with
programmers’ workflow

The code histories contained information that was helpful to par-
ticipants during reuse tasks. However, utilization remained low,
perhaps due to unfamiliarity and lack of integration with program-
mers’ workflow. Future research should further characterize pro-
grammers processes across diverse reuse contexts to identify where
and how these tasks may be supported using code history informa-
tion. While our study focused on the reuse process, code histories
may also be be helpful in helping programmers to evaluate the
potential utility of code when making decisions about reuse.

9.3 Automatic code history generation

While our current code histories are created in a semi-automatic
process, they still require hand annotation of the subgoals and
activities. It is well documented that developers do not wish to
spend more time documenting their code [1, 15], and do not want to
invest much time in explaining their intentions while writing code
[30]. As such, tools should investigate capturing and annotating this
information passively. Future work should explore techniques to
fully automate the capture of code history information, potentially
by leveraging Large Language Models (LLMs).

10 CONCLUSION

Our study suggests that code reuse can be limited by program-
mers’ tendency to use incomplete program comprehension while
planning their reuse strategy. Programmers’ surface-level under-
standings of code led to failures to notice analogies between code
they had access to, and problems they were trying to solve. In our
study, this resulted in participants making sub-optimal analogies

An Exploratory Study of Programmers’ Analogical Reasoning and Software History Usage During Code Re-Purposing

and pursuing reuse strategies that had little merit. Further, once
programmers selected an approach, they were unlikely to switch
to a new one, even after noticing functionalities more aligned with
their original goals. Programmers also struggled mapping desired
functionalities to their actual software implementations.
Programmers’ uses of the code history suggest that history in-
formation can support programmers’ in making lightweight evalu-
ations of program function. This support is relevant to the primary
barriers our study identified for locating reusable software compo-
nents and their code implementations. However, code histories need
to be more tightly integrated with developers workflow patterns.
Specifically, code histories should support developers in 1) quickly
evaluating code function and relevance, 2) enabling bi-direction
exploration of code changes and goals, 3) clearly identify histori-
cal code that has been removed, and 4) leverage web searches to
identify possibly relevant subgoals within the code history.

REFERENCES

(1]

[2

—

[9

=

[10]

[11]

[12

[13

[14]

[17]

[18]

Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez, Mario Linares-Vasquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documenta-
tion Issues Unveiled. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 1199-1210. https://doi.org/10.1109/ICSE.2019.00122

Omar Alghamdi, Sarah Clinch, Mohammad Alhamadi, and Caroline Jay. 2023.
Novice Programmers Strategies for Online Resource Use and Their Impact on
Source Code. In 2023 IEEE/ACM 16th International Conference on Cooperative and
Human Aspects of Software Engineering (CHASE). 92-104. https://doi.org/10.
1109/CHASE58964.2023.00018

Karen Arnold. [n. d.]. Ostrich Vintage Clipart. https://www.publicdomainpictures.
net/en/view-image.php?image=407552&picture=ostrich-vintage-clipart License:
CC0 Public Domain.

Rajiv D Banker, Robert] Kauffman, and Dani Zweig. 1993. Repository evaluation
of software reuse. IEEE Transactions on Software Engineering 19, 4 (1993), 379-389.
BH Barns and Terry B Bollinger. 1991. Making reuse cost-effective. IEEE software
8,1 (1991), 13-24.

Ruven Brooks. 1983. Towards a theory of the comprehension of computer
programs. International journal of man-machine studies 18, 6 (1983), 543-554.
Jean-Marie Burkhardt, Francoise Détienne, and Susan Wiedenbeck. 2002. Object-
oriented program comprehension: Effect of expertise, task and phase. Empirical
Software Engineering 7 (2002), 115-156.

Richard Catrambone and Keith J Holyoak. 1989. Overcoming contextual limita-
tions on problem-solving transfer. Journal of Experimental Psychology: Learning,
Memory, and Cognition 15, 6 (1989), 1147.

Catherine A Clement, D Midian Kurland, Ronald Mawby, and Roy D Pea. 1986.
Analogical reasoning and computer programming. Journal of Educational Com-
puting Research 2, 4 (1986), 473-486.

Coder Coder. 2022. Live coding a WORDLE clone (5 hrs) | HTML Sass jS. YouTube.
https://www.youtube.com/watch?v=PNGgQzw6PQg

Cynthia L Corritore and Susan Wiedenbeck. 2001. An exploratory study of pro-
gram comprehension strategies of procedural and object-oriented programmers.
International Journal of Human-Computer Studies 54, 1 (2001), 1-23.

Igor Crk and Timothy Kluthe. 2016. Assessing the contribution of the individual
alpha frequency (IAF) in an EEG-based study of program comprehension. In 2016
38th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). IEEE, 4601-4604.

Frangoise Détienne. 2007. Reasoning from a schema and from an analog in
software code reuse. arXiv preprint cs/0701200 (2007).

K. Erdos and H.M. Sneed. 1998. Partial comprehension of complex programs
(enough to perform maintenance). In Proceedings. 6th International Workshop on
Program Comprehension. IWPC’98 (Cat. No.98TB100242). 98-105. https://doi.org/
10.1109/WPC.1998.693322

Andrew Forward and Timothy C Lethbridge. 2002. The relevance of software
documentation, tools and technologies: a survey. In Proceedings of the 2002 ACM
symposium on Document engineering. 26-33.

Erich Gamma, Richard Helm, Ralph Johnson, Ralph E Johnson, John Vlissides,
et al. 1995. Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH.

David Garlan, Robert Allen, and John Ockerbloom. 1995. Architectural mismatch
or why it’s hard to build systems out of existing parts. In Proceedings of the 17th
international conference on Software engineering. 179-185.

Dedre Gentner, Jeffrey Loewenstein, and Leigh Thompson. 2004. Analogical
encoding: Facilitating knowledge transfer and integration. In Proceedings of the

119

[19

[20]

[21

[22

~
=

[24

[25]

[26

[27]

[28

(30]

(31

[32

(34]

[35

[36

™
=

[38

[39

[40

CHASE *24, April 14-15, 2024, Lisbon, Portugal

Annual Meeting of the Cognitive Science Society, Vol. 26.

Mary L Gick and Keith] Holyoak. 1980. Analogical problem solving. Cognitive
psychology 12, 3 (1980), 306—-355.

Paulo Gomes, Francisco C Pereira, Carlos Bento, and JL Ferriera. 2001. Using
analogical reasoning to promote creativity in software reuse. In Procs. of the Work-
shop Programme of the Fourth International Conference on Case-Based Reasoning.
152-158.

Neal Grandgenett and Ann Thompson. 1991. Effects of guided programming
instruction on the transfer of analogical reasoning. Journal of Educational Com-
puting Research 7, 3 (1991), 293-308.

Stefan Haefliger, Georg Von Krogh, and Sebastian Spaeth. 2008. Code reuse in
open source software. Management science 54, 1 (2008), 180-193.

Mehdi T Harandi. 1993. The role of analogy in software reuse. In Proceedings
of the 1993 ACM/SIGAPP symposium on Applied computing: states of the art and
practice. 40-47.

Bjorn Hartmann, Scott Doorley, and Scott R Klemmer. 2008. Hacking, mashing,
gluing: Understanding opportunistic design. IEEE Pervasive Computing 7,3 (2008),
46-54.

Ahmed E. Hassan. 2008. The road ahead for Mining Software Repositories. In
2008 Frontiers of Software Maintenance. 48-57. https://doi.org/10.1109/FOSM.
2008.4659248

Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi,
Taher A. Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip
Makedonski, Matin Nili Ahmadabadi, Kristof Szabados, Helge Spieker, Matej
Madeja, Nathaniel Hoy, Valentina Lenarduzzi, Shangwen Wang, Gema Rodriguez-
Pérez, Ricardo Colomo-Palacios, Roberto Verdecchia, Paramvir Singh, Yihao Qin,
Debasish Chakroborti, Willard Davis, Vijay Walunj, Hongjun Wu, Diego Marcilio,
Omar Alam, Abdullah Aldaeej, Idan Amit, Burak Turhan, Simon Eismann, Anna-
Katharina Wickert, Ivano Malavolta, Matus Sulir, Fatemeh Fard, Austin Z. Henley,
Stratos Kourtzanidis, Eray Tuzun, Christoph Treude, Simin Maleki Shamasbi, Ivan
Pashchenko, Marvin Wyrich, James Davis, Alexander Serebrenik, Ella Albrecht,
Ethem Utku Aktas, Daniel Striiber, and Johannes Erbel. 2022. A fine-grained data
set and analysis of tangling in bug fixing commits. Empirical Software Engineering
27, 6 (July 2022), 125. https://doi.org/10.1007/s10664-021-10083-5

Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In
Proceedings of the 10th Working Conference on Mining Software Repositories (MSR
’13). IEEE Press, San Francisco, CA, USA, 121-130.

Keith J Holyoak, Paul Thagard, and Stuart Sutherland. 1995. Mental leaps: analogy
in creative thought. Nature 373, 6515 (1995), 572-572.

Ellis Horowitz and John B. Munson. 1984. An Expansive View of Reusable
Software. IEEE Transactions on Software Engineering SE-10, 5 (1984), 477-487.
https://doi.org/10.1109/TSE.1984.5010270

Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma
Paterson, Kazi Jawad, Andrew Macvean, and Brad A Myers. 2022. Understanding
How Programmers Can Use Annotations on Documentation. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,
LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA,
Article 69, 16 pages. https://doi.org/10.1145/3491102.3502095

Tomas Isakowitz and Robert J Kauffman. 1996. Supporting search for reusable
software objects. IEEE Transactions on Software engineering 22, 6 (1996), 407-423.
David Kawrykow and Martin P. Robillard. 2011. Non-essential changes in version
histories. In 2011 33rd International Conference on Software Engineering (ICSE).
351-360. https://doi.org/10.1145/1985793.1985842 ISSN: 1558-1225.

Amy]J. Ko, Robert DeLine, and Gina Venolia. 2007. Information Needs in Col-
located Software Development Teams. In Proceedings of the 29th international
conference on Software Engineering (ICSE *07). IEEE Computer Society, USA, 344
353. https://doi.org/10.1109/ICSE.2007.45

Amy J. Ko, Brad A. Myers, Michael]J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant In-
formation during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (Dec. 2006), 971-987. https://doi.org/10.1109/TSE.2006.116
Charles W. Krueger. 1992. Software Reuse. ACM Comput. Surv. 24, 2 (jun 1992),
131-183. https://doi.org/10.1145/130844.130856

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about
code. In Evaluation and Usability of Programming Languages and Tools (PLATEAU
’10). Association for Computing Machinery, New York, NY, USA, 1-6. https:
//doi.org/10.1145/1937117.1937125

Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental
models: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering (ICSE "06). Association for Computing Ma-
chinery, New York, NY, USA, 492-501. https://doi.org/10.1145/1134285.1134355
Stanley Letovsky. 1987. Cognitive processes in program comprehension. Journal
of Systems and software 7, 4 (1987), 325-339.

David C Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. 1987.
Mental models and software maintenance. Journal of Systems and Software 7, 4
(1987), 341-355.

Katsuhisa Maruyama, Takayuki Omori, and Shinpei Hayashi. 2016. Slicing Fine-
Grained Code Change History. IEICE Transactions on Information and Systems

CHASE 24, April 14-15, 2024, Lisbon, Portugal

E99.D, 3 (2016), 671-687. https://doi.org/10.1587/transinf.2015EDP7282

[41] Travis Maynard. 2017. Getting Started with Gulp-Second Edition. Packt Publishing

Ltd.

H. Mili, F. Mili, and A. Mili. 1995. Reusing software: issues and research directions.

IEEE Transactions on Software Engineering 21, 6 (1995), 528-562. https://doi.org/

10.1109/32.391379

[43] Audris Mockus. 2007. Large-Scale Code Reuse in Open Source Software. In First

International Workshop on Emerging Trends in FLOSS Research and Development

(FLOSS’07: ICSE Workshops 2007). 7-7. https://doi.org/10.1109/FLOSS.2007.10

Israel J. Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst, Thorsten

Berger, and Ahmed E. Hassan. 2014. A Large-Scale Empirical Study on Software

Reuse in Mobile Apps. IEEE Software 31, 2 (2014), 78-86. https://doi.org/10.1109/

MS.2013.142

[45] Jungkook Park, Yeong Hoon Park, Suin Kim, and Alice Oh. 2017. Eliph: Effective
Visualization of Code History for Peer Assessment in Programming Education.
In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing (CSCW ’17). Association for Computing Machinery,
New York, NY, USA, 458-467. https://doi.org/10.1145/2998181.2998285

[46] Nancy Pennington. 1987. Comprehension strategies in programming. In Empirical
Studies of Programmers: Second Workshop, 1987. 100-113.

[47] Brian H Ross. 1987. This is like that: The use of earlier problems and the separation
of similarity effects. Journal of Experimental Psychology: Learning, Memory, and
Cognition 13, 4 (1987), 629.

[48] Geof Sheppard. [n.d.]. Barnett Class ON939 rudder and starboard propeller.
https://link.to/original/image https://commons.wikimedia.org/wiki/File: Bar-
nett_Class_ON939_rudder_and_starboard_propeller.jpg.

[49] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions program-

mers ask during software evolution tasks. In Proceedings of the 14th ACM SIG-

SOFT international symposium on Foundations of software engineering (SIGSOFT

’06/FSE-14). Association for Computing Machinery, New York, NY, USA, 23-34.

https://doi.org/10.1145/1181775.1181779

Manuel Sojer and Joachim Henkel. 2010. Code reuse in open source software

development: Quantitative evidence, drivers, and impediments. Journal of the

[42

[44

[50

120

[51

[52

[53

(54]

o
2

[56

[57

[58

o
0,

[60

Allen and Kelleher

Association for Information Systems 11, 12 (2010), 868-901.

Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowl-
edge. IEEE Transactions on software engineering 5 (1984), 595-609.

George Spanoudakis and Panos Constantopoulos. 1994. Similarity for analogical
software reuse: A computational model. In ECAL PITMAN, 18-22.

Alistair Sutcliffe and Neil Maiden. 1991. Analogical software reuse: Empirical
investigations of analogy-based reuse and software engineering practices. Acta
Psychologica 78, 1-3 (1991), 173-197.

Karen Swan. 1991. Programming objects to think with: Logo and the teaching
and learning of problem solving. Journal of Educational Computing Research 7, 1
(1991), 89-112.

Antero Taivalsaari, Tommi Mikkonen, and Niko Mékitalo. 2019. Programming
the Tip of the Iceberg: Software Reuse in the 21st Century. In 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). 108-112.
https://doi.org/10.1109/SEAA.2019.00025

Unknown. [n. d.]. Plane Image. https://creativecommons.org/publicdomain/zero/
1.0/ License: CCO 1.0.

Paul Wuilmart, Emma Séderberg, and Martin Host. 2023. Programmer Stories,
Stories for Programmers: Exploring Storytelling in Software Development. In
The 9th Edition of the Programming Experience Workshop.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2018. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. IEEE Transactions on Software Engineering 44, 10 (Oct. 2018),
951-976. https://doi.org/10.1109/TSE.2017.2734091 Conference Name: IEEE
Transactions on Software Engineering.

YoungSeok Yoon and Brad A. Myers. 2015. Semantic zooming of code change his-
tory. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 95-99. https://doi.org/10.1109/VLHCC.2015.7357203

YoungSeok Yoon and Brad A. Myers. 2015. Supporting Selective Undo in a
Code Editor. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. 223-233. https://doi.org/10.1109/ICSE.2015.43 ISSN: 1558-
1225.

