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We propose an inference method for detecting multiple change points in
high-dimensional time series, targeting dense or spatially clustered signals.
Our method aggregates moving sum (MOSUM) statistics cross-sectionally
by an �2-norm and maximizes them over time. We further introduce a
novel Two-Way MOSUM, which utilizes spatial-temporal moving regions
to search for breaks, with the added advantage of enhancing testing power
when breaks occur in only a few groups. The limiting distribution of an �2-
aggregated statistic is established for testing break existence by extending a
high-dimensional Gaussian approximation theorem to spatial-temporal non-
stationary processes. Simulation studies exhibit promising performance of
our test in detecting nonsparse weak signals. Two applications on equity re-
turns and COVID-19 cases in the United States show the real-world relevance
of our algorithms. The R package “L2hdchange” is available on CRAN.

1. Introduction. Change-point analysis is a fundamental problem in various fields of
applications: in economics, the break effects of policy are of particular interest [10]; in bi-
ology, high-amplitude cofluctuations are utilized in cortical activity to represent dynamics
of brain functional connectivity [21, 22]; in network analysis, change-point detection can
be employed for the anomaly of network traffic data caused by attacks [32], etc. The above
list of scenarios spans a wide range of data structures, including high-dimensional data with
temporal and cross-sectional dependence, which pose substantial challenges to change-point
analysis. The paper aims to address this issue by providing theory on multiple break inference
for high-dimensional time series allowing both temporal and spatial dependence.

There is a sizable literature on high-dimensional change-point detection. Various studies
consider data aggregation, and many of them consider �∞-based methods; see, for example,
[11, 27, 42, 55]. Most aforementioned studies focus on sparse signals, while an �2-based
approach favors nonsparse weak signals, and this is also the focus of this study. In the mean-
while, the �2-type aggregation is quite common in the literature. Zhang et al. [4] evaluates
the performance of a least square estimation and establishes a distribution theory for single
change-point estimator in panel data without cross-sectional dependence; [58] develops a re-
cursive algorithm based on sums of chi-squared statistics across samples with independent
and identically distributed (i.i.d.) Gaussian noises, which could be viewed as an extension of
the circular binary segmentation algorithm by [38]. In addition, [5, 8, 24, 25, 35] study �2-
based cumulative sum (CUSUM) statistics to estimate and make inference for change points
in linear regression or panel models. Although their methods primarily concentrate on sce-
narios with a single break per time series, their approaches bear similarities to ours, with
the key difference being our utilization of a moving sum (MOSUM) variant. More recently,

Received October 2023; revised February 2024.
MSC2020 subject classifications. Primary 62E20, 62M10; secondary 62G20.
Key words and phrases. Nonlinear time series, multiple change-point detection, �2 inference, Two-Way MO-

SUM, Gaussian approximation, temporal and spatial dependence.

602



�2 INFERENCE FOR CHANGE POINTS IN HIGH-DIMENSIONAL TIME SERIES 603

[20] proposes a linear and a scan CUSUM statistic with the minimax bound established for
the change-point estimator of i.i.d. Gaussian data; Chen et al. [12] introduce a coordinate-
wise likelihood ratio test for online change-point detection for independent Gaussian data
and present the response delay rate. In addition to aggregation, there are other well-known
techniques for high-dimensional change-point analysis, including the U-statistics as demon-
strated by [46, 47, 55], threshold-based approaches proposed by [15, 16] and a projection-
based method developed by [49]. In this paper, we consider a maximized �2-type test statistic
to adapt to different data sets containing signals of distinct temporal-spatial properties and
errors with complex dependency structures.

Besides the challenge of change-point test brought by high dimensionality, studies on mul-
tiple change-point detection have a long-standing tradition. In general, two broad classes of
methods have been developed: model selection and hypothesis testing. Model selection ap-
proaches aim to treat change-point signals as parameters and derive estimators for them,
such as the PELT algorithm [28] and the fused LASSO penalty [31, 33, 44]. Cho and Kirch
[17] propose a localized application of the Schwarz criterion for multiscale change points.
Kuchibhotla and others [30, 45, 53] consider change-point analysis for linear regression mod-
els featuring varying parameters, encompassing a broad range of nonlinear time series. As for
testing, a traditional approach is binary segmentation developed by [41]. Its variants are con-
sidered in [6, 38]. Moreover, [23] introduces a wild binary segmentation and [16] proposes a
sparsified binary segmentation algorithm. Yu [56] reviews diverse minimax rates in change-
point analysis literature.

In the context of testing, MOSUM is a notably popular technique for both univariate and
multivariate time series, such as [26] on i.i.d. data, [19, 51] on temporal dependent data and
[29] on multivariate time-continuous stochastic processes. MOSUM is attractive due to the
simplicity of implementation and an overall control of significance level, which avoids issues
in multiple testing. However, for high-dimensional time series, when a MOSUM statistic
aggregates all the series by an �2-norm, the testing power would suffer if breaks only occur
in a portion of them. Hence, in this paper, we propose a novel spatial-temporal moving sum
algorithm called Two-Way MOSUM. This method utilizes moving spatial-temporal regions
to search for temporal breaks and locate spatial neighborhoods where temporal breaks occur.
Such moving regions can be viewed as a generalized concept of the moving windows in
previous MOSUM, which can aggregate signals adaptive to cross-sectional group structures
to enhance testing power. We emphasize that overlapping groups are allowed in our method
and, therefore, the prior knowledge of groups is not a requirement for effective detection of
breaks, since one can always search for all possible grouping scenarios. Nevertheless, prior
grouping information is available in numerous data applications, which can boost the testing
power by decreasing the number of searching windows. See, for example, in neuroscience,
regions of interest (ROI) in human brains can be assigned to networks by different functions
and the ROIs from the same network will undergo simultaneous functional change points
[7]; in finance, stock prices of industries are often grouped by market capitalization and a
few number of sectors may experience market shocks at the same time [39]. Note that the
MOSUM procedure may not necessarily outperform the CUSUM in testing power. However,
it may have better localization property in scenarios with multiple change points.

Although both �2 aggregation and MOSUM statistics have been well investigated respec-
tively, it is quite challenging to rigorously develop an inference theory for �2-based MOSUM
statistics to detect the existence of breaks for the high-dimensional data. To be more specific,
when we take the maximum of �2 statistics obtained from all the rolling windows over time,
these aggregated statistics are temporally dependent even though the underlying errors may
be independent. Most of the previous works concerning �2-based statistics only provide in-
ference for the break estimators by assuming the existence of a break, such as an �2-type
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break location estimator and its inference introduced by [4] for single change-point estima-
tion with cross-sectionally independent errors. To the best of our knowledge, this study is the
first to establish the limiting distribution of an �2-type test statistic to facilitate the inference
for change-point detection, which allows both spatial and temporal dependence.

To summarize, we contribute to the literature in both theory and algorithms. On the theory
front, we propose an �2-type MOSUM test statistic for multiple break detection in high-
dimensional time series, allowing both temporal and spatial dependence. The Gaussian ap-
proximation (GA) result under the null is provided as a theoretical foundation to backup our
detection of breaks (cf. Theorems 2.1 and 4.1). Correspondingly, we introduce an innovative
Two-Way MOSUM statistic to account for spatially-clustered signals (cf. Theorem 3.1). Con-
sistency results of estimators for the number of breaks, temporal and spatial break locations,
as well as break sizes are all established (cf. Theorem 2.2 and Proposition 3.1).

Roadmap. The rest of this article is organized as follows. Section 2 is devoted to the
test specification and asymptotic properties with cross-sectional independence assumed. Sec-
tion 3 serves as an extension to the cases where breaks might exist only in a subset of com-
ponent series (clustered signals). We follow with Section 4 as a generalization to nonlinear
time series with spatial space in Z

v , allowing both temporal and cross-sectional dependence.
In Section 5, we deliver two empirical applications on testing structural breaks for the stock
return and COVID-19 data. The simulation studies and proofs are deferred to the Appendix
in the Supplementary Material [34].

Notation. For a vector v = (v1, . . . , vd) ∈R
d and q > 0, we denote |v|q = (

∑d
i=1 |vi |q)1/q

and |v|∞ = max1≤i≤d |vi |. For s > 0 and a random vector X, we say X ∈ Ls if ‖X‖s =
[E(|X|s2)]1/s <∞, and denote E0(X)=X − E(X). For two positive number sequences (an)

and (bn), we say an = O(bn) or an � bn (resp., an � bn) if there exists C > 0 such that
an/bn ≤ C (resp., 1/C ≤ an/bn ≤ C) for all large n and say an = o(bn) or an � bn if
an/bn → 0 as n→∞. Let (Xn) and (Yn) to be two sequences of random variables. Write
Xn =OP(Yn) if for ∀ε > 0, there exists C > 0 such that P(|Xn/Yn| ≤C) > 1− ε for all large
n, and say Xn = oP(Yn) if Xn/Yn→ 0 in probability as n→∞.

2. Testing and estimating high-dimensional change points. In this section, we pro-
pose a test statistic based on an �2 aggregated MOSUM and investigate its theoretical prop-
erties to test the presence of structural breaks. To formulate our model, let Y1, . . . , Yn be
observed p-dimensional random vectors satisfying

(2.1) Yt = μ(t/n)+ εt , t = 1, . . . , n,

where (εt )t is a sequence of p-dimensional stationary errors with zero mean and μ(·) is a
p-dimensional vector of unknown trend functions. Our main interest is to detect the potential
change points occurring on the trend function

(2.2) μ(u)= μ0 +
K

∑

k=1

γk1u≥uk
,

where K ∈ N is the number of structural breaks, which is unknown and could go to infinity
as n increases; u1, . . . , uK are the time stamps of the breaks with 0= u0 < u1 < · · ·< uK <

uK+1 = 1 and the minimum gap κn =min0≤k≤K(uk+1−uk), where κn > 0 is allowed to tend
to 0 as n→∞; μ0 ∈R

p represents the benchmark level when no break occurs and γk ∈R
p

is the jump vector at the time stamp uk with size |γk|2.
It should be noted that not all entries of γk need to be nonzero, which allows for cases

where only a subset of time series experience a jump at the time stamp uk . In such situations,
it is preferable to aggregate only the series with breaks rather than all of them, as it can
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improve the testing power. A more detailed discussion of this scenario is given in Section 3
where the Two-Way MOSUM method is introduced. In this section, for readability, we focus
solely on the improved MOSUM that aggregates all time series. For brevity, we assume the
time series to be linear and cross-sectionally independent throughout Sections 2 and 3, which
will be relaxed to nonlinear and cross-sectionally dependent cases in Section 4.

2.1. �2-based test statistics. This subsection is devoted to test the null hypothesis:

H0 : γ1 = γ2 = · · · = γK = 0,

which denotes the case with no breaks, against the alternative HA: there exists k ∈ {1, . . . ,K},
such that γk �= 0. Note that the number of breaks K is allowed to go to infinity under some
condition on the separation of breaks. We refer to a detailed discussion below Definition 2.1
in Section 2.3.

The primary reason for testing the presence of structural breaks is to prevent model mis-
specification. If we apply a change-point algorithm to a data generating process without any
actual breaks, we may obtain false break estimates, leading to erroneous conclusions. There-
fore, it is necessary to test for the existence of breaks before conducting further analysis.
However, previous studies on change points in high-dimensional time series mostly focus
on inference for break location estimators, such as Theorem 2.2 in [25], which assumes the
existence of breaks. Although there are some available literature on change-point testing for
high-dimensional time series (see [11, 27, 48]), there is no existing theory of �2-based statis-
tics for testing break existence, which can be necessary and highly beneficial in identifying
dense signals.

We define a jump vector J (u) at the time point u as J (u)= 0 when no break occurs at the
time stamp u, and J (u) = γi when u = ui for some 1 ≤ i ≤ K . Intuitively, we can test the
existence of breaks by evaluating the jump estimate Ĵ (i/n)= μ̂

(l)
i − μ̂

(r)
i , where

(2.3) μ̂
(l)
i = μ̂(l)(i/n)= 1

bn

i−1
∑

t=i−bn

Yt , μ̂
(r)
i = μ̂(r)(i/n)= 1

bn

i+bn−1
∑

t=i

Yt ,

are the local averages on the left- and the right-hand sides of the time point i/n, respectively,
and b is a bandwidth parameter satisfying b→ 0 and bn→∞. Without loss of generality,
we assume that bn is an integer. We shall reject the null if |Ĵ (i/n)|2 is too large. To this end,
we shall develop an asymptotic distributional theory, which appears to be highly nontrivial.

Throughout Sections 2 and 3, we assume that there is no dependence between component
processes (εt,j )t∈Z, 1 ≤ j ≤ p and we later relax this restriction to allow for weak cross-
sectional dependence in Section 4. To make all p components in Ĵ (i/n) comparable, we need
to specify the error process (εt )t∈Z and obtain the long-run variances for standardization. In
particular, we model εt as a vector moving average (VMA) process in Sections 2 and 3,
which embraces many important time series models such as a vector autoregressive moving
averages (VARMA) model, and we discuss a more general εt in Section 4 using functional
dependence measure, which allows nonlinear forms. Let

(2.4) εt =
∑

k≥0

Akηt−k,

where ηt ∈ R
p̃ are i.i.d. random vectors with zero mean and an identity covariance matrix

with p ≤ p̃ ≤ cp, for some constant c > 1. The coefficient matrices Ak , k ≥ 0, take values
in R

p×p̃ such that εt is a proper random vector. Define Ã0 =
∑

k≥0 Ak . Then the long-run
covariance matrix of εt and the diagonal matrix of the long-run standard deviations are

(2.5) � = Ã0Ã
�
0 = (σi,j )

p
i,j=1, 	= diag(σ1, σ2, . . . , σp),
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respectively, where σ 2
j = σj,j ≥ cσ , for some constant cσ > 0 is the long-run variance of the

j th component series. Note that in Sections 2 and 3, we assume p = p̃, and all Ak , k ≥ 0
are diagonal matrices, which indicates the independence between the component processes
(εt,j )t∈Z. We relax this assumption to weak cross-sectional dependence for a general εt in
Section 4, and also provide the results for the same linear εt in (2.4) as a special case in
Appendix B.4 in the Supplementary Material [34].

Following the previous intuition, we test the existence of breaks by evaluating the gap
vectors Ĵ (·). Namely, we standardize Ĵ (·) by the long-run standard deviations of each time
series, that is, for bn+ 1≤ i ≤ n− bn,

Vi =	−1Ĵ (i/n)=	−1(

μ̂
(l)
i − μ̂

(r)
i

)

.(2.6)

To conduct the change-point detection with p→∞, we take the �2 aggregation of each Vi

in the cross-sectional dimension, that is, |Vi |22, to capture dense signals. Note that by model
(2.1), the random vector Vi involves both the signal part EVi and the error part Vi −EVi . We
define

(2.7) c̄=
p

∑

j=1

cj where cj =Var(Vi,j ),

and Vi,j ∈ R is the j th coordinate of Vi . Since no break exists under the null hypothesis,
that is, EVi = 0, it follows that |Vi |22 − c̄ is a centered statistic under the null. The detailed
evaluation of c̄ is deferred to Remark 2.5. Finally, we move the windows in the temporal
direction to find the maximum and formulate our �2-based test statistic as follows:

(2.8) Qn = max
bn+1≤i≤n−bn

(

|Vi |22 − c̄
)

.

We consider Qn as a feasible test statistic by assuming that the long-run standard deviation 	

is known. The estimated long-run variances via a robust M-estimation method proposed by
[11] are utilized in Section 5 for applications, and the details are deferred to Appendix A.1 in
the Supplementary Material [34].

It is worth noticing that when breaks are sparse in the cross-sectional components, an �∞-
type statistic, that is, Qn,∞ = maxbn+1≤i≤n−bn |Vi |∞, could be more powerful [11] than an
�2-based one. However, in the presence of weak dense signals, the �∞ test would have power
loss [9] while the �2-type statistic can boost the power due to the aggregation of weak signals;
see Remark 2.1 for a simple comparison. The current study targets change-point detection
with nonsparse or spatially clustered signals. An �2-based test statistic Qn is therefore being
proposed.

REMARK 2.1 (Comparison of �2 and �∞ statistics). Here, we present a simulation study
to intuitively show that an �2-based test statistic is generally more powerful in detecting
weak dense signals compared to an �∞ one, while in the case of sparse signals, an �∞

type statistic appears better. Specifically, we perform a single change-point detection us-
ing test statistics Qn and Qn,∞, respectively, and compare their testing powers with var-
ied proportions of cross-sectional dimensions containing jumps. The errors are generated
from MA(∞) models defined in (2.4) with ηt ∼ t9 and the sample size n = 100. We con-
sider p = 50,100 and the window size bn= 20. We set the coefficient matrix Ak in (2.4) to
be Ak = diag(a1k

−3/2, a2k
−3/2, . . . , apk−3/2), where a1, . . . , ap are uniformly ranging from

0.5 to 0.9. For each time series with a break, the jump size is 1. All the reported powers
in Figure 1 are averaged over 1000 replicates. Intuitively, our test statistic Qn incorporates
the term |Vi |2, which aggregates dense signals in a linear fashion with respect to the number
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FIG. 1. Power comparison of �∞ MOSUM and �2 MOSUM.

of components p, while the standard deviation of weakly dependent random noises is aggre-
gated on the order of

√
p. As a result, an �2-type statistic is better suited for identifying dense

signals, while its performance for sparse signals may be inferior since aggregating sparse sig-
nals will only add noise without any significant signal. After introducing Theorem 2.1, we
shall provide a theoretical power comparison (cf. Remark 2.4).

2.2. Asymptotic properties of test statistics. To conduct the test, it is essential to under-
stand the asymptotic behavior of the test statistic Qn. However, deriving the limiting distri-
bution of Qn under the null is highly challenging. This is because, even if the underlying
errors are i.i.d., the standardized jump estimator Vi defined in (2.6) is still dependent over
i due to the overlapped observations among different moving windows. In this section, we
provide an intuition for the theoretical proofs of our first main theorem, which extends the
high-dimensional GA for dependent data.

First, recall that the random vector Vi can be decomposed into the expectation EVi and the
deviation part Vi −EVi . We have EVi = 0 for any i under the null hypothesis. Let

(2.9) xi,j = (Vi,j −EVi,j )
2 − cj and Xj = (xbn+1,j , . . . , xn−bn,j )

�,

where cj is defined in (2.7). By (2.6), we can write the test statistic Qn under the null into

(2.10) Qn = max
bn+1≤i≤n−bn

p
∑

j=1

xi,j .

When the errors are cross-sectionally independent, X1, . . . ,Xp are also independent. There-
fore, as p goes to infinity, we can apply the high-dimensional GA theorem to (2.10) to derive
the asymptotic distribution of Qn. In this way, the temporal dependence caused by the over-
lapped moving windows can be properly dealt with. We generalize this result in Section 4
with cross-sectionally dependence allowed between X1, . . . ,Xp .

We introduce the centered Gaussian random vector Z = (Zbn+1, . . . ,Zn−bn)
� ∈ R

n−2bn

with covariance matrix 
 = E(ZZ�) ∈ R
(n−2bn)×(n−2bn), and denote the ith element in Z

by Zi . Here, 
= (
i,i′)1≤i,i′≤n−2bn with expression

(2.11) 
i,i′ = p(bn)−2g
(∣

∣i − i ′
∣

∣/(bn)
)

,

where the function g(·) : [0,∞) �→R is defined as

(2.12) g(ζ )=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

18ζ 2 − 24ζ + 8, 0≤ ζ < 1,

2ζ 2 − 8ζ + 8, 1≤ ζ < 2,

0, ζ ≥ 2.
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Note that g(ζ ) has bounded second derivatives except for the point ζ = 1. The matrix 
 is
asymptotically equal to the covariance matrix of

∑p
j=1 Xj ∈R

n−2bn. The detailed evaluation
of g(ζ ) in (2.12) is deferred to Lemma C.12 in Appendix C in the Supplementary Material
[34]. The regime with 0≤ ζ < 1 corresponds to correlations of statistics within length of bn,
while 1≤ ζ < 2 is concerning statistics, which are further apart (bn < |i− i ′|< 2bn) and still
have weaker correlations. Finally, ζ ≥ 2 suggests that statistics beyond 2bn are uncorrelated.

By the GA theorem, we shall expect the asymptotic distribution of Qn under the null to be
approximated by the maximum coordinate of a centered Gaussian vector Z , that is,

(2.13) P(Qn ≤ u)≈ P

(

max
bn+1≤i≤n−bn

Zi ≤ u
)

.

This result allows us to find the critical value of our proposed test statistic Qn by Monte Carlo
replicates. We refer to a simulation study in Appendix A.2 in the Supplementary Material
[34].

2.3. Gaussian approximation. In this section, we provide a theory, which implies the
critical value of the proposed change-point test. We first consider the simplest setting where
the errors are assumed to be cross-sectionally independent, and a MOSUM statistic aggregat-
ing all the p series is adopted. The novel Two-Way MOSUM follows in Section 3. A gener-
alized case with cross-sectionally dependent errors is investigated in Section 4.

We begin with two necessary assumptions as follows.

ASSUMPTION 2.1 (Finite moment). Assume that the innovations ηi,j defined in (2.4)
are i.i.d. with μq := ‖η1,1‖q <∞ for some q ≥ 8.

ASSUMPTION 2.2 (Temporal dependence). There exist constants C > 0, β > 0 such that
max1≤j≤p

∑

k≥h |Ak,j,·|2/σj ≤ C(1∨ h)−β , for all h≥ 0, where Ak,j,· is the j th row of Ak .

ASSUMPTION 2.3 (Cross-sectional independence). Assume that for all k ≥ 0, the coef-
ficient matrices Ak defined in (2.4) are diagonal matrices.

Assumption 2.1 puts tail assumptions on the moment of the noise sequences in our moving
average model (2.4). Assumption 2.2 is a very general and mild temporal dependence con-
dition, which requires the polynomial decay rate of the temporal dependence. It also ensures
that the long-run variance is finite. Many interesting processes fulfill this assumption. We
refer to a specific example in Appendix B.1 in the Supplementary Material [34]. Note that we
introduce Assumption 2.3 for the simplicity to show the GA and it shall be relaxed to allow
weak cross-sectional dependence in Section 4.

Provided all the aforementioned conditions, we state our first main theorem as follows.

THEOREM 2.1 (GA with cross-sectional independence). Suppose that Assumptions 2.1–

2.3 are satisfied. Then, under the null hypothesis, for 
0 = (bn)−1/3 log2/3(n),


1 =
(

n4/q log7(pn)

p

)1/6
, 
2 =

(

n4/q log3(pn)

p1−2/q

)1/3
,

we have

(2.14) sup
u∈R

∣

∣

∣P(Qn ≤ u)− P

(

max
bn+1≤i≤n−bn

Zi ≤ u
)
∣

∣

∣ � 
0 +
1 +
2,

where the constant in � is independent of n, p, b. If in addition, log(n)= o{(bn)1/2} and

(2.15) n4p2−q log3q(pn)→ 0,
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then we have

(2.16) sup
u∈R

∣

∣

∣P(Qn ≤ u)− P

(

max
bn+1≤i≤n−bn

Zi ≤ u
)
∣

∣

∣→ 0.

The symbol o(1) and → 0 in this theorem and the rest of the paper is in the asymptotic
regime n ∧ p→∞. It is worth noting that the convergence rate of the GA in Theorem 2.1
depends on the number of cross-sectional components p, and a larger p is no longer a curse
when utilizing an �2-type test statistic. The intuition behind this is that when applying the GA,
we effectively treat our p cross-sectional components as equivalent to the “n observations” in
[13]. As such, a larger p provides more information that can be used to detect change points,
which can in turn reduce the approximation error.

Compared to the finite moment condition (E.2) in [13], which assumes that q ≥ 4, we
require q ≥ 8 since Xj in our test statistic Qn is quadratic with regard to the random noise
εt,j . As for the GA rate in Proposition 2.1 in [13], our 
1 and 
2 correspond to their rate
with p replaced by n and Bn = n2/q . It shall be noted that our additional term 
0 is due to an
additional step to compare noncentered Gaussian variables (cf. Lemma C.2 in Appendix C).

REMARK 2.2 (Allowed dimension p relative to n). In Theorem 2.1, we can allow p to be
of some polynomial order of n, and its order depends on the moment parameter q defined in
Assumption 2.1. In particular, let p � nν1 , for some ν1 > 0. If ν1 > 4/(q−2), then expression
(2.16) holds. The larger moment parameter q is, the weaker condition on p we can allow.

REMARK 2.3 (Comment on the convergence rate in Theorem 2.1). We standardize Xj

defined in (2.9) and denote it by X∗j , that is, X∗j = bnXj . Chernozhukov et al. [14] derives a

nearly optimal bound in the case when the smallest eigenvalue σ 2
∗ of the covariance matrix of

X∗j is bounded below from zero. However, this sharp approximation rate cannot be achieved
in our case. To see this, we consider the simple case where the errors are i.i.d. Then, for
any integer h, the (i, i + h)-th element of the covariance matrix E(X∗jX

∗�
j ) takes the form

of g(|h|/(bn)) in (2.11). It shall be noted that E(X∗jX
∗�
j ) is a 2bn-banded matrix and it is

symmetric. Since g(|h|/(bn)) has bounded second derivative except for one point, for any
four coordinates at the positions (s, s+ 2i+ 1), (s, s+ 2i+ 2), (s+ 2i, s) and (s+ 2i+ 1, s)

in E(X∗jX
∗�
j ), 1 ≤ s ≤ n− 2bn, 0 ≤ i ≤ �(n− 2bn− s − 2)/2�, we can bound them in the

following way:

(2.17) −g

(

2i + 1

bn

)

+ g

(

2i + 2

bn

)

− g

(

2i

bn

)

+ g

(

2i + 1

bn

)

=O

{

1

(bn)2

}

.

Inspired by (2.17), we define a vector y = (−1,1,−1,1, . . .)� ∈ R
n−2bn. When b2n→∞,

the upper bound of the smallest eigenvalue σ 2
∗ of E(X∗jX

∗�
j ) tends to 0, that is,

(2.18) σ 2
∗ ≤

y�E(X∗jX
∗�
j )y

y�y
=O

{

1

b2n

}

→ 0.

Therefore, [14] is not applicable to our case and we instead extend the GA in [13] to achieve
the rate in Theorem 2.1, which does not require the covariance matrix of X∗j to be nondegen-
erate.

Theorem 2.1 implies that, for any level α ∈ (0,1), we can choose the threshold value ω to
be the quantile of the Gaussian limiting distribution indicated by Theorem 2.1:

(2.19) ω= inf
r≥0

{

r : P
(

max
bn+1≤i≤n−bn

Zi > r
)

≤ α
}

.
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We shall reject the null hypothesis if the test statistic Qn exceeds the threshold value ω, that
is, Qn > ω. Under the alternative hypothesis, we show that when the break size is sufficiently
large, we can achieve the testing power asymptotically tending to 1 (cf. Corollary 2.1). Recall
the trend function defined in (2.2). We denote the break location by τk = nuk , 1≤ k ≤K and
introduce the following assumption for the identification of breaks.

DEFINITION 2.1 (Temporal separation). Define the minimum gap between breaks as
κn =min0≤k≤K(uk+1 − uk), for some κn > 0, and we allow κn→ 0 as n diverges.

Definition 2.1 concerns the separation of temporal break locations to ensure the consis-
tency of break estimation, and it implies that K cannot be larger than 1/κn. When κn → 0,
K can grow to infinity, which is in line with Assumption (1b) in [53], where they allow the
minimum spacing to be a function of n and to vanish as n diverges. In addition, we require
the bandwidth parameter b in (2.3) to satisfy b� κn as n→∞. Otherwise, if more than one
break exists within a window of temporal width bn, the adopted MOSUM statistics might
fail to distinguish the break time points in the same window. For any time point i satisfying
|i − τk| ≤ bn, we define the weighted break vectors as

(2.20) di = EVi =
K

∑

k=1

(

1− |i − τk|
bn

)

	−1γk1|i−τk |≤bn,

and let d = (d�bn+1, d
�
bn+2, . . . , d

�
n−bn)

�. Under the alternative hypothesis, there exists at least
one break, that is, d �= 0. We evaluate our testing power in the following corollary.

COROLLARY 2.1 (Power). Under Assumptions 2.1–2.3, if (2.15) holds, b� κn, and

max
1≤k≤K

n(uk+1 − uk)
∣

∣	−1γk

∣

∣

2
2 �

√

p log(n),

then the testing power P(Qn > ω)→ 1, as n∧ p→∞.

The symbols � and � hold here and throughout the rest of the paper in the asymptotic
regime that n ∧ p→∞. Corollary 2.1 provides a condition for the test power tending to 1.
It allows for cases with nontrivial alternatives. Namely, in some component series, the break
sizes could be small and tend to 0, as long as the aggregated size of the break is sufficiently
large. It is generally challenging to make an exact comparison between different break statis-
tics with different assumptions for complicated panel data. Nevertheless, we can observe that
our detection lower bound is quite sharp in the situation where many weak signals with sim-
ilar magnitude are present. For example, suppose the jump size of each component series is
ϑ ∈R and then we only require nκnϑ

2 �
√

log(n)/p. Compared with Table 1 in [17], which
summarizes the procedures under different settings,

√
log(n)/p is smaller than all entries in

the table since we have
√

p in the denominator resulting from the �2-aggregation.

REMARK 2.4 (Detailed power comparison of �2 and �∞ statistics). This remark is a
complement to Remark 2.1. Now we clarify these differences by a detailed power compar-
ison in those two cases. First, we consider sparse signals. Suppose that there is only one
time series with a single break and the break size is ϑ∗, and we use the MOSUM with
bandwidth b for detection. Then to ensure the power tending to 1, Qn,∞ only requires
ϑ∗ � log1/2(pn)(bn)−1/2 (see, e.g., [11]), while Qn needs a stronger condition by Corol-
lary 2.1 that ϑ∗� (p log(n))1/4(bn)−1/2. Second, we check dense signals. Suppose all series
jump with the same size ϑ ′. Then, for Qn,∞, we still need ϑ ′� log1/2(pn)(bn)−1/2, while
Qn only requires ϑ ′� log1/4(n)p−1/4(bn)−1/2.
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Algorithm 1: �2 multiple change-point detection via a MOSUM
Data: Observations Y1, Y2, . . . , Yn; bandwidth parameter b; threshold value ω

Result: Estimated number of breaks K̂ ; estimated break time stamps τ̂k , k = 1, . . . , K̂ ;
estimated jump vectors γ̂k ; estimated minimum break size over time δ̂p

Qn←maxbn+1≤i≤n−bn(|Vi |22 − c̄);
if Qn < ω then

K̂ = 0; STOP;
else

k← 1; A1 ←{bn+ 1≤ τ ≤ n− bn : (|Vτ |22 − c̄) > ω};
while Ak �=∅ do

τ̂k ← arg maxτ∈Ak
(|Vτ |22 − c̄); γ̂k ← μ̂

(l)

τ̂k−bn
− μ̂

(r)

τ̂k+bn−1;

Ak+1 ←Ak \ {t : |t − τ̂k| ≤ 2bn}; k← k+ 1;
end

K̂ =maxk≥1{k :Ak �=∅}; δ̂p ←min1≤k≤K̂
||	−1γ̂k|22 − c̄|1/2;

end

2.4. Estimation of change points. Based on the theoretical underpinnings of the test in
prior subsections, we can now present our detection algorithm (cf. Algorithm 1). To begin
with, we explicate our strategy for detecting and estimating change points. Furthermore, we
showcase the consistency for the estimators pertaining to the number, time stamps and sizes
of breaks. A simulation study can be found in Appendix A.3.

We consider the size of the break at time point τk normalized by the long-run standard
deviation 	, that is, |	−1γk|2. Define the minimum of normalized break sizes over time as

(2.21) δp = min
1≤k≤K

∣

∣	−1γk

∣

∣

2,

which can be viewed as the minimum strength of signals in the setting of Corollary 2.1.

REMARK 2.5 (Comments on the centering term c̄). To implement Algorithm 1, we need
to provide the centering term c̄ defined in (2.7). Due to the weak temporal dependence of
{εt }, one can show that

(2.22) c̄= 2p/(bn)
(

1+O
{

1/(bn)
})

.

In practice, we can simply take the centering term to be c ≈ 2p/(bn). This still ensures
the consistency results in Theorem 2.2 when the window size bn is slightly larger than the
dimension p, since the approximation error of using 2p/(bn) is of O{p/(bn)2}, which is
smaller than the order of (p log (n))1/2(bn)−1.

REMARK 2.6 (Selection of bandwidth b). Technically, the larger the bandwidth b is, the
more data points could be used. Thus, a larger b would reduce the magnitude of noise, and
then the signals shall be easier to detect. However, we also need to restrict b, since the iden-
tification condition b � κn below Definition 2.1 requires us to have fewer than one break
within each window. Therefore, we suggest starting with a small bandwidth, for example,
b = 1/

√
n to ensure that bn→∞. One could continue to increase the bandwidth until the

estimated number of breaks decreases. We refer to Appendix A for a simulation study includ-
ing the influences of different bandwidth parameters, as well as a discussion in Remark A.1
for the potential extension of our method to a multiscale MOSUM.
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Now we outline the consistency results of estimators for break numbers, break time stamps
and break sizes. We shall impose a minimum requirement of break sizes to guarantee that all
of the breaks can be precisely captured and estimated.

ASSUMPTION 2.4 (Signal). Assume min0≤k≤K n(uk+1 − uk)|	−1γk|22 �
√

p log(n).

We highlight that Assumption 2.4 imposes a moderate condition on the signals, which
relates the break separation (uk+1 − uk) to the break signal strength |γk|22, and does not
require p series to jump simultaneously. A comprehensive discussion on the advantage of
our setting can be found following the consistency results presented below.

THEOREM 2.2 (Temporal consistency). Let q ≥ 8. Under Assumptions 2.1–2.4, if (2.15)
hold, b � κn, δ2

p ≥ 3ω, ω � (p log (n))1/2(bn)−1 and max1≤k≤K |	−1γk|q/|	−1γk|2 =
O(1/K1/q). Then we have the following results:

(i) (Number of breaks). P(K̂ =K)→ 1.
(ii) (Time stamps of breaks). Let �k = p/(bn|	−1γk|22). Then we have max1≤k≤K |τ̂k −

τk∗ | · |	−1γk|22/(1+�k)=OP{log2(n)}, where k∗ = arg mini |τ̂k− τi |. If in addition, δ2
p/p �

1/(bn), we have

max
1≤k≤K

|τ̂k − τk∗ | ·
∣

∣	−1γk

∣

∣

2
2 =OP

{

log2(n)
}

.

(iii) (Break sizes). max1≤k≤K ||	−1(γ̂k − γk∗)|22 − c̄| =OP{(p log (n))1/2(bn)−1}, which

also implies that |δ̂p − δp| =OP{(p log (n))1/4(bn)−1/2}.

The results in Theorem 2.2 are in an asymptotic context as n∧ p→∞. To see the advan-
tage of our method, let us consider the simple case with a jump size ϑ ∈ R for each compo-
nent series. To achieve the consistency results in (ii), we only require nκnϑ

2 �
√

log(n)/p

by Assumption 2.4 and K =O(pq/2−1) by the condition max1≤k≤K |	−1γk|q/|	−1γk|2 =
O(1/K1/q). Notably, as discussed following Corollary 2.1, our detection lower bound is
weaker compared to those reported in Table 1 by [17]. In (iii), since 	−1γ̂k contains both the
signal part EVτ̂k

and the error part Vτ̂k
−EVτ̂k

, we center |	−1γ̂k|22 under the null by subtract-
ing c̄ = E|Vτ̂k

− EVτ̂k
|22. This guarantees that the break sizes can be estimated consistently.

We have log(n) in the consistency rates in (ii) and (iii) since we take the maximum overall
n− 2bn moving windows. It is also worth noticing that, for single change-point detection,
[4] achieves |τ̂k − τk| = OP(1) by assuming that δp is a constant. Under this condition, by
our Theorem 2.2(ii), we can achieve the same consistency rate up to a logarithm factor. In-
deed, δp does not need to be a constant for consistent estimators (of a single or finitely many
breaks) with an order of OP(1); see, for instance, [25]. Intuitively, a larger δp makes the esti-
mation problem easier, and in the same example mentioned earlier, where the break size for
each series is denoted as ϑ ∈ R, one can see that our δp can diverge as p grows, leading to
improved consistency rates for τ̂k .

3. Testing and estimation via a Two-Way MOSUM. The previous section focuses on
change-point statistics for data generating processes with dense breaks across all component
series. In this section, we propose a novel Two-Way MOSUM to address cases where change
points may exist in only a subset of time series. In such case, aggregating all component se-
ries using the �2-norm dilutes the testing power due to the overwhelming aggregated noises
compared to signals. To handle this issue, we construct temporal-spatial windows (cf. Defini-
tion 3.3) to aggregate series within spatial neighborhoods and maximize over neighborhoods
and time. Our method allows for the estimation of both the temporal break stamp and the spa-
tial neighborhood that contains the breaks. We extend the Two-Way MOSUM to nonlinear
processes and a general spatial space in Section 4.
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3.1. Two-Way MOSUM. As [52] suggested, in certain applications, data streams could
represent observations from multiple sensors, where breaks only occur in some but not all
of them. However, testing procedures aggregating all sensors include noise from unaffected
sensors in detection statistics, leading to poor performance. To address this problem, we
introduce cross-sectional neighborhoods comprised of spatially adjacent series, and propose
the Two-Way MOSUM to account for spatial group structure and detect existence of breaks.
This statistic improves test performance for signals dense within clusters but sparse among
them. We emphasize that the Two-Way MOSUM can work even in the absence of a prior
clustering information. See the discussion below Definition 3.3 for detailed reasoning after
introducing the temporal-spatial moving window.

To define the relative spatial locations of component series, we consider a spatial space
L0 = L0,n for all series. In particular, we start with a simple case in this section by assuming
a linear ordering in the coordinates, that is, L0 ⊂ {1, . . . , p}. Then in Section 4, we extend it
to a more general space with L0 ⊂ Z

v for a general v, where the spatial location of each series
shall be determined by a v-dimensional vector. We define the linear spatial neighborhood and
the corresponding neighborhood-norm as follows.

DEFINITION 3.1 (Linear spatial neighborhood). Let Ls ⊂ {1, . . . , p} be the set of coor-
dinates in a spatial neighborhood, 1≤ s ≤ S, where S is the total number of spatial neighbor-
hoods. We denote the size of each Ls by |Ls |. In particular, we define

(3.1) |Lmax| = max
1≤s≤S

|Ls | and |Lmin| = min
1≤s≤S

|Ls |.

DEFINITION 3.2 (Linear nbd-norm). For a p-dimensional vector vi = (vi1, . . . , vip)�

with a linear ordering in coordinates, we define the linear neighborhood-norm (nbd-norm) as
|vi |2,s = (

∑p
j=1 v2

i,j 1j∈Ls )
1/2, 1≤ s ≤ S.

It shall be noted that the spatial neighborhoods defined in Definition 3.1 can be overlapped,
which means that each component series can belong to multiple different spatial neighbor-
hoods. Therefore, these spatial neighborhoods actually can be viewed as an analogue of the
temporal moving windows, but moving in the spatial direction and allowing different win-
dow sizes (i.e., neighborhood sizes). All s = 1,2, . . . , S are only the indices of different
spatial groups and do not necessarily reflect the spatial order of these groups. The size of
each neighborhood could tend to infinity as p→∞.

We highlight that the spatial moving windows can be adapted to different data scenar-
ios. Apart from an identification condition, we do not need more knowledge (e.g., clustered
breaks) on the spatial structure of the signals. It is worth noting that similar definitions of
neighborhoods are considered in the literature; see, for example, [1–3]. These setups ex-
clusively focus on the topological structure of neighborhood with simple Gaussian or i.i.d.
assumptions. Comparably, we are more flexible in modeling spatial-temporal dependency of
the data. In fact, our spatial windows can be extended to more complicated shapes depending
on the demand of applications as long as Assumption 3.1 is satisfied. Many real-life data
streams, such as those in geographical or economic contexts, provide prior knowledge about
which spatial groups are likely to include breaks, as demonstrated in the geostatistics data
examples in Chapter 4 of [18]. Our definition of the temporal-spatial window (cf. Defini-
tion 3.3) does not require this prior knowledge, but if it is available, it can be utilized for the
more relevant detection and estimation procedures.

Our goal is to model the breaks occurring on the vector of unknown trend functions. When
there potentially exists a group structure, we formulate the trend function in (2.1) as

(3.2) μ(u)= μ0 +
R

∑

r=1

γr1u≥ur ,
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where R ∈ N is an unknown integer represents the number of localized breaks, which could
go to infinity as n or S increases; u1, . . . , uR are the time stamps of the breaks with 0= u0 <

u1 < · · ·< uR < uR+1 = 1 and κn =min0≤r≤R(ur+1− ur), for some constant κn > 0, where
κn is allowed to tend to zero as n→∞; γr = (γr,1, . . . , γr,p)� ∈R

p is the jump vector at the
time stamp ur with γr,j = 0 if j /∈ Lsr , where sr is the index of the spatial location of the r th
break. We define the break size as |γr |2. In the rest of this paper, we use (τr , sr) to denote the
temporal-spatial location of the r th break.

To test the existence of spatially localized breaks, it suffices to test the null hypothesis

H�0 : γr = 0, 1≤ r ≤R,

which denotes the case with no breaks, against the alternative that at least one break exists,
that is, H�A: there exists r ∈ {1, . . . ,R}, such that γr �= 0. This enables us to identify both the
time stamps and the spatial neighborhoods with significant breaks. Our Two-Way MOSUM
statistic aims to adopt more flexible moving windows to efficiently capture both temporal and
spatial information of breaks. To achieve this goal, we shall derive a localized test statistic,
which first aggregates the time series within each spatial neighborhood by an �2-norm and
then take the maximum over all the neighborhoods and time points. Accordingly, we define
temporal-spatial windows as follows.

DEFINITION 3.3 (Temporal-spatial window). For bn+1≤ i ≤ n−bn, 1≤ s ≤ S, define
an index set Vi,s = {(t, l) : t = i, l ∈ Ls}. Then define the temporal-spatial moving window as
Si,s = {Vt,l : i − bn≤ t ≤ i + bn− 1, l ∈ Ls} ⊂ Z

2.

Note that the index set Vi,s can be regarded as a vertical line, which is the center of the
temporal-spatial moving window Si,s . Specifically, Si,s spans the neighborhood Ls in the
spatial direction and centered at the time point i with radius bn in the temporal direction. In
the rest of this paper, we shall depict the index set Vi,s as a vertical line at time i and neigh-
borhood Ls . We refer to Figure 10 in Appendix B.3 for a more straightforward illustration
of this Two-Way moving window. It is worth emphasizing that even without prior knowledge
of clusters, the number of potential windows is relatively small, because only the adjacent
series can be assigned to the same group, which leads to the number of potential windows at
most O(p2). See a more detailed explanation in Appendix B.3 and consider Figure 9 as an
example. In general, for any p time series, there are only at most O(p2v) possible windows
in a Z

v space, v ≥ 1. This fact does not diminish the validity of our results obtained through
GA (cf. Theorem 3.1). Consequently, while prior knowledge about the clusters is beneficial
for boosting power, it is not a prerequisite.

DEFINITION 3.4 (Influenced set). We define the set of vertical lines influenced by the
break located at (τ, s) as

(3.3) Wτ,s = {Vt,l : 1≤ t ≤ n,1≤ l ≤ S,St,l ∩ Vτ,s �=∅}.

ASSUMPTION 3.1 (Neighborhood size). Assume that |Lmax|/|Lmin| ≤ c holds for some
constant c ≥ 1, where |Lmax| and |Lmin| are defined in Definition 3.1.

Assumption 3.1 requires that the sizes of all spatial neighborhoods do not differ too much,
which still allows the flexibility of different neighborhood sizes but in a reasonable range.
This assumption embraces many interesting cases in practice. For example, according to the
geographical locations, the Centers for Disease Control and Prevention (CDC) divides the
states in the United States (US) into four regions with similar spatial sizes, which is also taken
into consideration in our application (cf. Section 5); based on the patterns of synchronous
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activity and communication between different brain regions, [54] identifies and segregates
the brain into seven distinct functional networks with similar scales.

Similar to (2.7), we define the centering term of the statistics as

(3.4) c̄�s =
p

∑

j=1

c�s,j where c�s,j = cj 1j∈Ls .

Following the intuitions that we could adopt temporal-spatial moving windows to account for
spatially clustered jumps, we formulate our Two-Way MOSUM test statistic as follows:

(3.5) Q�n = max
1≤s≤S

max
bn+1≤i≤n−bn

1√
|Ls |

(

|Vi |22,s − c̄�s
)

,

where the nbd-norm | · |2,s is introduced in Definition 3.2. Recall (2.9) for xi,j . Let

(3.6)
x�i,s,j = xi,j 1j∈Ls and

X�j =
(

x�bn+1,1,j , . . . , x
�
n−bn,1,j , . . . , x

�
bn+1,S,j , . . . , x

�
n−bn,S,j

)�
.

Then, under the null hypothesis, we can rewrite Q�n into

(3.7) Q�n = max
1≤s≤S

max
bn+1≤i≤n−bn

1√
|Ls |

p
∑

j=1

x�i,s,j .

When the time series are cross-sectionally independent, X�j are independent, 1 ≤ j ≤ p.
Hence, by applying the GA to (3.7), we can properly address the dependence resulting from
the overlapped temporal-spatial windows. We also note that cluster-based statistics can be
seen as a special case of Two-Way MOSUM as in (3.7) when the prior knowledge of clusters
is given, which can also be seen as an extension of the statistic introduced by [27] where one
essentially gets back to his idea by taking each component as its own cluster.

We introduce the centered Gaussian vector

(3.8) Z� =
(

Z�bn+1,1, . . . ,Z
�
n−bn,1, . . . ,Z

�
bn+1,S, . . . ,Z�n−bn,S

)�
,

with the covariance matrix

(3.9) 
� =
(


�i,s,i′,s′
)

1≤i,i′≤n−2bn,1≤s,s′≤S .

Recall the covariance matrix 
 for the Gaussian vector Z in (2.11). By (3.6) and (3.7), we
similarly define

(3.10) 
�i,s,i′,s′ =
(

|Ls ||Ls′ |
)−1/2

1j∈Ls∩Ls′
i,i′ .

We aim to provide the GA theorem under the null with a Two-Way MOSUM applied (cf.
Theorem 3.1). This result shall enable us to find the critical value of our proposed Two-Way
MOSUM test statistic. We denote each element in Z� by Z�ϕ , where

(3.11) ϕ = (i, s) ∈N for N = {bn+ 1, . . . , n− bn} × {1, . . . , S}.

By the GA, the distribution of maxϕ∈N Z�ϕ shall approximate the one of our test statistic Q�n
under the null with large p, that is,

(3.12) P
(

Q�n ≤ u
)

≈ P

(

max
ϕ∈N

Z�ϕ ≤ u
)

.
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FIG. 2. Power comparison of �2 MOSUM and Two-Way MOSUM.

REMARK 3.1 (Comparison of �2 MOSUM and �2-clustered Two-Way MOSUM). When
the breaks only occur in a portion of time series, aggregation of all p dimensions would cause
power loss. This situation is frequently encountered when a spatial group structure exists
and only a few groups have breaks. Our proposed Two-Way MOSUM can account for this
situation by taking the �2-norm within each spatial group. To explicitly show the differences,
we present a simulated example with two different proportions of jumps and compare the
testing powers in Figure 2. We simulate n= 100 observations of p = 10, 20, 30, 50, 70 and
100. The number of spatial groups is S = 5 and each group size is 0.3p. Specifically, we let
Ls = 2p(s − 1)/10+ {1,2, . . . ,0.3p}, 1 ≤ s ≤ 4 and L5 = {0.7p + 1,0.7p + 2, . . . , p}. In
Figure 2(a), two groups L2 and L5 contain breaks at the same time τ = 50. In Figure 2(b),
breaks only exist in one group L3 at τ = 50. The errors in both two figures are generated from
MA(∞) models defined in (2.4) with ηt ∼ t9 and jump sizes are 0.2 for each dimension. We
let the window size bn = 20. All the reported powers in Figure 2 are averaged over 1000
samples. We defer a more detailed power comparison to Remark 3.3.

3.2. Gaussian approximation for Two-Way MOSUM. Given the updated statistics for
spatially clustered signals, we further formalize our GA theory in this setting. Theoretically,
it shall be noted that when signals are dense within the clusters and sparse among clusters,
our Two-Way MOSUM improves the one adopted in Section 2.

THEOREM 3.1 (GA for Two-Way MOSUM). Suppose that Assumptions 2.1– 2.3 and

3.1 are satisfied. Then, under the null hypothesis, for 
�0 = (bn)−1/3 log2/3(nS),


�1 =
(

(nS)4/q log7(pn)

|Lmin|

)1/6
, 
�2 =

(

(nS)4/qp2/q log3(pn)

|Lmin|

)1/3
,

we have

(3.13) sup
u∈R

∣

∣

∣P
(

Q�n ≤ u
)

− P

(

max
ϕ∈N

Z�ϕ ≤ u
)
∣

∣

∣ �
�0 +
�1 +
�2,

where N is defined in (3.11), and the constant in � is independent of n, p, b. If in addition,
log(nS)= o{(bn)1/2} and

(3.14) (nS)4p2|Lmin|−q log3q(pn)→ 0,

then we have

(3.15) sup
u∈R

∣

∣

∣P
(

Q�n ≤ u
)

− P

(

max
ϕ∈N

Z�ϕ ≤ u
)
∣

∣

∣→ 0.
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One shall note that the GA results in Theorem 2.1 is a special case of Theorem 3.1. Specif-
ically, when |Lmin| = p and S = 1, which indicates that there does not exist any group struc-
ture and all p time series belong to the same group, condition (2.15) can be implied by (3.14),
and the same convergence rate of GA can be achieved. We extend the above theorem to non-
linear processes with general spatial temporal dependency in Theorem 4.1.

REMARK 3.2 (Allowed neighborhood number and size). In Theorem 3.1, we can allow
the minimum neighborhood size |Lmin| to be of a polynomial order of the sample size n, and
its order depends on the moment parameter q defined in Assumption 2.1. In particular, let
|Lmin| � nν2 , for some ν2 > 0. Then, if ν2 > 4/(q − 2), expression (3.15) holds. The larger
the moment parameter q is, the larger minimum group size |Lmin| we can allow. In addition,
one shall note that the allowed number of neighborhoods S can be as large as O(p2), while a
bigger S keeps more detailed local structure at the expense of time to inspect more windows.

Next, we consider the alternative hypothesis that there exists at least a break. Since the
temporal-spatial moving windows can be overlapped, for the identification of breaks, we
pose the following assumption on the separation of break locations.

ASSUMPTION 3.2 (Temporal-spatial separation). For any two breaks located at (τr , sr)

and (τr ′, sr ′), 1 ≤ r �= r ′ ≤ R, assume that there does NOT exist any moving window Sτ,s ,
bn+ 1≤ τ ≤ n− bn, 1≤ s ≤ S, such that Sτ,s ∩Wτr ,sr �=∅ and Sτ,s ∩Wτr′ ,sr′ �=∅, where
W(τr , sr) is defined in Definition 3.4.

Assumption 3.2 can be viewed as an analogue of the condition b� κn below Definition 2.1
when we apply a Two-Way MOSUM. To see this, consider the trend function in (2.2). For
any two breaks located at τk and τk′ , b � κn guarantees that there is no moving window
Sτ,: intersects both Wτk,: and Wτk′ ,:, where Sτ,: (resp., Wτ,:) is the sliding window (resp.,
influenced set) spanning all p components. This adheres to the separation requirement in
Assumption 3.2.

To achieve consistent estimation of the temporal and spatial break locations, for any given
significance level α ∈ (0,1), we can choose the threshold value ω� to be the quantile of the
Gaussian limiting distribution indicated by Theorem 3.1, that is,

(3.16) ω� = inf
r≥0

{

r : P
(

max
ϕ∈N

Z�ϕ > r
)

≤ α
}

.

Hence, we shall reject the null hypothesis if Q�n > ω�. To evaluate the power of our localized
test, consider the alternative hypothesis that there exists at least a break, that is, d �= 0. We
provide the power limit of our localized change-point detection in the following corollary.

COROLLARY 3.1 (Power of a Two-Way MOSUM). Under Assumptions 2.1–2.3, 3.1 and

3.2, if (3.14) holds and

max
1≤s≤S

max
1≤k≤K

n(uk+1 − uk)
∣

∣	−1γk

∣

∣

2
2,s �

√

|Lmin| log(nS),

where | · |2,s is defined in Definition 3.2, then the testing power P(Q�n > ω�)→ 1.

REMARK 3.3 (Detailed power comparison of �2 MOSUM and �2-clustered Two-Way
MOSUM). This comment is complementary to Remark 3.1. Here, we compare the testing
power of the MOSUM aggregating all time series and the Two-Way MOSUM. Specifically,
we consider a case where p time series belong to S groups and breaks only occur to one
group. Suppose that all the series in this group jump with the same size ϑ ′′, and we use the
(Two-Way) MOSUM with bandwidth b for detection. Then, to ensure the power tending to
1, by Corollary 3.1, Q�n only requires ϑ ′′� log1/4(nS)|Lmin|−1/4(bn)−1/2, while Qn needs
a stronger condition by Corollary 2.1 that ϑ ′′� (p log(n))1/4|Lmin|−1/2(bn)−1/2.
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Algorithm 2: �2 multiple change-point detection via a Two-Way MOSUM
Data: Observations Y1, Y2, . . . , Yn; spatial neighborhoods Bs , s = 1, . . . , S; bandwidth

parameter b; threshold value ω�

Result: Estimated number of breaks R̂; estimated break locations (τ̂r , ŝr), r = 1, . . . , R̂;
estimated jump vectors γ̂r ; estimated minimum break size δ̂�p

Q�n ←max1≤s≤S maxbn+1≤i≤n−bn |Bs |−1/2(|Vi |22,s − c̄�s );
if Q�n < ω� then

R̂ = 0; STOP;
else

r ← 1; A�1 ←{Vτ,s, bn+ 1≤ τ ≤ n− bn,1≤ s ≤ S : |Bs |−1/2(|Vτ |22,s − c̄�s ) > ω�};
while A�r �=∅ do

(τ̂r , ŝr)← arg maxVτ,s∈A�r |Bs |−1/2(|Vτ |22,s − c̄�s ); γ̂r ← μ̂
(l)

τ̂r−bn
− μ̂

(r)

τ̂r+bn−1;
A�r+1 ←A�r \ {Vτ,s : there exists bn+ 1≤ i ≤ n− bn, 1≤ l ≤ S, such that
Si,l ∩ Vτ̂r ,ŝr �=∅ and Si,l ∩ Vτ,s �=∅}; r ← r + 1;

end

R̂←maxr≥1{r :A�r �=∅}; δ̂�p ←min1≤r≤R̂
||	−1γ̂r |22 − c̄|1/2;

end

3.3. Estimation of change points with spatial localization. Providing the GA for the
Two-Way MOSUM statistics, we gather the detailed steps of a change-point estimation pro-
cedure in Algorithm 2. Specifically, we extend Algorithm 1 to the cases with cross-sectional
localization via Two-Way MOSUM, and we shall expect to obtain spatial locations of change
points besides the temporal ones. One follow-up theorem shows the consistency properties
of some break statistics in this setup.

We denote the minimum break size over time and spatial neighborhoods by

(3.17) δ�p = min
1≤r≤R

∣

∣	−1γr

∣

∣

2,

and assume that this minimum break size is lower bounded as follows.

ASSUMPTION 3.3 (Signal). min0≤r≤R n(ur+1 − ur)|	−1γr |22 �
√
|Lmin| log(nS).

Let us consider the simple example that within any spatial neighborhood Ls , 1 ≤ s ≤ S,
the jump size of each time series is the same, denoted by ϑ ∈R. Then Assumption 3.3 means
nκnϑ

2 �
√

log(nS)/|Lmin|, which is a weaker requirement of the signal strength for each
series with breaks similar to Assumption 2.4.

To implement Algorithm 2, by the definition of c̄�s in (3.4) and the similar arguments in
Remark 2.5, one can take c̄�s = 2|Ls |/(bn), which still ensures the consistency. Also, similar
to Algorithm 1, the selection of bandwidth parameter b can follow the suggestions in Re-
mark 2.6, and the long-run variance can be estimated by a robust M-estimation method. The
consistency results of the estimated number and temporal-spatial locations of breaks as well
as the break sizes are all provided.

PROPOSITION 3.1 (Temporal-spatial consistency). Let q ≥ 8. Suppose that Assumptions

2.1–2.3, 3.1–3.3 and condition (3.14) hold. If |Lmin|−1δ�2
p ≥ 3ω�, ω�� log1/2(n)(bn)−1 and

max1≤r≤R |	−1γr |q/|	−1γr |2 =O(1/R1/q), then we have the following results:

(i) (Number of breaks). P(R̂ =R)→ 1.
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(ii) (Time stamps of breaks). max1≤r≤R |τ̂r − τr∗ | · |	−1γr |22/(1+�r)=OP{log2(nS)},
where �r = |Lmin|/(bn|	−1γr |22) and r∗ = arg mini |(τ̂r , ŝr) − (τi, si)|. If in addition,
δ�2
p /|Lmin|� 1/(bn), then

max
1≤r≤R

|τ̂r − τr∗ | ·
∣

∣	−1γr

∣

∣

2
2/(bn)=OP

{

log2(nS)(bn)−1}

.

(iii) (Spatial locations of breaks). If there exists a constant cγ > 0 such that |γr,j |/|γr,j ′ | ≤
cγ , for all 1≤ r ≤R and j, j ′ ∈ Lsr , then

max
1≤r≤R

|Lŝr �Lsr∗ | ·
∣

∣	−1γr

∣

∣

2
2/|Lmin| =OP

{

log2(nS)(bn)−1}

,

where Lŝr �Lsr∗ = (Lŝr \Lsr∗ )∪ (Lsr∗ \Lŝr ) and r∗ = arg mini |(τ̂r , ŝr)− (τi, si)|.
(iv) (Break sizes). max1≤r≤R ||	−1(γ̂r − γr∗)|22 − c̄| = OP{(p log(nS))1/2(bn)−1}. This

also implies that |δ̂�p − δ�p| =OP{(p log(nS))1/4(bn)−1/2}.

Proposition 3.1(i) indicates the consistency of the estimator for the number of significant
breaks; (ii) and (iii) show that we can consistently recover both the spatial break neighbor-
hood Lsr and the temporal break stamp τr ; (iv) suggests that the sizes of break vector γr

can also be estimated consistently. Note that in Proposition 3.1(ii), |τ̂r − τr∗ | · |	−1γr |22/(bn)

indicates the temporal precision, and the spatial precision is represented by |Lŝr � Lsr∗ | ·
|	−1γr |22/|Lmin| in (iii). Both results are normalized by their window widths respectively
and the two consistency rates are of the same order.

REMARK 3.4 (Comparison of consistency rates with Theorem 2.2). We see that the tem-
poral consistency rate of |τ̂r − τr∗ | · |	−1γr |22 in Proposition 3.1(ii) is similar to that in Theo-
rem 2.2 except for an additional S term in the log factor. For the break size, the convergence
rate of |δ̂�p− δ�p| similarly admits an additional S term in the log factor compared to |δ̂p− δp|
in Theorem 2.2. Both two S terms result from the maximization over all S spatial neighbor-
hoods in the estimators.

4. Nonlinear time series with cross-sectional dependence. In this section, we present
three generalizations. First, we expand the linear series given in (2.4) to accommodate a non-
linear scenario (see equation (4.10)) for a broader range of time-series models. Second, we
move beyond the linear ordering in coordinates by introducing a more comprehensive space
in the spatial dimension, denoted as L0 ⊂ Z

v (where v ≥ 1 is a fixed integer). Lastly, we
generalize the GA from earlier sections by allowing weak cross-sectional dependence in the
underlying error process. We will begin with the definition of the new spatial space and the
nonlinear model, proceed with the conditions for both temporal and cross-sectional depen-
dence structures, and ultimately, present our primary theoretical findings and the rationale
behind the proof strategy.

4.1. Multidimensional spatial space. To detect breaks in L0, we shall first provide a
generalized notion of spatial window accordingly. In particular, denote Bs , 1 ≤ s ≤ S, as
spatial neighborhoods, which is a generalization of Ls in the previous section. Without loss
of generality, we focus on hyperrectangles,

(4.1) Bs = Is,1 × Is,2 × · · · × Is,v,

where Is,r = Is,r,n = [n−s,r , n+s,r ] is some interval on Z whose end points n−s,r and n+s,r can
depend on n. Different Bs are allowed to be overlapped and S can go to infinity as p→∞.
We define Ir = Ir,n = [mins n−s,r ,maxs n+s,r ] and let B0 = I1 × I2 × · · · × Iv , which implies

(4.2)
⋃

1≤s≤S

Bs ⊂ B0.
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Suppose that the total number of locations in B0 ∩L0 denoted as |B0 ∩L0| is p = pn, which
can go to infinity as n increases. We consider the time-series model

(4.3) Yt (�)= μ�(t/n)+ εt (�), t = 1, . . . , n,� ∈ B0 ∩L0.

Our main objective is to identify possible change points in the trend functions

(4.4) μ�(u)= μ�,0 +
K

∑

k=1

γk,�1{u≥uk,�∈Bsk
∩L0},

where K and u1, . . . , uK are defined similar to those in (2.2); μ�,0 ∈R represents the bench-
mark level when no break occurs, and γk,� ∈R denotes the jump at time point uk and location
� in the neighborhood Bsk , the kth spatial neighborhood containing breaks.

We then introduce definitions to characterize the mass and volume of the spatial neighbor-
hood Bs . By working with the spatial location �, we can bypass the linear ordering presented
in Section 3. This notion of spatial location is similar to the general definition of spatial
change-points in a v-dimensional spatial lattice used in studies such as [57] and [36].

DEFINITION 4.1 (Spatial neighborhood). (i) (Mass). Define the mass of the spatial
neighborhood Bs by the number of series in Bs , that is, |Bs ∩ L0|, where | · | is the number
of elements in a Borel set. Denoted by Bmin and Bmax the sizes of the smallest and biggest
spatial neighborhoods, respectively, that is,

Bmin = min
1≤s≤S

|Bs ∩L0|, Bmax = max
1≤s≤S

|Bs ∩L0|,

which satisfy Bmax/Bmin ≤ c, for some constant c ≥ 1. (ii) (Volume). Define the volume of
the spatial neighborhood Bs as λ(Bs), where λ(·) is the Lebesgue measure of a Borel set.

Following [37], we introduce the following density assumption on the spatial space L0
that makes it possible to extend the asymptotic properties in regular space in Z

v to ones in
irregular space.

ASSUMPTION 4.1 (Density of spatial space L0). Let �j , j = 1, . . . , p, be the spatial
locations in L0 ⊂ Z

v on which Yt (�j ) is observed, t = 1, . . . , n. Assume that each �j can be
written as �j = (A1uj,1, . . . ,Avuj,v)

�. Here, uj = (uj,1, . . . , uj,v)
� is a sequence of i.i.d.

random vectors with a density function g(x) with a compact support in [0,1]v . We assume
that Ar →∞ as p→∞, for all r = 1, . . . , v. Also, for all x ∈ [0,1]v , c1 ≤ g(x) ≤ c2, for
some constants c1, c2 > 0.

Here, we only require the density function g(x) to be uniformly bounded from both sides,
which is a weaker condition compared to Assumption 1 in [37], where they aim to perform
Fourier analysis for irregularly spaced data on R

v and more restrict assumptions such as
the existence of higher-order derivatives of g(x) are therefore desired. Differently, our goal
is to perform block approximation in the spatial direction to deal with the cross-sectional
dependence (cf. Remark C.1), which in fact only requires that, for any hyperrectangle A ⊂
Z

d satisfying λ(A)→∞, there exist constants c1, c2 > 0 such that c1 ≤ |A ∩ L0|/λ(A) ≤
c2. One can view this condition as a special case of Assumption 4.1. Also, when it breaks
down to a simple space with linear ordering, the linear spatial neighborhood Ls defined in
Definition 3.1 can be represented by Ls = Bs ∩ L0 and we have |Ls | = |Bs ∩ L0| = λ(Bs),
1 ≤ s ≤ S, that is, g(x) ≡ 1 for all x ∈ [0,1]v with v = 1. Concerning the shape of spatial
neighborhoods, we pose the following assumption to eliminate the degenerate case, which
holds little relevance in the context of spatial statistics.
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ASSUMPTION 4.2 (Neighborhood shape). There exists a constant c ≥ 1, such that for
each neighborhood Bs , max1≤r≤v(n

+
s,r − n−s,r)≤ c min1≤r≤v(n

+
s,r − n−s,r).

It is worth noting that our approach is not limited to hyperrectangles, provided that As-
sumptions 4.1 and 4.2 are satisfied. In this context, we can have a general concept of aggre-
gation for our statistics within the spatial space.

4.2. Generalized Two-Way MOSUM. We now introduce a generalized Two-Way MO-
SUM, designed to accommodate the multidimensional spatial space constructed in the pre-
vious section. Let εt = (εt (�))

�
�∈B0∩L0

, t ∈ Z. We denote the long-run covariance matrix of
{εt }t∈Z and the corresponding diagonal matrix by

(4.5) � =
(

σ(�1,�2)
)

�1,�2∈B0∩L0
and 	= diag

(

σ(�)
)

�∈B0∩L0
,

respectively, where σ(�) = σ(�,�) representing the long-run variance of the component
εt (�). To test for the existence of breaks, we denote μ̂

(l)
i (�)=∑i−1

t=i−bn Yt (�)/(bn), μ̂
(r)
i (�)=

∑i+bn−1
t=i Yt (�)/(bn), and evaluate a jump statistic defined by

(4.6) Vi(�)= σ−1(�)
(

μ̂
(l)
i (�)− μ̂

(r)
i (�)

)

.

Note that Vi(�) comprises the signal part E[Vi(�)] and the noise part Vi(�)−E[Vi(�)]. Under
the null hypothesis, where no break exists and E[Vi(�)] = 0, we define the centering term of
the �2-aggregation of Vi(�) within the neighborhood Bs as

(4.7) cBs =
∑

�∈Bs∩L0

c(�) where c(�)=Var
[

Vi(�)
]

.

Subsequently, we propose the following test statistic:

(4.8) Q̃n = max
1≤s≤S

max
bn+1≤i≤n−bn

Qi,Bs where Qi,Bs =
1√

|Bs ∩L0|

(

∑

�∈Bs∩L0

V 2
i (�)− cBs

)

.

Under the null hypothesis H0, since E[Vi(�)] = 0, we can rewrite Qi,Bs into

(4.9) Qi,Bs =
1√

|Bs ∩L0|
∑

�∈Bs∩L0

xi(�) where xi(�)=
(

Vi(�)−E
[

Vi(�)
])2 − c(�).

It shall be noted that when v = 1, the test statistic Q̃n reduces to Q�n in Section 3.

4.3. Dependence structure. Although it is quite convenient to assume that the errors are
cross-sectionally i.i.d., it is unrealistic to ignore the spatial dependence. The assumption on
cross-sectional independence in previous sections can be relaxed accordingly to allow for a
weak spatial dependence case. In this section, we extend the GA in Section 3 to the cases
where the underlying errors are allowed to be cross-sectionally weakly dependent. This will
allow us to evaluate the critical values of the test statistics Q̃n accordingly.

Suppose that the stationary noise process {εt (�)}t∈Z in (2.1) is of the form:

(4.10) εt (�)= f
(

ηt−k,�−�
′;k ≥ 0,�′ ∈ Z

v)

.

Here, ηi,s, i ∈ Z, s ∈ Z
v are i.i.d. random variables, and f (·) is an R-valued measurable

function such that εt (�) is well-defined. We assume throughout the paper that E[εt (�)] = 0
and max�∈B0∩L0 ‖εt (�)‖q <∞, for some q ≥ 8. Next, we introduce the functional depen-
dence measures to characterize the temporal and spatial dependence structure of εt (�). Let
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(η′i,s)i∈Z,s∈Zv be an i.i.d. copy of (ηi,s)i∈Z,s∈Zv . Specifically, we consider the temporal and
temporal-spatial coupled versions of εt (�) defined respectively by

ε∗t (�)= f
(

η∗
t−k,�−�

′;k ≥ 0,�′ ∈ Z
v)

and ε∗∗t (�)= f
(

η∗∗
t−k,�−�

′;k ≥ 0,�′ ∈ Z
v)

,

where for any i ≥ 0 and s ∈ Z
v ,

η∗i,s =
{

ηi,s if i �= 0,

η′i,s if i = 0
and η∗∗i,s =

{

ηi,s if i �= 0 and s �= 0,

η′i,s if i = 0 or s= 0.

Following [50], we generalize the functional dependence measures as follows:

θt,�,q =
∥

∥εt (�)− ε∗t (�)
∥

∥

q, δt,�,q =
∥

∥εt (�)− ε∗∗t (�)
∥

∥

q .(4.11)

Note that θt,�,q represents the change measure of dependence by perturbing solely in the
temporal direction, while δt,�,q denotes the counterpart, which perturbs in both the temporal
and spatial directions.

To account for the temporal and cross-sectional dependence structure of {εt (�)}t∈Z, we
shall impose the following assumptions on θt,�,q and δt,�,q . The assumptions essentially re-
quire the algebraic decay of dependence both in the temporal and the spatial directions and
are controlling the tail behavior of the noise terms.

ASSUMPTION 4.3 (Finite moment). Assume max�∈B0∩L0 ‖εt (�)‖q <∞, for q ≥ 8.

ASSUMPTION 4.4 (Temporal dependence). There exist some constants C > 0 and β > 0,
such that, for all h≥ 0, max�∈B0∩L0

∑

k≥h θk,�,q/σ(�)≤ C(1∨ h)−β , for q ≥ 8.

ASSUMPTION 4.5 (Weak cross-sectional dependence). Let q ≥ 8. Assume that there
exist some constants C′ > 0 and ξ > 1, such that, for all m≥ 0,

(4.12)
∑

k≥0

(

∑

{�∈B0∩L0:|�|2≥m}
δ2
k,�,q/σ 2(�)

)1/2
≤ C′(1∨m)−ξ .

It shall be noted that we can also switch the temporal and spatial aggregation in the above
assumption. Specifically, (4.12) also implies

(4.13)
(

∑

{�∈B0∩L0:|�|2≥m}

2

0,�,q/σ
2(�)

)1/2
≤ C′(1∨m)−ξ where 
0,�,q =

∑

k≥0

δk,�,q .

To see this, for any n ∈ N, we denote the partial sum 
n,�,q =
∑n

k=0 δk,�,q . Let 
n,q =
(
n,�,q)�{�∈Zv :|�|2≥m}, and δk,q = (δk,�,q)�{�∈Zv :|�|2≥m}. By the triangle inequality, |
n,q |2 =
|∑n

k=0 δk,q |2 ≤
∑n

k=0 |δk,q |2. Since
∑

k≥0 |δk,q |2 <∞, we let n→∞ and achieve the de-
sired result. Furthermore, (4.13) also indicates the decay of cross-sectional long-run correla-
tion as depicted in Lemma 4.1.

LEMMA 4.1 (Decay of long-run correlation). Assume that condition (4.13) holds. Then,
for any �1,�2 ∈ B0 ∩ L0, the long-run correlation between εt (�1) and εt (�2), denoted by

ρ̃(�1,�2), decays at a polynomial rate as |�1 − �2|2 increases, that is,

(4.14) ρ̃(�1,�2)= σ(�1,�2)/
(

σ(�1)σ (�2)
)

=O
{

|�1 − �2|−2ξ
2

}

.

It is worth noticing that the decay assumption regarding spatial correlation is widely preva-
lent in spatial statistics. See, for example, [43] and [40] follow a similar pattern that the
covariance between variables decreases as their corresponding distance in the input space
increases.
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4.4. Gaussian approximation with weak cross-sectional dependence. This subsection is
devoted to the GA in the high-dimensional setting under the above mentioned general frame-
work. In the case when p is fixed, we provide an invariance principle in Appendix B.2. When
p grows to infinity as n increases, to derive the limiting distribution of the test statistic Q̃n

under the null, we introduce the centered Gaussian random vector

(4.15) Z̃ = (Z̃bn+1,1, . . . , Z̃n−bn,1, . . . , Z̃bn+1,S, . . . , Z̃n−bn,S)�,

with the covariance matrix

(4.16) 
̃= (
̃i,s,i′,s′)1≤i,i′≤n−2bn,1≤s,s′≤S .

Let πs,s′,�1,�2 = (|Bs ∩L0||Bs′ ∩L0|)−1/21�1,�2∈Bs∩Bs′∩L0 , and 
̃i,s,i+ζbn,s′ equals to

(4.17)

(bn)−2
∑

�1,�2∈B0∩L0

πs,s′,�1,�2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

15ζ 2 − 20ζ + 8
)

ρ̃2(�1,�2)+ 3ζ 2 − 4ζ, 0 < ζ ≤ 1,
(

3ζ 2 − 12ζ + 12
)

ρ̃2(�1,�2)− ζ 2 + 4ζ − 4, 1 < ζ ≤ 2,

0, ζ > 2.

We defer the detailed evaluation of (4.17) to Lemma C.13. Note that, if for all �,�1,�2 ∈
B0 ∩ L0, ρ̃(�,�) = 1 and ρ̃(�1,�2) = 0, �1 �= �2, which denotes the case with no spatial
dependence, then (4.17) is the same as (3.10). Recall N defined in (3.11). We denote each
element in Z̃ by Z̃ϕ , where ϕ = (i, s) ∈N . Similar to the cross-sectionally independent case,
we can approximate the limiting distribution of Q̃n under the null by the one of maxϕ Z̃ϕ . We
refer to Remark C.1 in Appendix C for the proof strategies based on the block approximation.

THEOREM 4.1 (GA with weak cross-sectional dependence). Suppose that Assump-

tions 4.1–4.5 hold. Then, under the null hypothesis, for 
̃0 = (bn)−1/3 log2/3(nS), 
̃1 =
c
−(q−4)/(3q)
p,n , 
̃2 = c

−1/(8v)
p,n log(pn), where

(4.18) cp,n = p
−2
q−4 B

q
q−4
min (nS)

−( 4
q−4+

2v
qξ

)(log(pn)
)−(

(2+q)v
2qξ

+ 3q
q−4 )

,

we have

sup
u∈R

∣

∣

∣P(Q̃n ≤ u)− P

(

max
ϕ∈N

Z̃ϕ ≤ u
)∣

∣

∣ � 
̃0 + 
̃1 + 
̃2,

where N is defined in (3.11), and the constant in � is independent of n, p, b and S. If in

addition, log(nS)= o{(bn)1/2} and log8v(pn)= o(cp,n), then

sup
u∈R

∣

∣

∣P(Q̃n ≤ u)− P

(

max
ϕ∈N

Z̃ϕ ≤ u
)
∣

∣

∣→ 0.

REMARK 4.1 (Comparison with Theorem 3.1). Note that when v = 1, we have |Lmin| =
Bmin, and if ξ →∞, it indicates the cross-sectional independence setting. Hence, Theo-
rem 3.1 can be viewed as a special case of Theorem 4.1. Specifically, cp,n →∞ in (4.18)

boils down to the condition (3.14), which implies c
q−4
p,n = p−2B

q
min(nS)−4 log−3q(pn)→∞,

and we can achieve the same approximation rate up to a logarithm term.

Moving on to the alternative hypothesis, we can set the detection threshold ω̃ as the
critical value of maxϕ∈N Z̃ϕ determined by the Gaussian limiting distribution presented in
Theorem 4.1. Specifically, we set ω̃ as infr≥0{r : P(maxϕ∈N Z̃ϕ > r) ≤ α}, for significant
level α ∈ (0,1). We reject the null hypothesis if Q̃n > ω̃. For any time point i that satisfies
|i − τk| ≤ bn, we define the weighted break as di(�)= (1− |i − τk|/(bn))σ−1(�)γk,�. Under
the alternative, where there exists i and � such that di(�) �= 0, we refer to Corollary B.2 in
Appendix B.5 for the power limit of our test. Further algorithm for detecting and identifying
breaks can be developed accordingly.
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FIG. 3. Top: Algorithm 1 detected three change points which are 2020.03.30, 2020.11.16 and 2022.01.09. Bot-
tom: Algorithm 2 found different change points for four regions: Northeast (2020.03.18, 2020.12.05, 2022.01.04);
Midwest (2020.03.21, 2020.11.08); South (2020.03.20, 2020.12.09, 2022.01.10); West (2020.3.19, 2020.11.10,
2022.01.14).

5. Application. This section is devoted to the real-data analysis to illustrate our pro-
posed method for multiple change-point detection. We apply Algorithm 1 to a stock-return
data set and use Algorithms 1 and 2 to a COVID-19 data set. Due to the space limit, we defer
the results of the stock-return data to Appendix A.4.

Analyzing 812 days of daily COVID-19 case numbers in the US, we identified three sig-
nificant breaks (Figure 3 top): March 2020 (first outbreak), October 2020 (Delta variant) and
December 2021 (Omicron variant). Further, we consider four geographic regions of the US
as per the guidelines of the CDC: Northeast, Midwest, South and West. A map of these four
regions is available in Figure 8 in Appendix A.5. By our algorithm, each region exhibited
different break time stamps, with the Northeast and West experiencing early outbreaks due to
major international airports. The Midwest was the first to encounter the Delta variant, while
the Northeast initially faced the Omicron variant. Our detection algorithm effectively cap-
tured these variations (Figure 3 bottom), demonstrating the efficacy of our proposed testing
procedures in identifying breaks over time and across diverse locations. For more detailed
information, please refer to Appendix A.5.
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