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Virtual Reality (VR) and Mixed Reality (MR) systems, e.g., Meta Quest and Apple Vision

Pro, have recently gained significant interest in consumer electronics, creating a new
—wave of developments in metaverse for gaming, social networking, workforce assistance,
gonline shopping, etc. Strong technological innovations in Al computing and multi-
I modular human activity tracking and control have produced immersive virtual realistic
S user experiences. However, most existing VR headsets only rely on traditional joysticks
§0r camera-based user gestures for input control and human tracking, missing an
= important source of information, namely, brain activity. Hence there is a growing interest
inincorporating brain-machine interfaces (BMIs) into VR/MR systems for consumer and
S clinical applications [1]. As illustrated in Fig. 33.2.1, an existing VR/MR system integrated
S with EEG channels typically consists of a VR headset, a 16/32-channel EEG cap, a neural
Zrecording analog frontend, and a PC for signal classification. Major drawbacks of such
Ssystems include: (1) cumbersome wear and poor user appearance, (2) lack of in situ
=computing support for low-latency operation, (3) inability for real-time mind imagery
= control and feedback based on brain activity, (4) high power consumption due to Al
5classificati0n. To overcome these challenges, this work introduces a mind imagery device
Rintegrated into existing VR headsets without extra wearing burden for mind-controlled
H BMI for a VR/MR system. The contributions of this work include: (1) an SoC supporting
& in situ mind imagery control for VR/MR systems, (2) seamless integration with existing
3, VR headset and optimized selection of EEG channels to enhance user acceptance and
Sexperience, (3) a general-purpose instruction set architecture (ISA) with flexible dataflow,
gsupponing a broad range of mind imagery operations, (4) a confusion-matrix-guided
Steacher-student CNN scheme to save power during Al operations, (5) sparsity
caenhancement on EEG signals to reduce energy. A 65nm SoC test chip is fabricated with
iin situ demonstrations on various mind imagery-based VR controls. While prior works
Saddress EEG-based seizure detection or similar biomedical applications [2-6], this work
Sfocuses on emerging BMI in a VR/MR environment. The digital core of the SoC achieves
gfan energy consumption <1pJ/class for compute-intensive CNN operations thanks to the
§|ow-p0wer features and system-level optimizations of the design.

:{Figure 33.2.2 shows EEG channel selection and integration into the Meta Quest 2 VR
2 headset with a tradeoff between accuracy and user convenience. To support a variety of
gmind imagery tasks, 8 EEG channels T3, T5, 01, 02, T6, T4, PZ, and CZ are selected and
Qsubtly incorporated into the head-strap to maintain user aesthetics. Different mind tasks
Zactivate a subset of the eight selected channels, e.g. T3/T5/CZ/T4/T6 for mental imagery,
ZT5/CZ for affect (e.g., emotion) monitoring, or 01/02/PZ for steady-state visual evoked
§p0tentia| (SSVEP). The reduction of channels leads to a minor drop in the average
saccuracy for the three main tasks (from 90.4% to 85.2%) but significantly improves the
“g user experience and usability. Commercial Hydro-link electrodes with saline solution are
QO used to capture EEG signals via pre-cut holes in the headband. Figure 33.2.2 also shows
fgthe top-level diagram of the fully integrated SoC. Up to 16 programmable channels of
‘2 AFE are used for signal acquisition and digitalization. Each channel of the AFE includes
%a two-stage chopper amplifier with 45-to-72dB gain and 0.05-to-400Hz bandwidth, a
= low-pass filter with a corner frequency at 60Hz, and an 8b SAR ADC operating from
_‘@128Hz to 10kHz. The digital core for integrated Al operations comprises an 8x10
=Processing Element (PE) array, control logic, and associated memory banks. An
Ainstruction memory with a specially developed ISA provides global control to the chip’s
goperation for supporting a range of mind imagery tasks. The real-time classified brain
‘Sstates and mind-control commands are transmitted to the VR headset via an external
£ Bluetooth module for control of the VR scenes.

5While most existing works only focus on a fixed dataflow [4] and CNN model [2,3], a
g highly flexible computing architecture is required to support a variety of mind imagery
S tasks. Figure 33.2.3 shows the specially developed general-purpose ISA for dataflow
Scontrol, model configuration, channel selection, etc. An ultra-wide ISA command of 128b
“is used to supervise various computing tasks, e.g., IIR filter, Convolutional (Conv) layer,
discrete Fourier transform (DFT), and fully connected (FC) layer with high hardware
efficiency. To support ever-changing Al models, the configuration of each sub-task, such
as the number of kernels, number of layers, branch target address (BTA), sparsity
settings, etc., are also integrated into the ISA for efficient scheduling and execution of
different tasks. Figure 33.2.3 also shows the detailed architecture of the digital neural
processor. The 8x10 PE array can be flexibly turned on or gated off by rows or columns.
CNN, FC, DFT, and IIR filtering operations can be specially performed by reusing the
same PE array through different dataflows, e.g., weight-stationary for Conv layers, or
output-stationary for FC layers and DFT. Instead of the conventional systolic array, which
engages significant pipelined flip-flops, this design purposely removes most of the

pipeline stages for power saving while still meeting the classification latency target of 5
to 10ms. Low-power features, e.g., sparsity enhancement, fine clock gating, and a
teacher-student CNN scheme are also developed as described next.

Given the slow pacing of mental states, a teacher-student CNN scheme is developed to
strike a balance between sensitivity, computational power, and accuracy, as depicted in
Fig. 33.2.4. Offline-trained teacher-student models are downloaded into the chip for brain
activity monitoring. The small-size student model is about 3x faster, with 14% lower
accuracy but 70% less energy consumption than the teacher model. Pre-determined
user-specific confusion matrices are stored on the chip to judiciously decide which model
to be activated for classifications. As shown in Fig. 33.2.4, for the example of affect
monitoring, while the initial classification is performed by the teacher CNN model for
high accuracy, as user’'s mental state lasts, the small student CNN model is turned on
for power saving. When a state transition is detected, the confusion matrix is checked to
evaluate the possibility of true transition or false alarm. A rejection is issued if the
confusion matrix shows a high possibility of false detection. The rejection is followed by
the engagement of the teacher CNN for confirmation. Essentially, the confusion matrix
is used to reduce the false classification rate from the student CNN leading to enhanced
overall accuracy for the student model. Experiments show that 55% energy/class saving
can be achieved through the teacher-student CNN scheme with an accuracy drop of only
2.3% in the affect detection case. Figure 33.2.4 also shows the proposed sparsity
enhancement technique where small noisy signals are zeroed using comparators with a
preset threshold. Direct sparse enhancement leads to a significant accuracy drop of over
15%. A special sparsity-aware training process that adds sparsity operation into the
training process reduces the accuracy impacts. With the special training flow, a total
CNN power saving of 12% is achieved with an accuracy impact of up to 4.6%.

The SoC is fabricated in 65nm CMOS with a total area of 7.5mm?2 and supports four mind
imagery and affect monitoring/control tasks, including: (1) mental imagery-based VR
interface control, i.e., users control the GUI operation through the imagination of pictures,
(2) real-time affect state tracking and feedback control during VR gaming, (3) motor
imagery, i.e., user's imagination of hand or leg motions, (4) SSVEP, i.e., user focuses
on pictures flashing with various frequency as input to the system. Figure 33.2.5 shows
demonstrations of mental imagery and affect based VR control. In the mental imagery
control task, the user issues pre-trained “focus” action to pop up a selection menu and
imagines photos of rainy days or surfing to make a selection of the menu items. /n situ
measurement on mental imagery and control shows the mind commands are
successfully injected into the VR scenes with an accuracy of 79 to 83%. In affect tracking
and control, a customized Endless Running game is built and the gaming difficulty is
dynamically adjusted based on the CNN-classified user arousal level to enhance user
engagement, e.g., increasing moving speed when a user’s arousal level is low.
Measurement results show an accuracy above 90% in tracking a gamer’s affect states
with successful affect-based pace adjustment.

Figure 33.2.6 shows more measurement results. Public SSVEP [8] and motor imagery
[9] datasets are evaluated by the on-chip CNN, achieving 86% and 80% accuracy, with
2% drop from a baseline model in the SSVEP dataset [8]. The teacher-student CNN
scheme achieves 1.97pJ/class for teacher CNN, 0.6uJ/class for student CNN and
0.89uJ/class for combined operation. Figure 33.2.6 makes a comparison with prior works
on biomedical SoCs with integrated digital cores. Thanks to the low-power features, the
digital core in this work achieves the state-of-the-art energy consumption at sub-
1pJd/class for CNN operation. While prior works mainly focus on medical diagonosis,
e.g., seizure detection, this work extends brain-machine-interface technology to
consumer electronics for flourishing VR/MR systems. The chip micrograph is shown in
Fig. 33.2.7.
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Figure 33.2.1: Challenges of existing mind-imagery systems for VR/MR
applications(top). Proposed system solution and contribution of this work (bottom).
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Figure 33.2.3: ISA for general-purpose mind imagery and control with an example
flow of affect detection, and neural processor architecture and configurations.

Real-time Affect Tracking and Control for VR Game

Figure 33.2.4: Confusion-matrix-guided teacher-student CNN scheme, and sparsity-
enhancement technique.
Teacher-Student CNN DBE Energy Efficiency

Public Dataset Results Average Power in Affect Track.

Cl:stodm‘e\slsRGame VR Game Options: 1)Gaming Training Procedure x =
= R - 3
Faster/ Slower Boring [ | Intense | Bormg Rest | !ntense 390 35 Subjects . Digital Core =
Gamin Gamm G ing Gam n; © 4 Subjects 0.85uW %2
o =]
T5 Channel EEG Measured ADC Readout & Output Accuracv S ‘ 86% [ - fs=128Hz el 1.97
Initial Speed =5 - <70| ' ° 8-ch AFE 1Class/2sec 1 -
© Dependon &
Before . ™ Al i c 6auW (a :’ication) 2 0.89
Goal: acc:95% | acc91% | acc92% | acc93% |acci90% 6 50 PP 0
i . < lulli oo ® Plilid 2uin dmin St Motor Core SoC Power Teacher Student Teacher
Control d 40,00 Gaming Real Time Feedback SSVEP heing
H Dataset[8] gery Student
Character to Speed fast Dataset[9]
Collect Coins & increased =x jennjoutputy ISSCC'21[2] [ 1SSCC'23[3] [ JSSC'22[4] | VLSI'21[5] | ISSCC'22[6] | CICC'20[7] This Work
Avoid Obstacle High/Low Arousal Process 65nm 40nm 28nm 40nm 65 180nm 65nm
SoC NO YES NO YES YES YES YES
Supply 1(AFE) TAAFE)
) 0.75 G 9ibBE] 05 S TiDbE) 12 1 1.0(AFE)/0.8(DBE)
# Channel 2 22 8 16 256 4 16
Area(mn?) 1.74 6 4 1.2 8 16 7.5
s Biomedical: Biomedical: | Bomedical | \pimR EEG Affect
Application ECG/Seizure/ EEG Seizure Autism Tracking/ Imagery control/
e Space & task EEG Seizure [EEG Seizure |EEG Seizure | - o oo spectrum 9l Imagery
4 EMG + Stimulation | P
Surfing Scene disorder
s 100s 120s Ticati
Classification | ¢y p SCiCNN LR GTCASVM | NeuralTree DNN CNN,IIRFC,DFT
Methods
) ENeray | 4 362065525 | 28.33" 15000 097 0.227 1043 0.89(teacher-student)*
T5 Channel EEG Measured ADC Readout & Label (udiClass) sl S L & i g B9(teacher-studenty’
Rainy Scene __ Focus Surfing Scene ification (# Bonn CHBMIT | CHBMIT | CHB-MIT | CHB-MIT(24) | DEAP(32) THU-SSVEP(35)
subjects) (NIA) (24) (24) (24) iEEG(6) | SEED(15) Motor Imagery(4)
in-situ Affect tracking & imagery
Imagine Imagine ' Demostration No YES NiA NIA YES NIR control
Surfing scene Ramyseene acc:80% | acci8d% acci79% | acc:81% : ALEGain(ab) NO NIA NO d654 49.7.57.9 5064 4572
min 1min in AFE_Power/Ch N/A 1.51uW 1.63uW BuW

‘Yes” or “No” selection by mental imagery]
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