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Abstract
We present CCAnalyzer, a novel classi�er for deployed Internet

congestion control algorithms (CCAs) which is more accurate, more
generalizable, and more human-interpretable than prior classi�ers.
CCAnalyzer requires no knowledge of the underlying CCA algo-
rithms, and it can identify when a CCA is novel – i.e. not in the
training set. Furthermore, CCAnalyzer can cluster together servers
it believes use the same novel/unknown algorithm. CCAnalyzer
correctly identi�es all 15 of the default Internet CCAs deployed
with Linux, including BBRv1, which no existing classi�er can do.
Finally, CCAnalyzer can classify server CCAs while being as e�-
cient or better than prior approaches in terms of bytes transferred
and runtime. We conduct a measurement study using CCAnalyzer
measuring the CCA for 5000+ websites. We �nd widespread deploy-
ment of BBRv1 at large CDNs, and demonstrate how our clustering
technique can detect deployments of new algorithms as it discovers
BBRv3 although BBRv3 is not in its training set.

CCS Concepts
• Networks ! Transport protocols; Network measurement; •
Information systems ! Clustering and classi�cation.
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1 Introduction
There has been a growing shift in the Internet’s transport layer

including an explosion of novel congestion control algorithm (CCA)
proposals [10, 18, 20, 21, 53–55], many of which are already de-
ployed or being considered and tested for deployment in the Inter-
net by content providers. Examples include novel versions of BBR
deployed by Google [17], Copa deployment by Facebook [26], and
FastTCP deployment by Akamai [9, 41].1

1Although our measurement study at the conclusion of this paper suggests that Akamai
has largely dropped FastTCP in favor of BBR and www.facebook.com uses Cubic.
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Figure 1: Time series of queue occupancy for four CCAs
(from top, left to right: New Reno, BBR, Cubic, and BIC).
Each CCA has a visually distinct queue occupancy behavior.

With the growing diversity in CCA proposals and potential
deployments, we have an ever-growing need to understand what
CCAs are currently deployed in the Internet today. Assumptions
about what CCAs are widely deployed underlie decisions about
how to size bu�ers in routers [27] (proportional to 1p

=
, if everyone

is deploying NewReno [32]); whether or not routers need multiple
queues [15] (to protect low-latency tra�c from bu�er �lling tra�c,
if both classes of CCAs are deployed); and how to test new Internet
services to ensure that they do not starve legacy tra�c [30, 51, 52]
(if Reno is no longer widely used, perhaps we do not need to test
new CCAs for Reno-friendliness).

The desire to understand CCA deployment motivated the devel-
opment of CCA classi�ers starting with TBIT in 2001 [29, 41, 43, 47,
57]. Most of these tools focus on estimating the CCA’s congestion
window (CWND) by requesting a bulk data transfer from the server
and then observing the transfer’s reaction to dropping and delaying
packet acknowledgments or to modulating the available bandwidth.
Unfortunately, state-of-the-art CCA classi�ers using these tech-
niques, e.g., Gordon [41] and Inspector Gadget [29], have several
limitations that prevent them from providing a truly comprehen-
sive picture of CCA deployments. We discuss prior approaches and
their limitations in detail in §2.

We seek to develop a CCA classi�er with several desirable proper-
ties: Support for all well-known CCAs: A CCA classi�er should
be able to identify known CCAs with minimal errors. Support-
ing identi�cation of the 15 built-in wide area CCAs in Linux2 is
especially desirable.

E�cient and nearly-passive: Network measurements should
aim to be as lightweight and minimally burdensome as possible

2In fairness, we exclude the lp and dctcp algorithms because these algorithms require
in-network support which is not available in the wide area. All other prior work also
excludes these algorithms.
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on non-cooperating parties. Heavyweight techniques make it dif-
�cult to perform large-scale measurement studies and can lead to
measurement tools being ‘blocklisted’ by services.

Discover new CCAs: Open-set classi�cation is the ability for
a classi�er to classify that a testing sample is not in the training
set [40]. In the current period of signi�cant experimentation in the
congestion control space, a CCA classi�er should be able to identify
if a website is using a known or unknown CCA. Furthermore, to
identify truly novel CCAs, the classi�er should be able to determine
which servers using unknown CCAs all appear to be using the same
algorithm.

Interpretable results: A CCA classi�er should be ‘interpretable’ [37].
That is, as human experts, we should be able to understand why
our algorithm classi�es two web servers as using the same CCA.
This allows for evaluation and validation of results as well as aiding
in the discovery of new CCAs.

In this paper, we present CCAnalyzer, a new CCA classi�er. CC-
Analyzer can correctly classify all built-in Linux CCAs. It is 40x
faster than Gordon, and unlike Inspector Gadget, CCAnalyzer can
e�ciently identify if a group of servers are all using the same un-
known algorithm. CCAnalyzer achieves this by taking a radically
di�erent approach to classi�cation than prior work. Both Gordon
and Inspector Gadget use decision trees hand-crafted or trained on
observed CWND values or gradients; they in�ate round-trip-times
(RTTs) and/or introduce timeouts to precisely measure the CWND at
each point in time. In contrast, CCAnalyzer starts from a simple
observation: if we visually observe the occupancy of packets in a
bottleneck queue over time, even a human expert can identify the
connection’s CCA. In Figure 1, we present the queue occupancy of
the bottleneck link from real TCP connections; the familiar Reno
‘sawtooth’ is visible for Reno while other CCAs have their own
patterns of rising and falling queue size. Because CCAnalyzer does
not interfere with a connection’s normal behavior (beyond intro-
ducing a low-capacity link to force a bottleneck) we describe the
approach as nearly-passive and argue that it is minimally intrusive
for operators.

Rather than trying to collect CWND traces, CCAnalyzer works by
measuring a connection’s queue occupancy over time and uses this
time series data as input to a classic algorithm for measuring the
distance between two time series called Dynamic Time Warping
(DTW) [13]. DTW is used in a variety of applications requiring
signal comparison, such as voice recognition and shape detection.
DTW compares two signals for similarities in shape and magnitude
while accounting for distortions such as stretching or noise – this
latter accounting is especially valuable since we expect to see such
distortions in network traces due to variances in RTT, jitter, ran-
dom packet loss, etc. CCAnalyzer uses a 1-Nearest Neighbor(1NN)
classi�er with DTW as the distance measure and labeled time-series
as the training set. A testing trace is given the label as the closest
training sample. CCAnalyzer collects 4 queue occupancy traces for
each website, and votes across the labels of those traces to give
a website a �nal label. We describe the our methodology in more
detail in §3.

We �nd that, in addition to being more e�cient and broadly
applicable than prior approaches, CCAnalyzer o�ers additional

advantages. Collecting queue occupancy traces as well as the ability
to compare these traces to one another using the ‘distance’ measure
provided by DTW allows us to visualize and validate results. By
looking at the website traces and their closest training sample we
can see when and why the classi�cation may have been incorrect
for identifying possible errors. In addition, using a matrix of all the
pairwise distances between a set of traces, we can cluster traces
and identify the deployment of new CCAs outside of our training
set. We demonstrate these additional advantages in §4 and §5.

We use CCAnalyzer to conduct a measurement study of Top 10K
websites ranked by Google Chrome’s UX Report (CrUX) [58] and
�nd the following:
1. Inspector Gadget can only classify 1% of these 10K websites.
2. We �nd several major CDNs have deployed BBRv1 (Cloud�are,

Akamai), while others still use Cubic (Fastly).
3. Clustering queue occupancy traces makes our results inter-

pretable and straightforward to validate. It allows us to �x when
a website’s traces are marked as unknown when they are actu-
ally known and using a CCA in the training set.

4. CCAnalyzer was able to discover Google’s deployment of BBRv3,
even though we do not have a BBRv3 implementation in our
testbed and did not train CCAnalyzer on BBRv3 tra�c.

5. We see some deployment of other unknowns CCAs.
The rest of this paper is organized as follows. In §2 we discuss

prior work in classifying CCAs. In §3, we present the CCAnalyzer
methodology. In §4 we evaluate CCAnalyzer’s accuracy, speed, and
resource utilization. In §5 we provide a brief measurement study
focusing on (a) a 2023 update on CCAs used by web servers and
(b) the results of clustering unknown CCAs. In §6 we conclude and
highlight future work.

2 Prior Work and Limitations
There have been several attempts at CCA classi�cation over the

past two decades beginning with TBIT [29, 41, 43, 47, 57]. Of recent
classi�ers, we focus on the two state-of-the-art algorithms: Gor-
don [41] (2019) and Inspector Gadget[29] (2020). Table 1 highlights
the limitations of these classi�ers.

Gordon: Gordon inspired a renaissance in CCA classi�cation
algorithms after two decades of relative dormancy. The authors
insightfully noted the deployment of numerous novel algorithms
(at the time, BBRv1 was beginning to ‘take o�’ [41]) and the need
to measure the changing CCA landscape due to the impact of CCAs
on a wide range of Internet issues from infrastructure design to
network fairness. In addition to developing the Gordon classi�ca-
tion tool, the paper also provides the widest measurement study
of CCA deployment in the post-BBR era; signi�cantly, the authors
noted the surprisingly rapid growth in the deployment of BBRv1,
which 17.75% of servers they measured used at the time.

The Gordon classi�er works by creating a bottleneck between
the web server and the client, introducing various network events
including packet losses and changes in bandwidth and delay in
the hopes of exactly measuring the CWND. Generating these CWND
traces comes at a high cost: Gordon requires incremental probing,
RTT-by-RTT, starting and restarting connections with a web server
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many times—requiring up to 800MB of data transferred to success-
fully perform a classi�cation. In addition, we observe in our own
evaluation that more servers reject connections from the Gordon
tool [8] than reported in 2019; conversations with one of the Gor-
don authors lead to the hypothesis that Gordon is being blocked
or rate-limited due to these overheads. In 2023, Gordon authors
were only able to classify 4% of Alexa Top 10K. As we will show in
§4.3, CCAnalyzer trace collection transfers 85% fewer bytes, and is
40x faster than Gordon. CCAnalyzer’s passivity avoids the pitfalls
Gordon has with onerous active CWND estimation.

After collecting CWND traces, Gordon, uses a hard-coded decision
tree to classify these traces. Because some algorithms are not dis-
tinguishable based on the parameters in this decision tree, Gordon
cannot tell the di�erence between Compound TCP/Illinois, Veg-
as/Veno, and New Reno/Highspeed (HSTCP) and instead groups
these into the same category although all of these algorithms are
distinct.

Consequently, Gordon requires detailed knowledge about how
each CCA works to support a new CCA. For example, it needed a
special-cased test to support BBR. While Gordon can mark a CWND
trace as ‘unknown’, Gordon cannot group web servers as using
the same unknown CCA without running several additional hand-
crafted tests putting even more additional load on web servers. In
addition, we will show in §4.2, although Gordon has good accuracy
for supported CCAs, its lack of support for many CCAs, require-
ments for special tests for new CCAs, ine�ciency and inability to
natively discover new novel CCAs makes it challenging to use with
a constantly evolving transport layer.

Inspector Gadget (IG): Published in 2020, IG’s authors developed
the tool to �ngerprint a web server’s networking stacks, including
its CCA. In their results, they notably found that Cubic was the
dominant CCA followed by BBR in North America, but also saw
most servers from other regions were still using Reno. Similarly to
Gordon, IG also tries to carefully inject network events including
timeouts and changes in delay to generate CWND traces. To generate
these traces, IG addresses issues with prior work’s CWND estimations
with some optimizations. Rather than classifying raw CWND traces,
IG extracts a vector capturing the CWND as a series of o�sets, using
a decision tree classi�er on these vectors.

IG’s published code [5] includes a user-level TCP stack and modi-
�cations to a TLS library to manipulate packets in a HTTPS connec-
tion, which we �nd does not work in practice. We ultimately had to
re-implement IG to the best of our ability. As we will show in §4.2
we obtain reasonably good accuracy with our re-implementation.
We �nd this technique is more e�cient than Gordon. However, we
highlight three limitations of IG.

First, we �nd that IG does not make it straightforward to classify
a CCA as unknown or discover new CCAs. Given the decision tree
classi�er, we can only mark a trace as a known label. Second, it
takes considerable e�ort to re-implement; we �nd that we need to
carefully account for TCP stack optimizations at the sender like
F-RTO [48] that impact how a TCP �ow will respond to losses
that are independent of CCA behavior. These special cases are also
challenges in prior work that try to collect CWND traces [57].

Lastly, whenwe try to use our re-implementation of IG to classify
the 10K websites in our measurement study, we �nd that we can

Table 1: CCA classi�er desirable properties
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Gordon [41] 7 7 3 7

IG [29] 7 7 7 7

CCAnalyzer 3 3 3 3

only successfully classify 1% of these websites because IG requires
at least a 1.5MB �le to classify a website, we could not �nd web
pages large enough, and for most of the remaining that do have
large enough �les, we fail to generate a CWND trace. Appendix §C
details these results. IG CWND estimation technique generally fails
in practice when attempting to classify real websites.

Furthermore, because of IG and Gordon’s signi�cant active ma-
nipulation of ACK timings and packet drops, their extensibility to
other protocols with encryption (e.g. QUIC) or applications (e.g.
video) is severely limited relative to a more passive measurement
approach.

Other classi�ers: The literature prior to Gordon and IG includes
other in�uential classi�ers such as TBIT [43] and CAAI [57], how-
ever, all of these approaches are superseded in both accuracy and
coverage by Gordon and IG, therefore we focus our comparisons
on these to prior approaches only. Other techniques that attempt
to classify the CCA of a �ow as it crosses a router (rather than
classifying a server) such as DeePCCI [47] and DragonFly [19], are
solving an orthogonal problem that is out of scope for this work.

Given the limitations of prior work our goal is the following:We
want to design a new CCA classi�er with higher coverage of
known CCAs, better e�ciency, better passivity, and open set:
able to discover new CCAs without considerable e�ort. In
the following sections we discuss how CCAnalyzer achieves these
goals.

3 Methodology
We propose a new algorithm, CCAnalyzer, for identifying CCAs

in an e�cient and nearly-passive way. CCAnalyzer takes a radically
di�erent approach to prior CWND estimation techniques by relying
on bottleneck queue occupancy traces. In this section, we describe
how we can frame the CCA classi�cation problem as a time series
classi�cation problem and how this enables CCAnalyzer to achieve
the goals outlined in previous sections.

3.1 Observing Queue Occupancy
A key issue with prior techniques is that they require brittle and

resource-intensive �ow manipulation to estimate the CWND, which
is not directly observable, and then perform classi�cation. Our key
insight is that we need not try to force network events e.g.timeouts
to force a CCA to behave in some expected way, but rather we can
observe CCAs in their natural habitat: at the bottleneck queue.

In order to observe the bottleneck queue occupancy when down-
loading data from a server, we insert our own switch with a deliber-
ately slowed egress link between the server and the client using a
testbed as shown in Fig. 2. Because the switch processes incoming
packets at a speed much slower than upstream links, it becomes the

3
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service at k Mbps

delay by j milliseconds

Third-Party
Servers Client

BESS Node

NATInternet

Figure 2: Testbed to issue requests to third-party servers and
identify their CCAs.

connection bottleneck. The switch uses a queue of a chosen size and
we con�gure it to record when packets are enqueued, dequeued,
or dropped. We implement this switch using the BESS software
switch [1], and the client issues pipelined HTTP requests to third
party servers using h2load [4] to utilize the available bandwidth.

On page 1, Fig. 1 shows real example bottleneck queue occupancy
traces collected from our testbed. A human observer can clearly see
the classic ‘TCP sawtooth’ of Reno, G3 curves of Cubic and even
periodic bandwidth probes of BBR in these traces. CCAs will cycle
through their behavior: increasing their sending rates to use the
available bandwidth and react to losses (depending on their design)
that occur naturally if they �ll the bottleneck queue. We posit that
if the patterns observed by two di�erent �ows in the bottleneck
queue are equivalent, then the CCAs are equivalent.

CCAnalyzer’s simple inference from queue occupancy traces
achieves the goals outlined in the previous section. CCAnalyzer
has higher coverage of known CCAs and is more general than prior
work. We can support classifying a CCA, if we can collect queue
occupancy traces for that CCA. CCAs may be loss-based, may be
latency sensitive, or have other characteristics and CCAnalyzer can
still classify them without needing any special tests.

CCAnalyzer is nearly-passive: it does not need to force timeouts,
radically modulate bandwidth, implement numerous serial connec-
tions, etc.. Although CCAnalyzer does normalize round-trip times
and bottleneck bandwidth, to the server under test it appears as a
normal TCP connection with no anomalous behaviors.

Lastly, CCAnalyzer is also open-set. Because we can compare
queue occupancy traces, we can determine if a trace does not match
anything in the training set. Further, we can cluster like traces and
detect if multiple servers are deploying the same CCA that is not
in the training set. No prior tool can automatically cluster servers
using like, novel CCAs and we believe that this trait of CCAna-
lyzer is crucial to measuring and modeling a continuously-evolving
Internet. While some prior work also creates a local bottleneck
(e.g. Gordon [41]), or may try to estimate queue occupancy for a
particular �ow crossing a router (e.g. DragonFly [19]), our work is
the �rst to directly measure bottleneck queue occupancy by creating
a local bottleneck and recording every time a packet is enqueued,
dequeued, and dropped from that bottleneck queue to use this trace
to classify CCAs.

3.2 A Time Series Classi�cation Approach
CCAnalyzer compares two queue occupancy traces to each

other using a well-known algorithm called Dynamic Time Warping
(DTW)[13], which takes in two time series traces and returns a
‘distance’ measurement quantifying how similar the two traces are.
DTW is traditionally used in pattern matching tasks like automatic

(a) Euclidean distance = 2.47 (b) DTW distance = 0.76

Figure 3: Queue occupancy distance calculation for a sample
from usps.com to a Cubic training sample. DTW allows a
�exible one-to-many mapping between similar points, while
euclidean is a one-to-onemapping to points at the exact same
time.

speech recognition and speaker identi�cation; just as a speaker will
have a signature pitch and cadence, congestion control algorithms
each have a unique typical queue occupancy and rate of change.
These types of problems are known as ‘time series classi�cation’
problems, and despite 40 years of research since the invention of
DTW, it remains a widely used general-purpose algorithm for this
class of challenges [11].

To understand DTW, we �rst consider a naïve approach to com-
pare two traces using Euclidean distance (ED). Consider two queue
occupancy traces, - = (G1 ...G=) and . = (~1 ...~=), where G8 is the
queue occupancy at time 8 in trace - and where X and Y are =
time steps long. We can compute ED between these two traces by
computing the sum of the squared di�erence between each element
G8 and ~8 .

Fig. 3 shows why this one-to-one mapping approach fails for
most network traces. In Fig. 3a, we compute the ED between a
trace collected from usps.com to a Cubic training sample, while
in Fig. 3b we take the same traces and compute the DTW distance.
Traces can dilate and contract relative to time on the real Internet.
For example: a host may stall during the trace, sending a packet a
few ms later than expected; an in-network queue may �ll up with
background tra�c, temporarily increasing the RTT; a long-running
�ow in the background may end, suddenly reducing the RTT. These
e�ects can cause two traces from the same CCA to appear stretched
and squeezed relative to one another.

DTW accounts for this stretching and squeezing by allowing a
one-to-many mapping: a given index from each trace can map to
one or more indices in the other trace. DTW �nds the optimal point-
to-point mapping between the two traces to minimize the sum of
the distances between all their points with some constraints. Fig. 3b
shows how this results in DTW measuring a smaller distance than
ED for same-CCA traces. We describe the formal de�nition of DTW
in Appendix §B. There are many more well-studied aspects and
applications of DTW [11, 13, 33, 35, 44, 46] but we do not require
their discussion here to understand CCAnalyzer.

CCAnalyzer uses a one-nearest-neighbor classi�er with DTW
as the distance measure (1NN-DTW), a commonly used time series
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classi�cation methodology [11]. Given a website to classify, CCAn-
alyzer computes the DTW distances between the queue occupancy
traces of all training samples and the queue occupancy trace of
the website. The website is given the label of the closest training
sample.

Given this approach, DTW allows us to classify if a time series
matches one within the training set, but how will we determine if a
CCA is not in the training set and should be classi�ed as unknown?
We explore using a well-known extension to our 1NN classi�er
called TNNwhere T is a distance threshold [40]. If the DTWdistance
between a website trace and it’s closest label is higher than T, then
the trace is marked as unknown.

3.3 Parameter Tuning
CCAnalyzer observes a TCP connection’s natural behavior as its

CWND rises and falls, probing for bandwidth. However, classifying
CCAs based on this natural behavior requires that we observe TCP
connections in su�cient conditions that they act distinguishably
from one another. To be speci�c:

We must choose bottleneck bandwidth, RTT, and queue size
such that same-familyCCAs exhibit di�erent behavior (§3.3.2):
This is most important for Reno-family CCAs (Westwood, High-
speed, YeAH, etc.) which are all variants of each other. Many are
designed to simply ‘act like Reno’ in low BDP environments and
only exhibit their unique growth and backo� behaviors at higher
BDP environments.

We must observe connections for long enough that each
CCA goes through several ‘cycles’ of operation (§3.3.3): DTW
matches similar traces to each other, but minor perturbations in
the network environment (arrival/departure of background �ows,
external packet loss) can make traces appear dissimilarly. Having
multiple iterations of the CCA’s characteristic behavior allows DTW
to self-correct for brief abberations as the characteristic connection
behavior re-emerges after a few RTTs.

We need to identify when a trace is too far from its nearest
neighbors in the training set (§3.3.4): We would expect servers
using novel CCAs to produce a DTW distance which is ‘far’ from
any training sample: but how far is far enough to declare that a
server is indeed using a new algorithm?

Note that the above issues all somewhat depend on the set of
CCAs that the system is meant to classify. We take an empirical
approach to setting appropriate parameters to correctly distinguish
CCAs which we describe in the following sections. However, it is
not unlikely that if the CCA landscape were to evolve dramatically
with the deployment of many new CCAs and the phasing out of
many old ones, that we would need to re-tune these parameters for
CCAnalyzer to remain e�ective in the future.

3.3.1 Experimental Setup The CCAnalyzer testbed is installed
on Cloudlab servers in Wisconsin, USA [22] (see Fig 2). To generate
ground truth data for evaluation, we collect traces to servers in-
stalled on Amazon Web Services (AWS) datacenters in Virginia and
Microsoft Azure’s ‘East’ US datacenter. We use the AWS-Virginia
dataset as our training data for CCAnalyzer and our Azure-East
datasets for testing. When measured using iperf[6], the total avail-
able bandwidth between the CCAnalyzer testbed client and the

AWS machines is 500Mbps and between the testbed client and
Azure machines is 920Mbps.

Each server is con�gured as follows:
• Training Set (AWS-Virginia): Ubuntu 22.04.2, Linux kernel
version 5.19. RTT to testbed 22ms. 3 samples per CCA.

• Testing Set (Azure-East): Ubuntu 20.04.6, Linux kernel version
5.15. sRTT to testbed 24ms. 5 samples per CCA.

Training and Testing for CCAnalyzer: Using AWS-Virginia we
generate training samples for 15 CCAs available in Linux.3 We run
iperf �ows between a transmitting host located in AWS Virginia
and a receiving host in our testbed for 120s (as we will discuss in
§4.3 we need not use all 120s for accurate training and only need
20s). To generate testing data, we set up an Apache web server on
Azure-East with a 100MB �le. We use wget to download the �le to
the receiving host in our testbed for 60s.

3.3.2 Network Con�gurationMany CCAs, especially Reno-
family CCAs, are designed to behave similarly in low-BDP environ-
ments. Therefore, we need to identify network settings in which
these CCAs exhibit their distinguishing behavior. Our testbed en-
ables us to emulate di�erent network conditions by varying the
bottleneck bandwidth, round-trip time, and the bottleneck queue
size. Our main goal is to �nd a minimal set of network settings that
we can con�dently use to classify all 15 CCAs in Linux and identify
unknown CCAs. We need to capture just enough cycles of CCA
probing behavior that makes these algorithms distinguishable.

Bandwidth setting: We choose to use small bandwidth ranges be-
cause wewant to ensure that our queue is the bottleneck for the con-
nection; if queueing were to build up elsewhere in the network we
would not observe useful behavior in the queue occupancy traces.
We test setting the bandwidth to 5Mbps, 10Mbps, and 15Mbps.

RTT setting: We enforce an RTT in our testbed by adding additional
delay to packets sent to the web server. Therefore, the RTT we
choose for our network settings cannot be so small that the majority
of websites will be too far away. In addition, if we set the RTT to
be too large, then it can take the CCA a long time to �ll the queue
resulting in traces without enough cycles of CCA probing behavior
to distinguish di�erent algorithms. Fig. 4 shows the distribution
from the 10K websites we will attempt to classify in §5. We test
setting the RTT to 85ms, 130ms, and 275ms.

Queue size: Given the bandwidth and RTT of a setting, we need to
chose a queue size that captures the right number of cycles of CCA
probing to highlight distinguishable behavior. We �nd a queue size
of 1BDP works well.4 Fig. 5 and Fig. 6 show how queue occupancy
traces change depending on the queue size for a 5Mbps and 275ms
RTT network setting (128 packets is ⇠1 BPD in this setting). With
queue sizes too large, queue occupancy traces degrade. In case of
Cubic, it takes too long to �ll the queue so the trace does not have
enough cycles of Cubic probing behavior. In the case of BBR, it uses
very little of the queue when the queue it is too large.

We run 1NN-DTW on our test dataset from Azure-East, classify-
ing each 60s trace as its ‘nearest’ training trace. Fig. 7 shows the
3Note: We only include BBRv1 in our testing and training sets. In §5.2 we will show
we can also classify websites using BBRv3.
4BESS requires the queue size to be a power of 2 so the actual queue size is set to be a
power of 2 closest to 1BDP.
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Figure 4: Distribution of ping time to
10Kwebsites. Most websites arewithin
a distance of 275ms.

Figure 5: 5bw-275rtt: Example Cubic
queue occupancy traces from Azure-
East for varying queue sizes (pkts).

Figure 6: 5bw-275rtt: Example BBR
queue occupancy traces from Azure-
East for varying queue sizes (pkts).

Figure 7: Accuracy mapping each test-
ing sample to closest training sample
per network setting.

Figure 8: 10bw-130rtt setting: A BBR
testing trace correctly labelled.

Figure 9: 10bw-130rtt: BBR trace cor-
rectly labelled. It is close to other low-
latency CCAs, Vegas and CDG.

Figure 10: Results from classi�cation for truncated traces in
accurate settings. Near perfect accuracy is reached with as
little as 20s �ows.

accuracy of CCAnalyzer for 9 network settings for each testing set.
Some settings work slightly better than others but overall accuracy
across these settings is 96% (649 correct out of 675 samples). Misclas-
si�cations include Illinois samples misclassi�ed as Westwood, both
Reno variants. Similarly, BBR samples get misclassi�ed as Vegas,
both low-latency CCAs. The most accurate 4 settings are when
the bandwidth is 5mbps or 10mbps, and when the RTT is 85ms or
130ms. Our ultimate design relies on voting across multiple settings
in order to ‘boost’ our accuracy to 100%, but we want each voter
to be as con�dent as possible: hence we restrict our measurements
in CCAnalyzer to the four most accurate settings. In addition, we
want to minimize the load on the web servers by �nding a small
number of network settings that can produce distinct traces.

Fig. 8 shows an example of why 1NN-DTW works well, with a
BBR testing sample and its closest training sample which are nearly
identical. More illuminating is how closely the testing sample relates
to the incorrect CCAs. Fig. 9 shows all the distances between a BBR
sample and all the training samples in the 10bw-130rtt setting. All
the BBR training samples are closest to this testing sample, but
other similar CCAs that are also not loss-based, such as CDG and
Vegas, are the next closest. These algorithms all have relatively
low magnitude in their queue occupancy compared to, e.g., Reno
and Cubic variants. This also highlights the interpretability of our
results as the traces are visually distinct, with clear similarities
between testing samples and their closest training sample and the
DTW distance quanti�es the similarity. Furthermore, unlike both
Gordon and IG, CCAnalyzer does not need a special test to classify
BBR or other algorithms that are not loss-based.

Given the accuracy we have for these 4 settings, we complete the
rest of our analysis and measurement study using these settings.
These work well and achieve our goals but these are not the only
settings that will have high accuracy. There are many settings that
could accurately distinguish CCAs using 1NN-DTW. We discuss
further network setting options and their accuracy in §5.3.

3.3.3 Trace Length/Duration One of our key goals with CC-
Analyzer is to reduce the overhead of probing relative to prior
approaches. At the same time, we need to observe CCAs over a
su�cient period of time such that they iterate through multiple
‘cycles’ of their bandwidth probing mechanisms. Consequently, we
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Figure 11: Distribution of distances between training samples
for 5bw-85rtt-64q accurate settings. The seperation between
the same CCA distribution and di�erent CCA distribution
suggests we can set a distance threshold to mark CCAs as
unknown.

aim to identify the minimum duration we should measure a net-
work trace while still ensuring strong accuracy. Fig 10 shows the
accuracy from classifying �ows individually (without voting) with
durations ranging from 10 to 50s. We see a modest dip in accuracy
when we drop as low as 10s. However, for traces from 20s-50s, we
see relatively indistinguishable accuracy. Hence, we can use traces
as short as 20s with minimal impact to classi�cation accuracy and
hence use this duration as our minimum trace length.

3.3.4 Classifying Unknowns Our �nal parameter tuning step
enables us to identify unknown or novel CCAs. This is referred
to as solving an ‘open-set’ classi�cation problem (a problem in
which some of the data to be classi�ed may not match any of the
labels in the training set) rather than a ‘closed-set’ problem. In prior
work, only Gordon [41] provides an open-set algorithm – all other
algorithms in the literature, including Inspector Gadget, are closed-
set, meaning that they will always erroneously identify novel CCAs
as some other existing algorithm in the training set.

CCAnalyzer’s mechanism for identifying novel CCAs requires
identifying some DTW distance threshold) such that if the nearest
training sample to a trace is more than) distance away according to
DTW, we should mark it as unknown. The algorithm for classifying
with such a threshold, called TNN [40], is otherwise identical to
the 1NN algorithm we described previously. Figure 11 provides
intuition as to why such a threshold is useful. Here, we plot a CDF
of all DTW distances between pairs of traces in our training data
in which the pairs use the same CCA or in which they represent
di�erent CCAs. The distribution of distances between samples with
the same CCA is tight – between roughly 1 and 15 – where pairs
of di�erent CCAs generally have a much higher DTW distance
between them. The key is to choose the threshold ) smartly: if we
set ) too high, we will mark true unknowns with a known CCA (a
false known) and if we set) too low we will mark things that should
have been labeled as a known CCA as unknown (a false unknown).
Between the two classes of errors, we slightly prefer false unknowns
because we believe that the vast majority of servers on the Internet
do indeed use well-known CCAs. Consequently, we choose a low
) that will have some false unknowns. In §5 we explore how we
can further reduce false unknowns through clustering.

Our challenge in setting ) is that we lack a way to rigorously
evaluate our choice of ) , since we lack ground-truth knowledge
about the deployment of novel CCAs on the Internet, or even at
what frequency novel CCAs are used. We can, however, emulate

Table 2: Distance thresholds per setting.
Setting Quantile Distance Threshold

10bw-130rtt-128q 0.90 4.41
10bw-85rtt-128q 0.94 6.45
5bw-130rtt-64q 0.90 9.73
5bw-85rtt-64q 0.95 6.68

Figure 12: False positives when removing the training sam-
ples with the correct label from the testing set and seeing if
we can correctly classify as unknown using a distance thresh-
olds in Table 2 per CCA. After voting only CDG, BIC, and
Scalable are misclassi�ed as known labels.

the deployment of novel CCAs to guide our search for a good value
of ) .

We use our existing training data (AWS-Virgina) and run classi�-
cation on a new testing set (we use a server hosted in the AWS-Ohio
region) to simulate unknowns. To classify a testing sample, we re-
move that testing sample’s CCA from the training set. For example,
when we want to classify a Reno testing sample, we remove all
Reno training samples from the training set, and see if the Reno
testing sample will be correctly classi�ed as unknown, or if it will
be erroneously given a known label. We repeat this process for all
15 CCAs, and vary ) to balance false knowns and false unknowns.
Table 2 shows the results of these experiments with our choice of)
for each setting. For example, in the 5bw-85rtt setting, we choose
the value that is the 95th percentile of the "Same CCA" distribution
in Fig. 11.

To evaluate how well these values of ) work, we repeat this
process with the Azure-East testing set. Figure 12 shows how each
CCA is classi�ed when we remove that CCA’s training samples;
ideally the CCA should be classi�ed as unknown. Once we apply
our voting scheme across all four settings (voting description in
§3.4), only CDG, BIC, and Scalable are misclassi�ed with known
labels – and are mislabeled with similar CCAs (CDG is mapped to
another low-latency CCA; BIC and Scalable are mapped to each
other).

Now that we have a mechanism to classify unknowns, a new
question arises: how do we tell which services are all using the
same unknown? The short answer is that we can cluster unknown
traces using pairwise DTW distance measures – groups of traces
with small distances between them are likely to represent the same
novel CCA. We return to this clustering procedure in §5.1.
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3.4 CCAnalyzer End-to-End
In order to classify servers, CCAnalyzer is con�gured with a

ground truth set of labeled queue occupancy traces for 15 CCAs
for 4 network settings. Using TNN-DTW and the testbed in Fig. 2,
CCAnalyzer does the following to classify a server:
1. Collect a queue occupancy trace for 20s (§3.3.3) for 4 network

settings where the bandwidth is 5 or 10mbps and RTT is 85 or
130ms (§3.3.2).

2. Compute the DTW distance between each queue occupancy
trace and all the training traces in the same network setting.

3. Each queue occupancy trace is given the label of the CCA that
has the closest DTW distance.

4. If the distance is bigger than a distance threshold shown in
Table 2 (§3.3.4) the trace is marked as unknown.

5. To assign the �nal label, for a website there is a vote between
the 4 traces for the website. The �nal label for the website is
the majority label across the 4 traces. If there is a tie between a
known label and marking it as unknown, the CCA is marked as
the known label. Lastly, if there is a tie between multiple CCAs,
the �nal label is from the trace with the minimal distance to its
closes training sample.

Finally, we use Agglomerative Clustering [42] to group unknown
traces based on their DTW distances to each other. We use the
distance threshold and manual inspection of these clusters to detect
and identify proprietary, new, or unknown algorithms. CCAna-
lyzer is the only classi�er which clusters unknown CCAs in any
automated fashion. We explore the accuracy and e�ciency of this
approach in the next section.

4 Evaluation
In §4.2 and §4.3, we measure the accuracy and e�ciency of

CCAnalyzer and compare its performance with Gordon and IG. We
were unable to obtain an executable version from the authors of IG,
and ultimately had to re-implement it using the same techniques
described in the paper (we describe them in §2) to the best of our
ability. We �nd that CCAnalyzer is able to achieve 100% accuracy
using its voting scheme for all 15 built-in CCA algorithms in Linux.
During trace collection, on average, CCAnalyzer transmits 85%
fewer bytes of the data that Gordon needs to classify a website,
and completes 40x faster in terms of wall-clock time. CCAnalyzer
achieves the same accuracy and coverage as IG and better e�ciency
than Gordon (§4.3), with the �exibility of open-set classi�cation
(§5.2) and more interpretable results (§4.2).

4.1 Experimental Setup
The CCAnalyzer testbed is installed on Cloudlab at Wisconsin,

USA [22] (see Fig 2). To generate ground truth data for evaluation,
we collect traces to servers installed on Amazon Web Services
(AWS) datacenters in Virginia as well as to Microsoft Azure’s ‘East’
US datacenter. We use the AWS-Virginia dataset as our training
data for CCAnalyzer and our Azure-East datasets for testing. When
measured using iPerf, the total available bandwidth between the
CCAnalyzer testbed client and the AWS machines is 500Mbps and
between the testbed client and Azure machines is 920Mbps.

Each server is con�gured as follows:

• Training Set (AWS-Virginia): Ubuntu 22.04.2, Linux kernel
version 5.19. 3 samples per CCA. RTT to testbed 22ms

• Testing Set 2 (Azure-East): Ubuntu 20.04.6, Linux kernel ver-
sion 5.15. 5 samples per CCA. RTT to testbed 24ms.

4.2 Accuracy
Experimental setup: We evaluate Gordon and IG using the

same Azure-East web server we use to evaluate CCAnalyzer (§4.1).
We point the Gordon client and IG client, installed on a server in the
CloudLab Utah testbed, to download the same 100MB �le from the
Apache web server. We classify each CCA 5 times for Gordon and
CCAnalyzer using their hand-crafted decision tree (as is done in
the Gordon paper). We classify each CCA 20 times for IG (as is done
in the IG paper) using traces collected from the same AWS-Virginia
web server as the training set.

Both Gordon and CCAnalyzer use a voting scheme to determine
their �nal result. In the case of CCAnalyzer, we generate measure-
ments in four bandwidth/RTT/queue-size settings, measure DTW
distances to our training data for each sample, and then vote across
these four settings (§3.4). In the case of Gordon, they run 15 trials
and take a vote across these 15 trials. To repeat classifying each
CCA 5 times, CCAnalyzer classi�es 20 queue occupancy samples
per CCA and Gordon classi�es 75 CWND trace samples per CCA.

In Fig. 15 we show the number of correct classi�cations for IG,
Gordon and CCAnalyzer. For both Gordon and CCAnalyzer we
report the results after applying their voting schemes. CCAnalyzer
achieves 100% accuracy across all CCAs. The results for Gordon are
more complex: CDG, Hybla, and New Vegas (nv) are not supported
by Gordon and so we mark these as unsupported. Further, the
published code does not support Westwood so we also mark that
as unsupported. For the algorithms that Gordon does support, it
misclassi�ed all Highspeed samples, and is mostly accurate for the
other CCAs

We illustrate the accuracy of these individual votes in Fig. 13
for Gordon and in Fig. 14 for CCAnalyzer. Stacked bars show how
many ‘votes’ went to each CCA. For CCAnalyzer, its individual
votes are accurate with the exception of marking known CCAs as
unknown (we do favor false unknowns vs. false knowns §3.3.4) and
mislabelled Illinois samples as YeAH (both are variants of Reno).
For Gordon, the errors are more varied, with several loss-based
protocols (BIC, Highspeed, and Illinois), identi�ed unexpectedly as
BBR. While the results in the Gordon evaluation include correct
classi�cations for Westwood, the publicly released code [3] for
Gordon does not classify traces as Westwood, and therefore does
not support this algorithm. Notably, Gordon does correctly classify
3 algorithms it does not support (CDG, Hybla, and NV) as unknown,
demonstrating its ability to classify some CCAs not in its known
set as unknown.

To validate that our IG implementation is faithful, we attempt to
replicate the results in [29] by using Azure servers to generate both
testing and training samples. Under this setting, IG achieves 100%
accuracy, likely due to over-�tting. IG’s overall accuracy dips to
73% if we include all 15 CCAs in the training and testing set and use
AWS training samples to classify Azure testing samples (like we
do to evaluate CCAnalyzer); these are the results shown in Fig. 15.
When restricting this set to just the 12 CCAs that IG classi�es in
their paper, the accuracy is 74%.
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Figure 13: Gordon: Individual votes for
each CCA trace. Note that CDG, NV,
and Hybla are correctly marked as un-
known.

Figure 14: CCAnalyzer: Individual votes
for each CCA trace.

Figure 15: Comparison between CCAna-
lyzer, IG and Gordon classifying the same
servers.

Figure 16: Traces from CCAnalyzer and IG.

Interpretability: There are many competing de�nitions for
what makes a classi�er "interpretable" [37]. Human experts want
to be able to understand our classi�er’s output: why are these two
traces labeled as the same CCA? Is this classi�cation likely correct?
This is one of the key advantages of CCAnalyzer over the prior
work: capturing the inherent cyclical nature of CCAs, makes them
more distinguishable. So much so, that not only can a classi�er �nd
these distinguishable patterns, but so too can a human observer. In
Fig. 16, we compare CWND traces from IG to queue occupancy traces
fromCCAnalyzer.While the top graphs show traces for IG for Cubic
and HTCP are nearly identical, the traces for the same CCAs from
CCAnalyzer are easily distinguishable. Note CWND is not directly
measurable, and techniques that estimate CWND by forcing timeouts
have a shorter set of observations. This makes it more di�cult
to interpret these CWND estimations rather than queue occupancy
measurements. CCAnalyzer is able to achieve better accuracy than
prior work, with the important additional bene�t of interpretable
results.

4.3 E�ciency
We have two measures of e�ciency: total bytes transferred and

wall-clock time. Using our testbed experiments, we measured that
for CCAs supported by Gordon, CCAnalyzer requires on average
15% fewer bytes to perform classi�cation and completes probing
40x faster in terms of wall-clock time. IG is more e�cient than
Gordon and CCAnalyzer. For all of these classi�ers, classi�cation
is inexpensive and done o�ine after collecting traces, so here we
only consider the e�ciency of collecting the traces before classi�ca-
tion. We collect pcaps for all experiments and measure the average
amount of bytes transferred between the web server and the client
for classifying each CCA. In addition, we measure the time from

(a) Data transfer comparison (b) Time comparison

Figure 17: E�ciency comparison between CCAnalyzer and
Gordon classifying the same web server. Gordon’s CWND es-
timator depends on the CCA so both bytes transferred and
time is CCA dependent.

the �rst packet sent from the client to the last received from the
web server.

Bytes transferred. Fig. 17a compares the number of bytes trans-
ferred between CCAnalyzer and Gordon. Because Gordon waits
to measure the reaction to packet loss, the time and amount of
data transferred to classify a webpage is heavily dependent on the
CCA. Because BBR does not respond to individual packet losses, it
transmits more data during the measurement and requires a special
test to classify. In contrast, CCAnalyzer’s classi�cation is not as
dependent on the CCA, aside from CDG which doesn’t always man-
age to maintain full throughput, data transferred is independent of
the underlying algorithm. The mean number of bytes transferred
for CCAnalyzer over the 13 CCAs supported by Gordon is 68MB
(total for collecting 4 traces) while for Gordon it is 456 MB (with
a large std dev. of 186) since it heavily depends on the CCA. IG
only collects 1 trace for up to 50 RTTs without any repetitions or
restarts and at most transfers 2MB. However, since IG only emu-
lates a single timeout, this e�ciency comes at the cost of failing
to capture the cyclical nature of CCA behavior, leading to worse
accuracy than CCAnalyzer and poor interpretability of generated
traces (see Fig. 16).

Time comparison. Fig. 17b compares the amount of time it
takes to collect traces for CCAnalyzer and Gordon. CCAnalyzer
only needs 20s per trace. Including setup, CCAnalyzer overhead
takes only amaximum of 30s per measurement and is not dependent
on the CCA. Since we collect 4 traces for each CCA the total amount
of time for trace collection for CCAnalyzer is about 2 minutes. In
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contrast, Gordon’s runtime heavily depends on the CCA with a
max of 130 minutes and a minimum of 2.6 minutes to complete all
of its 15 trials. IG takes at most 90s to collect traces.

5 CCA Measurement Study of Top 10K Websites
We conduct a measurement study using our comprehensive tool

and our testbed in Fig. 2. We have two goals here. The primary goal
is to demonstrate the e�ectiveness and robustness of CCAnalyzer
in classifying known CCAs and detecting novel CCAs. We show
how we can detect a new CCA, BBRv3, with minimal e�ort. The
second goal is to take steps towards answering important questions
about the current state of CCA deployment in the Internet today,
for example: Is Cubic still the most dominant CCA? How has the
deployment of BBR evolved? Is Reno deprecated?

5.1 Methodology
The Google Chrome UX Report (CrUX) releases rank ordered

lists of top websites, which is more accurate than alternatives [45,
49]. We pull the websites from the Top 10K bucket from the Feb-
ruary 2023 dataset, which accounts for 70% of all Chrome page
loads [45, 58]. The websites in the CrUX dataset are identi�ed by
origin, not domain. For example, this list includes www.google.com,
scholar.google.com, maps.google.com, and so on as separate
websites, so we try to classify each of these separately. While we
believe that this measurement study covers a large fraction of pop-
ular websites, and we draw some important conclusions, we do not
claim to be a comprehensive Internet measurement study. We leave
a larger measurement study for future work (which is considerably
more feasible with CCAnalyzer than prior work).

Both Gordon and Inspector Gadget had to search websites for
a webpage large enough to download to generate CWND traces. We
found we could only classify 1% of the 10K websites with IG pri-
marily because we could not �nd large enough �les (Appendix §C).
Similarly, we need a web transfer between the client and server for
at least 20s. To achieve this goal without requiring large �les, we
use the h2load [4] tool to send multiple parallel HTTP requests to
the websites we want to classify to download enough data from
the webpage to utilize the available bandwidth (5Mbps, 10Mbps).
We use the findcdn [2] tool to identify if a website is hosted by
a CDN. Occasionally, this tool returns more than one CDN for a
given website. In those cases, we use the �rst result returned by
this tool.

Unresponsive and invalid traces: Table 3 shows a summary
of how many websites we were able to successfully classify and
their classi�cations. 34% of these 10K websites are "unresponsive"
because they did not respond to pings or the homepage did not
respond with a 200 OK response to h2load. 13% had RTTs that were
larger than 85ms. In addition, we measure the bandwidth utilization
for each trace. We set a bandwidth threshold of 80% because for
all our training samples the CCA is able to use at least 90% of the
available bandwidth; a threshold of 80% gives some headroom. A
trace is marked invalid if it does not meet the bandwidth threshold.
A website is marked as "All Invalid" if all of the traces collected
for that website do not meet the bandwidth threshold. 9% of the
websites have traces that are all invalid.

Figure 18: Example of a portion of a dendrogram from hier-
archical clustering Fastly websites in 5bw-85rtt-128q setting.
The vertical line is the distance threshold.

Validation and clustering within CDNs: We initially classify
each web server using the methodology described in §4.1, and
report those numbers in Table 3 (the numbers before slashes). We
notice about 1600+ websites are marked as unknown which means
most of the traces for these websites were not close enough to their
closest training sample. Recall in §3.3.4, when we determined the
distance threshold, we set a small ) based on experiments to an
AWS server. We favored false unknowns vs. false knowns. Because
of the likely possibility of more noise in our measurements to third-
party servers, the distance threshold may be too conservative. To
further reduce false unknowns, we do an additional clustering step
where we may re-classify websites. The values after the slashes
are the counts per CDN, per CCA if there were changes after this
additional clustering step.

In this additional step, we cluster all the CCAs that are in the
same CDN using agglomerative clustering [42]. Agglomerative clus-
tering works by putting each sample initially in its own cluster,
and then merging samples into the same cluster based on the dis-
tances between the samples. We use the "average" metric based on
the DTW distances between all samples, which links samples to
minimize the average of the distances of each observation of the
two sets. Once we compute the links between all the samples, sam-
ples can be put into clusters based on a distance threshold; we use
the distance thresholds described in Table 2. If a resulting cluster
contains 5% or more labeled traces, we re-classify unknowns or
invalid traces as that label. For the cases where we re-classify, while
the traces initially labelled unknown are not close enough to other
training samples, they are close enough to other testing sampleswith
a known label. We believe in this case, these are false unknowns and
should be given a known label. After re-classifying traces, we re-do
the voting across the 4 settings (§3.4) and give websites potentially
new labels (we do not re-label ’All Invalid’ websites).

We see two notable changes after this clustering of all samples
from the same CDN. First, the majority of the unknown Fastly
websites (105) are re-classi�ed as Cubic. Second, there is a similar
shift with Cloud�are websites: 362 websites are re-classi�ed as BBR.
In Fig. 18, we visually show the partial output of the clustering of
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Table 3: Classi�cation results for websites by CDN websites. The values after the slashes are after a clustering step on traces
within each CDN.
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Akamai 470/491 0 3/4 4 0 0 0 0 0 0 0 115/91 189 36 233 1050
Cloud�are 1233/1595 0 6/7 5/6 0 0 0 1 0 0 0 824/460 394 55 989 3507
Cloudfront 530/545 0 9/10 7/10 0 0 3/2 0 0 0 0 74/56 78 10 121 832
Fastly 21/25 1/13 3 25/130 0 0 0/1 0 0 0 0 174/52 26 3 30 283
Google 29 0 1 2 0 0 2 0 0 0 1 230 37 18 66 386
Other CDN 28/32 2/0 1 53/92 0 0 1 0 0 0 0 72/31 54 41 226 478
No CDN 116/122 3/0 8/9 89/116 3/5 2 5 4/3 1/0 3 0 146/115 127 1205 1752 3464

Total 2427/2839 6/13 31/35 185/360 3/5 2 11 5/4 1/0 3 1 1635/1035 905 1368 3417 10000

Figure 19: Example trace from a Google website that we be-
lieve is BBRv3 from 2 settings: 10bw-130rtt-128q (left), 10bw-
85rtt-128q (right)

Fastly results. The yellow vertical dotted line shows the clustering
distance threshold used. The labels on the green lines indicate the
�nal label given to all traces in each cluster and the number of
traces in the cluster. The boxes on the left show some example
traces in each cluster, along with their initial label. For example, in
the cluster labeled ’cubic (N=151)’, 20% of these traces are Cubic
traces so this cluster is labelled Cubic. It is encouraging that the
these traces are highly similar and are clearly Cubic traces based on
manual inspection. Similarly, the process does a good job keeping
the ’unknown’ label for unusual traces.

There are two bene�ts of this clustering step. First, we can vali-
date the results of our classi�cation. Looking at the dendrograms of
the output we can visualize how close samples are to each other and
can see at what distance threshold similar samples are clustered
together (highlighting the interpretability of CCAnalyzer results).
We expect like traces to end up close together, while dissimilar
traces to be far apart. Second, which we demonstrate in Fig. 18, it
can help classify false negative unknowns as actually known CCAs.

5.2 Clustering Unknowns
After the initial classi�cation as well as the clustering within

CDNs and validation, we now have websites that are still classi�ed
as unknown. We take the traces from all of these websites, across
CDNs, and run agglomerative clustering on all of them. We manu-
ally view the dendrogram of these results and look for web servers
that are likely using the same unknown CCA.

BBRv3: We notice that the majority of websites originating from
Google CDN are classi�ed as unknown when we expected to see

Figure 20: Example of unknown traces from websites not
hosted by a CDN.

BBRv1. We see these traces are closest to BBRv1, but the peri-
ods of bandwidth probing and RTT probing are more spaced out.
Fig. 19 shows an example queue occupancy traces for 2 settings for
scholar.google.com. We conclude these sites are using BBRv3
and con�rm with Google’s BBR team [7]. According to presen-
tations from Google, BBRv3 was deployed on Google servers by
Summer 2023 when our measurement study was conducted in Fall
2023. Based on clustering, we label 102 Google CDN websites origi-
nally classi�ed as unknown instead as BBRv3. This example also
highlights the ease in discovering new CCAs with CCAnalyzer.

Other Unknowns: Our ability to cluster traces using DTW dis-
tances makes discovering new CCAs a simple and straightforward
process of reviewing queue occupancy traces, dendrograms and
DTWdistances.We see the potential for further reverse engineering
of these CCAs using recent work [23]. While some unknowns can
be re-classi�ed as existing designs as part of the clustering process,
we still see other behaviors that remain classi�ed as unknown, like
clusters unknown #1-#3 in Fig. 18. In our broader study of websites,
we �nd several websites using unknown CCAs which we highlight
in Fig. 20. Note that further study is needed to determine if these
are truly novel CCA designs or a known CCA in an unexpected or
pathological state.

5.3 Addressing Limitations
We �nd our RTT limit (85ms), bandwidth utilization threshold

(80% of 5Mbps and 10Mbps), and h2load settings, limit the coverage
we have for the websites we could measure in this study. As noted
earlier, 13% had too high RTTs. 9% had too low bandwidth, and 34%
of the servers did not respond to h2load. This is not a fundamental
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(a) Reno (b) Westwood

(c) BBR (d) Cubic

Figure 21: 0.3bw-275rtt-16q: Example training samples traces
from Cloudlab

Figure 22: 0.3bw-275rtt: Accuracy for di�erent queue sizes
and trace lengths for 0.3Mbps and 275ms RTT setting using
training and testing samples from Cloudlab server. A queue
size of ⇠1BDP (16 pkts) works well.

limitation of 1NN-DTWand can bemitigated in several ways. In this
section, we discuss how we could increase coverage, to potentially
classify the ’unresponsive’ websites and gather more valid traces
in this study.

An obvious mitigation for the lack of response to h2load is to
issue HTTP/1.1 requests if HTTP/2 requests fail. In addition, we
could avoid using h2load by requesting a large �le from the website
using wget as we did in our evaluation. To reduce the number of
servers with too high RTTs or too low bandwidth, we consider the
smallest bottleneck bandwidth and largest RTT that we can use to
generate clear queue occupancy traces. We consider an RTT con-
straint of 275ms based on Fig. 4. To determine a low bandwidth, we
observe the queue occupancy plots as we decreased bandwidth by
0.1 Mpbs at a time. We did this until we visually observed a distinc-
tive change in the shape. We �nd 0.3 Mbps produces distinguishable
traces as shown in Fig. 21.

Given this bandwidth and RTT constraint, the core question is:
what queue sizes will produce distinguishable traces? To answer
this question, we generate 5 queue occupancy traces for varying
queue sizes from within our testbed using iperf with a server that
is a Cloudlab machine. We split these traces into 3 training and 2
testing samples for each of the 15 CCAs, using Cloudlab traces to
classify other Cloudlab traces to determine which queue sizes result
in high accuracy. Fig. 22 shows the accuracy for the 0.3 Mbps and
275ms RTT network settings with varying queue sizes and varying
trace lengths. A queue size of about ⇠1BDP (16 packets) has an

accuracy of 100% for traces as short as 20s, similar to the accuracy
we see in §3.3.2. Fig. 21 shows the queue occupancy traces using a
16 packet queue.

CCAnalyzer can work with a wide range of network settings
to support a large majority of web servers. We only need network
settings that produce distinct queuing behavior for di�erent CCAs
for 1NN-DTW to work. While we only explore a few settings in
this work, we also show that there other settings, especially ones
with lower expectations from servers, that could be used in prac-
tice. Future work could use alternative network settings to classify
websites that we did not in this study, improving coverage further
without sacri�cing accuracy.

5.4 Takeaways

Widespread deployment of BBRv1: While we are not able to
classify all websites, we do �nd that the majority of those we can
classify are classi�ed as BBRv1. While we cannot conclude that
there is an increasing deployment of BBRv1, we do see widespread
deployment at “Hypergiants“[28] like Akamai which was previ-
ously known to have deployed a di�erent CCA [41]. We so see
some large CDNs (e.g. Fastly) still use Cubic.

Discovery of newCCAs: Using CCAnalyzer, we can automatically
discover new CCAs, as we show in this work with our discovery of
BBRv3. We do not need specialized or hand-crafted tests to classify
new CCAs (like Gordon and Inspector Gadget) nor do we need to
know details of how the algorithm works (like Gordon). We can
add support for new CCAs, like BBRv3, simply by collecting queue
occupancy traces and adding them to our training set.

6 Conclusion
CCAnalyzer takes a signi�cant step forward in CCA classi�ca-

tion. While only relying on collecting bottleneck queue occupancy
traces, CCAnalyzer achieves accuracy that is equal to or better
than state-of-the-art classi�ers. In addition, CCAnalyzer is e�cient,
unobtrusive, has interpretable results, and supports open-set classi-
�cation. We use CCAnalyzer to analyze the CCAs of 5000+ websites.
CCAnalyzer’s DTW-based distance measure allows it to not only
detect unknown CCAs, but also cluster them into groups of similar
unknowns, simplifying the detection and classi�cation of new CCA
variants as they appear on the Internet. Unlike prior work, CCAna-
lyzer’s approach has the potential to classify the rising popularity
of user-space protocols (e.g. QUIC) and other popular applications
(e.g. video streaming), a promising direction for future work.
Ethics: This work does not raise any ethical issues.
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Appendix
Appendices are supporting material that has not been peer-

reviewed.

A Artifacts
The testbed will be made available to use via Cloudlab [22].

B Formal DTW de�nition
To understand DTW, we �rst consider a naive approach to

compare two traces. Consider two queue occupancy traces, - =
(G1 ...G=) and . = (~1 ...~<), where G8 is the queue occupancy at
time 8 in trace - , where X is = time steps long. A simple approach
to measuring the di�erence between the two traces is to to calcu-
late the Euclidean distance (assuming X and Y are the same length
= =<):

⇢⇡ (�,⌫) =
vt =’

8=0
(- [8] � . [8])2

Unlike ED, DTW allows a one-to-many mapping between - and
. : a given index from each trace can map to one or more indices in
the other trace. DTW �nds the best point mapping between two
traces to minimize the sum of distances between all their points
with two constraints: 1) The �rst and last indices must be mapped to
one another and 2) the mappings must be monotonically increasing.

DTW �nds the optimal "warp path", the one-to-many mapping
between points in an NxM matrix where N and M are the lengths
of two time series, that minimizes the overall distance between the
time series. Exact mappings would be a diagonal line, but DTW
accounts for phase shifts with horizontal and diagonal lines which
show when many points in one trace are mapping to the same point
in the other trace. For DTW the time series need not be the same

length, although in this work we truncate all the traces to be the
same size.

More formally, let ⇡), (8, 9) be the optimal distance between
the �rst 8 and 9 elements in time series X and Y. Then, the value of
⇡), (8, 9) is de�ned recursively as follows:

⇡), (8, 9) = 38BC0=24 (G8 ,~8 )

+min

8>>><
>>>:

⇡), (8, 9 � 1) repeat G8
⇡), (8 � 1, 9) repeat ~8
⇡), (8 � 1, 9 � 1) repeat neither

where 38BC0=24 (G8 ,~8 ) may be de�ned in di�erent ways including
the squared di�erence which we use in Fig. 3; in the rest of this
work we �nd the absolute di�erence works better for our use case
|G8 � ~8 |.
C Inspector Gadget Measurement Results

Table 4: IG measurement results for 10K websites
Result Count

BBR 71
Cubic 25
Yeah 10
Highspeed 5
BIC 2

Not large enough object 9533
Trace collection fail 354

Total 1000

We re-implement IG to the best of our ability, because we could
not run classi�cation with the published code [5]. We are able to
use the IG web crawler code to try and �nd large enough objects
on the 10K websites we want to classify. From our controlled mea-
surements (§4) we �nd that we need a �le size of at least 1.5 MB.
However, for 95% websites we could not not �nd �les that large
despite crawling up to 500 links per website. Ultimately, we are
only able to successfully classify 113 websites. The labels for these
websites are shown in Table 4 if we restrict the training set to the
the CCAs in the IG paper.

D Example training samples
We highlight some example training samples for the 5bw-85rtt-

64q setting in Fig. 23 to give some sense for what the traces look like
for 20s for each CCA. These traces each capture some of the cyclical
behavior of each CCA which helps CCAnalyzer to be accurate and
interpretable.
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(a) BBR [52] (b) BIC [56] (c) CDG [31] (d) Cubic [30]

(e) Highspeed [24] (f) HTCP [36] (g) Hybla [16] (h) Illinois [38]

(i) New Vegas (nv) [50] (j) NewReno [32] (k) Scalable [34] (l) Vegas [14]

(m) Veno [25] (n) Westwood [39] (o) Yeah [12]

Figure 23: Example CCAnalyzer CCA training sample traces from AWS-Virginia (5bw-85rtt-64q setting)

15

195



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Ware et al.

Figure 24: The full dendrogram of results from clustering across all the Fastly websites (5bw-85rtt- 128q setting) using the
distance threshold. (§5) Each leaf shows one testing sample from each of the resulting clusters. Clusters with numbers indicate
how many samples are in that cluster.
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