2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS) | 979-8-3503-8717-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/MWSCAS60917.2024.10658960

Scalable Physics-Embedded Neural Networks for
Real-Time Robotic Control in Embedded Systems

Zhiwei Zhong
Department of Electrical and Computer
Engineering
Northwestern University
Evanston, USA
zhiweizhong202 1 @u.northwestern.edu

Abstract—Physics-embedded neural networks have recently
gained significant interest in robotics due to the benefits of
combining data-driven machine learning approaches with
physics-based modeling methods for real-time control. Despite the
improved accuracy over black-box neural networks, existing
works have limitations in handling large ranges of system
parameters, extracting latent physical parameters, and meeting
real-time latency constraints. This paper proposes enhanced
physics-embedded neural network models that overcome the
scaling limitation of existing models and coupling issues in the
extraction of hidden variables, rendering significantly improved
model accuracy by more than 95%. A reinforcement learning
based neural architecture search engine is developed to meet real-
time latency constraints in embedded microprocessors, optimize
the solution for scaling issues, and enable the efficient deployment
of physics-embedded neural networks into resource-limited edge
devices, with 3X searching speed compared with the exhaustive
random search method.

Keywords—physics-embedded neural networks, real-time
control, embedded applications, robot dynamics

L INTRODUCTION

The development of intelligent industrial or humanoid
robots has experienced tremendous growth in recent years. One
of the leading efforts in robotics is the real-time control of
multiple degrees of freedom (DoF) robotic arms, which requires
accurate modeling of system physical parameters, low-latency
computation, and accountability of variation of latent variables.
Conventional robot dynamics are derived based on “first-
principle” physics models under precise knowledge of the
system. Inaccurate modeling of the dynamic system leads to
deviation of movement trajectory, loss of motor efficiency, and
reduction of system stability. However, it is challenging to
precisely model robot dynamics due to manufacturing tolerance
and latent system variables. To overcome this problem,
researchers show that machine learning algorithms outperform
physics-based methods in complex real-world environments
[1]-[3]. However, machine learning based models suffer from
requirements of large datasets, poor extrapolation ability,
instability, and violation of physical principles.

Recently, the physics-embedded neural network (PENN) has
been rapidly developed for existing cyber-physical systems. It
combines data-driven machine learning algorithms with “first
principle” based domain knowledge to resolve complex real-life
problems. In robot dynamics, a significant amount of effort has
been spent on using PENN for accurate control of multi-DoF
robotic arms. Hamilton neural network (HNN) was proposed to

979-8-3503-8717-9/24/$31.00 ©2024 IEEE

Yuhao Ju Jie Gu
Department of Electrical and Computer
Engineering
Northwestern University
Evanston, USA
yuhaoju2017@u.northwestern.edu

Department of Electrical and Computer
Engineering
Northwestern University
Evanston, USA
jgu@northwestern.edu

capture the Newtown physics of mechanical systems [4].
Lagrangian neural network (LNN) was proposed to learn robotic
dynamics for prediction [5] and control [6]. SIMENS developed
an LNN model for a robotic system with improved model
accuracy while obeying critical physics laws [7]. Fig. 1 shows
the setup of an industrial robotic arm and its related system,
where the PENN takes the current robot states as input and sends
the estimation of the robot dynamics to a proportional-derivative
(PD) controller for control purposes.

There are still missing elements for existing PENN. First of
all, all existing works are based on a single configuration of
mechanical settings with a limited range of operation, missing
the consideration of a large range of system parameters in real-
world robots. Second, there is a lack of training methods for the
accurate back-tracing of system parameters. Third, the
deployment of PENN models into resource-limited embedded
systems for real-time applications is missing. This paper
addresses the above issues by making the following
contributions: (a) A scaling scheme is proposed to achieve a
stable, robust, and accurate PENN model for a wide range of
system parameters; (b) An extraction and training method is
proposed to allow accurate extraction of system parameters
including latent variables, resulting in enhanced prediction
accuracy; (c¢) To meet the latency constraints for real-time robot
control, a reinforcement learning (RL) based neural architecture
search engine was developed to enable implementation of
optimized PENN model on resource-limited embedded systems.

Target states

Robot
Torques i
il PD Controller dynamics

P
Physics-embedded
Neural Network

L(a,@) =T(a.q) - V(@)

Robot states T=H(q)§ +c(q.4) +g(a)

Fig. 1. System configuration of robotic control with physical models
combined with physics-embedded neural networks.

1L PHYSICS-EMBEDDED NEURAL NETWORK MODELS
A. Robot Dynamics and Lagrangian Mechanics
Robot dynamics refers to the relationship between forces
applied to robotic systems and the stimulated acceleration.
Manipulation of a rigid-body robot with n joints is governed by:
©=H(q)4 + c(q,9) + g(q))]
where q, q and { are n X 1 vectors referring to joint position,
speed, and acceleration, respectively. H(q) is the symmetric
and positive definite n X n mass matrix; H(q)¢ stands for
inertia force; c(q, q) is the velocity-product term (n X 1) and

Authorized licensed use limited to: Northwestern University. Downloaded on September 30,2024 at 19:45:23 UTC from IEEE Xplore. Restrictions apply.

g(q) stands for the joint torques (n X 1) caused by gravity; T is
an n X 1 vector representing torques applied to each joint.
Lagrangian mechanics (2) describes system energy, where T =
1/2 q"H(q)q is the kinetic energy and V is the potential energy
with dV /dq = g(q).

L(q. @) =T(q,q) - V(q) 2
Once a robotic system is expressed by (2), its dynamics could be

derived by using the Euler-Lagrange equation:
d dL oL

R aRFTErS)

where i is the index of robot joints. Replacing L in (3) with
T(q,q) and V(q) yields the expression:

©= H@d + H@a - (5= @H@D) +5@ @

The velocity-product term (5) represents torques generated by
Coriolis and Centripetal forces, where H(q) = dH(q)/at.

¢(@,9) = H@a —; (5 (@ H@ @)

)
B. Lagrangian Neural Network

To learn the dynamics of a robot system, a common choice
is to train a black-box model (e.g., a multilayer perceptron) using
data (q, q, 4, T) measured from robot joints, which ignores the
underlying physics and thus suffers from lower accuracy when
extrapolated into unseen data ranges. To solve this problem,
LNN models are proposed [6]. By incorporating Lagrangian
mechanics into neural networks, LNN has demonstrated
advantages over black-box models in learning robot dynamics
in terms of efficiency and accuracy [5] [6].

In the LNN, a feed-forward neural network is used to
estimate H(q) and g(q) in (4), as shown in Fig. 2(a). Joint
position q is the input to the neural network. q, ¢, and the
outputs of the neural network are inputs to the mathematic
transformation, yielding the estimated torque %. The derivatives
of H(q) with respect to q (0H/dq) and time (H) are achieved
by introducing customized neurons [6]. Since H(q) is a
symmetric and positive definite matrix, the outputs of the neural
network are set to be a lower-triangular matrix L(q) so that
H(q) = L(q)L(q)", which conforms to the physics feature that
the kinetic energy (1/2 qTH(q)q) always being non-negative.
Proposed Enhanced PENN

e

Prior LNN

5ol

Fig. 2. Architecture and dataflow of (a) the prior LNN [6] and (b)
the proposed enhanced PENN with scalability and friction extraction.

II.
A. Physical Limitation

Scaling

0
< {loss(@Tm R g
g

P
BN

Training q1)

Q1
%

o)

: t
S) TR g L
q InferencingT Clz
Gn | fadt > [tm/a

PROPOSED PENN MODEL WITH SCALABILITY

The mass matrix H and gravity torque g are functions of not
only joint angles q but the mass, center of mass, and three-
dimensional shapes of each part of a robot, making it impractical
to derive closed-form expressions when encountering complex
robotic systems. However, numerical values of H and g can be
learned from data samples (q, q, §, T) measured from motions
of robots. By minimizing loss(t, %) using gradient descent
techniques, LNN can learn and estimate the hidden H and g

824

without seeing their ground truth according to robot dynamics
in (4). However, the numerical range of H and g in different
robots could have large variances due to diverse physical
configurations, resulting in low training efficiency and accuracy.
We experiment with seven robots with different H and g to
validate this issue. The robot models are created by MATLAB
Robotics System Toolbox, controlled by a Computed Torque
Controller, and simulated using ode45 ODE solver.

Table I shows the error of T using the prior LNN to learn the
dynamics of the seven 3-DoF robot models with a diverse range
of H and g. Take Robot-a as an example, the lengths of all its
links are 0.1 meters; the mass of the links are 0.175 kg, 0.15 kg,
and 0.125 kg, respectively; elements of H and g are of
magnitude 1073 in average; error of % is the highest at 96.3%.
Values of H and g of Robot-b to Robot-g increase gradually to
about 8000 times of Robot-a. Table I shows when the H or g are
of near-zero values, the error of % is the largest (96.3%). This is
because the near-zero ground truth prevents the network weights
from updating significantly during optimization.

TABLE 1. ERROR OF ESTIMATED TORQUES OF SEVEN 3-DOF ROBOTS
Robot a b c d e f g
magnitude| 0.001 0.044 0.02 0.09 0.41 1.78 8
Error 96.3% 34.1% | 10.9% | 0.37% 0.9% 2.28% | 6.38%
o 1000 150 30 10 0.5 0.3 0.2
Error, 0.62% 0.57% | 0.65% | 0.79% | 0.55% | 0.65% | 0.69%

Conventionally, normalization and standardization are used
to preprocess data in machine learning tasks. However, PENN
represents physical characteristics of robot systems, e.g., mass
matrix. Any processing methods on input data might break the
physical relationship between inputs and outputs of the model,
making it fail to represent the real-world physics system. In
addition, the data range and distribution of many physical
features are hard to measure (e.g., H and g). Therefore, any
preprocessing on input and output data of the PENN models
needs to be scrutinized based on the physical impacts.

B. Proposed PENN Model Overcoming Scaling Issue
In this section, we propose to enhance the PENN model by

scaling hidden features of robots (H and g). For any robot with
n links, its mass matrix could be expressed by:

H(Q) = XPU7(@) - 6; T ()] (6)
where J;;,(q) is the body Jacobian (irrelevant to mass), and &;
is the spatial inertia matrix of i-th link in a linear relationship to
a 3X3 inertia matrix I, of the link. Elements in I}, conform to:

JoF(x,y,2)p(x,y,x)dV @)
where p(x,y, x) is the mass density function, B refers to the
body of the link and f(x, y, z) is related to distance. Therefore,
each element of H is in a linear relationship to the mass density
of the robot. Similar properties also apply to g. Hence, keeping
the other configurations of a robot unchanged, linear scaling of
the robot’s mass or mass density leads to the linear scaling of H
and g. This also leads to the linear scaling of T since it is in a
linear relationship to H and g according to (4).

Hence, given a dataset (q, q, §, T) measured from a robot,
scaling T by a factor & leads to a new dataset (q,q, §, & X T)
which conforms to the dynamics of a new robot whose mass
density is a times of the former one and the other physical
features remain identical. The robot dynamic (4) thus becomes:

axt=H @i+ (@)q- ;(aiq(qTH'(q)q»T + g'(q)) ®)

Authorized licensed use limited to: Northwestern University. Downloaded on September 30,2024 at 19:45:23 UTC from IEEE Xplore. Restrictions apply.

where H'(q) and g'(q) are physical features of the new robot.
When a PENN fails to learn from a dataset (q, g, §, T) of a real-
world robot due to the improper range of hidden physical
parameters, we could scale T by a, mapping the current robot
to a virtual one with & times mass density. The enhanced PENN
is shown in Fig. 2(b) (the extra neural network for friction t¢
prediction will be introduced in Section IV). After training, the
output of PENN model will be scaled by @™ to generate target
torques (9) for real-time control. Since the ground truth of H
and g are unknown, the proper value of & cannot be determined
in advance. Thus, an automatic search mechanism is required.

U (@) + H (@)q —;(a%,mm'(q)q))f + g'(q))] ©)
C. Experimental Results

T=

The proposed scaling solution could be applied to any rigid-
body robot. We tested it on seven 3-DoF robot arms in Table 1.
Dataset (q, q, 4, T) is sampled from the simulation of motions
of robots. The feed-forward neural network in the PENN shown
in Fig. 2(b) has 4 hidden layers with 64 neurons in each layer
(the friction extraction NN is not used). After applying different
scaling factors a, Error, of all robots decrease to less than
0.8%. For Robot-a, three curves of T lasted for seven seconds
are shown in Fig. 3. For each joint, PENN with a@ = 1 has the
largest deviation from the ground truth. For &« = 10, the
deviation is greatly reduced. As & increase to 1000, the error is
reduced by more than 95% (from 96.3% to 0.62%). A
reinforcement learning based method is proposed in Section V
to search for the optimized value of the scaling factor a.

IV. EXTRACTION OF LATENT VARIABLES
A. Latent Features and Coupling Issue

Typically, torques applied on robot joints come from joint
motors, gravity, and friction, which could be reformulated as:
T=1,+ % = H(Q)q+c(qq) +glq) (10)
where T, and Tt refer to the torques from joint motors and
friction, respectively. The value of T, is known since it is
determined by controllers. However, T; is a latent variable with
unknown values determined by complex system characteristics,
such as lubrication, temperature, and manufacturing tolerance.
Therefore, in real-world applications, the available data would
be (q,q, 4, Tym) (Tf is missing). In this paper, as an example, we
consider the viscous friction model T = —f8 o q where f8 is the
friction coefficient and o is elementwise multiplication [8].
Note that latent variables are not limited to this friction model.
To solve this issue, an additional neural network is
developed in the proposed PENNSs to capture the latent feature
and the dynamics is expressed by (11), where f(q) is an
introduced neural network that is used to estimate friction
torque T¢. Fig. 2(b) shows the proposed enhanced PENN model
that includes the scaling operation, the neural network for of H
and g, and the introduced neural network for friction. However,
since there are two neural network in the PENN, and their
optimization depends on one single function loss(Ty, T,), the
trained PENN may suffer from mutually canceling issues, i.e.,
the outputs of two neural networks could both have large
deviation from the corresponding ground truth while the linear
combination of them compensates the loss. This is because the
loss function could only consider the available ground truth T,

825

tm = H@d + H@q —; (5= (@"H@)T +g(@) — (@) (11)

—a=1 =10 ——a=1000 —— Groundtruth

1 Joint 1

0.5

]

-0.5

e

&Mﬁfj%\ﬂ)
. Joint 3

1 2 3 Time) a4 5 6

‘ T(N'm)

Fig. 3. Estimation of torque T on joints of a 3-DoF robot (Robot-a)
with PENN trained with scaling factors 1, 10, and 1000.

g(q), or f(q) is unknown. Though the overall estimation error
of T, could be small, it is of high probability that the PENN
would fail to discover the latent parameters of the system.

B. Proposed PENN Model for Latent Features Extraction

The proposed PENN contains neural networks to estimate
H(q), g(q), and Ty, respectively, as shown in Fig. 2(b). The
coupling issue mostly comes from the prediction of g(q)
and t;. As for H(q), it is multiplied by ¢ in (11), and robot
states with the same q and q could be in different §. Consider
the below error analysis equations (12) (A refers to error) with
dp # G, the only condition for both equations holding true is
that AH(q,) = 0, which means different values of § could help
H(q) escape from the coupling issue.

AH(qa)(.ib + Ac(qa! qa) + Ag(qa) - Af(qa) =0
AH(qa)QC + Ac(qa' qa) + Ag(qa) - Af(qa) =0

To solve the coupling issue between g(q) and f(q) and
extract the latent variables, we propose another enhanced model
named TS-PENN that contains three neural networks for H(q),
g(q), and f(q), respectively. A two-step (TS) training flow is
proposed for TS-PENN, as shown in Fig. 4. In the first step,
data samples with zero speed and acceleration are picked from
dataset (q, q, 4, Ty). These data are used to train the neural
network for g(q) since it is the only term that is irrelevant to q
and . With q =0 and ¢ = 0, robot dynamics in (11) is
simplified to T, = g(q). In the second step, the remaining two
neural networks for H(q) and f(q) are trained with the rest of
the dataset. Since the weights of the neural network g(q) have
been optimized in the first step, their values are not updated
anymore. Because the optimization of neural networks for g(q)
and f(q) are not proceeding simultaneously, the coupling issue
is eliminated. The scaling factor is still applicable to TS-PENN
since f(q) is a linear additive term in (11).

q—»:
Training set

(4.9,4,Tm)1 (@ H =00

(12)

Updating weights

................ loss(Tm, &)

Step 1

Step 2 Updatlngwelghts [
Vwz
£ i) o
T [l
Training set q EA
(44,8, Tm)> g fle
r—ggg !
A

d— 3 |Ha-0/0a@Ha) | Fixed weights

Fig. 4. The two-step training flow for the proposed TS-PENN.

Authorized licensed use limited to: Northwestern University. Downloaded on September 30,2024 at 19:45:23 UTC from IEEE Xplore. Restrictions apply.

C. Experimental Results

We evaluate the prior LNN in Fig. 2(a), the enhanced PENN
in Fig. 2(b), and the TS-PENN by learning the dynamics of a 3-
DoF robot that considers friction and comparing their
performance on estimation of latent variables. For the LNN, its
neural network consists of 4 hidden layers and each layer has
96 neurons. For both PENN and TS-PENN, the neural network
to estimate friction has 3 hidden layers and each layer has 32
neurons. In PENN, two neural networks are optimized at the
same time using the entire dataset; the neural network for H(q)
and g(q) consists of 4 hidden layers and each has 96 neurons.
In TS-PENN, the neural network for H(q) consists of 4 hidden
layers and each has 64 neurons; the neural network for g(q)
also has 4 hidden layers and each contains 32 neurons. Thus,
PENN and TS-PENN have the same number of parameters.

The accuracy of the above models is evaluated by
controlling the motion of the robot for 50 seconds in a robot
system. Fig. 5(a) shows that LNN has the highest mean absolute
error (MAE) in the estimation of each latent torque component
(except g(q)). The reason is that the LNN conforms to robot
dynamics in (4) of which the equality is broken by the
introduced friction, making it fail to precisely capture any
dynamics of the robot system. PENN and TS-PENN conform
to robot dynamics in (11) that takes friction into consideration,
resulting in higher accuracy in terms of t,,, H(q)q, and c(q, q)
compared with LNN. However, PENN has the largest MAE for
g(q) and f(q) due to the coupling issue, though it has the
lowest MAE of 0.044 N - m in the estimation of . On the
other hand, TS-PENN has solved the coupling issue and thus
has the smallest MAE in all the torque components except that
its MAE of Ty, is slightly higher than the PENN model by 0.073
N-m. Its MAEs of f(q) and g(q) are reduced by ~99%
compared with that of PENN thanks to the two-step training
flow. The latent torques estimated by PENN and TS-PENN on
the second robot joint are shown in Fig. 5(b) and Fig. 5(c),
which illustrates that estimated values of f(q) and g(q) by
PENN both have about -5 N -m deviation from the ground
truth. According to the dynamics equation (11), f(q) is
subtracted from g(q), resulting in the cancellation of errors.

Couplin 2] LNN (without friction estimation)
@ :s‘:xle e 8@ BN Enhanced PENN

9.39 9 38w Enhanced TS-PENN
580 (o o)
H(q)q
0.117
0.045 !
00 0.116 0.015 096 6,026

Motor Friciton Grawty Torque Inertia Centripetal and

(N-m)

Mean Absolute Error

Torque Torque Torque Coriolis Torque
10 — Predictio Ground truth 1“ — Prediction — Ground truth
5| PENN 5| TS-PENN
) /\/\ o 4 p
-5 \ = / a
-10 f(a) V\/\/&/ 1 f@
20 20
10/ f AAAA 10
0 \ 0
gl g(@ -10 g(@)
£ .20 -20
S1s 15
- = A H)d
05 H(Q)§ i os _ @i
ANVINANY n 1A \va
0.5 /,’ VAN AUAANA XAV VAN
15 15 /1
25 25
15 ! 15
05ih e N « A S 05 AN
0.5V T VoV |08 Y VA
a3 cqq) UV a3 CH '
g 0 5 10 15 20 25 30 35 40 4

5 10 15 20 25 30 35 40 45 50
b) Time (s) (C)

5 50
Time (s)
Fig. 5. (a) Mean absolute error comparison of different variables
estimated by LNN, PENN, and TS-PENN. Waveforms of estimated

latent variables on the second joint by (b) PENN and (c) TS-PENN.

0

=
=
S
S

'SRAM Reload Freq, of 3 DoF | -
= SRAM Reload Freq, of 5 DoF
— SRAM Reloadfreq.of 7ok [; &
[3 DoF Latency
5 DoF Latency

7 DoF Latnecy

0.95% MM Int8 mm FP

=
(=]
=]
[

Latency (ms)
=
o

Ave. Accuracy (%)
-
N
w

>
SRAM Reload Freq (Times)

1
3DoF 5DoF 7 DoF Arduino Arduino STM32F4 RPI Zero
@ Mega MKR1000 (b)

Fig. 6. (a) Average accuracy degradation of 8-bit quantization and (b)
latency estimation for 3, 5, and 7-DoF robots by four microcontrollers.

V. IMPLEMENTATION OF PENN WITH NEURAL
ARCHITECTURE SEARCH

A. Neural Architecture Search for Real-time Control Systems

Due to area, power limitations and timing constraints of
embedded microprocessors, quantization is typically performed
on neural network models for real-time applications. We
evaluate 8-bit integer quantization impact on PENN using four
low-cost embedded microprocessors (Arduino Mega,
MKR1000, STM32F4, and RPI Zero) with 3, 5, and 7-DoF
robots. The PENN used for quantization and latency calculation
has 4 fully connected layers with 64 neurons in each layer and
the scaling factor a = 400. As shown in Fig. 6(a), quantization
from 64-bit floating point precision to 8-bit integer only leads to
0.95 ~ 1.48% accuracy degradation for real-time inference of
motor torques. For the practical deployment of PENN in
embedded systems aimed at real-time control, below S5ms
latency is required due to the motor PWM control update rates.
Fig. 6(b) illustrates the estimated execution latency and memory
reload frequency in different microprocessors. For Arduino
Mega (73mW, 8KB SRAM) and MKR 1000 (32KB SRAM), the
PENN model requires 10~100ms operation latency and 7-10
rounds of memory reload. STM32F4 (140mw, 128KB SRAM)
and RPI Zero (449mW, 512MB SRAM) can achieve 0.4~5ms
latency without data reloading. The developed PENN models
are expected to consider the computational resource of the
embedded system, which could be addressed by the neural
architecture search (NAS) scheme. However, not all the
hyperparameters of PENN can be inserted into existing NAS
methods. For example, DARTS [9], MCTS [10], and Bayesian
optimization [11] require a fixed sequence of feature maps.
Evolution [12] and SMBO [13] are cell-wise learning with a
fixed number of cell stacks. For real-time robot control, the
PENN size should be relatively small but needs flexibility for
constraints from embedded systems. Besides, the proposed
scaling factor a is also one optimization target. Therefore,
reinforcement learning based searching methods [14] are most
suitable for PENN. In this section, we proposed an RL-based
NAS engine for PENN models. Compared with existing works,
the proposed NAS engine considers the scaling factor and the
real-time latency constraint of selected microprocessors.

In the proposed RL-based NAS engine shown in Fig. 7(a),
an LSTM is employed as a search agent that generates the
hyperparameters for PENN models. Exemplary hyperparameter
candidates for a 3-DoF robot are illustrated in Fig. 7(b),
including the number of layers, the number of neurons in each
layer, latency constraint, and the scaling factors. The list of
tokens predicted by LSTM can be named by an action list. In an
exemplary action list [16, 32, 32, 0, 1000], the first four
parameters indicate the number of neurons in four layers in order
(0 means the fourth layer is not needed), and the last parameter
1000 stands for the scaling factor. PENN is a trainable children
network specified by the action list and its testing accuracy after

Authorized licensed use limited to: Northwestern University. Downloaded on September 30,2024 at 19:45:23 UTC from IEEE Xplore. Restrictions apply.

latency constraint embedding is the reward for updating the
LSTM to get better architecture. The reinforcement rule [14] to
make LSTM get the maximum expected reward is represented
by the J(6.) in (13) with the gradient method in (14), where &, is
the LSTM weights and biases, ai.r is the action list, T is the
number of hyperparameters, R’ is the reward from PENN after
latency constraint embedding, and P is the probability.

J(0c) = Ep@i:1: 00)[R] (13)
T .)
Voc J(0c) = Xip=1 Voc log P(ai a1 0c) R (14)
b L}
i SamplearchitectureA(PENN |0
g || with probabiltyp ~\Training)q | | | #oflayers | 2,3,4
&] - 2 0 % 5[4 of neurons 16,32, 64,
£ v % . § 1[P%| perlayer | 128,256
{ g B I
Mi—b'Latency Calculationl' Eﬁ (] Latency <5ms
cr Col ator = ©
New reward R’ to E}' : ‘E g Scaling 1,10, 400,
update LSTM Lo factor |1000, 10000
__Constraint Embedding 7 0. :
(@) (b)

Fig. 7. (a) RL-based search engine (b) hyperparameter candidates.

In the proposed NAS engine, the real-time constraint is
added to limit the latency of embedded systems. The constraint
is done by adding (15) into the reward function. -« is a negative
value as the punishment for the LSTM agent. La(al:T) is the
approximation of the latency of microprocessors. If the current
latency is smaller than the required latency L, the error e
combined with a scaling parameter 4 is a positive reward to the
LSTM gradients. If the current latency is larger than the
requirement L, the punishment -a will impact the LSTM
optimization. The latency approximation is shown in (16),
which is related to the picked architecture, the implemented
microprocessor, and the DoF (D). f is the clock speed, and y is
the run cycles of multiplication for the selected microprocessor.

, _(—a if La(al:T) > L
k= {100 — e Otherwise (13)
La(al:T) = 1.005y2D+3)[Dai+LT=} aari+(D>2+3DR)arlf" (16)
B. Experimental Results

Fig. 8 shows the traces of optimized PENN architecture with
different search engines. Blue dots represent the exhaustive
search results, which show that the error grows quickly if the
PENN size is too large or too small (reflected by latency). The
baseline NAS can achieve a better accuracy result by jumping
search between the large and small PENN. With the latency
constraint, the NAS also uses jumping search at the beginning,
but the searching space will be limited to Sms in the later stage.
Fig. 9(a) shows the results of NAS for a 3-DoF robot with PENN
on STM32F4. The proposed NAS achieves the same error rate
compared with the exhaustive random search but with 3 times
faster searching speed. For the scaling factor trace, NAS starts
searching from 10000, passes through 400, and finally reaches
1000 as the best result. Fig. 9(b) shows the summary of the
benefits of latency constraint and scaling. The latency decreases
from 8.58ms to 4.98ms and the error drops from 2.37% to 0.56%
by using better scaling factors. Essentially, the proposed NAS
methods have achieved the optimized solution without accuracy
loss while being able to meet the tight latency constraints.

VI. CONCLUSIONS
In this paper, we propose enhanced PENN models with the
scaling scheme and the two-step training flow, which enables
PENN models to learn real-world robot systems with a wide
range of hidden physical parameters and perform extraction of

827

latent parameters accurately (reduce estimation error by more
than 95% for both torques and latent physical variables) without
breaking the interior physics law. The NAS engine is also
proposed to search for low-latency and accurate PENN in
resource-limited embedded systems, with 3X searching speed
compared with the exhaustive random search method.

14

12 e
510 o= Basdine NAS -
£ 8 == NA wvith Laten onstraing
g @ Exhaustive randomsearch
Q6
T e LT
E 4

2

0

0 12

4 Percent Error (%) 8
Fig. 8. The searching trace of exhaustive search, baseline NAS, and
the NAS with 5ms latency constraint for a 3-DoF robot on STM32F4.

4.5 == NAS with latency constraint and scaling 2.5 10
[y — Exhaustive random search with /\
X3.6 i i < A\ _
= Archite cturel::-ztenr.y constraint and scaling § 2 85
S [128, 128, 64, 32, 10000] 5 E
527 Architecture: 1.5 6>
= [32,32, 256,64, 400] Random Architecture: | L 2
Architecture: [64, 64,64,32,1000] | &]
8 18 64, 128,64, 400] £1 4§
(7 I g | = Best Percent Error
809 - i n.o‘ __ Latency of the best
0 " [32, 64, 128, 32, 1000] == architecture
0
0 200 400 600 Baseline w/Latency w/ Latency
Number of Searched Architectures NAS Constraint and scaling

(a) (b)
Fig. 9. (a) Error trace of NAS considering scaling factor compared
with exhaustive search and (b) the benefits summary with latency

constraint and scaling on STM32F4 for a 3-DoF robot.

ACKNOWLEDGMENT
This work was supported by the National Science Foundation under
grant number CCF-1846424.

REFERENCES
A. Sarabakha and E. Kayacan, “Online deep learning for improved
trajectory tracking of unmanned aerial vehicles using expert knowledge,”
in [EEE International Conference on Robotics and Automation, 2019.
J. Muliadi and B. Kusumoputro, “Neural network control system of UAV
altitude dynamics and its comparison with the PID control system,” J.
Adv. Transp., vol. 2018, pp. 1-18.
Q. Li, J. Qian, et al. “Deep neural networks for improved, impromptu
trajectory tracking of quadrotors,” in IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 5183-5189.
Y. D. Zhong, et al. “Symplectic ODE-Net: Learning hamiltonian
dynamics with control,” in International Conference on Learning
Representations (ICLR), 2019.
M. Cranmer, et al. “Lagrangian neural networks,” in ICLR Workshop on
Integration of Deep Neural Models and Differential Equations, 2020.
M. Lutter, et al. “Deep lagrangian networks: using physics as model prior
for deep learning,” in International Conference on Learning
Representations (ICLR), 2018.
M. A. Roehrl, et al. “Modeling system dynamics with physics-informed
neural networks based on lagrangian mechanics,” I/FAC-Pap., vol. 53, no.
2, pp. 9195-9200, 2020.
A. Wahrburg, et al. “Motor-current-based estimation of cartesian contact
forces and torques for robotic manipulators and its application to force
control,” IEEE Trans. Autom. Sci. Eng.,vol. 15,no. 2, pp. 879-886,2018.
H. Liu, et al. “DARTS: Differentiable architecture search,” in
International Conference on Learning Representations (ICLR), 2019.
R. Negrinho and G. Gordon, “DeepArchitect: Automatically designing
and training deep architectures.” 2017. doi: 10.48550/arXiv.1704.08792.
K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing,
“Neural architecture search with bayesian optimisation and optimal
transport,” in Advances in Neural Information Processing Systems,2018.
E. Real, et al. “Regularized evolution for image classifier architecture
search,” Proc. AAAI Conf. Artif. Intell., vol. 33, pp. 4780-4789, 2019.
C. Liu et al., “Progressive neural architecture search,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 19-34.
B. Zoph et al. “Neural architecture search with reinforcement learning,”
in International Conference on Learning Representations, 2017.

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]
[10]

(1]

[12]
[13]

[14]

Authorized licensed use limited to: Northwestern University. Downloaded on September 30,2024 at 19:45:23 UTC from IEEE Xplore. Restrictions apply.

