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Abstract—Physics-embedded neural networks have recently 

gained significant interest in robotics due to the benefits of 
combining data-driven machine learning approaches with 
physics-based modeling methods for real-time control. Despite the 
improved accuracy over black-box neural networks, existing 
works have limitations in handling large ranges of system 
parameters, extracting latent physical parameters, and meeting 
real-time latency constraints. This paper proposes enhanced 
physics-embedded neural network models that overcome the 
scaling limitation of existing models and coupling issues in the 
extraction of hidden variables, rendering significantly improved 
model accuracy by more than 95%. A reinforcement learning 
based neural architecture search engine is developed to meet real-
time latency constraints in embedded microprocessors, optimize 
the solution for scaling issues, and enable the efficient deployment 
of physics-embedded neural networks into resource-limited edge 
devices, with 3X searching speed compared with the exhaustive 
random search method.   

Keywords—physics-embedded neural networks, real-time 
control, embedded applications, robot dynamics 

I. INTRODUCTION 
The development of intelligent industrial or humanoid 

robots has experienced tremendous growth in recent years. One 
of the leading efforts in robotics is the real-time control of 
multiple degrees of freedom (DoF) robotic arms, which requires 
accurate modeling of system physical parameters, low-latency 
computation, and accountability of variation of latent variables. 
Conventional robot dynamics are derived based on “first-
principle” physics models under precise knowledge of the 
system. Inaccurate modeling of the dynamic system leads to 
deviation of movement trajectory, loss of motor efficiency, and 
reduction of system stability. However, it is challenging to 
precisely model robot dynamics due to manufacturing tolerance 
and latent system variables. To overcome this problem, 
researchers show that machine learning algorithms outperform 
physics-based methods in complex real-world environments 
[1]–[3]. However, machine learning based models suffer from 
requirements of large datasets, poor extrapolation ability, 
instability, and violation of physical principles.   

Recently, the physics-embedded neural network (PENN) has 
been rapidly developed for existing cyber-physical systems. It 
combines data-driven machine learning algorithms with “first 
principle” based domain knowledge to resolve complex real-life 
problems. In robot dynamics, a significant amount of effort has 
been spent on using PENN for accurate control of multi-DoF 
robotic arms. Hamilton neural network (HNN) was proposed to 

capture the Newtown physics of mechanical systems [4]. 
Lagrangian neural network (LNN) was proposed to learn robotic 
dynamics for prediction [5] and control [6]. SIMENS developed 
an LNN model for a robotic system with improved model 
accuracy while obeying critical physics laws [7].  Fig. 1 shows 
the setup of an industrial robotic arm and its related system, 
where the PENN takes the current robot states as input and sends 
the estimation of the robot dynamics to a proportional-derivative 
(PD) controller for control purposes. 
 There are still missing elements for existing PENN. First of 
all, all existing works are based on a single configuration of 
mechanical settings with a limited range of operation, missing 
the consideration of a large range of system parameters in real-
world robots. Second, there is a lack of training methods for the 
accurate back-tracing of system parameters. Third, the 
deployment of PENN models into resource-limited embedded 
systems for real-time applications is missing. This paper 
addresses the above issues by making the following 
contributions: (a) A scaling scheme is proposed to achieve a 
stable, robust, and accurate PENN model for a wide range of 
system parameters; (b) An extraction and training method is 
proposed to allow accurate extraction of system parameters 
including latent variables, resulting in enhanced prediction 
accuracy; (c) To meet the latency constraints for real-time robot 
control, a reinforcement learning (RL) based neural architecture 
search engine was developed to enable implementation of 
optimized PENN model on resource-limited embedded systems. 

Robot states 

Target states

PD Controller
Robot 

dynamics Torques

Physics-embedded 
Neural Network

... ...

...

 
Fig. 1.  System configuration of robotic control with physical models 
combined with physics-embedded neural networks. 

II. PHYSICS-EMBEDDED NEURAL NETWORK MODELS 
A. Robot Dynamics and Lagrangian Mechanics 

Robot dynamics refers to the relationship between forces 
applied to robotic systems and the stimulated acceleration. 
Manipulation of a rigid-body robot with 𝑛 joints is governed by: 
 𝛕 = 𝐇(𝐪)𝐪̈ + 𝐜(𝐪, 𝐪̇) + 𝐠(𝐪) (1) 
where 𝐪, 𝐪̇ and 𝐪̈ are 𝑛 × 1 vectors referring to joint position, 
speed, and acceleration, respectively. 𝐇(𝐪)  is the symmetric 
and positive definite 𝑛 × 𝑛  mass matrix; 𝐇(𝐪)𝐪̈  stands for 
inertia force; 𝐜(𝐪, 𝐪̇) is the velocity-product term (𝑛 × 1) and 
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𝐠(𝐪) stands for the joint torques (𝑛 × 1) caused by gravity;  𝛕 is 
an 𝑛 × 1  vector representing torques applied to each joint. 
Lagrangian mechanics (2) describes system energy, where 𝑇 =1 2⁄ 𝐪்̇𝐇(𝐪)𝐪̇ is the kinetic energy and 𝑉 is the potential energy 
with 𝑑𝑉 𝑑𝐪⁄ = 𝐠(𝐪). 𝐿(𝐪, 𝐪̇) ≡ 𝑇(𝐪, 𝐪̇) − 𝑉(𝐪)                           (2) 
Once a robotic system is expressed by (2), its dynamics could be 
derived by using the Euler-Lagrange equation: τ௜ = ௗௗ௧ డ௅డ୯̇೔ − డ௅డ୯೔                                (3) 

where 𝑖 is the index of robot joints. Replacing 𝐿 in (3) with 𝑇(𝐪, 𝐪̇) and 𝑉(𝐪) yields the expression:      𝛕 = 𝐇(𝐪)𝐪̈ + 𝐇̇(𝐪)𝐪̇ − ଵଶ ( డడ𝐪 (𝐪்̇𝐇(𝐪)𝐪̇))் + 𝐠(𝐪)         (4)                           
The velocity-product term (5) represents torques generated by 
Coriolis and Centripetal forces, where  𝐇̇(𝐪) ≡  𝝏𝐇(𝐪) 𝝏𝒕⁄ . 𝐜(𝐪, 𝐪̇)  =  𝐇̇(𝐪)𝐪̇ − ଵଶ ( డడ𝐪 (𝐪்̇𝐇(𝐪)𝐪̇))்            (5)   

B. Lagrangian Neural Network 
To learn the dynamics of a robot system, a common choice 

is to train a black-box model (e.g., a multilayer perceptron) using 
data (𝐪, 𝐪̇, 𝐪̈, 𝛕) measured from robot joints, which ignores the 
underlying physics and thus suffers from lower accuracy when 
extrapolated into unseen data ranges. To solve this problem, 
LNN models are proposed [6]. By incorporating Lagrangian 
mechanics into neural networks, LNN has demonstrated 
advantages over black-box models in learning robot dynamics 
in terms of efficiency and accuracy [5] [6]. 

In the LNN, a feed-forward neural network is used to 
estimate 𝐇(𝐪)  and 𝐠(𝐪)  in (4), as shown in Fig. 2(a). Joint 
position 𝐪  is the input to the neural network. 𝐪̇ , 𝐪̈ , and the 
outputs of the neural network are inputs to the mathematic 
transformation, yielding the estimated torque 𝛕ො. The derivatives 
of 𝐇(𝐪) with respect to 𝐪 (𝜕𝐇 𝜕𝐪⁄ ) and time (𝐇̇) are achieved 
by introducing customized neurons [6]. Since 𝐇(𝐪)  is a 
symmetric and positive definite matrix, the outputs of the neural 
network are set to be a lower-triangular matrix 𝐋(𝐪)  so that 𝐇(𝐪) = 𝐋(𝐪)𝐋(𝐪)𝐓, which conforms to the physics feature that 
the kinetic energy (1 2⁄ 𝐪்̇𝐇(𝐪)𝐪̇) always being non-negative. 

...
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... ...

Prior LNN Proposed Enhanced PENN
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Fig. 2. Architecture and dataflow of (a) the prior LNN [6] and (b) 
the proposed enhanced PENN with scalability and friction extraction. 

III. PROPOSED PENN MODEL WITH SCALABILITY 
A. Physical Limitation 

The mass matrix 𝐇 and gravity torque 𝐠 are functions of not 
only joint angles 𝐪  but the mass, center of mass, and three-
dimensional shapes of each part of a robot, making it impractical 
to derive closed-form expressions when encountering complex 
robotic systems. However, numerical values of 𝐇 and 𝐠 can be 
learned from data samples (𝐪, 𝐪̇, 𝐪̈, 𝛕) measured from motions 
of robots. By minimizing 𝑙𝑜𝑠𝑠(𝛕, 𝛕ො)  using gradient descent 
techniques, LNN can learn and estimate the hidden 𝐇 and 𝐠 

without seeing their ground truth according to robot dynamics 
in (4). However, the numerical range of 𝐇 and 𝐠 in different 
robots could have large variances due to diverse physical 
configurations, resulting in low training efficiency and accuracy. 
We experiment with seven robots with different 𝐇  and 𝐠  to 
validate this issue. The robot models are created by MATLAB 
Robotics System Toolbox, controlled by a Computed Torque 
Controller, and simulated using ode45 ODE solver.  

Table I shows the error of 𝛕ො using the prior LNN to learn the 
dynamics of the seven 3-DoF robot models with a diverse range 
of 𝐇 and 𝐠. Take Robot-a as an example, the lengths of all its 
links are 0.1 meters; the mass of the links are 0.175 kg, 0.15 kg, 
and 0.125 kg, respectively; elements of 𝐇  and 𝐠  are of 
magnitude 10ିଷ in average; error of 𝛕ො is the highest at 96.3%. 
Values of 𝐇 and 𝐠 of Robot-b to Robot-g increase gradually to 
about 8000 times of Robot-a. Table I shows when the 𝐇 or 𝐠 are 
of near-zero values, the error of 𝛕ො is the largest (96.3%). This is 
because the near-zero ground truth prevents the network weights 
from updating significantly during optimization.  
TABLE I.  ERROR OF ESTIMATED TORQUES OF SEVEN  3-DOF ROBOTS 

96.3% 34.1% 10.9% 0.37% 0.9% 2.28% 6.38%

0.62% 0.57% 0.65% 0.79% 0.55% 0.65% 0.69%

Error

Error
1000 150 30 10 0.5 0.3 0.2

Robot a b c d e f g
magnitude 0.001 80.044 0.02 0.09 0.41 1.78

  
 Conventionally, normalization and standardization are used 
to preprocess data in machine learning tasks.  However, PENN 
represents physical characteristics of robot systems, e.g., mass 
matrix. Any processing methods on input data might break the 
physical relationship between inputs and outputs of the model, 
making it fail to represent the real-world physics system. In 
addition, the data range and distribution of many physical 
features are hard to measure (e.g., H and g). Therefore, any 
preprocessing on input and output data of the PENN models 
needs to be scrutinized based on the physical impacts. 

B. Proposed PENN Model Overcoming Scaling Issue 
In this section, we propose to enhance the PENN model by 

scaling hidden features of robots (H and g). For any robot with 𝑛 links, its mass matrix could be expressed by: 𝐇(𝐪) =  ∑ [𝑱𝒊𝒃𝑻 (𝐪)𝒏𝒊 ∙ 𝜹𝒊 ∙ 𝑱𝒊𝒃(𝐪)]                   (6)                      
where 𝑱𝒊𝒃(𝐪) is the body Jacobian (irrelevant to mass), and 𝜹𝒊 
is the spatial inertia matrix of 𝑖-th link in a linear relationship to 
a 3×3 inertia matrix 𝑰𝒃 of the link. Elements in 𝑰𝒃 conform to: 

           ∫ 𝒇(𝒙, 𝒚, 𝒛)𝝆(𝒙, 𝒚, 𝒙)𝒅𝑽 𝑩                         (7)                      
where 𝝆(𝒙, 𝒚, 𝒙) is the mass density function, 𝑩 refers to the 
body of the link and 𝒇(𝒙, 𝒚, 𝒛) is related to distance. Therefore, 
each element of 𝐇 is in a linear relationship to the mass density 
of the robot. Similar properties also apply to 𝐠. Hence, keeping 
the other configurations of a robot unchanged, linear scaling of 
the robot’s mass or mass density leads to the linear scaling of 𝐇 
and 𝐠. This also leads to the linear scaling of 𝛕 since it is in a 
linear relationship to 𝐇 and 𝐠 according to (4). 

Hence, given a dataset (𝐪, 𝐪̇, 𝐪̈, 𝛕) measured from a robot, 
scaling 𝛕 by a factor 𝜶 leads to a new dataset (𝐪, 𝐪̇, 𝐪̈, 𝜶 × 𝛕) 
which conforms to the dynamics of a new robot whose mass 
density is 𝜶  times of the former one and the other physical 
features remain identical. The robot dynamic (4) thus becomes: 𝜶 × 𝛕 = 𝐇ᇱ(𝐪)𝐪̈ + 𝐇̇ᇱ(𝐪)𝐪̇ − ଵଶ ቆ డడ𝐪 (𝐪்̇𝐇ᇱ(𝐪)𝐪̇))் + 𝐠ᇱ(𝐪)ቇ  (8) 
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where 𝐇ᇱ(𝐪) and 𝐠ᇱ(𝐪) are physical features of the new robot. 
When a PENN fails to learn from a dataset (𝐪, 𝐪̇, 𝐪̈, 𝛕) of a real-
world robot due to the improper range of hidden physical 
parameters, we could scale 𝛕 by 𝜶, mapping the current robot 
to a virtual one with 𝜶 times mass density. The enhanced PENN 
is shown in Fig. 2(b) (the extra neural network for friction 𝛕𝐟 
prediction will be introduced in Section IV). After training, the 
output of PENN model will be scaled by 𝜶ି𝟏 to generate target 
torques (9) for real-time control. Since the ground truth of H 
and g are unknown, the proper value of 𝜶 cannot be determined 
in advance. Thus, an automatic search mechanism is required. 𝛕ො = 𝜶ି𝟏[𝐇ᇱ(𝐪)𝐪̈ + 𝐇̇ᇱ(𝐪)𝐪̇ − ଵଶ ቆ డడ𝐪 (𝐪்̇𝐇ᇱ(𝐪)𝐪̇))் + 𝐠ᇱ(𝐪)ቇ]  (9) 

C. Experimental Results  
The proposed scaling solution could be applied to any rigid-

body robot. We tested it on seven 3-DoF robot arms in Table I. 
Dataset (𝐪, 𝐪̇, 𝐪̈, 𝛕) is sampled from the simulation of motions 
of robots. The feed-forward neural network in the PENN shown 
in Fig. 2(b) has 4 hidden layers with 64 neurons in each layer 
(the friction extraction NN is not used). After applying different 
scaling factors 𝜶,  Errorఈ  of all robots decrease to less than 
0.8%. For Robot-a, three curves of 𝛕ො lasted for seven seconds 
are shown in Fig. 3. For each joint, PENN with 𝜶 = 1 has the 
largest deviation from the ground truth. For 𝜶 = 10 , the 
deviation is greatly reduced. As 𝜶 increase to 1000, the error is 
reduced by more than 95% (from 96.3% to 0.62%). A 
reinforcement learning based method is proposed in Section V 
to search for the optimized value of the scaling factor 𝜶. 

IV. EXTRACTION OF LATENT VARIABLES 
A. Latent Features and Coupling Issue 

Typically, torques applied on robot joints come from joint 
motors, gravity, and friction, which could be reformulated as: 𝛕 = 𝛕𝐦 +  𝛕𝐟 = 𝐇(𝐪)𝐪̈ + 𝐜(𝐪, 𝐪̇) + 𝐠(𝐪)                (10) 
where 𝛕𝐦  and 𝛕𝐟  refer to the torques from joint motors and 
friction, respectively. The value of 𝛕𝐦  is known since it is 
determined by controllers. However, 𝛕𝐟 is a latent variable with 
unknown values determined by complex system characteristics, 
such as lubrication, temperature, and manufacturing tolerance. 
Therefore, in real-world applications, the available data would 
be (𝐪, 𝐪̇, 𝐪̈, 𝛕𝐦) (𝛕𝐟 is missing). In this paper, as an example, we 
consider the viscous friction model 𝛕𝐟 = −𝜷 ∘ 𝐪̇ where 𝜷 is the 
friction coefficient and ∘  is elementwise multiplication [8]. 
Note that latent variables are not limited to this friction model.  
      To solve this issue, an additional neural network is 
developed in the proposed PENNs to capture the latent feature 
and the dynamics is expressed by (11), where 𝐟(𝐪̇)  is an 
introduced neural network that is used to estimate friction 
torque 𝛕𝐟. Fig. 2(b) shows the proposed enhanced PENN model 
that includes the scaling operation, the neural network for of 𝐇 
and 𝐠, and the introduced neural network for friction. However, 
since there are two neural network in the PENN, and their 
optimization depends on one single function 𝑙𝑜𝑠𝑠(𝛕𝐦, 𝛕ො𝐦), the 
trained PENN may suffer from mutually canceling issues, i.e., 
the outputs of two neural networks could both have large 
deviation from the corresponding ground truth while the linear 
combination of them compensates the loss. This is because the 
loss function could only consider the available ground truth 𝛕𝐦,  

𝛕ො𝐦 = 𝐇(𝐪)𝐪̈ + 𝐇̇(𝐪)𝐪̇ − ଵଶ ( డడ𝐪 (𝐪்̇𝐇(𝐪)𝐪̇))் + 𝐠(𝐪) − 𝐟(𝐪̇) (11) 
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Fig. 3. Estimation of torque 𝛕 on joints of a 3-DoF robot (Robot-a) 
with PENN trained with scaling factors 1, 10, and 1000. 𝐠(𝐪), or 𝐟(𝐪̇) is unknown. Though the overall estimation error 
of 𝛕ො𝐦 could be small, it is of high probability that the PENN 
would fail to discover the latent parameters of the system.  
B. Proposed PENN Model for Latent Features Extraction 

The proposed PENN contains neural networks to estimate 𝐇(𝐪), 𝐠(𝐪), and 𝛕𝐟, respectively, as shown in Fig. 2(b). The 
coupling issue mostly comes from the prediction of 𝐠(𝐪) 
and 𝛕𝐟. As for 𝐇(𝐪), it is multiplied by 𝐪̈ in (11), and robot 
states with the same 𝐪 and 𝐪̇ could be in different 𝐪̈. Consider 
the below error analysis equations (12) (∆ refers to error) with 𝐪̈𝐛 ≠ 𝐪̈𝐜, the only condition for both equations holding true is 
that ∆𝐇(𝐪𝐚) = 0, which means different values of 𝐪̈ could help 𝐇(𝐪) escape from the coupling issue.          ∆𝐇(𝐪𝐚)𝐪̈𝐛 + ∆𝐜(𝐪𝐚, 𝐪̇𝐚) + ∆𝐠(𝐪𝐚) −  ∆𝐟(𝐪̇𝐚) = 0         ∆𝐇(𝐪𝐚)𝐪̈𝐜 + ∆𝐜(𝐪𝐚, 𝐪̇𝐚) + ∆𝐠(𝐪𝐚) −  ∆𝐟(𝐪̇𝐚) = 0      (12) 

To solve the coupling issue between 𝐠(𝐪)  and 𝐟(𝐪̇)  and 
extract the latent variables, we propose another enhanced model 
named TS-PENN that contains three neural networks for 𝐇(𝐪), 𝐠(𝐪), and 𝐟(𝐪̇), respectively. A two-step (TS) training flow is 
proposed for TS-PENN, as shown in Fig. 4. In the first step, 
data samples with zero speed and acceleration are picked from 
dataset (𝐪, 𝐪̇, 𝐪̈, 𝛕𝐦). These data are used to train the neural 
network for 𝐠(𝐪) since it is the only term that is irrelevant to 𝐪̇ 
and  𝐪̈ . With 𝐪̇ = 0  and  𝐪̈ = 0 , robot dynamics in (11) is 
simplified to 𝛕ො𝐦 = 𝐠(𝐪). In the second step, the remaining two 
neural networks for 𝐇(𝐪) and 𝐟(𝐪̇) are trained with the rest of 
the dataset. Since the weights of the neural network 𝐠(𝐪) have 
been optimized in the first step, their values are not updated 
anymore. Because the optimization of neural networks for 𝐠(𝐪) 
and 𝐟(𝐪̇) are not proceeding simultaneously, the coupling issue 
is eliminated. The scaling factor is still applicable to TS-PENN 
since 𝐟(𝐪̇) is a linear additive term in (11).  

loss( )... ...

... ... ... ...

... ...

loss( )

Updating weightsStep 1

Step 2 Updating weights

Fixed weights

Training set

Training set

=

 
Fig. 4. The two-step training flow for the proposed TS-PENN. 
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C. Experimental Results 
We evaluate the prior LNN in Fig. 2(a), the enhanced PENN 

in Fig. 2(b), and the TS-PENN by learning the dynamics of a 3-
DoF robot that considers friction and comparing their 
performance on estimation of latent variables. For the LNN, its 
neural network consists of 4 hidden layers and each layer has 
96 neurons. For both PENN and TS-PENN, the neural network 
to estimate friction has 3 hidden layers and each layer has 32 
neurons. In PENN, two neural networks are optimized at the 
same time using the entire dataset; the neural network for 𝐇(𝐪) 
and 𝐠(𝐪) consists of 4 hidden layers and each has 96 neurons. 
In TS-PENN, the neural network for 𝐇(𝐪) consists of 4 hidden 
layers and each has 64 neurons; the neural network for 𝐠(𝐪) 
also has 4 hidden layers and each contains 32 neurons. Thus, 
PENN and TS-PENN have the same number of parameters. 

The accuracy of the above models is evaluated by 
controlling the motion of the robot for 50 seconds in a robot 
system. Fig. 5(a) shows that LNN has the highest mean absolute 
error (MAE) in the estimation of each latent torque component 
(except 𝐠(𝐪)). The reason is that the LNN conforms to robot 
dynamics in (4) of which the equality is broken by the 
introduced friction, making it fail to precisely capture any 
dynamics of the robot system. PENN and TS-PENN conform 
to robot dynamics in (11) that takes friction into consideration, 
resulting in higher accuracy in terms of 𝛕𝐦, 𝐇(𝐪)𝐪̈, and 𝐜(𝐪, 𝐪̇) 
compared with LNN. However, PENN has the largest MAE for 𝐠(𝐪)  and 𝐟(𝐪̇)  due to the coupling issue, though it has the 
lowest MAE of 0.044 N ∙ m in the estimation of 𝛕𝐦 . On the 
other hand, TS-PENN has solved the coupling issue and thus 
has the smallest MAE in all the torque components except that 
its MAE of 𝛕𝐦 is slightly higher than the PENN model by 0.073 N ∙ m . Its MAEs of 𝐟(𝐪̇)  and 𝐠(𝐪)  are reduced by ~99% 
compared with that of PENN thanks to the two-step training 
flow. The latent torques estimated by PENN and TS-PENN on 
the second robot joint are shown in Fig. 5(b) and Fig. 5(c), 
which illustrates that estimated values of 𝐟(𝐪̇)  and 𝐠(𝐪)  by 
PENN both have about -5 N ∙ m  deviation from the ground 
truth. According to the dynamics equation (11), 𝐟(𝐪̇)  is 
subtracted from 𝐠(𝐪), resulting in the cancellation of errors. 
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Fig. 5. (a) Mean absolute error comparison of different variables 
estimated by LNN, PENN, and TS-PENN. Waveforms of estimated 
latent variables on the second joint by (b) PENN and (c) TS-PENN. 
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Fig. 6. (a) Average accuracy degradation of 8-bit quantization and (b) 
latency estimation for 3, 5, and 7-DoF robots by four microcontrollers. 

V. IMPLEMENTATION OF PENN WITH NEURAL 
ARCHITECTURE SEARCH 

A. Neural Architecture Search for Real-time Control Systems 
Due to area, power limitations and timing constraints of 

embedded microprocessors, quantization is typically performed 
on neural network models for real-time applications. We 
evaluate 8-bit integer quantization impact on PENN using four 
low-cost embedded microprocessors (Arduino Mega, 
MKR1000, STM32F4, and RPI Zero) with 3, 5, and 7-DoF 
robots. The PENN used for quantization and latency calculation 
has 4 fully connected layers with 64 neurons in each layer and 
the scaling factor 𝜶 = 400. As shown in Fig. 6(a), quantization 
from 64-bit floating point precision to 8-bit integer only leads to 
0.95 ~ 1.48% accuracy degradation for real-time inference of 
motor torques. For the practical deployment of PENN in 
embedded systems aimed at real-time control, below 5ms 
latency is required due to the motor PWM control update rates. 
Fig. 6(b) illustrates the estimated execution latency and memory 
reload frequency in different microprocessors. For Arduino 
Mega (73mW, 8KB SRAM) and MKR1000 (32KB SRAM), the 
PENN model requires 10~100ms operation latency and 7-10 
rounds of memory reload. STM32F4 (140mw, 128KB SRAM) 
and RPI Zero (449mW, 512MB SRAM) can achieve 0.4~5ms 
latency without data reloading. The developed PENN models 
are expected to consider the computational resource of the 
embedded system, which could be addressed by the neural 
architecture search (NAS) scheme. However, not all the 
hyperparameters of PENN can be inserted into existing NAS 
methods. For example, DARTS [9], MCTS [10], and Bayesian 
optimization [11] require a fixed sequence of feature maps. 
Evolution [12] and SMBO [13] are cell-wise learning with a 
fixed number of cell stacks. For real-time robot control, the 
PENN size should be relatively small but needs flexibility for 
constraints from embedded systems. Besides, the proposed 
scaling factor 𝜶  is also one optimization target. Therefore, 
reinforcement learning based searching methods [14] are most 
suitable for PENN. In this section, we proposed an RL-based 
NAS engine for PENN models. Compared with existing works, 
the proposed NAS engine considers the scaling factor and the 
real-time latency constraint of selected microprocessors. 
 In the proposed RL-based NAS engine shown in Fig. 7(a), 
an LSTM is employed as a search agent that generates the 
hyperparameters for PENN models. Exemplary hyperparameter 
candidates for a 3-DoF robot are illustrated in Fig. 7(b), 
including the number of layers, the number of neurons in each 
layer, latency constraint, and the scaling factors. The list of 
tokens predicted by LSTM can be named by an action list. In an 
exemplary action list [16, 32, 32, 0, 1000], the first four 
parameters indicate the number of neurons in four layers in order 
(0 means the fourth layer is not needed), and the last parameter 
1000 stands for the scaling factor. PENN is a trainable children 
network specified by the action list and its testing accuracy after 
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latency constraint embedding is the reward for updating the 
LSTM to get better architecture. The reinforcement rule [14] to 
make LSTM get the maximum expected reward is represented 
by the J(θc) in (13) with the gradient method in (14), where θc is 
the LSTM weights and biases, ɑ1:T is the action list, T is the 
number of hyperparameters,  R’ is the reward from PENN after 
latency constraint embedding, and P is the probability. 
                               J(θC)EP(ɑ1:T; θC)[R’]
 θCJ(θC)∑ ௧்ୀଵ θC log 𝑃(ɑt |ɑ(t-1):1; θC) R’ 
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Fig. 7. (a) RL-based search engine (b) hyperparameter candidates. 
 In the proposed NAS engine, the real-time constraint is 
added to limit the latency of embedded systems. The constraint 
is done by adding (15) into the reward function. -α is a negative 
value as the punishment for the LSTM agent. La(ɑ1:T) is the 
approximation of the latency of microprocessors. If the current 
latency is smaller than the required latency L, the error e 
combined with a scaling parameter λ is a positive reward to the 
LSTM gradients. If the current latency is larger than the 
requirement L, the punishment -α will impact the LSTM 
optimization. The latency approximation is shown in (16), 
which is related to the picked architecture, the implemented 
microprocessor, and the DoF (D). ƒ is the clock speed, and γ is 
the run cycles of multiplication for the selected microprocessor. 

 R’ቄ−𝛼                                  𝑖𝑓 𝐿𝑎(𝑎1: 𝑇) > 𝐿100 − 𝜆𝑒                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

La(ɑ1:T) = 1.005γ(2D+3)[Dɑ1∑  ்ିଵ௧ୀଵ ɑtɑt+1D2/2+3D/2)ɑT]ƒ-1 
B. Experimental Results 

Fig. 8 shows the traces of optimized PENN architecture with 
different search engines. Blue dots represent the exhaustive 
search results, which show that the error grows quickly if the 
PENN size is too large or too small (reflected by latency). The 
baseline NAS can achieve a better accuracy result by jumping 
search between the large and small PENN. With the latency 
constraint, the NAS also uses jumping search at the beginning, 
but the searching space will be limited to 5ms in the later stage. 
Fig. 9(a) shows the results of NAS for a 3-DoF robot with PENN 
on STM32F4. The proposed NAS achieves the same error rate 
compared with the exhaustive random search but with 3 times 
faster searching speed. For the scaling factor trace, NAS starts 
searching from 10000, passes through 400, and finally reaches 
1000 as the best result. Fig. 9(b) shows the summary of the 
benefits of latency constraint and scaling. The latency decreases 
from 8.58ms to 4.98ms and the error drops from 2.37% to 0.56% 
by using better scaling factors. Essentially, the proposed NAS 
methods have achieved the optimized solution without accuracy 
loss while being able to meet the tight latency constraints. 

VI. CONCLUSIONS 
      In this paper, we propose enhanced PENN models with the 
scaling scheme and the two-step training flow, which enables 
PENN models to learn real-world robot systems with a wide 
range of hidden physical parameters and perform extraction of 

latent parameters accurately (reduce estimation error by more 
than 95% for both torques and latent physical variables) without 
breaking the interior physics law. The NAS engine is also 
proposed to search for low-latency and accurate PENN in 
resource-limited embedded systems, with 3X searching speed 
compared with the exhaustive random search method.    
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Fig. 8. The searching trace of exhaustive search, baseline NAS, and 
the NAS with 5ms latency constraint for a 3-DoF robot on STM32F4.  
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Fig. 9. (a) Error trace of NAS considering scaling factor compared 
with exhaustive search and (b) the benefits summary with latency 
constraint and scaling on STM32F4 for a 3-DoF robot. 
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