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Abstract

The search for one-step alternatives to the Generalized Method of Moment (GMM)
has identified broad classes of potential estimators such as Generalized Empirical Like-
lihoods (GEL), Empirical Cressie-Read (ECR), Exponentially Tilted Empirical Likeli-
hood (ETEL) and minimum discrepancy (MD) estimators. While Empirical Likelihood
(EL) dominates other ECR estimators in terms of higher-order asymptotics, it lacks
robustness to model misspecification. ETEL was shown to combine higher-order ef-
ficiency and robustness to misspecification, but demands strong moment generating
function existence conditions. We show, both theoretically and via simulations, how
to achieve the same goal under weaker moment existence conditions, within the class
of MD estimators.
Keywords: Generalized Method of Moments, Information Theory, Misspecification,
Generalized Empirical Likelihood

1 Introduction

We consider a moment condition model using a dg-dimensional vector valued non-linear
moment function g(X, θ) where X is a random vector and θ ∈ Θ is a dθ-dimensional vector
of parameters of interest. The moment condition vector pins down the true parameter value
θ0 from the moments of the distribution of the random vector X through the following
equation:

E[g(X, θ)] = 0. (1)

When dg is larger than dθ, this problem may not have a solution in general. We say that the
moment condition model is well specified if a θ0 satisfying (1) exists, and that the moment
condition model is misspecified if such a θ0 does not exist. The methodology of estimating
θ0 in a well specified model has seen change throughout the last few decades. While the
GMM estimator (Hansen, 1982) enjoyed broad popularity, thanks to its desirable first-order
asymptotic properties, alternative estimators have been proposed to improve finite-sample
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Figure 1: Relationships between existing classes of estimators of moment condition models.
Some estimators that are neither GEL nor MD nevertheless have close conceptual ties to
members of those classes, as indicated by dotted lines.

performance. These include Empirical Likelihood (EL), Exponential Tilting (ET), and Con-
tinuous Updating GMM (CUE) (see, e.g., Owen, 1990, Qin and Lawless, 1994, Imbens et al.,
1998, Kitamura and Stutzer, 1997). These estimators are members of a subclass of the
Minimum Divergence Estimators or Minimum Discrepancy Estimators (MD) (as detailed in
Corcoran, 1998), which this paper will now set its focus on.

The MD estimators are first order equivalent to two-step efficient GMM under regularity
conditions, implying that they reach the semi-parametric efficiency bound. They are also
one-step estimators, so that reliance on an arbitrary first step estimator is unnecessary. A
persistent interest of the recent literature has then been to determine which estimators in
the class are most desirable. A particular focus has been set on the Empirical Cressie-
Read Estimators (ECR), of which the aforementioned EL, ET, and CUE are members.
ECR estimators comprise MD estimators whose dual optimization problem can be cast as
a Generalized Empirical Likelihood (GEL) (Newey and Smith, 2004). Figure 1 depicts the
relationships between the various classes of estimators. Since ECR estimators all share the
same desirable properties mentioned above, the exploration of how to further narrow them
down has been funneled into two main directions.

First, there is the question of higher order efficiency. This was explored by Newey and
Smith (2004), who showed that bias-corrected EL is second order efficient in the class of
Generalized Empirical Likelihood (GEL) estimators. Later, Ragusa (2011) showed that
bias-corrected EL is also second order efficient in the class of MD estimators. These analyses
suggest that EL is the most desirable estimator from this perspective. The second point
of comparison is how the estimators stand up to model misspecification. Imbens et al.
(1998) argued that EL could have poor behavior in a misspecified model due to a divergence
in its influence function, something which was later formalized by Schennach (2007), who
showed that EL is not

√
n consistent in a misspecified model when the moment function g

is unbounded. Schennach observed that ET is robust to misspecification, suggesting that it
is the most desirable ECR estimator from this perspective. Schennach also suggested that
by using a combination estimator called Exponentially Tilted Empirical Likelihood (ETEL),
one can retain the higher order properties of EL, while also being robust to misspecification
like ET.
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However, in order for ET and ETEL to be robust to misspecification, the Data Generating
Process (DGP) of X must satisfy strong assumptions, namely that the moment generating
function of the moment function g (X, θ) exists. Schennach (2007) showed that this con-
dition was sufficient, while Sueishi (2013) observed that this condition is necessary for the
asymptotic reweighting problem associated with these estimators to even have a solution,
which is needed to achieve robustness to misspecification. Sufficient conditions which guar-
antee existence of solutions within the broader ECR class were given by Chaudhuri et al.
(2023). They showed that for any choice of discrepancy function, at least some assumptions
must be made on the existence of moments of the transformed random variable Yθ = g(X, θ)
for all fixed θ. This indicates that, within the ECR subclass, robustness to misspecification
guarantees are limited and thus suggests that one should move beyond the ECR subclass
into the full class of MD estimators.

The purpose of this paper is to identify a class of estimators within the MD class, which we
call Bounded Tilting Estimators, or BTE, that is robust to misspecification without requiring
strong moment existence assumptions. Ragusa (2011) suggested that, in analogy with the
observation of Imbens et al. (1998) for EL, MD estimators with good properties under
misspecification can be obtained by avoiding discrepancies that lead to a divergence in the
corresponding estimator’s influence function. We formalize this idea by using the techniques
of Chaudhuri et al. (2023), extended to general MD estimators, to derive conditions on
the discrepancy function that secure the existence of solutions under global misspecification.
This result, combined with a derivation of the asymptotic properties of MD estimators under
global misspecification, implies that the estimator is robust to misspecification. It is further
shown that robustness to misspecification is achievable, while also retaining the higher order
efficiency guaranteed by results from Ragusa (2011), thus yielding the class of Efficient BTE,
or EBTE.

The rest of this paper is organized as follows. Section 2 reviews the Minimum Divergence
Estimators, their first and higher order efficiency, and results about misspecification. Section
3 defines the bounded tilting estimators, proves their higher order efficiency and their be-
havior under misspecification. Section 4 gives an example of an easily implementable tilting
function and shows its performance in simulations, while Section 5 concludes.

2 Minimum Divergence Estimation

2.1 The Estimator

For any value of value θ ∈ Θ one can reweight the sample points {xi}ni=1 so that the moment
condition (1) is satisfied. A MD estimator is given by the value θ that minimizes the amount
of reweighting, as quantified using a discrepancy function:

θ̂ = argmin
θ∈Θ

min
{wi}

1

n

n∑
i=1

q(nwi) (2)

subject to
n∑

i=1

wig(xi, θ) = 0 and
n∑

i=1

wi = 1.
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The discrepancy function q is assumed to satisfy the following:

Assumption 1 The discrepancy function q is twice continuously differentiable, strictly con-
vex and, without loss of generality, normalized as q(1) = 0, q̇(1) = 0 and q̈(1) = 1, where
dots denote derivatives.

While the solution of this optimization problem follows well-known techniques (e.g.
Newey and Smith, 2004, Kitamura, 2007), we provide here a few key results that are helpful
for our presentation. Introducing Lagrange multiplier λ and μ we can write the Lagrangian:

L(θ, w, λ, μ) =
1

n

n∑
i=1

q(nwi)− λ′
n∑

i=1

wig(xi, θ)− μ(
n∑

i=1

wi − 1), (3)

whose first-order condition, with respect to wi is

q̇(nwi)− λ′g(xi, θ)− μ = 0 ∀i = 1, ..., n.

One can then obtain a closed form for wi in terms of the Lagrange multipliers:

wi =
1

n
q̇−1(μ+ λ′g(xi, θ)).

The mapping q̇−1, known as the tilting function, can then be used to write an equivalent
just-identified GMM estimator:

n∑
i=1

ρ(xi, θ̂, λ̂, μ̂) = 0 (4)

where, letting G(x, θ) = ∂g(x, θ)/∂θ′,

ρ(x, θ, λ, μ) =

⎡
⎣q̇

−1(μ+ λ′g(x, θ))G′(x, θ)λ
q̇−1(μ+ λ′g(x, θ))g(x, θ)
q̇−1(μ+ λ′g(x, θ))− 1

⎤
⎦ . (5)

These equations are analogous to the well-known first-order conditions of GEL estimators,
except that an additional entry (the bottom one) in this vector is needed to ensure that the
weights wi sum up to one, a constraint that is no longer automatically satisfied when q lies
outside of the ECR family.

As shown in Ragusa (2011), the dual problem to (2) also admits the following saddle-
point formulation, paralleling known results for ECR (e.g. Owen, 1990, Qin and Lawless,
1994, Imbens et al., 1998, Kitamura and Stutzer, 1997, Kitamura, 2007):

θ̂ = argmax
θ∈Θ

min
(μ,λ)∈Λn(θ)

1

n

n∑
i=1

q∗(μ+ λ′g(xi, θ))− μ, (6)

with
Λn(θ) = {(μ, λ′) : μ+ λ′g(xi, θ) ∈ Dom(q∗), ∀i = 1, ..., n}
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and where q∗ is the convex conjugate of q:

q∗(v) := sup
u∈Dom(q)

[uv − q(u)]. (7)

where Dom (q) denotes the domain of function q (and we similarly define Range (q) to be
the range of function q). This result can be verified by noting that the first-order conditions
for (6) coincide with (5). Assumption 1 implies that the function q∗ is twice continuously
differentiable, strictly convex and satisfies q∗(0) = 0, q̇∗(0) = 1 and q̈∗(0) = 1.

2.2 First and Higher order Asymptotics

We now briefly summarize the results from Ragusa (2011) on the asymptotics of the MD
estimators that are relevant for our paper.

Assumption 2 The sample X1, . . . , Xn is i.i.d.

Assumption 3 (a) θ0 ∈ Θ is the unique solution to E[g(X, θ)] = 0; (b) Θ is compact;
(c) g(., θ) is continuous in θ at all θ ∈ Θ w.p.1; (d) E[supθ ‖g(X, θ)‖2] < ∞; (e) Ω =
E[g(X, θ0)g(X, θ0)

′] is non-singular

Assumption 4 (a) θ ∈ int(Θ); (b) g(x, θ) is continuously differentiable in a neighborhood
N of θ0; (c) E[supθ∈N ‖G(X, θ)‖] < ∞; (d) Rank(G) = dim(θ), where G = E[G(X, θ0)]

Assumption 5 There is b(x) with E[‖b(X)‖6] < ∞ such that for 0 ≤ j ≤ 4 and all x,
∂jg(x,θ)

∂θj
exists on a neighborhood N of θ0, supθ∈N

∥∥∂jg(x, θ)/∂θj
∥∥ ≤ b(x), and for each θ ∈

N ,
∥∥∂4g(x, θ)/∂θ4 − ∂4g(x, θ0)/∂θ

4
∥∥ ≤ b(x)‖θ − θ0‖. Also, q∗ is four times continuously

differentiable with Lipschitz fourth derivative in a neighborhood of zero.

Theorem 1 (Adapted from Ragusa (2011), Theorems 5, 6 and Corollary 1). Let Assump-
tions 1 and 2 hold.
(i) Under Assumption 3, θ̂ →p θ0, μ̂ = op(n

− 1
2 ), and λ̂ = Op(n

− 1
2 ).

(ii) Under Assumptions 3 and 4, θ̂ is first-order efficient, i.e.,
√
n
(
θ̂ − θ0

)
→d N (0, (G′Ω−1G)−1).

(iii) Under Assumptions 3, 4 and 5, bias-corrected θ̂ is second-order efficient iff q∗3 = 2, where
q∗k ≡ ∂kq∗(0)/∂xk.

Part (i) establishes consistency, while part (ii) shows that the MD estimators have the
same first-order asymptotic properties as the GEL estimators. Part (iii) establishes an
analogue of the higher-efficiency results of Newey and Smith (2004) for the more general
class of MD estimators. The latter two results do not follow from known results on GEL
estimators, since MD estimators involve an additional nuisance parameter μ̂. It is noteworthy
that the value of q∗3 (under the normalization of Assumption 1) is the only condition which
matters for the determination of second order efficiency and hence this property will hold as
long as q∗(0) = 0, q̇∗(0) = 1, q̈∗(0) = 1 and q∗3 (0) = 2.

Remark 1 Newey and Smith (2004) had required q∗4 = 6 for their result, but Ragusa (2011)
shows that this is not necessary. For an MD estimator with q∗3 (0) = 2, the difference between
its third order term and that of EL is uncorrelated with the first order term so that the higher
order variances are the same, independently of the value of q∗4. A similar phenomenon occurs
in the case of the ETEL estimator (Schennach, 2007).
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2.3 Misspecification, Pseudo-True Values, and Robustness

Let us now formalize the notion of robustness to misspecification. Should there not exist any
θ ∈ Θ for which E[g(X, θ)] = 0, the model is said to be misspecified. In this case, we define
the pseudo-true value θ∗ as the θ that is the “closest” to satisfying the moment constraints
in the population, where closeness is assessed using the previously introduced discrepancy
function q by solving a population version of the problem (2):

θ∗ = argmin
θ∈Θ

E[q(Wθ)], (8)

where

Wθ = argmin
W

E[q(W )] (9)

subject to E[Wg(X, θ)] = 0 and E[W ] = 1

for all θ ∈ Θ. Here, the W are functions mapping a value of X onto a real number, and
represent the population version of the sample point weights (hence, in particular, we have
W (Xi) = wi for a sample pointXi with weight wi). The dependence ofW onX is suppressed
in the notation, for simplicity. Following Chaudhuri et al. (2023), we refer to W as a change-
of-measure random variable because multiplying the W effectively amounts to changing the
probability measure of the population. Note that the pseudo-true value in general depends
on the choice of discrepancy function q.

Definition 1 An estimator is said to be robust to misspecification if θ∗ exists and
∥∥∥θ̂ − θ∗

∥∥∥ =

Op(n
−1/2).

As pointed out by Chaudhuri et al. (2023), the existence of a θ∗ is far from granted and
it is thus essential to identify the conditions needed for its existence. First, the definition of
θ∗ requires Wθ to be defined for all θ ∈ Θ. Based on the work of Csiszár (1995), conditions
for the existence of Wθ for the Cressie-Read family of discrepancies were given by Chaudhuri
et al. (2023). Below, we shall use a similar approach, while exploiting the fact that Csiszar’s
work is, in fact, applicable to the entire class of MD estimators. The aim of this work is
to provide a stronger robustness guarantee than the ETEL estimator (Schennach, 2007).
ETEL still requires a bounded moment generating function, while we seek here to avoid any
moment existence assumptions (beyond those needed to define the moment conditions and
the asymptotic variance of efficient estimators).

The existence of a change-of-measure random variable Wθ demands conditions both on
q and on the random variable Yθ ≡ g(X, θ) for every fixed θ ∈ Θ. The conditions necessary
depend on what assumptions one is willing to make on Yθ, since there is a trade-off in the
assumptions made on Yθ and how stringent one must be with q. We distinguish the cases,
depending on whether Yθ is bounded or not. For this purpose, let ‖Yθ‖ be the Euclidian
norm of Yθ and denote by Yj,θ the j-th component of the vector Yθ.

Assumption 6 The random variable Yθ is absolutely continuous with respect to some σ-
finite measure for every fixed θ ∈ Θ.
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Theorem 2 (Csiszár (1995) Theorem 3 ii)) If ‖Yθ‖ is bounded for every θ, then, under
Assumptions 1 and 6, Wθ exists for every θ ∈ Θ.

To move beyond the boundedness assumption, we need to add two more conditions.

Assumption 7 Dom(q̇) = (0, a) with a ∈ (1,∞] and limx→a q̇(x) = ∞.

Assumption 8 E[q∗(α|Yj,θ|)] < ∞ for all α > 0 and j = 1, .., dg for every θ ∈ Θ, where q∗

is the convex conjugate of q (see Equation (7)).

Theorem 3 (Csiszár (1995) Theorem 3 iii)) Under Assumptions 1, 6, 7, and 8, Wθ exists
for every θ ∈ Θ.

We now explain the need for these conditions. Assumption 7 can be understood by
analogy to the first order conditions which come from (9). The solution Wθ must satisfy the
following first order condition almost surely:

q̇(Wθ) = μ∗ + λ∗Yθ,

where μ∗ and λ∗ are the values of the Lagrange multipliers that are pinned down from setting
the partial derivatives of the Lagrangian to zero under mild differentiability conditions.

If Yθ is unbounded, then the right-hand side of this equation is also unbounded and can
diverge to +∞. Since q̇ is strictly increasing (as q is strictly convex), if we want the left-hand
side to also have the ability to diverge to +∞, we must allow q̇ (Wθ) to diverge to +∞ as
Wθ approaches the upper bound of the domain of q̇.

Remark 2 It is tempting to use an analogous explanation to suggest that one should also
impose the condition limx→0 q̇(x) = −∞, as Ragusa (2011) suggests. It turns out however
that this is not necessary for the existence of a solution to the problem but rather to ensure
that the solution Wθ is strictly positive (almost surely), or equivalently, that the sample
point weights are positive. To understand why this is the case consider what happens when
Yθ diverges to −∞ for a given θ. Since q̇ is strictly increasing, this must be coupled with
Wθ moving towards zero. However, when it reaches zero, the constraint associated with λ∗

(E[WYθ)] = 0) is automatically fulfilled so the Lagrange multiplier becomes zero. This then
means that as long as limx→0 q̇(x) = μ∗, the first-order condition holds.

On a technical level, Assumption 8 comes from Csiszar’s clever reliance on Orlicz spaces.
Intuitively, this can be motivated as follows. For the minimizer Wθ in (9) to exist we must
guarantee that it satisfies E[WθYθ] = 0, while the only fact we know is that E[q(W )] < ∞
for all W under consideration in the optimization problem. We then need to ensure that any
sequence of Wi which converges to Wθ satisfies E[WiYθ] → E[WθYθ], which implies what we
need. If the sequence Wi converges in L1, this is guaranteed, and Assumption 8 specifically
ensures this convergence.

We finish this section with the fact that the existence theorems of the change-of-measure
random variable Wθ, coupled with a continuity argument, can then guarantee existence of a
pseudo-true value:
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Corollary 1 Let Z = ∪θZθ be the union of Zθ, the spaces of absolutely continuous random
variables with respect to the same σ-finite measure as Yθ. Assume that either (i) Assumptions
1 and 6 hold for Yθ bounded or (ii) Assumptions 1, 6, 7, and 8 hold for Yθ unbounded.
If the correspondence C : Θ ⇒ Z with C(θ) = {W ∈ Z : E[WYθ] = 0 andE[W ] = 1} is
continuous and Θ is compact, θ∗ exists.

Proof. Under the conditions, we have that Wθ exists for every θ. The correspondence being
continuous (i.e., both upper and lower hemicontinuous) makes Wθ continuous by Berge’s
Maximum Theorem (Berge, 1963, Chapter 6). The optimization problem which defines θ∗
is then simply minimizing Wθ over Θ, where Wθ is continuous and Θ is compact — which
guarantees the existence of θ∗ by the Extreme Value Theorem.

3 Beyond ECR: Bounded Tilting

3.1 Existence of pseudo-true value

Now that we are equipped with the necessary tools, we can identify estimators that are
both robust to misspecification and higher-order efficient. We begin by explaining the need
to look beyond ECR estimators. The discrepancy associated with ECR estimators has the
form:

q (x) =

⎧⎪⎨
⎪⎩

xγ+1−1
γ(γ+1)

, ∀γ �= 0,−1

− log (x) , γ = −1

x log(x), γ = 0

for some γ ∈ R, where the limiting cases γ = 0,−1 correspond to EL and ET, respectively.
When applying Csiszar’s conditions to the ECR estimators, Chaudhuri et al. (2023) show that
the only estimators in the class which can have a pseudo-true value when Yθ is unbounded

are the ones with γ ≥ 0. Condition 8 in the ECR setting is equivalent to E[|Yj,θ|
γ+1
γ ] < ∞

for all j when γ > 0 and E[exp(t′Yj,θ)] < ∞ for all j and t ∈ R when γ = 0. When
γ < 0, Assumption 7 does not hold and these authors show that no solution can exist to the
population optimization problem. Hence, for unbounded random variables, this argument
rules out the only member of the ECR class which is higher order efficient (EL, with γ =
−1). Hence, we need to consider a broader class of estimators, such as MD estimators, to
simultaneously achieve both goals.

We maintain the very weak Assumptions 1 and 6 throughout and seek a choice of q
satisfying Assumption 7 that will weaken the additional constraints on Yθ imposed by As-
sumption 8 as much as possible. Assumption 8 is the only one involving Yθ and it can only
be guaranteed to hold for unbounded Yθ if q∗ is bounded. Constructing a bounded q∗ is
facilitated by the following lemma:

Lemma 1 For q twice continuously differentiable and strictly convex, we have:

q∗(v) =
∫ v

0

q̇−1(x)dx (10)

for all v ∈ Range(q̇), assuming the normalization q∗(0) = 0.
Further, if both Dom(q) and q̇−1 are bounded, then q∗ is also bounded.
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Proof. A twice continuously differentiable q means that q̇ is continuous, while a strictly
convex q implies that q̇ is strictly increasing, which implies that q̇ is invertible. We then
notice that q∗(v) = vq̇−1(v)− q(q̇−1(v)) and take its derivative:

q̇∗(v) = q̇−1(v) + v
∂

∂v
q̇−1(v)− ∂

∂v
q̇−1(v)q̇((q̇−1(v)).

Cancelling the last two terms yields the equality: q̇∗(v) = q̇−1(v). Then, integrating with the
initial condition q∗(0) = 0 establishes (10). Next, for an invertible q̇, we have Range(q̇−1) =
Dom(q), and if Dom(q) is bounded then Range(q̇−1) is bounded. Integrating a bounded
function over a bounded domain yields a bounded integral. Hence, q∗ is bounded.

Lemma 1 explicitly links the convex conjugate q∗ with the tilting function q̇−1, thus
allowing us to find simple conditions on q that secure suitable properties of q∗. This brings
us to the definition of our Bounded Tilting Estimators, which are nested within the MD
class but strictly outside of the ECR class (see Figure 1):

Definition 2 A Bounded Tilting Estimator (BTE) is a MD estimator which uses a bounded
tilting discrepancy function q which satisfies:

a) Assumption 1
b) Dom(q̇) = (0, a) with a ∈ (1,∞)
c) limx→a q̇(x) = ∞

The three conditions ensure, respectively, that a) the tilting function q̇−1 is well defined,
b) is bounded, and c) allows the first order conditions to hold. Conditions b) and c) jointly
imply Assumption 7. Finally, Assumption 8 follows from Lemma 1, since the expectation of
a bounded function is also bounded. Hence, by Theorem 3, Wθ exists for θ ∈ Θ, which is
the key condition for the existence of θ∗ in Corollary 1.

3.2 Root n consistency under misspecification

Having provided conditions for the existence of the pseudo-true value θ∗, we now address the

second requirement of robustness to misspecification (in Definition 1), namely,
∥∥∥θ̂ − θ∗

∥∥∥ =

Op(n
−1/2). This is accomplished by deriving the asymptotic distribution of BTE under

global misspecification. To simplify the notation, we define φ = (θ, λ, μ) and, accordingly,
ρ (x, φ) ≡ ρ(x, θ, λ, μ), where the latter is defined in Equation (5). The estimator φ̂ is the
solution to Equation (4).

Assumption 9 There exists a set Φ ≡ Θ × Λ × U (where Θ ⊂ R
dθ , Λ ⊂ R

dg and U ⊂ R,
are compact), such that E [ρ (X,φ)] = 0 has a unique solution φ = φ0 in the interior of Φ.

Assumption 10 g(x, θ) is twice continuously differentiable for θ ∈ Θ.

Assumption 11 E
[
supφ∈Φ ‖g (X,φ)‖] < ∞, E

[
supφ∈Φ ‖G (X,φ)‖] < ∞ and

E
[
supφ∈Φ

∥∥∂G (X,φ) /∂φj

∥∥] < ∞ for j = 1, . . . , dθ + dg + 1.

Assumption 12 E [ρ (X,φ0) ρ
′ (X,φ0)] is finite and nonsingular.
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Theorem 4 Under Assumptions 1, 2, 9, 10, 11, 12 and if q̇−1 is bounded (i.e. for a Bounded
Tilting Estimator), then

√
n
(
φ̂− φ0

)
d−→ N (

0, (R−1ΣR−1
)

where R = E [∂ρ (X,φ) /∂φ′] and Σ = E [ρ (X,φ) ρ′ (X,φ)].

Proof. This result is established by verifying the conditions of Lemma 2.4 and Theorems
2.6 and 3.2 in Newey and McFadden (1994) in the special case of a just-identified GMM
estimator (in which the weighting matrix is the identity, without loss of generality). The
requisite conditions on the vector of moment functions ρ (X, θ) can be trivially expressed in
terms of conditions on g (X, θ) and the properties of q via Equation (5).

Remark 3 The asymptotic variance of θ can be extracted from the appropriate submatrix
of R−1ΣR−1. Note that using the partitioned inverse formula for R−1 does not lead to a
simpler expression under misspecification.

Remark 4 Once can obtain more explicit expressions for the matrices R and Σ:

∂ρ (x, φ)

∂φ′ =

⎡
⎣QG′λλ′G+ ωΓ QG′λg′ + ωG′ QG′λ

Qgλ′G+ ωG Qgg′ Qg
Qλ′G Qg′ Q

⎤
⎦

ρ (x, φ) ρ′ (x, φ) =

⎡
⎣ ω2G′λλ′G ω2G′λg′ ωG′λ (ω − 1)

ω2gλ′G ω2gg′ ωg (ω − 1)

(ω − 1)ωλ′G (ω − 1)ωg′ (ω − 1)2

⎤
⎦ ,

where, for conciseness, we have omitted the (x, θ)-dependence and defined Q = 1/q̈(q̇−1 (μ+ λ′g(x, θ))),
ω = q̇−1(μ + λ′g(x, θ)), Γ = ∂ (G′(x, θ)λ) /∂θ′. However, implementers may find it more
practical to compute the derivative of ρ (x, θ) directly via finite differences.

3.3 Higher-order efficiency under correct specification

Since all Bounded Tilting Estimators are equally well-equipped to deal with misspecification,
we will now narrow down the scope to those which are also higher order efficient in the
absence of misspecification. The additional requirements for the higher-order efficiency result
of Theorem 1 are as follows. First, Assumption 5 places constraints on the moment functions
and data generating process which we cannot control through the choice of q. In contrast, the
remaining conditions can indeed be met through the careful choice of q: the differentiability
requirements on q∗ imposed by Assumption 5 and the key condition, q∗3 = 2, which is
implied by ∂2

∂x2 q̇
−1(v)|v=0 = 2, by Lemma 1. These observations lead us to define another set

of estimators nested within the BTE class (see Figure 1):

Definition 3 A Higher Order Efficient Bounded Tilting Estimator (EBTE) is a Bounded
Tilting Estimator with bounded tilting discrepancy function q that also satisfies:

a) q is four times continuously differentiable with Lipschitz fourth derivative in a neigh-
borhood of zero

b) ∂2

∂x2 q̇
−1(v)|v=0 = 2
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Hence, through the choice of q, one can construct an estimator that is robust to misspec-
ification under very weak moment existence conditions and that can achieve higher order
efficiency.

4 Suggested EBTE and Simulations

4.1 Suggested EBTE

We now give an example of a tilting function q̇−1 which gives a member in this EBTE
subclass. The tilting function must be strictly increasing and bounded. To find such a
candidate, it makes sense to look at CDFs over the entire real line that satisfy the necessary
Lipschitz differentiability criterion. However, the candidate must also satisfy the necessary
derivative conditions q∗(0) = 0, d

dx
q∗(0) = 1, d2

dx2 q
∗(0) = 1, and d3

dx3 q
∗(0) = 2, which translates

to q̇−1(0) = 1, d
dx
q̇−1(0) = 1 and d2

dx2 q̇
−1(0) = 2 by Lemma 1. The condition q∗(0) = 0 is

inconsequential because we simply normalize
∫ x

0
q̇−1(v)dv|x=0 = 0. This leaves us with 3

equations which must hold simultaneously. A simple family of CDFs which has a sufficient
number of adjustable parameters is a combination of the Cauchy and the Logistic CDFs:

q̇−1(x) =
2

π
arctan(

x− a

b
) + 1 +

2

1 + e−
x−c
d

,

with 4 adjustable parameters a, b, c, d. Our derivative conditions only place 3 constraints, so
we arbitrarily set c = ln(2)d, as this choice leads to a simpler closed form expression for the

remaining parameters: a =
√
3b, b =

2
√

6+5
√
3π−3

10π
and d =

2(2
√
3π+

√
6+5

√
3π)

9(
√
3π−2)

. We will call the

associated estimator the Cauchy-Logistic EBTE.

4.2 Monte Carlo Simulations

We will now explore how an estimator, based on our suggested tilting function, behaves in
simulations. We consider two setups. The first setup explores the higher order efficiency of
the proposed estimator, and is based on the design of Hall and Horowitz (1996). We use 13
i.i.d. sequences of independent random variables {{xi,j}ni=1}13j=1 where:

(xi,1, xi,2) ∼ N ([0, 0], 0.16I), xi,3 ∼ t5, xi,j ∼ χ2
1 j = 4, ..., 13.

We define h(θ, x, y) = exp(−0.72− θ(x+ y) + 3y)− 1 and implement four designs:

1) g(X, θ) = [h(θ,X1, X2), X2 h(θ,X1, X2)]
′

2) g(X, θ) = [h(θ,X1, X2), X2 h(θ,X1, X2), X3 h(θ,X1, X2), X4 h(θ,X1, X2)]
′

3) g(X, θ) = [h(θ,X1, X2), X2 h(θ,X1, X2), X4 h(θ,X1, X2), ..., X7 h(θ,X1, X2)]
′

4) g(X, θ) = [h(θ,X1, X2), X2 h(θ,X1, X2), X4 h(θ,X1, X2), ..., X13 h(θ,X1, X2)]
′.

In all cases, the parameter’s true value is θ0 = 3. Design 1 is symmetric, whereas Designs
2-4 impose skewness and an increase in kurtosis. Design 2 is as suggested by Ragusa (2011)
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Table 1: Bias, Variance, Median, and Inter-Quartile Range (IQR) of θ̂− θ0 for EL, ET, and
Cauchy-Logistic EBTE for n = 100 and 10000 replications

Design 1: n=100
Estimator EL ET Cauchy-Logistic

Bias 0.056 0.072 0.063
Variance 0.083 0.088 0.086
Median 0.033 0.048 0.039
IQR 0.382 0.388 0.385

Table 2: Bias, Variance, Median, and Inter-Quartile Range (IQR) of θ̂− θ0 for EL, ET, and
Cauchy-Logistic EBTE for n = 100 and 10000 replications

Design 2: n=100
Estimator EL ET Cauchy-Logistic

Bias 0.113 0.181 0.149
Variance 0.093 0.118 0.107
Median 0.087 0.144 0.115
IQR 0.340 0.430 0.418

and Designs 3 and 4 are adapted from Schennach (2007). We perform 10000 replications for
each design at n = 100 and n = 400. We discard the few samples where the estimators failed
to converge.1 The results are shown in the tables below, together with the same results for
EL and ET for comparison:

In Tables 1-8, we can see that our Cauchy-Logistic EBTE performs more in line with
the EL estimator than the ET, with the difference between the estimator performances
decreasing significantly with sample size, as expected, due to higher-order efficiency. As we
move from Design 1 and 2 to Designs 3 and 4 we see all three estimators performing worse
as a result of the increased skewness and kurtosis in the n = 100 designs. This effect is much
less noticeable in the n = 400 designs but still there nevertheless. Designs 1 and 2 were
based on Ragusa (2011) and the results are very similar to his for both the EL and the ET
estimators, while at the same time the Cauchy-Logistic EBTE performs approximately as

1This purely numerical artifact was detected by checking if providing three different starting points to
the optimization routine gave different optima.

Table 3: Bias, Variance, Median, and Inter-Quartile Range (IQR) of θ̂− θ0 for EL, ET, and
Cauchy-Logistic EBTE for n = 100 and 10000 replications

Design 3: n=100
Estimator EL ET Cauchy-Logistic

Bias 0.162 0.267 0.226
Variance 0.103 0.147 0.131
Median 0.137 0.222 0.188
IQR 0.409 0.462 0.442
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Table 4: Bias, Variance, Median, and Inter-Quartile Range (IQR) of θ̂− θ0 for EL, ET, and
Cauchy-Logistic EBTE for n = 100 and 10000 replications

Design 4: n=100
Estimator EL ET Cauchy-Logistic

Bias 0.284 0.450 0.399
Variance 0.127 0.213 0.182
Median 0.249 0.382 0.343
IQR 0.458 0.572 0.540

Table 5: Bias, Variance, Median, and Inter-Quartile Range (IQR) of θ̂− θ0 for EL, ET, and
Cauchy-Logistic EBTE for n = 400 and 10000 replications

Design 1: n=400
Estimator EL ET Cauchy-Logistic

Bias 0.019 0.022 0.019
Variance 0.020 0.020 0.020
Median 0.014 0.018 0.015
IQR 0.192 0.192 0.191

Table 6: Bias, Variance, Median, and Inter-Quartile Range (IQR) of θ̂− θ0 for EL, ET, and
Cauchy-Logistic EBTE for n = 400 and 10000 replications

Design 2: n=400
Estimator EL ET Cauchy-Logistic

Bias 0.031 0.053 0.039
Variance 0.020 0.021 0.021
Median 0.024 0.045 0.032
IQR 0.193 0.196 0.195

Table 7: Bias, Variance, Median, and Inter-Quartile Range (IQR) of θ̂− θ0 for EL, ET, and
Cauchy-Logistic EBTE for n = 400 and 10000 replications

Design 3: n=400
Estimator EL ET Cauchy-Logistic

Bias 0.046 0.085 0.064
Variance 0.021 0.023 0.022
Median 0.043 0.080 0.059
IQR 0.190 0.201 0.196
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Table 8: Bias, Variance, Median, and Inter-Quartile Range (IQR) of θ̂− θ0 for EL, ET, and
Cauchy-Logistic EBTE for n = 400 and 10000 replications

Design 4: n=400
Estimator EL ET Cauchy-Logistic

Bias 0.084 0.156 0.123
Variance 0.021 0.026 0.024
Median 0.079 0.148 0.115
IQR 0.195 0.216 0.206

Table 9: Standard deviations of EL, ET, and Cauchy-Logistic EBTE estimators for Models
C, M1 and M2 defined in the text with n = 1000

n=1000
Estimator EL ET ETEL Cauchy-Logistic
Model C 0.032 0.032 0.032 0.032
Model M1 0.054 0.031 0.038 0.028
Model M2 0.058 0.046 0.053 0.039

well as Ragusa’s Quartic Tilting estimator.
Our second simulation setup is specified to test how the estimators handle misspecifica-

tion. This setup was also used by both Ragusa and Schennach with moment function:

g(x, θ) = [x− θ, (x− θ)2 − 1]′.

Our random variable xi follows either a correctly specified model (we call this model C) or
one of two misspecified models (we call these models M1 and M2):

C : Xi ∼ N (0, 1)

M1 : Xi ∼ N (0, 0.64)

M2 : Xi ∼ (0.8)
1

2
t4,

where (1/2) t4 is a student t distribution with 4 degrees of freedom, suitably scaled to have
unit variance. To see how our Cauchy-Logistic estimator performs, we compare it to EL,
ET and ETEL. Our simulations consider 10000 replications with sample size n = 1000,
and 2000 replications with sample size n = 5000. The results are reported in Tables 9
and 10 respectively, where the standard deviations of the estimators are shown. We do
not report means or medians, because different estimators have different pseudo-true values
under misspecification, thus making it difficult to meaningfully compare such statistics.

Our Cauchy-Logistic EBTE performs as well as the other estimators in the well specified
model, as was also highlighted in the previous simulation setup. As expected, our EBTE
outperforms prior estimators in terms of standard deviation for all misspecified models. A
more specific analysis of robustness to misspecification can be carried out by comparing the
rate at which the standard deviation of θ̂ (denoted σθ̂) decays with sample size. We see that,
for both M1 and M2, EL exhibits little decay of σθ̂ with sample size. In contrast, for both
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Table 10: Standard deviations of EL, ET, and Cauchy-Logistic EBTE estimators for Models
C, M1 and M2 defined in the text with n = 5000

n=5000
Estimator EL ET ETEL Cauchy-Logistic
Model C 0.014 0.014 0.014 0.014
Model M1 0.052 0.014 0.019 0.012
Model M2 0.038 0.026 0.032 0.018

ET and ETEL, σθ̂ decreases with sample size by roughly the expected
√
5 factor between

n = 1000 and n = 5000 for Model M1 but not for Model M2. This reflects the fact that
the moment generating function of Xi exists in Model M1, while it does not in Model M2.
Furthermore, in the case of the EBTE estimator, σθ̂ decreases by roughly the expected

√
5

factor for both Models M1 and M2, which illustrates its robustness to misspecification under
weak moment existence conditions.

5 Conclusion

Since the introduction of Hansen’s GMM, researchers have sought ways to improve upon the
technique through the introduction of ECR estimators. Unfortunately, the search for the
“best member” of this subclass of estimators has been disappointing, as there are no members
which can satisfy the two requirements of robustness to misspecification and higher order
efficiency simultaneously. Prior suggestions to look beyond ECR came with the requirement
of strong assumptions on the DGP and moment condition function g.

Our approach borrows insights from Ragusa (2011) and Chaudhuri et al. (2023) and
focuses on a subclass of MD estimators which have a bounded tilting function (BTE) and
thus eliminate the need for strong assumptions to guarantee a solution to the asymptotic
tilting problem. By further narrowing our scope to members which satisfy a higher-order
derivative condition, we produce the EBTE class which is also higher-order efficient.

We observe that bounded tilting functions can be simply constructed from a combination
of scaled CDFs. In particular, we propose an example, which we call the Cauchy-Logistic
EBTE, and confirm its desirable properties under both correct specification and misspecifi-
cation through simulations.

While the EBTE class completes the search for the “best estimators” according to the
criteria considered here, it does not yet single out one best estimator. We hope, however,
that our results may pave the way for future research that aims to further narrow down the
class to yield additional optimality properties.
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