
POSTER: User-Controllable Congestion Mitigation for
Low-Latency Applications

Alexis Schlomer
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Adithya Abraham Philip
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Justine Sherry
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Zili Meng
HKUST

Hong Kong

CCS CONCEPTS
• Information systems → Multimedia streaming; • Networks
→ Transport protocols; Network measurement;

KEYWORDS
Computer networks, Internet fairness, Internet measurement, In-
ternet services, Real-time communications

ACM Reference Format:
Alexis Schlomer, Adithya Abraham Philip, Justine Sherry, and Zili Meng.
2024. POSTER: User-Controllable Congestion Mitigation for Low-Latency
Applications. In ACM SIGCOMM 2024 Conference (ACM SIGCOMM Posters
and Demos ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3672202.3673740

1 INTRODUCTION
Since the beginning of the decade, real-time communication (RTC)
protocols, including video conferencing applications, cloud gaming,
and VR/AR streaming, have rapidly expanded over the Internet.
With the eventual arrival of the metaverse, RTC tra�c is widely
anticipated to become the predominant type of Internet tra�c in
the near future [4, 9].

Due to their time-sensitive nature, these real-time applications
must meet strict quality of experience (QoE) standards. Users expect
low latency, high frame rates, minimal freezing, and high resolution.
While the average and median performance of these metrics has
improved with faster network speeds, their tail distribution remains
vastly insu�cient for the next generation of applications [6, 7].

The causes of poor tail QoE performance are diverse, ranging
from ine�ciencies in the congestion feedback signaling loop [6, 9]
to slow decode times at the frame reorder bu�er [7]. However,
this work speci�cally focuses on tail degradation caused by com-
peting tra�c, particularly web tra�c. The multi-�ow and bursty
tra�c patterns of web tra�c are especially detrimental to real-time
applications [5].

Current approaches address this problem through active queue
management schemes at the router level, prioritizing latency-sensitive

ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0717-9/24/08.
https://doi.org/10.1145/3672202.3673740

tra�c over other types [5]. However, these solutions are challeng-
ing to deploy and require kernel support [10]. Therefore, we explore
an alternative approach, examining what end-users can do inde-
pendently in user-space to mitigate the e�ects of competing tra�c.

We demonstrate that simple web browsing during a remote
video conferencing call can increase the number of experienced
freezes by a factor of 10x under a moderately constrained bot-
tleneck bandwidth setting. To alleviate this, we propose a novel
multi-�ow control mechanism that paces incoming HTTP tra�c in
user-space using the NFQueue Linux utility, preventing packet loss
at the router and mitigating the detrimental e�ects on RTC QoE.
Our approach reduces the average freeze frequency by 67% while
fully preserving the web browsing quality of experience.

2 DESIGN AND IMPLEMENTATION
To restrict the scope of our problem, we assume a single user simul-
taneously browsing the web and participating in an RTC meeting
on two monitors connected to the same client. This setup allows
us to make localized decisions more e�ectively, as we are the sole
source of tra�c and congestion at our bottleneck router. Although
this scenario may not re�ect all real-world conditions, it serves as
groundwork for the development of more complex protocols involv-
ing multiple household members collaborating to enhance their
collective QoE, which we identify as an area for future research.

Our design is based on observing that web page loads exhibit
bursty tra�c patterns, as the sender rapidly probes the network for
bandwidth (e.g., through slow start). This leads to temporary bu�er
over�ows at our "last-mile" bottleneck router, causing packet loss
for RTC �ows.

Figure 1: One user simultaneously attends an RTC meeting
on one monitor and browses the web on another. We employ
the NFQueue network library to pace the incoming HTTP
tra�c.

To address this, our core insight is to pace HTTP tra�c by intro-
ducing early packet loss. This avoids bu�er bloat and ensures room
for RTC �ows. Traditional �ow-control solutions are ine�ective, as

54

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3672202.3673740
https://doi.org/10.1145/3672202.3673740
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672202.3673740&domain=pdf&date_stamp=2024-08-05


ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia Schlomer et al.

web tra�c consists of multiple distinct �ows from di�erent sources.
Therefore, we implement a novel multi-�ow control mechanism.
This mechanism groups all incoming web tra�c �ows and starts
dropping packets when their arrival rate exceeds a threshold.

As shown in Fig. 1, we paced ingress HTTP tra�c using the
NFQueue Linux network utility. We redirected all incoming TCP &
QUIC tra�c from ports 443 and 80 to our rate limiter, implemented
in 150 lines of C++. NFQueue was chosen for its ability to run in
user-space, avoiding the need for kernel changes, and o�ers greater
extensibility and �exibility than tra�c control, albeit with a slightly
higher CPU load. The queue size was set to match the bandwidth-
delay product (BDP) of the rate shaping, assuming a �xed RTT of
50 ms and a user-de�ned bandwidth. Automatically determining
the optimal bandwidth limit is reserved for future work.

Finally, to test our design, we developed a custom testbed using
Google Chrome for Testing [8] on two virtual monitors, controlled
by Selenium [2]. We emulated our network settings with a FIFO
router transmitting over a moderately constrained bottleneck band-
width link of 50 Mbps using the tra�c control [3] utility directly
on the end host, with the default Linux queue size of 1000 packets.

3 EVALUATION
In this section, we �rst detail our experimental setup and how we
achieve statistical signi�cance before showcasing and discussing
our preliminary results.

3.1 Experimental Setup
We based our analysis on Microsoft Teams as the real-time appli-
cation and the Dailymail as the source of web tra�c, which is a
heavy website that uses multiple �ows.

The key QoE metrics we focused on for RTC are average freezes
per minute, speci�cally (1) low FPS events, de�ned as the frequency
of FPS dropping below 10 within a one-second window, as per
Zhuge [6], and (2) freezes as de�ned by the WebRTC standard [1],
which counts deviations from a moving average of FPS over a one-
second window. For web tra�c, we measured page load time (PLT)
as the time it takes for 95% of a page’s visible region to load [8]. The
webpage was loaded once every minute during the experiments.

We experimented with three scenarios: (1) the RTC service run-
ning alone, (2) alongside unpaced HTTP tra�c, and (3) alongside
paced HTTP tra�c at di�erent rates. To increase statistical signi�-
cance, each experiment was run 30 times in a round-robin fashion,
with a duration of 12 minutes per run, while excluding the �rst and
last 30 seconds.

3.2 Preliminary Results
To highlight the detrimental impact of periodic page loads on RTC
QoE, we plotted the aggregate CDFs of FPS (left) and the average
number of low FPS events per minute (right) under di�erent pacing
settings in Fig. 2. In both graphs, the dashed lines represent our
baseline performances.

Across all settings, the unpaced scenario performs signi�cantly
worse. Loading the Dailymail website during a Teams call increases
average RTC low FPS events by over 10x compared to the baseline.
Any pacing signi�cantly improves tail FPS, achieving up to a 67%
reduction in low FPS events from the baseline when pacing is

Figure 2: Aggregate CDFs and average low FPS events (i.e.
CDF  10) using di�erent pacing rates.

applied from 5 Mbps to 35 Mbps. Although the e�ect diminishes
with less aggressive pacing, it still shows a 42% improvement over
the baseline with 49 Mbps pacing on a 50 Mbps link.

Figure 3: Trade-o�s between web PLT and RTC freezes.

Next, we examine the impact of pacing HTTP ingress tra�c on
the page load time to identify the trade-o� between QoE. In Fig. 3,
we plot the achieved PLT against the number of freezes per minute
as per the WebRTC standard (left) and Zhuge (right) for selected
pacing scenarios. Both baselines are represented by dashed lines
(RTC alone) and a special point in orange (unpaced).

To our surprise, PLT only starts to seriously deteriorate once
pacing reaches 20 Mbps. Pacing above 20 Mbps remains well within
the 95% CI margin of error for unpaced PLT but signi�cantly im-
proves RTC QoE, resulting in about a 50% reduction in WebRTC
freezes and a 67% reduction in low FPS events at 20 Mbps.

4 CONCLUSION AND FUTUREWORK
In this work, we showed that careful pacing of incoming HTTP
tra�c at the end host using NFQueue can prevent packet loss of
RTC �ows over a moderately constrained bottleneck bandwidth
FIFO router. Our approach signi�cantly mitigates the detrimental
e�ects on QoE for real-time applications while preserving the web
browsing experience.

We establish our research agenda as follows:
(1) Adaptive Strategies: While our current hard-coded 20 Mbps

pacing strategy suits the current setup, it won’t work for all
scenarios. Therefore, the end-client should periodically probe
its bottleneck bandwidth to enable more adaptable strategies.
Furthermore, given that transient burstiness is the main factor
harming QoE of real-time �ows, we should dynamically adjust
the pacing and increase the bandwidth allocation for sustained
competing tra�c, similar to the approach used by Confucius in
its per-�ow bandwidth allocation scheme [5].

(2) Increased Generalizability: We could extend our insights to
the entire household by developing a protocol that coordinates
bandwidth usage to improve collective QoE and avoid con�icts
at the router.

55

https://www.dailymail.co.uk/home/index.html
https://www.dailymail.co.uk/home/index.html


ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES
[1] Identi�ers for webrtc’s statistics api. https://w3c.github.io/webrtc-stats/

#dom-rtcinboundrtpstreamstats-freezecount.
[2] Selenium. https://www.selenium.dev/.
[3] tc(8) - linux manual page. https://man7.org/linux/man-pages/man8/tc.8.html.
[4] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and

Keith Winstein. Salsify: Low-latency network video through tighter integration
between a video codec and a transport protocol. In Proc. USENIX NSDI, 2018.

[5] Zili Meng, Nirav Atre, Mingwei Xu, Justine Sherry, and Maria Apostolaki. Con-
fucius queue management: Be fair but not too fast. arXiv preprint 2310.18030,
2023.

[6] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry
Liu, and Mingwei Xu. Achieving Consistent Low Latency for Wireless Real Time

Communications with the Shortest Control Loop. In Proc. ACM SIGCOMM, 2022.
[7] Zili Meng, TingfengWang, Yixin Shen, BoWang, Mingwei Xu, Rui Han, Honghao

Liu, Venkat Arun, Hongxin Hu, and Xue Wei. Enabling high quality real-time
communications with adaptive frame-rate. In Proc. USENIX NSDI, 2023.

[8] Adithya Abraham Philip, Rukshani Athapathu, Ranysha Ware, Fabian Francis
Mkocheko, Alexis Schlomer, Mengrou Shou, Zili Meng, Srinivasan Seshan, and
Justine Sherry. Prudentia: Findings of an Internet Fairness Watchdog. In Proc.
ACM SIGCOMM, 2024.

[9] Devdeep Ray, Connor Smith, Teng Wei, David Chu, and Srinivasan Seshan. Sqp:
Congestion control for low-latency interactive video streaming. arXiv preprint
arXiv:2207.11857, 2022.

[10] Ammar Tahir and Radhika Mittal. Enabling users to control their internet. In
Proc. USENIX NSDI, pages 555–573, 2023.

56

https://w3c.github.io/webrtc-stats/#dom-rtcinboundrtpstreamstats-freezecount
https://w3c.github.io/webrtc-stats/#dom-rtcinboundrtpstreamstats-freezecount
https://www.selenium.dev/
https://man7.org/linux/man-pages/man8/tc.8.html

	1 Introduction
	2 Design and Implementation
	3 Evaluation
	3.1 Experimental Setup
	3.2 Preliminary Results

	4 Conclusion and Future Work
	References

