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Abstract

Compartmentalization decomposes a program into sepa-
rate parts with mediated interactions through compartment
interfaces—hiding information that would otherwise be ac-
cessible from a compromised component. Unfortunately,
most code was not developed assuming its interfaces as trust
boundaries. Left unchecked, these interfaces expose confused
deputy attacks where data flowing from malicious inputs
can coerce a compartment into accessing previously hidden
information on-behalf-of the untrusted caller.

We introduce a novel program analysis that models data
flows through compartment interfaces to automatically and
comprehensively find and measure the attack surface from
compartment bypassing data flows. Using this analysis we
examine the Linux kernel along diverse compartment bound-
aries and characterize the degree of vulnerability. We find
that there are many compartment bypassing paths (395/4394
driver interfaces have 22741 paths), making it impossible to
correct by hand. We introduce CIVSCOPE as a comprehen-
sive and sound approach to analyze and uncover the lower-
bound and potential upper-bound risks associated with the
memory operations in compartment boundary interfaces.
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1 Introduction

Monolithic applications comprise many components that
only require access to a small amount of runtime information.
Without internal isolation, a buggy or outright malicious
component can access any state within the environment, a
violation of the principle of least privilege [22]. Compart-
mentalization [28] [29], addresses this problem by decom-
posing the system into separate parts, allowing cooperation
through data sharing and RPC like interfaces. Unfortunately,
a compartment may export interfaces that allow data flow
paths from interface arguments to internal memory opera-
tions, letting untrusted callers influence pointers used in read
and write operations [3-5, 10, 18, 26]. These Compartment
Interfaces Vulnerabilities (CIVs) [10], operate as confused
deputies allowing abuse of a compartment’s privileges, com-
pletely bypassing compartment boundaries.

While compartmentalization has been a topic of explo-
ration for decades, little is known about how to measure
the potential threat of CIVs, the degree of CIVs for compart-
mentalized systems, or the severity of any given CIV. One
solution is to use the type system to automatically prevent
classes of CIVs [18] [14], but they neglect a wide range of
software written in unsafe languages (e.g. operating systems,
hypervisors, etc.). Recent work uses dynamic analysis on
unsafe code [5, 10], but fall short for broader generalizations.
They merely establish a lower bound for the number of CIVs
and lack a comprehensive method to assess the attack sur-
face or measure severity. A comprehensive characterization
requires a sound and complete method.

In this work, we aim to systematically and comprehen-
sively characterize the degree of compartment bypassing
data flows for compartments (code, data, and interfaces) in
complex software environments. Through a taint based static
analysis we are able to identify paths leading from compart-
ment interfaces to memory operations. The value of this
objective is that we can use this methodology to estimate
whether compartmentalization is even feasible and to what
degree interface complexity requires significant refactoring,.
Further, our work opens the door for comparing between
compartment configurations.
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Linux Core Kernel Compartment

1 /I Linux driver exploit

2 #include <linux/kernel.h>

3 extern int trace_parser_get_init(
4 struct trace_parser *parser, int size);
5 intinit_driver(void)

6 {

7 task = pid_task(find_vpid(pid),
8 PIDTYPE_PID);

9 struct trace_parser *ptr =

10  (struct trace_parser*)

11 &task->cred->uid.val;

12 trace_parser_get_init(ptr, 8);
12 return O;

13} }

/I kernel trace safe compartment
//kenrel/trace/trace.c

int trace_parser_get_init(struct
trace_parser “parser, int size) {

memset(parser, 0, sizeof(*parser));

Figure 1. A malicious driver exploits the exported interface of iso-
lated trace system and set uid to 0 for privilege escalation.

Our first contribution is a model and framework to auto-
matically find all instances of the CMDP compartmentaliza-
tion anti-pattern. An CMDP is a path from a compartmen-
talized interface that may influence the addresses, sizes, or
indices of memory operations. This anti-pattern covers a
broad range of compartmentalization weaknesses that can
lead to exploitation.

Our second contribution extends the CMDP analysis to
find unprotected paths. Some data flows from interfaces to
sensitive memory operations may have legitimate safeguards,
such as bounds checks before array indexing, that prevent
exploitation. Identifying unprotected paths exposes directly
exploitable flows that the developer must protect.

Our third contribution is a taxonomy for measuring the
severity of each CMDP, which enables systematic analysis
and measurement, and indicates the most powerful patterns
for exploitation, such as the getter/setter pattern introduced.

Our results indicate a large number of CMDPs in Linux
drivers and the core Linux kernel. In particular, the core linux
kernel exposes 648 interfaces, with 68 having a CMDP. These
68 interfaces contribute to a total of 24,900 unconditioned
paths out of 50,300 paths, which is nearly 49.5% of paths
being directly exploitable. It’s worth noting that the paths
include all possible CMDPs, even when starting from the
same source and ending at the same sink. Drivers expose 395
CMDP interfaces out of a total of 4,394. The 395 interfaces
account for a total of 19,555 out of 42,379, nearly 46.1% of
which are unconditioned.

2 Background and Threat Model

A compartmentalization is an assignment of program objects
and code to execution contexts that have full access to their
own code and data and sharing policies for exposing inter-
faces and objects to external compartments [1, 2, 4, 19, 27, 29].
Prior approaches have explored this model, such as KSplit [6]
for driver isolation in the Linux kernel, and other recent pro-
posals [8, 9, 11-13, 15, 17, 20, 21, 23, 24] aimed at introducing
isolation into the monolithic kernel. As indicated by prior
work, compartment interfaces expose dependencies that can
allow control over the compartment from others through
compartment interface vulnerabilities (CIVs) [10, 18].
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Figure 2. CIVScope Architecture: Source code is compiled into
Compartment Memory Dereference Paths. The new Compartment
Interface Weakness taxonomy maps CIWs to CIVs and is used to
characterize and measure threats.

The goal of this paper is to provide a framework for un-
derstanding and measuring the threat exposure provided by
a given compartment’s externally accessible state through
its interfaces. As such our threat model emphasizes a com-
partment centric view as opposed to a whole-system com-
partmentalization. This is necessary because many cases
of compartmentalization might not have access to source
code linking the objects or as systems evolves the callers
and sharing policies might change. As such, we assume that
an attacker may call any one of a compartment’s exposed
interfaces and provide any data object as an argument to
the interface in an attempt to abuse the privileges of the
called compartment to modify its internal objects. We do
not consider privileges to data outside of a compartment or
control that may be exerted over it through its externally
accessible objects.

As an example, consider the Linux core kernel as a com-
partment, including all code and data in the top level kernel
directory. Leveraging the exported trace interface (as de-
picted in Figure 1), trace_parser_get_init, a malicious device
driver can forge a pointer to the task_struct object and ask
trace_parser_get_init to set the uid to 0 on behalf of the inter-
face. Since the ftrace system has the authority to access any
object inside the core kernel, any driver can get root privilege
and escalate through this confused deputy interface.

While this example clearly makes a poor choice by includ-
ing the tracing system into the core kernel, such paths are
known to exist in many interfaces [16] and we must have a
systematic way of exposing them so at the very least these
interfaces are not chosen as compartment boundaries. Be-
yond knowing what not to choose, it would be best if we
provided a systematic characterization of such data flows to
expose the aggregate surface area of these exploits as well
as measure the power of each type of attack.

3 Model and Static Analysis

The CMDP analysis identifies all data flows from compart-
ment interfaces to sensitive memory dereferencing opera-
tions. Memory dereferences are key attack vectors that allow
an attacker to abuse a compartment as a confused deputy to
leak or corrupt its isolated memory. Figure 2 shows the key
components of our design: a taint analysis and a characteri-
zation of the tainted flows as described in section 4.
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3.1 Compartment Memory Dereference Path

Concretely, we model a compartment as a set of interfaces
that take inputs which could flow to critical memory opera-
tions, including the source, destination, and size parameters
of the memory operation. If this happens, the attacker with
control to the compartment interface could indirectly access
all the privileged data within the compartment. Informally,
an CMDP is a backward slice [30] from each sensitive mem-
ory operation to the calls of the compartment interfaces.

A Program Graph is a graph <V, E> where vertices are
program instructions and edges represent either a Data De-
pendency or Control Dependency. A Data Dependency exists
when the value of an instruction depends on a value pro-
duced by another: if the operand of the instruction is the
result from another instruction. A Control Dependency exists
between a control instruction (jmp, br, or call) and the target
instructions of its control transfer.

A CMDP is a path on the Program Graph that begins at a
compartment interface (i.e., setting the function argument
variables) and terminates at a memory dereference operation
or special memory operation function. Formally, the CMDP is
a backward slice S, of one vertex v € V by dataflow equation:

Sy ={o}U {0 € V|(v',0v") € Eandov” € S,}
such that v is a critical memory operation, including:

1. pointer dereference (load instruction)

2. pointer reference (store instruction)

3. calling memory operation functions (memset, memcpy,
memmove, strlen, strcpy, scanf, printf, snprintf, gets.)
and source, destination, size operands.

Each path is labeled conditioned if it goes through through
at least one control-flow operation, and {source, destination,
size] based on which memory operand was influenced.

3.2 Implementation and the Implication

We implement CMDP using a Program Dependency Graph
(PDG). The PDG captures both control and data dependen-
cies for every operation within the program, ensuring a
comprehensive examination of all possible paths and pro-
viding detailed debugging information such as conditioned
or unconditioned for each path. Imprecision may arise due
to indirect calls but will only effect the control dependen-
cies and not the data dependency paths. Consequently, our
results may include some false-positive paths, but certain
paths may be hard or nearly impossible to reach. Nonethe-
less, this imprecision in indirect call handling still enables
us to estimate the upper bound of CIVs that an interface can
potentially encounter.

Furthermore, we use a pointer analysis to identify whether
the possible targets of a memory dereference point at objects
allocated by code in the compartment. This allows char-
acterization of potential bad patterns later as described in
Section 4.3. We track the following kernel allocators:
kmalloc, kzalloc, krealloc, kmalloc_array, krealloc_array,
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vmalloc, vzalloc, kvmalloc_node, kmem_cache_create,
kmem_cache_create_usercopy, and kmem_cache_alloc.

4 Compartment Interface Weaknesses

To automatically reason about and quantify CIVs, we present
a taxonomy that classifies each CMDP based on its type and
severity. The taxonomy (overview in Table 1) naturally pro-
duces a method for automatically quantifying and charac-
terizing CIVs and can be used to measure the threat to a
compartment as well as indicate the complexity required
for refactoring. We present two CIV patterns that lead to
complete bypass that can be programmatically found.

4.1 Taxonomy

Adopting a similar model to describing classes of program
weaknesses (i.e., CWEs) and their exploitable instances as
vulnerabilties (i.e.,, CVEs), we introduce Compartment Inter-
face Weaknesses (CIWs). The specific class of CIW introduced
are compartment memory bypass CIWs, where an attacker
can influence the source, destination, or size of memory
operations. We present the following taxonomy that maps
CIWs to CIVs, which summarizes the severity of each path
type. We classify each based on how many operands it can
influence. Intuitively, the more operands controlled the more
powerful that path is. The most powerful is control over all
operands, which is effectively providing a getter/setter to
any objects the compartment has privilege to modify.

Source Pointer. Control of a source pointer allows an
attacker to perform the following:

e Unauthorized Data Access: An attacker can manip-
ulate the source pointer to access a different memory
location within the protected compartment. For example,
an invalid string without "\@’ in a strlen operation can
potentially leaking sensitive information if the length is
later used in a read operation.

e Injection Attacks: The use of eBPF interfaces in the
Linux kernel can create opportunities for injecting and
executing data as code [7]. By manipulating the source
pointer, an attacker may exploit this capability to execute
malicious code.

e Memory Disclosure: The source pointer can be used to
read sensitive information, such as encryption keys or
addresses of functions or variables, leading to memory
disclosure.

e TOCTOU: If the source pointer has a check at a certain
location and there is a data modification before the read
operation, it is possible for an attacker to exploit this
temporal violation. By leveraging the modified source,
the attacker may be able to bypass the original check.

Destination Pointer. The destination pointer in a mem-
ory operation allows writing to memory on behalf of the
protected compartment, and can be exploited to perform:
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Table 1. Taxonomy for Mapping Attacker Controlled Source, Destination, and Length Capabilities to CIVs

Control Capability Compartment Interface Vulnerability

src Point to anywhere src pointer with read permission Unauthorized Data Access, Injection Attacks, Data Corruption, De-
nial of Service (DoS), Memory Disclosure, TOCTOU, Control Flow
Hijack

dest Point to anywhere dest pointer for write permission Data Corruption, Buffer Overflow, Injection Attacks, Unauthorized
Memory Write, DoS, TOCTOU

len Arbitrary length for read or write Buffer Overflow, DoS, Data Leakage, Data Manipulation, Control
Flow Hijack

src+dest Point to anywhere src and dest pointer for read and write Memory Corruption, Arbitrary Memory Access, Data Leakage,
Pointer Manipulation, Code Execution

src+len Point to anywhere src pointer with the arbitrary length for read Buffer Overflow, DoS, Data Leakage, Memory Corruption, Access
Control Bypass, TOCTOU

dest+len Point to anywhere dest pointer with the arbitrary length for write | Buffer Overflow, Data Corruption, DoS, Arbitrary Memory Write,
Access Control Bypass, TOCTOU

src+dest+len | Point to anywhere for read and write with arbitrary length Arbitrary Memory Access, Memory Corruption and Exploitation,
Pointer Manipulation, Injection Attacks, Data Leakage and Manipu-
lation, TOCTOU

e Data Corruption: Manipulating the destination pointer
can lead to unintended writes to memory regions, result-
ing in data corruption. For example, if the attacker knows
the sk_buff memory address and exploits a CIV in memset
they can corrupt the sk_buff.

Buffer Overflow: By writing to the length field of the
protected compartment, an attacker can cause buffer over-
flow vulnerabilities.

Denial of Service (DoS): Modifying the destination
pointer to an invalid or inaccessible memory location can
cause the system to deadlock, infinitely loop, or crash.
TOCTOU: If the destination pointer is initially checked
before accessing the protected compartment but later
used without further validation, they can launch a TOC-
TOU.

Length. Manipulating the length operand can lead to the
following CIVs:

e Data Manipulation: By truncating or extending data
through the length pointer, an attacker can potentially
alter the system’s behavior or manipulate the data itself.

¢ Control Flow Hijack: Manipulating loop invariant or
bypassing checks through the length pointer can enable
an attacker to hijack the control flow of the program.

Combination of Operands The combination of these
three operands can lead to even more powerful attack capa-
bilities. If an attacker controls all three operands, they can
potentially execute multiple attack gadgets and do things
like privilege escalation or even more with the arbitrary
read/write anywhere.

4.2 Unchecked Pattern

To identify problematic patterns that may result in differ-
ent CIVs, we analyze the controlled source, destination, and
length. One major issue we observe for paths flowing to
the operands is the lack of sanity checks. When an inter-
face allows an argument flow to the source, destination or
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size, it implies the path is guaranteed to be exploitable and
can be mapped to the attack vectors in the taxonomy. Our
assumption is that anything beyond the compartment bound-
ary is susceptible to corruption, and the absence of a sanity
check translates to a high likelihood of true positive CIVs.
In such cases, attackers gain direct control over the source
destination or size and potentially exploit vulnerabilities for
unauthorized data access, injection attacks, data corruption,
memory disclosures, and other security risks within these
unchecked paths. The solution to secure these unchecked
paths involves implementing customized access policies.

However, it is important to note that even if a path has
an existing check, it does not guarantee to be safe from
CIVs. The correctness of the check itself must be verified.
Therefore, for paths with unverified checks, we provide an
upper-bound threat analysis, detailed in section 5.1.3. This
upper-bound threat analysis helps developers gain a com-
prehensive insight of the potential risks associated with the
capabilities exposed and the mapping CIVs. It also works as a
tool to evaluate the chosen compartment boundary safeness
to CIVs and help determine the optimal boundary configura-
tion that minimizes changes for compartmentalization while
enhancing security against CIVs.

4.3 Getter/Setter Pattern

The getter/setter pattern provides a complete data flow paths
as whom are allowed to assess the memory operations. Let’s
examine an example illustrated in Figure 3 to understand
how CIVSCOPE can identify the CMDP and analyze the in-
terface access pattern. In this scenario, we consider that the
trace file is isolated through file-level compartmentalization.
Since trace_parser_get_init has no check before the memset, it
makes sense to implement a sanity check that enforces a cus-
tomized policy to either whitelist or blacklist the malicious
access if chosen as the compartment interface. However, this
task is not straightforward and requires expert knowledge to
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——> Externally allocated object flow path
static int __ftrace_graph_open(
struct inode *inode, struct file *file,
struct ftrace_graph_data *fgd) { ...
fgd = kmalloc(sizeof(*fgd),
GFP_KERNEL); ...
if (trace_parser_get_init(&fgd->parser,
FTRACE_BUFF_MAX))

return -ENOMEM;
File Level Compartment Boundary

_____________________________________________________ NG

/I kernel/trace/trace.c
int ftrace_regex_open(...) {

—> Internally allacted object flow path

kernel/dma...

drivers/... ‘

,Yint trace_parser_get_init(
struct trace_parser *parser,
int size){ ...
memset(parser, 0,

sizeof(*parser));
-}

i.t.(ler = kzalloc(sizeof(*iter)),
GFP_KERNEL);
|f l(trace_parser_get_init(&iter—>parser),
FTRACE_BUFF_MAX)
kfree(iter);

Figure 3. Call paths of different allocation sites.

comprehend how the system functions interact and derive
the correct policy to safeguard the interface.

This is where CIVSCOPE can be helpful. It helps detect all
the whitelisted access paths and provides developers with
a comprehensive view how the interface check should be
implemented. As shown in Figure 3, CIVSCOPE analyzes
that there are two data paths permitted to use the memset
function: fgd originates from the object allocated in the ftrace
compartment and is defined as external to the trace file, while
the other is allocated inside the trace file itself, the iter object.
By displaying all potential internal and external object data
paths permitted to use the memory operation, we obtain a
complete understanding of the data flow for the memory
operation access policy. This information then assists devel-
opers in constructing the appropriate policy. We refer to this
as the getter/setter pattern which assists the analysis of data
flow for memory operations within interfaces.

5 Result and Discussion

5.1 Linux Compartmentalization Assessment

To assess the analysis result of CIVSCOPE, we have em-
ployed our methodology to analyze the Linux kernel, focus-
ing on the core kernel’s exported interfaces as compartment
boundaries. We start our analysis with memory operations
such as memcpy, memset, and etc. because these are the
most frequently exploited operations. By gaining a compre-
hensive understanding of the safety status of each system
with memory operations, we can then incrementally incor-
porate all memory dereferences, including load and store
instructions, into our assessment process as load and store
are more difficult mapping back to the source code level. This
incremental approach ensures a thorough examination of
potential vulnerabilities from the most easy to understand
memory operations and delves into all memory dereferences
later.

5.1.1 Unchecked Pattern A key insight from Figure 5 is
the distribution of checked and unchecked paths within the
Linux core kernel. The y-axis represents the distinct count
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static struct page *xdp_linearize_page(...
struct page *p, int offset, int page_off,
unsigned int *len) { ...
- struct page *page = alloc_page(GFP_ATOMIC);
+ int tailroom = SKB_DATA_ALIGN(
+ sizeof(struct skb_shared_info));
+ struct page *page;
+ if (page_off + *len + tailroom > PAGE_SIZE)
+ return NULL;
+ page = alloc_page(GFP_ATOMIC);
if (Ipage)
return NULL;
memcpy(page_address(page) + page_off,
page_address(p) + offset, *len);

)

Figure 4. Linux commit for the missing check before memcpy

30004 31.8% == Conditioned

Emm Unconditioned

33.4%

2500 1

2000 -

1500 1

Number of CMDPs

1000 4

500

memset memmove strlen

Sensitive Operation Names

memcpy strcpy

snprintf

Figure 5. The number of CMDP and conditioned/unconditioned
ratio for different memory operations in the core kernel.

of CMDP instances we have identified and the x-axis is the
memory operations tracked. In the case of unchecked paths,
this figure demonstrates how many of these paths can poten-
tially lead to CIVs as outlined in Table 1, with approximately
40these paths lacking sanity checks. Notably, a substantial
portion of these paths originates from the same interface
argument to the operand. This means that the same combi-
nation of (argument, operand) can generate multiple paths
due to various data flow scenarios. Our goal is to compre-
hensively enumerate and present all such paths because the
absence of conditioning in any one of these paths makes
it exploitable. Therefore, while the total count may appear
alarming, many of them originate from identical (argument,
operand) pairs, and exposing all of them is essential.

5.1.2 Getter and Setter Pattern We use the interface
pointer’s reference to private objects / (private objects +
public objects) ratio to indicate the getter or setter inter-
faces. By analyzing accessible private objects, developers
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Figure 6. The compatibility ratio is defined as the (number of paths
the CMDP pointer reference public objects)/(number of paths the
CMDP pointer reference to any objects). Almost all subsystem
interface shows the consistent ratio of 85%, indicating that the
pointers have the potential to reference the same set of objects.
Numbers are shown in log scale.

can easily identify which private objects are unintention-
ally exposed to external callers. Ideally, these interfaces
should only expose a subset of the private objects. Our
analysis show that only four interfaces in the core kernel
have the ratio as 1 while the others have the ratio of (303 /
(303+1858) = 0.14 in Figure 6. The four interfaces are trac-
ing_map_destroy, ftrace_create_filter_files, print_event_filter,
and audit_make_reply. In these cases, these interfaces ex-
plicitly permit external access to their private objects. If
these interfaces are selected as compartment boundaries, a
straightforward check policy can be established to confine
memory access solely within the memory range of the re-
spective compartment. This approach aligns with how these
functions are designed, which involve the management of
private objects. For the rest of the interfaces in the core ker-
nel, more fine grained access control needs to be done to
limit the interface to access only a subset of private objects.

5.1.3 Study of the Potential Risks To study the potential
risks associated with the CMDP, we perform a comparative
study of all subsystems in the Linux kernel and assess their
vulnerability to source, destination, and length pointer cor-
ruption. The objective of this study is to demonstrate the
safety of compartmentalizing different subsystems and de-
termine the level of effort required to protect these interfaces
from CIVs listed in Table 1.

First, we examine the CMDP count in Figure 7, along with
the ratio of conditioned paths to unconditioned paths. From
the unchecked pattern subsection, the unconditioned paths
are found to be exploitable. And CIVScope assists in identify-
ing these paths and alerts developers to address them before
using them as compartment interfaces. On the other hand,
conditioned paths cause a challenge in verifying whether
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Path Counts by Subdirectory and Fixable Ratio
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Figure 7. Conditioned/unconditioned ratio among subsystems in
Linux. The unconditioned paths indicates exploitable paths. A
higher ratio indicates a greater susceptibility to exploitation.

the conditioned branches are robust checks to stop all possi-
ble CIVs. To tackle this issue, we highlighted all paths with
conditioned and unconditioned checks and used Table 1 to
measure the potential risk among subsystems. The network
subsystem shows the highest ratio of unconditioned paths
and the largest number of CMDP. This suggests that when
compartmentalizing the network subsystem, operations such
as memcpy of network packets or other memory operations
require additional manual effort to secure the exposed inter-
faces.

Figure 8 provides insights into how each subsystems are
exposed to CIVs by showcasing the percentage of src, dest,
and len parameters. The more controlled elements, the larger
capability the attacker gets. This highlights the degrees of
susceptibility of each subsystem to different types of CIVs.
For instance, the crypto subsystem shows the highest ratio
of unchecked src+dest+len parameters, indicating that the
exposed interfaces within this subsystem are particularly
attractive targets for read/write anywhere gadgets.

5.2 Uncovering Existing Bugs

To assess the impact of CIVSCOPE we looked among the
recently patched vulnerabilities from the Linux kernel that
could be used to exploit a CIV in a theoretical compartmen-
talized scenario. Commit 853618d is one such example. The
code snippet in Figure 4 highlights the patch, which focuses
on the xdp_linearize_page function. This function passes
pointer type arguments to the memcpy function without any
checks. Given xdp_linearize_page as an isolation boundary,
CIVSCOPE identifies an CMDP equivalent to the vulnerabil-
ity introduced by the missing checks. Upon applying commit
853618d the path is no longer accessible to CIVs.
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Figure 8. Degree of Attacker-Controlled Operands in Linux Sub-
systems: This measure quantifies the percentage of exploitable
operands within each Linux subsystem. The greater the degree
of control operands, the higher the capability the subsystem gets
when exploited.

This is evidence that the absence of proper checks remains
a significant problem in Linux. Further, when we move to-
ward compartmentalizing Linux, the issue is much more pro-
nounced because we need to address the confused deputy
problem and all other CIVs.

6 Related Work

Compartment interface safety studies, ConfFuzz [10] is an
in-depth study on how CIVs can be used to exploit compart-
mentalized software. The authors use an in memory fuzzer
to find existing CIVs into commonly compartmentalized soft-
ware such as Apache modules and libssl [25].

However, fuzzing has limitations, such as issues with code
coverage, and may only uncover a relatively small portion of
true positives. Other limitations include lack of integration
with non-user space software such as the kernel and high
manual effort from the developer to analyze and fix identified
CIVs.

DUI [5] has similarities with our work, as both approaches
utilize static analysis approach, DUI analyzes at the binary
level and CIVSCOPE looks at LLVM IR level. DUT also lever-
ages the symbolic execution, and dynamic taint analysis to
identify pointer dereference vulnerabilities within compart-
ment interfaces. However, our work complements DUI in
several ways. Firstly, we extend the scope by examining true
positive instances of CIVs in unconditioned paths. Secondly,
we introduce a methodology to assess the safety of selected
compartment boundaries based on the count of identified
CMDP instances. Thirdly, we provide a taxonomy to map
the CIVs into attack vector categories as a way to examine
the severity of CMDP. Lastly, we provide a tool that refines
the focus on potentially exploitable memory dereference lo-
cations and suggests additional checkpoints to incrementally
secure interfaces.
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7 Conclusion

In conclusion, CIVScope aims to systematically identify and
address the CMDP. We introduce a tainted flow analysis
that identifies all CMDP resulting from dereferencing the
problematic pointers in memory operations. By applying
the analysis to the Linux core kernel, we discovered that 68
out of 648 exposed interfaces have data flows bypassing the
compartment boundaries. This finding highlights the imprac-
ticality of manually securing the CMDP. However, our work
offers a promising outcome, a significant number of paths
can be automatically identified, enabling the assessment of
potential interface risks.
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