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Abstract
Compartmentalization decomposes a program into sepa-

rate parts with mediated interactions through compartment

interfaces—hiding information that would otherwise be ac-

cessible from a compromised component. Unfortunately,

most code was not developed assuming its interfaces as trust

boundaries. Left unchecked, these interfaces expose confused

deputy attacks where data flowing from malicious inputs

can coerce a compartment into accessing previously hidden

information on-behalf-of the untrusted caller.

We introduce a novel program analysis that models data

flows through compartment interfaces to automatically and

comprehensively find and measure the attack surface from

compartment bypassing data flows. Using this analysis we

examine the Linux kernel along diverse compartment bound-

aries and characterize the degree of vulnerability. We find

that there are many compartment bypassing paths (395/4394
driver interfaces have 22741 paths), making it impossible to

correct by hand. We introduce CIVSCOPE as a comprehen-

sive and sound approach to analyze and uncover the lower-

bound and potential upper-bound risks associated with the

memory operations in compartment boundary interfaces.
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1 Introduction
Monolithic applications comprise many components that

only require access to a small amount of runtime information.

Without internal isolation, a buggy or outright malicious

component can access any state within the environment, a

violation of the principle of least privilege [22]. Compart-

mentalization [28] [29], addresses this problem by decom-

posing the system into separate parts, allowing cooperation

through data sharing and RPC like interfaces. Unfortunately,

a compartment may export interfaces that allow data flow

paths from interface arguments to internal memory opera-

tions, letting untrusted callers influence pointers used in read

and write operations [3–5, 10, 18, 26]. These Compartment

Interfaces Vulnerabilities (CIVs) [10], operate as confused

deputies allowing abuse of a compartment’s privileges, com-

pletely bypassing compartment boundaries.

While compartmentalization has been a topic of explo-

ration for decades, little is known about how to measure

the potential threat of CIVs, the degree of CIVs for compart-

mentalized systems, or the severity of any given CIV. One

solution is to use the type system to automatically prevent

classes of CIVs [18] [14], but they neglect a wide range of

software written in unsafe languages (e.g. operating systems,

hypervisors, etc.). Recent work uses dynamic analysis on

unsafe code [5, 10], but fall short for broader generalizations.

They merely establish a lower bound for the number of CIVs

and lack a comprehensive method to assess the attack sur-

face or measure severity. A comprehensive characterization

requires a sound and complete method.

In this work, we aim to systematically and comprehen-

sively characterize the degree of compartment bypassing

data flows for compartments (code, data, and interfaces) in

complex software environments. Through a taint based static

analysis we are able to identify paths leading from compart-

ment interfaces to memory operations. The value of this

objective is that we can use this methodology to estimate

whether compartmentalization is even feasible and to what

degree interface complexity requires significant refactoring.

Further, our work opens the door for comparing between

compartment configurations.
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1  // Linux driver exploit
2  #include <linux/kernel.h>
3  extern int trace_parser_get_init(
4  struct trace_parser *parser, int size);
5  int init_driver(void)
6  {
7     task = pid_task(find_vpid(pid), 
8     PIDTYPE_PID);
9     struct trace_parser *ptr =
10     (struct trace_parser*)
11   &task->cred->uid.val;
12   trace_parser_get_init(ptr, 8);
12   return 0;
13 }

// kernel trace safe compartment 
//kenrel/trace/trace.c
int trace_parser_get_init(struct 
trace_parser *parser, int size) {
    ....
    memset(parser, 0, sizeof(*parser));
    ...
}

Linux Core Kernel Compartment

Function call

Tainted object

Figure 1. A malicious driver exploits the exported interface of iso-

lated trace system and set uid to 0 for privilege escalation.

Our first contribution is a model and framework to auto-

matically find all instances of the CMDP compartmentaliza-

tion anti-pattern. An CMDP is a path from a compartmen-

talized interface that may influence the addresses, sizes, or

indices of memory operations. This anti-pattern covers a

broad range of compartmentalization weaknesses that can

lead to exploitation.

Our second contribution extends the CMDP analysis to

find unprotected paths. Some data flows from interfaces to

sensitivememory operationsmay have legitimate safeguards,

such as bounds checks before array indexing, that prevent

exploitation. Identifying unprotected paths exposes directly

exploitable flows that the developer must protect.

Our third contribution is a taxonomy for measuring the

severity of each CMDP, which enables systematic analysis

and measurement, and indicates the most powerful patterns

for exploitation, such as the getter/setter pattern introduced.

Our results indicate a large number of CMDPs in Linux

drivers and the core Linux kernel. In particular, the core linux

kernel exposes 648 interfaces, with 68 having a CMDP. These

68 interfaces contribute to a total of 24,900 unconditioned

paths out of 50,300 paths, which is nearly 49.5% of paths

being directly exploitable. It’s worth noting that the paths

include all possible CMDPs, even when starting from the

same source and ending at the same sink. Drivers expose 395
CMDP interfaces out of a total of 4,394. The 395 interfaces
account for a total of 19,555 out of 42,379, nearly 46.1% of

which are unconditioned.

2 Background and Threat Model

A compartmentalization is an assignment of program objects

and code to execution contexts that have full access to their

own code and data and sharing policies for exposing inter-

faces and objects to external compartments [1, 2, 4, 19, 27, 29].

Prior approaches have explored this model, such as KSplit [6]

for driver isolation in the Linux kernel, and other recent pro-

posals [8, 9, 11–13, 15, 17, 20, 21, 23, 24] aimed at introducing

isolation into the monolithic kernel. As indicated by prior

work, compartment interfaces expose dependencies that can

allow control over the compartment from others through

compartment interface vulnerabilities (CIVs) [10, 18].

Source to Sink Data Flow Extraction

Branch Conditioned
Information

Object Allocation
Information CIW CIV
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Compartment Memory Dereference
Path(CMDP) Analysis Characterizing CMDP

PatternsRisk Study

Taxonomy of CIWs and CIVs

Figure 2. CIVScope Architecture: Source code is compiled into

Compartment Memory Dereference Paths. The new Compartment

Interface Weakness taxonomy maps CIWs to CIVs and is used to

characterize and measure threats.

The goal of this paper is to provide a framework for un-

derstanding and measuring the threat exposure provided by

a given compartment’s externally accessible state through

its interfaces. As such our threat model emphasizes a com-

partment centric view as opposed to a whole-system com-

partmentalization. This is necessary because many cases

of compartmentalization might not have access to source

code linking the objects or as systems evolves the callers

and sharing policies might change. As such, we assume that

an attacker may call any one of a compartment’s exposed

interfaces and provide any data object as an argument to

the interface in an attempt to abuse the privileges of the

called compartment to modify its internal objects. We do

not consider privileges to data outside of a compartment or

control that may be exerted over it through its externally

accessible objects.

As an example, consider the Linux core kernel as a com-

partment, including all code and data in the top level kernel

directory. Leveraging the exported trace interface (as de-

picted in Figure 1), trace_parser_get_init, a malicious device

driver can forge a pointer to the task_struct object and ask

trace_parser_get_init to set the uid to 0 on behalf of the inter-

face. Since the ftrace system has the authority to access any

object inside the core kernel, any driver can get root privilege

and escalate through this confused deputy interface.

While this example clearly makes a poor choice by includ-

ing the tracing system into the core kernel, such paths are

known to exist in many interfaces [16] and we must have a

systematic way of exposing them so at the very least these

interfaces are not chosen as compartment boundaries. Be-

yond knowing what not to choose, it would be best if we

provided a systematic characterization of such data flows to

expose the aggregate surface area of these exploits as well

as measure the power of each type of attack.

3 Model and Static Analysis
The CMDP analysis identifies all data flows from compart-

ment interfaces to sensitive memory dereferencing opera-

tions. Memory dereferences are key attack vectors that allow

an attacker to abuse a compartment as a confused deputy to

leak or corrupt its isolated memory. Figure 2 shows the key

components of our design: a taint analysis and a characteri-

zation of the tainted flows as described in section 4.
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3.1 Compartment Memory Dereference Path
Concretely, we model a compartment as a set of interfaces

that take inputs which could flow to critical memory opera-

tions, including the source, destination, and size parameters

of the memory operation. If this happens, the attacker with

control to the compartment interface could indirectly access

all the privileged data within the compartment. Informally,

an CMDP is a backward slice [30] from each sensitive mem-

ory operation to the calls of the compartment interfaces.

A Program Graph is a graph <V, E> where vertices are

program instructions and edges represent either a Data De-
pendency or Control Dependency. A Data Dependency exists

when the value of an instruction depends on a value pro-

duced by another: if the operand of the instruction is the

result from another instruction. A Control Dependency exists

between a control instruction (jmp, br, or call) and the target
instructions of its control transfer.

A CMDP is a path on the Program Graph that begins at a

compartment interface (i.e., setting the function argument

variables) and terminates at a memory dereference operation

or special memory operation function. Formally, the CMDP is

a backward slice 𝑆𝑣 of one vertex 𝑣 ∈ 𝑉 by dataflow equation:

𝑆𝑣 = {𝑣} ∪ {𝑣 ′ ∈ 𝑉 | (𝑣 ′, 𝑣 ′′) ∈ 𝐸 and 𝑣 ′′ ∈ 𝑆𝑣}
such that 𝑣 is a critical memory operation, including:

1. pointer dereference (load instruction)

2. pointer reference (store instruction)

3. callingmemory operation functions (memset, memcpy,

memmove, strlen, strcpy, scanf, printf, snprintf, gets.)

and source, destination, size operands.

Each path is labeled conditioned if it goes through through

at least one control-flow operation, and {source, destination,
size} based on which memory operand was influenced.

3.2 Implementation and the Implication
We implement CMDP using a Program Dependency Graph

(PDG). The PDG captures both control and data dependen-

cies for every operation within the program, ensuring a

comprehensive examination of all possible paths and pro-

viding detailed debugging information such as conditioned

or unconditioned for each path. Imprecision may arise due

to indirect calls but will only effect the control dependen-

cies and not the data dependency paths. Consequently, our

results may include some false-positive paths, but certain

paths may be hard or nearly impossible to reach. Nonethe-

less, this imprecision in indirect call handling still enables

us to estimate the upper bound of CIVs that an interface can

potentially encounter.

Furthermore, we use a pointer analysis to identify whether

the possible targets of a memory dereference point at objects

allocated by code in the compartment. This allows char-

acterization of potential bad patterns later as described in

Section 4.3. We track the following kernel allocators:

kmalloc, kzalloc, krealloc, kmalloc_array, krealloc_array,

vmalloc, vzalloc, kvmalloc_node, kmem_cache_create,
kmem_cache_create_usercopy, and kmem_cache_alloc.

4 Compartment Interface Weaknesses

To automatically reason about and quantify CIVs, we present

a taxonomy that classifies each CMDP based on its type and

severity. The taxonomy (overview in Table 1) naturally pro-

duces a method for automatically quantifying and charac-

terizing CIVs and can be used to measure the threat to a

compartment as well as indicate the complexity required

for refactoring. We present two CIV patterns that lead to

complete bypass that can be programmatically found.

4.1 Taxonomy

Adopting a similar model to describing classes of program

weaknesses (i.e., CWEs) and their exploitable instances as

vulnerabilties (i.e., CVEs), we introduce Compartment Inter-
face Weaknesses (CIWs). The specific class of CIW introduced

are compartment memory bypass CIWs, where an attacker

can influence the source, destination, or size of memory

operations. We present the following taxonomy that maps

CIWs to CIVs, which summarizes the severity of each path

type. We classify each based on how many operands it can

influence. Intuitively, the more operands controlled the more

powerful that path is. The most powerful is control over all

operands, which is effectively providing a getter/setter to

any objects the compartment has privilege to modify.

Source Pointer. Control of a source pointer allows an

attacker to perform the following:

• Unauthorized Data Access: An attacker can manip-

ulate the source pointer to access a different memory

location within the protected compartment. For example,

an invalid string without ’\0’ in a strlen operation can

potentially leaking sensitive information if the length is

later used in a read operation.

• Injection Attacks: The use of eBPF interfaces in the

Linux kernel can create opportunities for injecting and

executing data as code [7]. By manipulating the source

pointer, an attacker may exploit this capability to execute

malicious code.

• Memory Disclosure: The source pointer can be used to

read sensitive information, such as encryption keys or

addresses of functions or variables, leading to memory

disclosure.

• TOCTOU: If the source pointer has a check at a certain

location and there is a data modification before the read

operation, it is possible for an attacker to exploit this

temporal violation. By leveraging the modified source,

the attacker may be able to bypass the original check.

Destination Pointer. The destination pointer in a mem-

ory operation allows writing to memory on behalf of the

protected compartment, and can be exploited to perform:
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Table 1. Taxonomy for Mapping Attacker Controlled Source, Destination, and Length Capabilities to CIVs

Control Capability Compartment Interface Vulnerability
src Point to anywhere src pointer with read permission Unauthorized Data Access, Injection Attacks, Data Corruption, De-

nial of Service (DoS), Memory Disclosure, TOCTOU, Control Flow

Hijack

dest Point to anywhere dest pointer for write permission Data Corruption, Buffer Overflow, Injection Attacks, Unauthorized

Memory Write, DoS, TOCTOU

len Arbitrary length for read or write Buffer Overflow, DoS, Data Leakage, Data Manipulation, Control

Flow Hijack

src+dest Point to anywhere src and dest pointer for read and write Memory Corruption, Arbitrary Memory Access, Data Leakage,

Pointer Manipulation, Code Execution

src+len Point to anywhere src pointer with the arbitrary length for read Buffer Overflow, DoS, Data Leakage, Memory Corruption, Access

Control Bypass, TOCTOU

dest+len Point to anywhere dest pointer with the arbitrary length for write Buffer Overflow, Data Corruption, DoS, Arbitrary Memory Write,

Access Control Bypass, TOCTOU

src+dest+len Point to anywhere for read and write with arbitrary length Arbitrary Memory Access, Memory Corruption and Exploitation,

Pointer Manipulation, Injection Attacks, Data Leakage and Manipu-

lation, TOCTOU

• Data Corruption: Manipulating the destination pointer

can lead to unintended writes to memory regions, result-

ing in data corruption. For example, if the attacker knows

the sk_buff memory address and exploits a CIV inmemset
they can corrupt the sk_buff.

• Buffer Overflow: By writing to the length field of the

protected compartment, an attacker can cause buffer over-

flow vulnerabilities.

• Denial of Service (DoS): Modifying the destination

pointer to an invalid or inaccessible memory location can

cause the system to deadlock, infinitely loop, or crash.

• TOCTOU: If the destination pointer is initially checked

before accessing the protected compartment but later

used without further validation, they can launch a TOC-

TOU.

Length. Manipulating the length operand can lead to the

following CIVs:

• Data Manipulation: By truncating or extending data

through the length pointer, an attacker can potentially

alter the system’s behavior or manipulate the data itself.

• Control Flow Hijack:Manipulating loop invariant or

bypassing checks through the length pointer can enable

an attacker to hijack the control flow of the program.

Combination of Operands The combination of these

three operands can lead to even more powerful attack capa-

bilities. If an attacker controls all three operands, they can

potentially execute multiple attack gadgets and do things

like privilege escalation or even more with the arbitrary

read/write anywhere.

4.2 Unchecked Pattern
To identify problematic patterns that may result in differ-

ent CIVs, we analyze the controlled source, destination, and

length. One major issue we observe for paths flowing to

the operands is the lack of sanity checks. When an inter-

face allows an argument flow to the source, destination or

size, it implies the path is guaranteed to be exploitable and

can be mapped to the attack vectors in the taxonomy. Our

assumption is that anything beyond the compartment bound-

ary is susceptible to corruption, and the absence of a sanity

check translates to a high likelihood of true positive CIVs.

In such cases, attackers gain direct control over the source

destination or size and potentially exploit vulnerabilities for

unauthorized data access, injection attacks, data corruption,

memory disclosures, and other security risks within these

unchecked paths. The solution to secure these unchecked

paths involves implementing customized access policies.

However, it is important to note that even if a path has

an existing check, it does not guarantee to be safe from

CIVs. The correctness of the check itself must be verified.

Therefore, for paths with unverified checks, we provide an

upper-bound threat analysis, detailed in section 5.1.3. This

upper-bound threat analysis helps developers gain a com-

prehensive insight of the potential risks associated with the

capabilities exposed and the mapping CIVs. It also works as a

tool to evaluate the chosen compartment boundary safeness

to CIVs and help determine the optimal boundary configura-

tion that minimizes changes for compartmentalization while

enhancing security against CIVs.

4.3 Getter/Setter Pattern

The getter/setter pattern provides a complete data flow paths

as whom are allowed to assess the memory operations. Let’s

examine an example illustrated in Figure 3 to understand

how CIVSCOPE can identify the CMDP and analyze the in-

terface access pattern. In this scenario, we consider that the

trace file is isolated through file-level compartmentalization.

Since trace_parser_get_init has no check before thememset, it
makes sense to implement a sanity check that enforces a cus-

tomized policy to either whitelist or blacklist the malicious

access if chosen as the compartment interface. However, this

task is not straightforward and requires expert knowledge to
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Internally allacted object flow path

Externally allocated object flow path

File Level Compartment Boundary

kernel/dma... drivers/... ...

// kernel/trace/trace.c
int ftrace_regex_open(...) {
  ...
  iter = kzalloc(sizeof(*iter)),
           GFP_KERNEL);
  ...
  if (trace_parser_get_init(&iter->parser),
      FTRACE_BUFF_MAX){
     kfree(iter);
  ...

// Kernel/trace/ftrace.c
static int __ftrace_graph_open(
  struct inode *inode, struct file *file,
  struct ftrace_graph_data *fgd) { ...
  fgd = kmalloc(sizeof(*fgd),
  GFP_KERNEL); ...
  if (trace_parser_get_init(&fgd->parser,
    FTRACE_BUFF_MAX))
    return -ENOMEM;

// kernel/trace/trace.c
int trace_parser_get_init(
  struct trace_parser *parser,
  int size) { ...
  memset(parser, 0,
               sizeof(*parser));
  ... }

Figure 3. Call paths of different allocation sites.

comprehend how the system functions interact and derive

the correct policy to safeguard the interface.

This is where CIVSCOPE can be helpful. It helps detect all

the whitelisted access paths and provides developers with

a comprehensive view how the interface check should be

implemented. As shown in Figure 3, CIVSCOPE analyzes

that there are two data paths permitted to use the memset
function: fgd originates from the object allocated in the ftrace
compartment and is defined as external to the trace file, while
the other is allocated inside the trace file itself, the iter object.
By displaying all potential internal and external object data

paths permitted to use the memory operation, we obtain a

complete understanding of the data flow for the memory

operation access policy. This information then assists devel-

opers in constructing the appropriate policy. We refer to this

as the getter/setter pattern which assists the analysis of data

flow for memory operations within interfaces.

5 Result and Discussion
5.1 Linux Compartmentalization Assessment
To assess the analysis result of CIVSCOPE, we have em-

ployed our methodology to analyze the Linux kernel, focus-

ing on the core kernel’s exported interfaces as compartment

boundaries. We start our analysis with memory operations

such as memcpy, memset, and etc. because these are the

most frequently exploited operations. By gaining a compre-

hensive understanding of the safety status of each system

with memory operations, we can then incrementally incor-

porate all memory dereferences, including load and store

instructions, into our assessment process as load and store

are more difficult mapping back to the source code level. This

incremental approach ensures a thorough examination of

potential vulnerabilities from the most easy to understand

memory operations and delves into all memory dereferences

later.

5.1.1 Unchecked Pattern A key insight from Figure 5 is

the distribution of checked and unchecked paths within the

Linux core kernel. The y-axis represents the distinct count

static struct page *xdp_linearize_page(...
    struct page *p, int offset, int page_off,
    unsigned int *len) { ...
- struct page *page = alloc_page(GFP_ATOMIC);
+ int tailroom = SKB_DATA_ALIGN(
+                       sizeof(struct skb_shared_info));
+ struct page *page;
+ if (page_off + *len + tailroom > PAGE_SIZE)
+    return NULL;
+ page = alloc_page(GFP_ATOMIC);
  if (!page)
    return NULL;
  memcpy(page_address(page) + page_off,
  page_address(p) + offset, *len);
  ... }

Figure 4. Linux commit for the missing check before memcpy

memset memcpy memmove strlen strcpy snprintf
Sensitive Operation Names
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Figure 5. The number of CMDP and conditioned/unconditioned

ratio for different memory operations in the core kernel.

of CMDP instances we have identified and the x-axis is the

memory operations tracked. In the case of unchecked paths,

this figure demonstrates how many of these paths can poten-

tially lead to CIVs as outlined in Table 1, with approximately

40these paths lacking sanity checks. Notably, a substantial

portion of these paths originates from the same interface

argument to the operand. This means that the same combi-

nation of (argument, operand) can generate multiple paths

due to various data flow scenarios. Our goal is to compre-

hensively enumerate and present all such paths because the

absence of conditioning in any one of these paths makes

it exploitable. Therefore, while the total count may appear

alarming, many of them originate from identical (argument,

operand) pairs, and exposing all of them is essential.

5.1.2 Getter and Setter Pattern We use the interface

pointer’s reference to private objects / (private objects +

public objects) ratio to indicate the getter or setter inter-

faces. By analyzing accessible private objects, developers
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Figure 6. The compatibility ratio is defined as the (number of paths

the CMDP pointer reference public objects)/(number of paths the

CMDP pointer reference to any objects). Almost all subsystem

interface shows the consistent ratio of 85%, indicating that the

pointers have the potential to reference the same set of objects.

Numbers are shown in log scale.

can easily identify which private objects are unintention-

ally exposed to external callers. Ideally, these interfaces

should only expose a subset of the private objects. Our

analysis show that only four interfaces in the core kernel

have the ratio as 1 while the others have the ratio of (303 /

(303+1858) = 0.14 in Figure 6. The four interfaces are trac-
ing_map_destroy, ftrace_create_filter_files, print_event_filter,
and audit_make_reply. In these cases, these interfaces ex-

plicitly permit external access to their private objects. If

these interfaces are selected as compartment boundaries, a

straightforward check policy can be established to confine

memory access solely within the memory range of the re-

spective compartment. This approach aligns with how these

functions are designed, which involve the management of

private objects. For the rest of the interfaces in the core ker-

nel, more fine grained access control needs to be done to

limit the interface to access only a subset of private objects.

5.1.3 Study of the Potential Risks To study the potential

risks associated with the CMDP, we perform a comparative

study of all subsystems in the Linux kernel and assess their

vulnerability to source, destination, and length pointer cor-

ruption. The objective of this study is to demonstrate the

safety of compartmentalizing different subsystems and de-

termine the level of effort required to protect these interfaces

from CIVs listed in Table 1.

First, we examine the CMDP count in Figure 7, along with

the ratio of conditioned paths to unconditioned paths. From

the unchecked pattern subsection, the unconditioned paths

are found to be exploitable. And CIVScope assists in identify-

ing these paths and alerts developers to address them before

using them as compartment interfaces. On the other hand,

conditioned paths cause a challenge in verifying whether

kernel driver lib mm net crypto
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Figure 7. Conditioned/unconditioned ratio among subsystems in

Linux. The unconditioned paths indicates exploitable paths. A

higher ratio indicates a greater susceptibility to exploitation.

the conditioned branches are robust checks to stop all possi-

ble CIVs. To tackle this issue, we highlighted all paths with

conditioned and unconditioned checks and used Table 1 to

measure the potential risk among subsystems. The network

subsystem shows the highest ratio of unconditioned paths

and the largest number of CMDP. This suggests that when

compartmentalizing the network subsystem, operations such

as memcpy of network packets or other memory operations

require additional manual effort to secure the exposed inter-

faces.

Figure 8 provides insights into how each subsystems are

exposed to CIVs by showcasing the percentage of src, dest,

and len parameters. The more controlled elements, the larger

capability the attacker gets. This highlights the degrees of

susceptibility of each subsystem to different types of CIVs.

For instance, the crypto subsystem shows the highest ratio

of unchecked src+dest+len parameters, indicating that the

exposed interfaces within this subsystem are particularly

attractive targets for read/write anywhere gadgets.

5.2 Uncovering Existing Bugs

To assess the impact of CIVSCOPE we looked among the

recently patched vulnerabilities from the Linux kernel that

could be used to exploit a CIV in a theoretical compartmen-

talized scenario. Commit 853618d is one such example. The

code snippet in Figure 4 highlights the patch, which focuses

on the xdp_linearize_page function. This function passes

pointer type arguments to thememcpy function without any

checks. Given xdp_linearize_page as an isolation boundary,

CIVSCOPE identifies an CMDP equivalent to the vulnerabil-

ity introduced by the missing checks. Upon applying commit

853618d the path is no longer accessible to CIVs.
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Figure 8. Degree of Attacker-Controlled Operands in Linux Sub-

systems: This measure quantifies the percentage of exploitable

operands within each Linux subsystem. The greater the degree

of control operands, the higher the capability the subsystem gets

when exploited.

This is evidence that the absence of proper checks remains

a significant problem in Linux. Further, when we move to-

ward compartmentalizing Linux, the issue is much more pro-

nounced because we need to address the confused deputy

problem and all other CIVs.

6 Related Work
Compartment interface safety studies, ConfFuzz [10] is an

in-depth study on how CIVs can be used to exploit compart-

mentalized software. The authors use an in memory fuzzer

to find existing CIVs into commonly compartmentalized soft-

ware such as Apache modules and libssl [25].

However, fuzzing has limitations, such as issues with code

coverage, and may only uncover a relatively small portion of

true positives. Other limitations include lack of integration

with non-user space software such as the kernel and high

manual effort from the developer to analyze and fix identified

CIVs.

DUI [5] has similarities with our work, as both approaches

utilize static analysis approach, DUI analyzes at the binary

level and CIVSCOPE looks at LLVM IR level. DUI also lever-

ages the symbolic execution, and dynamic taint analysis to

identify pointer dereference vulnerabilities within compart-

ment interfaces. However, our work complements DUI in

several ways. Firstly, we extend the scope by examining true

positive instances of CIVs in unconditioned paths. Secondly,

we introduce a methodology to assess the safety of selected

compartment boundaries based on the count of identified

CMDP instances. Thirdly, we provide a taxonomy to map

the CIVs into attack vector categories as a way to examine

the severity of CMDP. Lastly, we provide a tool that refines

the focus on potentially exploitable memory dereference lo-

cations and suggests additional checkpoints to incrementally

secure interfaces.

7 Conclusion
In conclusion, CIVScope aims to systematically identify and

address the CMDP. We introduce a tainted flow analysis

that identifies all CMDP resulting from dereferencing the

problematic pointers in memory operations. By applying

the analysis to the Linux core kernel, we discovered that 68
out of 648 exposed interfaces have data flows bypassing the

compartment boundaries. This finding highlights the imprac-

ticality of manually securing the CMDP. However, our work

offers a promising outcome, a significant number of paths

can be automatically identified, enabling the assessment of

potential interface risks.
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