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ABSTRACT
Modern applications combine multiple components into single
processes, leading to complex tradeoffs between isolation, perfor-
mance, and programmability. We present the Endoprocess, a unique,
microkernel-based approach for protection within process spaces.
An endoprocess safely multiplexes process resources by export-
ing a low-level abstraction, the subprocess, that is transparently
overlaid on existing process interfaces (like mmap, mprotect, etc),
and provides extensibility and programmability through custom
application-layer modules. We report experimental results of an
initial prototype and highlight several application domains. Overall,
the endoprocess presents a path for protection within processes
while remaining compatible with existing OS abstractions and mul-
tiplexing them in a secure and extensible way.

CCS CONCEPTS
• Security and privacy → Systems security; Software and
application security.

KEYWORDS
Language based security, Access control systems, Subprocess isola-
tion, Compartmentalization, OS virtualization

ACM Reference Format:
Fangfei Yang,Weijie Huang, Kelly Kaoudis, Anjo Lucas Vahldiek-Oberwagner,
and Nathan Dautenhahn. 2023. Endoprocess: Programmable and Extensi-
ble Subprocess Isolation. In New Security Paradigms Workshop (NSPW ’23),
September 18–21, 2023, Segovia, Spain. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3633500.3633507

1 INTRODUCTION
The Process is no longer a meaningful way to isolate and manage
resources within modern applications. Adopted by all early operat-
ing system designs [12]—micro, mono, and Multics alike—today’s
process environment is a security nightmare. Most processes, even
those running applications written in safe languages, contain un-
safe components that lead to bugs allowing attackers to leak data,
modify runtime state, or commandeer execution [1, 6, 29, 42, 54].
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Figure 1: The Endoprocess Approach. An endoprocess is a process
retrofitted with a nested monitor, the endokernel, that exports the
subprocess. The subprocess can be used directly or safely extended
outside the endokernel to support customized in-process protection.

As well, supply chain attacks have become a serious problem as pro-
grammers prioritize quickly adding features over security [8, 24, 64],
including in safe languages like Rust [21]. Beyond over-privileged
and buggy runtimes, emerging software paradigms combine mutu-
ally distrusting components into single process spaces without isola-
tion, such as browsers, serverless [16, 50], heterogeneous language
runtimes [19, 40], and user-space operating systems [28, 34, 56].

Since the modern process is a multiprogramming [12] runtime,
there is need for subprocess access control protections.While process-
level access control systems like SELinux [52] could provide the
right abstraction, the mechanism cannot isolate within a process be-
cause it cannot distinguish between subprocess entities. Extending
the OS to include a subprocess is untenable. Modifying the kernel to
support subprocess isolation would tightly couple the application
and OS by pushing application-level concerns and abstractions into
kernelspace [15], could make the OS less secure [55], and would
introduce costly context-switching overheads.

Alternatively, a security monitor can be nested within the pro-
cess, leading to simpler and more efficient intra-process access con-
trols [17, 20, 23, 45, 49, 57, 59, 63]. Prior nested subprocess monitors
tailor their abstraction to a particular isolated application and/or OS,
limiting programmability and flexibility, while also forcing applica-
tion operators to choose between security or compatibility because
they neglect to securely emulate necessary OS interfaces [10, 26].

We present the Endoprocess (Figure 1), a novel process organi-
zation for securely nesting protection within a process space. The
endoprocess monitor, the endokernel, exports a low-level subprocess
abstraction that overlays existing process interfaces (like mmap,
mprotect, etc) to safelymultiplex process resources for intra-process
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entities. The endokernel provides extensibility and programmabil-
ity through a translation layer that maps custom application-layer
abstractions to the low-level subprocess interface without compro-
mising the endokernel. The endokernel is nested within a process
and designed so that it can safely isolate subprocesses while sup-
porting non-bypassable, backwards-compatible emulation of OS
interfaces, not conflicting with process-level protections, and re-
maining portable to different isolation mechanisms.

Our prototype, Little Mac, uses a lightweight mechanism (Intel®
MPK) for isolating the endokernel and its subprocesses, and intro-
duces a new syscall monitor that is thread safe, nested and ensures
mediation. In Little Mac we introduce customized virtual privilege
rings that aid in least-privilege refactoring, where complex resource
sharing makes it practically impossible otherwise. By assigning a
subprocess to one of three privilege levels and labeling code and
data that belongs-to the subprocess, the Endoprocess automatically
transforms and isolates.

2 MOTIVATION
In this section, we present a motivating use case, its threat model,
and describe why current access control systems are insufficient
for isolating within processes.

2.1 Least-Privilege Compartmentalization
Consider a web server that multiplexes client requests within a sin-
gle process. For example, an NGINX worker process receives HTTP
requests from distinct clients. The worker process independently
parses and routes each message (with regard to authentication and
authorization logic as applicable) to find and return the requested
resource to the correct client. Resources at the application level
either reside in process-accessible memory, or are accessible locally
or remotely through file or socket descriptors e.g., client data or
server configuration on the file system; or resources like databases
located on backing servers.

A remote attacker could send a crafted request that exploits a
buffer overflow in the parser and launches a code-reuse attack. Such
a malicious client gains access to all runtime data that the worker
process is authorized to access, even data belonging to other clients,
the web server runtime, or other system users. This data can then
be exfiltrated through abuse of the server’s network privileges. This
means that the attacker has gained the local system privileges of
the user that the process runs on-behalf-of.

One way to stop this privilege escalation is through enforcing
least-privilege security policies that decompose the runtime into
parts that can only access the state required to do their job. This
limits the resources and memory the attacker can access, and re-
duces the possibility of lateral movement to other components of
the system. For example, when processing a given HTTP request,
an HTTP header parser may only need read access to an in-memory
data structure containing the request headers. A clear policy re-
stricts parser privileges to only reading the header data structure.
This way, if compromised, the HTTP header parser cannot interact
with any other memory in the process, nor inject code, nor read
files, nor send messages on the network.

2.2 Threat Model
We assume any component within a process may have exploitable
vulnerabilities or be directly malicious. We assume that some op-
erations (file operations, memory mappings, networking, etc.) can
by design invoke privilege escalations [10] that bypass compo-
nents’ memory protections. An attacker can escalate their privilege
through exploiting some component within a process. From this
privilege escalation the attacker may gain read or write access
to the entire process’ memory space; or they may gain ability to
launch data-only attacks without full control; or they may gain the
ability to execute code on-behalf-of the system user that the current
process runs as; or they may gain access to any system resources
that the current user has authorization to access. The goal of an
endoprocess is to prevent these intra-process privilege escalations.

The operating system, hardware platform, and monitor are part
of the Trusted Computing Base, and assumed bug free and to have
no backdoors. Side-channel attacks are considered out of scope.
Finally, we assume developers can identify application components,
annotate each component with the correct policy, and define appro-
priate boundaries, privilege restrictions, and data sharing policies.

2.3 Process Isolation Limitations
While being operated on, application and user state resides in run-
time memory and is otherwise stored persistently on disk. Oper-
ating systems isolate runtime data using virtual memory (address
space) and persistent data using file and network based access con-
trol systems. Typically, an operating system provides discretionary
access controls (DAC) that enable data owners to specify policies
on which users, groups, and applications are permitted to access
persistent data. Supplementing DAC, modern process-level pro-
tections evolved Mandatory Access Control (MAC) systems like
SELinux, TrustedBSD, and AppArmor. Administrators configure
system-wide MAC policies that operate at a process-level granular-
ity. Since these these mechanisms operate at the process level, they
cannot isolate sensitive resources running inside a process from a
compromised component in the same process.

One approach to providing access controls for application com-
partments is to privilege separate [46] the application into multi-
ple processes and use address-spaces to isolate the runtime state
and existing access control mechanisms to isolate persistent data.
Coarse-grained least-privilege [48] protections following such an
approach have previously been applied to web browsers and cryp-
tographic libraries [3, 22]. Unfortunately, attackers operate at the
granularity of individual program objects, which requires much
more efficient isolation than even state of the art process-level mech-
anisms provide [17, 23, 45, 49, 57, 59]. Each component within the
process can access the full process address space, so we must also
isolate exploitable components within the process at subprocess
granularity.

2.4 In-Process Monitor Limitations
Several research and industry solutions have made great strides to-
wards efficient, in-process isolation [17, 20, 23, 44, 45, 49, 57, 59, 63].
The core idea is to combine fast isolation hardware with a light-
weight security monitor that isolates memory between subprocess
components. This means that a particular component of a web
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server, like an HTTP header parser, can be placed in a memory
sandbox. Any request for memory outside of the sandbox will be
denied based on a fine-grained access control policy.

Unfortunately, modern operating systems expose runtime state
through interfaces that allow the monitor to be bypassed [2, 10,
20, 26, 44, 59, 63]. For example, POSIX allows access to runtime
memory through the /proc/self/mem pseudo-filesystem interface,
which can corrupt or leak monitor state as depicted in the following
pseudocode:

open("/proc/self/mem","r").seek(s).read(0x10)

One approach is to deny interface access, as in intra-app sand-
boxing [17, 43, 60, 62], but such work indiscriminately denies all
interface access. Denying all interface access means that the moni-
tor cannot be inserted, nor isolate itself, nor allow application-level
authorized use of any interface, limiting the applications of such
systems to sandboxing only.

Distinct from the clear need to isolate the monitor, subprocesses
require the ability to have multiplexed access to some, but not all,
system interfaces. For example, in an application using OpenSSL
for cryptographic functionality, only the OpenSSL library needs
access to the key files stored in the user’s .ssh directory. The rest
of the application, and indeed the rest of the process running the
application, does not need this access. Prior systems cannot enforce
such a restriction because the main part of the application still
requires use of the filesystem.

Finally, the abstractions that security monitors in prior work pro-
vide for specifying access control policies are bespoke and require
significant security and domain-specific application expertise to use
effectively. Specifying and maintaining such policies is extremely
costly, if possible at all for a typical developer or administrator.

3 ENDOPROCESS ORGANIZATION
An endoprocess is a process that includes a nested security moni-
tor, the endokernel, that exposes a universal subprocess abstraction.
Developers can directly implement a diverse array of access control
policies by placing components into subprocesses, which are medi-
ated by the endokernel. It is also possible to extend the Endoprocess
with policy languages, isolation abstractions, and support libraries
to simplify creating and maintaining access control policies. Poli-
cies are mapped to subprocess protections through a translator. We
depict the endoprocess structure in Figure 2.

3.1 Design Principles
We argue that a practical and generally useful subprocess access
control framework must: (1) enable operators to write and apply
common-sense, component-level access control policies (2) without
unnecessarily restricting the flexibility or integrity of the applica-
tion or the in-process monitor, that are (3) uniformly enforced at the
system layer. These requirements embody a microkernel-inspired
approach to subprocess access control, and guide our design choices.

Least-Effort Programmability and Maintainability. Firstly, a ma-
jor challenge in making it attractive to retrofit an application to
run in an endoprocess is minimizing the level of effort required
to leverage the new abstractions. If the total effort required is too

much, then writing an isolation policy and any subsequent main-
tenance will not be practical. Since the access control mechanism
may not be available everywhere a modified application will run,
or developers may attempt to run unmodified applications on the
architecture, the most maintainable approaches will transparently
execute either unmodified applications on the architecture, or modi-
fied applications without the architecture. However, such a method
can add maintenance overhead in order to support cases where the
protection mechanism may not be available. That is, if the approach
requires modifying code to call a runtime library that implements
the abstraction, then the translator must remove the dialect code if
no protection mechanism is available. We find that the application
developer is best suited to specify their own application access
control policies [11]. We require a lightweight annotation dialect
that application developers can write with minimal effort, that can
be systematically lowered using standard compilation toolchains.

Avoid Unnecessary Coupling For Flexibility. Secondly, existing
approaches strongly and unnecessarily couple the application and
system layers of the runtime environment [9, 17, 35], hardcod-
ing application-specific functionality into the monitor and making
sweeping changes to the OS and application that limit their flexibil-
ity. This eliminates potential for competing implementations of an
abstraction, and for easy extensibility. Reusing the common core of
such a system is not possible, as each new runtime requires signifi-
cant, error-prone portingwork. Configuring these prior systems can
require adding untrusted code to the monitor, broadening system-
layer attack surface. Applications typically include components
with unique needs for isolation, performance, and programmability.
The protection system must be flexible and expressive enough to
systematically support these needs.

Retain FunctionalityWithout Compromising Security. Finally, prior
works that utilize a security monitor not only tightly couple it to
a specific application and runtime, they map application level ab-
stractions to the system layer in ways that neglect critical security
or functionality needs. For example, many prior subprocess-level
isolation mechanisms implement some form of memory isolation,
but these systems often neglect preventing memory access through
system interfaces [34, 49, 57], or memory can leak through OS in-
terfaces like /self/proc/mem [10]. There is also a general lack of
support for commonplace functionality most modern applications
leverage like multi-threading, process control, and signals. Overall,
we observe a lack of systematic analysis of required functionality
and associated security needs in prior work. A general purpose in-
process security monitor and protection framework must support
the functionality expected by applications.

3.2 Endokernel
The endokernel is a self-protecting, nested security monitor [11, 51]
designed to enforce two privilege levels and mediate interaction
between subprocesses. We chose to nest the endokernel within the
process in order to eliminate costly context switches to supervisor
mode and to virtualize the process runtime so that the endokernel
is not bypassable. As such, the main objectives of the endokernel
are firstly to isolate itself from the application layers above, and
secondly to isolate application layer components from each other,
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Figure 2: Endoprocess Architecture

within the process, under the subprocess abstraction. With the
endokernel in place, we can enforce properties such as isolated
secrets or code-pointer integrity (as demonstrated by [57]), or alter-
nately can expose the subprocess abstraction to enable developers
to isolate sensitive parts of a given application.

The endokernel protects its own runtime state throughmem-
ory virtualization. This means that it must be loaded into the
process (sharing the process’ single address space), and must use a
memory protection mechanism to ensure that the endokernel can
be safely entered and that the endokernel memory cannot be tam-
pered with. Examples of memory protection mechanisms that have
been used for in-process memory isolation include: randomization,
software fault isolation, memory protection keys, and hardware
virtualization nested paging [13, 26, 32, 36, 41].

Once memory isolation and protected entrypoints are in place,
memory access through system level interfaces must be mediated.
To virtualize system interfaces, the endokernel ensures that the ap-
plication layers above the endokernel cannot directly interact with
the operating system through syscall virtualization. In modern
CPUs, the operating system is typically accessed through system
calls provided by hardware. System call monitoring can be enforced
with any number of mechanisms such as language based hooking
or hardware monitoring, however, the primary requirement is that
each call goes through the endokernel layer of virtualization. To re-
main consistent with our design goal of decoupling the subprocess
abstraction from the OS, the mechanism must require only minimal
OS modifications to support.

Once the syscall monitor is in place, we enforce policies over
operating system interfaces using system object virtualization.
This requires in depth analysis of each interface to derive policies
ensuring that the endokernel cannot be bypassed. Typical OS ab-
stractions that may otherwise bypass endokernel self-protections
and need to be accounted for include: memory access through file
system interfaces, signals, threads, process creation and destruction,
address space manipulation such as mapping, remapping, or pro-
tection changes, as well as file system and network interfaces. Such
an analysis and virtualization policy are possible for any operating
system assuming the semantics of the interface and OS are known.
For example, in our prior work, we examined and virtualized POSIX
in Linux [26].

3.3 Anatomy of an Endoprocess
Once a process is split into the monitor and application layers, the
endokernel can then support primitives for isolating components
within the application layer. While a large variety of abstractions
could be supported, we aim for the most general and flexible. The
subprocess is a universal, system-level abstraction that aims to pro-
vide process equivalent functionality with subprocess-level access
controls. A subprocess is a collection of program code and data
along with assigned privileges, and is inspired by the protected
subsystem [33] and encapsulated-object [61] protection models.

A subprocess is created by labeling lexical scopes that align with
static program scopes, defining the boundaries of an isolated subsys-
tem. After defining the boundaries, each program object is assigned
to a single lexical scope. Assigned code and data belongs-to the
subprocess, and all data belonging to the subprocess is placed in
segments of the virtual address space called subspaces. A subspace
is the smallest unit of memory protection to which access rights
can be granted. A subprocess’s lexically scoped privileges include
several subspaces by default (analogous to the associated memory
segments in a process): code, stack, heap. The lexical scope also
contains privileges for system abstractions such as files, sockets,
interrupts, etc. A subprocess’s lexically-scoped privileges are acti-
vated when entering the lexical scope through statically declared
entry points, while the caller’s privileges are deactivated during a
context-switch.

A subprocess can share data using either message passing (e.g.,
microkernel-like copying) or by setting up a shared subspace that
contains the data in question. Since pointers map back to sub-
spaces that are owned by a particular subprocess, data sharing and
management is greatly simplified because developers only need
to allocate data into an appropriate subprocess and directly share
a pointer through an interface—retaining C/C++ ABI semantics.
This makes sharing pointers across subprocesses operate as sealed-
capabilities, where permissions for sharing are explicitly expressed
by creating shared subspaces by an owning subprocess. This en-
sures a sealed-capability cannot be passed to another subprocess
as it would require explicit policy for any called subprocess.

Lexical scopes can be extended with an orthogonal privilege
scope for time slicing access across program execution. A dynamic
scope is a memory view and set of system object privileges that
can be dynamically created and destroyed, and is one of the most
novel parts of the Endoprocess approach. A developer modifies their
code to create a dynamic scope through an endokernel interface.
When called dynamically, the endokernel creates a dynamic scope
object which includes privileges for subspaces and system object
privileges, and returns a reference to the caller. The dynamic scope
belongs-to the calling subprocess and is mapped into the lexical
scope’s privileges and inherits the system object privileges of the
current lexical scope. A given dynamic scope holds privileges to
data associated with a particular application-layer entity, so that
only one application-layer entity’s data and privileges can be used
at a time, effectively time-slicing execution.

A dynamic scope can be used by a subprocess to temporarily
lower or elevate privileges in one of two ways. First, a subprocess
changes privileges within its own lexical scope by binding a dy-
namic scope to a function call. On the context-switch, the bound
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dynamic scope is activated and all other dynamic scopes in the
subprocess are deactivated. The called context has access to the dy-
namic scope through a dynamic scope object handler. As described
for data sharing between lexical scopes, data in the shared subspace
is referenced through standard pointers, enabling transparent shar-
ing. The dynamic scope object is deactivated on return from the
call.

Second, a dynamic scope can be bound on the context-switch to
another subprocess, in which case it operates similarly to a shared
subspace, but adds the dynamic scope object to the call while also
ensuring that the protection system removes access after the call
completes. The dynamic scope is inherited from the caller and can
be fully or partially passed along to a separate subprocess, making
time slicing across subprocesses easy to apply without significant
code changes. The last major benefit of the dynamic scope is that
when it is destroyed, all associated privileges and subspaces are
also automatically removed, making any pointers to its data no
longer usable.

The ambient authority at any given point of a subprocess’s exe-
cution is the union of the active lexical and dynamic scopes. For
preexisting, persistent resources (e.g. files, or handles in Windows),
a developer establishes an access control policy specifying which
resources belongs-to which lexical scope and dynamic scope, and
then applies privilege sharing through lexical or dynamic scoping
interfaces. For newly instantiated objects (e.g., sockets, files, raw
memory mappings, signals, processes via exec, etc.) a belongs-to
assignment is granted to the creating lexical scope and dynamic
scope, and shared using the lexical or dynamic scoping interfaces.

A subprocess can register both synchronous and asynchronous
interrupts including signals or events such as aborting from rseq.
The endokernel delivers the interrupt to the registering subpro-
cess. The endokernel allows interrupts to be multiplexed between
subprocesses. Each subprocess can be configured to allow other
subprocesses to handle its interrupts or choose to block them. For
example, if a global timer interrupt occurs in a subprocess that
should not handle it, the endokernel will block its handling until
there is a switch to a subprocess that can handle this interrupt. As
well, if a segmentation fault occurs within a subprocess that is not
allowed to handle it, the user can configure another lexical scope
that can be trusted to handle the interrupt, or can simply allow the
default behavior.

3.4 Programmable Languages and Translation
The subprocess provides a universal way to isolate and share re-
sources within a process. While recent efforts show promise in
automating boundary selection that maps directly to the subprocess
model [47, 58, 61], these works do not adequately derive sharing
policies that enhance security while minimizing effort and perfor-
mance. The translation layer not only simplifies subprocess bound-
ary selection, but also sharing policy specification, integration, and
management with minimal programmer effort.

The Endoprocess approach includes a lightweight interface for
creating custom domain specific access control frameworks. These
are implemented as abstractions that fit the code naturally and
provide automated policy structure for least-effort application and
clarity to reason about security properties. For example, common
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access control concepts naturally map to the subprocess, such as
virtual privilege rings or specialized relations between subprocesses
such as sandboxing or client-server time slicing. Source level speci-
fications are translated into subprocess enforcement. If a protection
mechanism is not available, a policy is translated into a standard
application runtime. Runtime libsep libraries implement classes of
access control frameworks on top of the subprocess abstraction,
eliminating the need for a developer to implement their own.

4 LITTLE MAC
Our prototype Little Mac is one potential implementation of the en-
dokernel abstraction. Little Mac is an Intel® MPK-based in-process
security monitor that enforces isolation between subprocesses and
ensures that all memory accesses have complete mediation, even
through system interfaces. In Little Mac we implement a novel sys-
tem call monitoring framework, and demonstrate the use of virtual
privilege rings for privilege separation.

Implementation. We use MPK domains to implement access per-
missions for subprocess heaps and additionally to protect Little
Mac’s own sensitive data. Little Mac also maintains ownership and
accessibility records for each heap.

As the foundation of our system call monitoring framework,
we implemented a Little Mac-generated trampoline based on the
principle that only code that passes a specific checkpoint can call a
system call. Using this trampoline, we check restrictions on switch-
ing between different subprocesses and virtualize system calls. We
ensure that only Little Mac can create syscall instructions at spe-
cific locations by using MPK 1 in combination and disabling other
syscall instructions from running outside Little Mac via seccomp or
dispatch. This ensures that the subprocess policy on system inter-
faces, interrupts (mainly signals), and Little Mac are not corrupted
by the operating system. In particular, we ensure that signals do not
break subprocess requirements for control flow, and that threads
do not break our trampoline.

Lastly, Little Mac and other runtime components share informa-
tion through a read-only PKEY in the user fs register. We show the
abstraction overhead of using Little Mac for intra-process isolation
of several distinct applications running on Linux in Figure 3.

Virtual Privilege Rings for Privilege Separation. One of the major
challenges in privilege separation is the complexity of specifying
boundaries and sharing policies. For example, while isolating the
OpenSSL library from the rest of the program is powerful, the
library requires significant interactions with the main program code
1Intel® CET[27] can also be used to implement our trampoline, though it should be
noted that use of full CFI introduces greater performance overhead.
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and data. In addition, direct privilege separation is difficult because
it necessitates changes to complex components like allocators. To
show an example of how the application of least privilege can
be simplified, we developed a Virtual Privilege Rings abstraction
that provides three privilege levels with default security policies
intended to reduce the effort required to manually assign cross-
context policies.

Developers can annotate their data and code into subprocesses
(called boxes here for ease of reference) and assign a specific virtual
privilege rings privilege level. Then, Little Mac can automatically
enforce the desired isolation. A sandbox has no privilege to any
system interfaces or the ability to call other subprocesses (boxes).
The mainbox remains untouched but has access to all sandboxes,
allowing for incremental separation. A safebox isolates code and
data from all other boxes but has access to all mainboxes and sand-
boxes. Other contexts can be created to accommodate more complex
policies.

NGINX is a web server framework that multiplexes handling
many requests from distinct clients in a given worker process,
spawned from amain server process. Within NGINX, we sandboxed
the HTTP parser and safeboxed OpenSSL in NGINX, restricting the
mainbox from accessing anything in the .ssh directory. In Figure 4,
we show the performance of NGINX separated using this virtual
privilege rings-based approach with a maximum overhead of less
than 10%.

5 MIGRATION OF EXISTING APPLICATIONS
A developer can choose to use one or several dynamic libraries as
isolation boundaries, and our runtime will use the default policy to
protect the data of the entire dynamic library, restricting external
access to it only. This strategy may be crude, but it is already effec-
tive in defending against attackers who can only externally read
and write memory. In our NGINX use case, OpenSSL is isolated in
this way. We simply add code to the OpenSSL library that calls the
runtime and changes the allocator used by OpenSSL.

Taking it a step further, developers can manually annotate code
and data to be protected or to isolate functionality that is either
error-prone or a likely attacker target, such as a parser or an authen-
tication library. By adding annotations to a particular function’s
declaration and related data, developers can mark it as allowed
to be called externally. Additionally, we are also developing auto-
mated tools that facilitate generation of the required markers using
individual code files as isolation boundaries. These annotations are

reflected in specific data and memory layouts through the compiler,
and the runtime uses the documented policies accordingly.

At the language level, our annotations overlay isolation opera-
tions on top of program functionality, preserving existing semantics.
Furthermore, our annotations facilitate the reuse of isolation infor-
mation instead of having to rewrite code. If no protection mecha-
nism is in place at runtime, the presence of our annotations has no
effect, akin to the presence of CFI markers in assembly files. Ap-
plication developers integrating previously-annotated third-party
components can still choose appropriate levels of granularity and
security for their own use cases.

6 USE CASES
In this section, we highlight how Little Mac can secure several
notable examples of the trend toward deploying applications that
firstly consist of a specific set of tightly-coupled heterogeneous
components that should be accorded differing privileges and levels
of trust, and secondly handle the data of mutually distrusting enti-
ties. For each of these different application runtime environments,
we demonstrate the flexibility and portability of our mechanism.

6.1 Application Runtimes
Compartmentalization. Through compartmentalization, safety-

critical code can be isolated from the rest of the application. Little
Mac simplifies the adaptation of such a strategy. With the trans-
lation layer in place, developers can easily define the boundaries
of each compartment using subprocesses, and set the privileges of
compartments using virtual rings. In our application of Little Mac to
NGINX earlier in this paper, the HTTP parser and OpenSSL library
each get their own subprocess where the HTTP parser is sand-
boxed, and OpenSSL is protected from the rest of the application.
We annotated the parser functions so that they were sandboxed,
and marked the entire OpenSSL library as a safebox.

Multi-user applications. By binding dynamic scopes to user au-
thentication information and carefully managing the lifetime of
each bound dynamic scope, Little Mac can ensure that each user’s
private information is not accessible to other users or other parts
of the application. For a database application, Little Mac can cre-
ate a subprocess when an incoming connection from a new user
is accepted, bind the user’s authentication information to a new
dynamic scope, and ultimately unbind the dynamic scope when
the connection is closed. Any remote, authenticated operation will
now depend on having the Little Mac-enforced privilege to access
the appropriate dynamic scope.

Containerized runtimes. Containers simplify repeatable service
builds and deployments; however, it is difficult to isolate even simple
components from one another within a given container. Multiple
containers (microservices) generally are deployed today if develop-
ers require service-level isolation such as between a UI-serving web
front end, an authenticated backend, and a database. However, such
splitting introduces unnecessary communications overhead.We can
use the Little Mac-protected endoprocess space locally akin to how
one might otherwise employ a service mesh to coordinate, monitor,
and secure multiple networked containers running distinct appli-
cation components. Such a runtime would require development
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of additional translation-layer modules. However, running each
containerized application component as a subprocess would allow
communication between these components to occur through shared
memory, while still isolating each component’s private memory
and other resources.

Serverless runtimes. Separation into AWS Lambdas can also be
employed today when developers would like to run simple network-
accessible components without taking on infrastructure manage-
ment themselves. However, the overhead of networking between
these lightweight components remains. Cloudflare uses V8 Isolates
as the foundation of Workers [5], a somewhat more secure alter-
native to Lambdas at the edge. It should be noted that V8 Isolates
do run Javascript, and each Isolate can run unrelated Javascript
applications simultaneously. Even an isolated V8 runtime environ-
ment could still be subject to Javascript concurrency and memory
bugs that could result in an attacker gaining inappropriate access
to other users’ data or even potentially breaking out of the Iso-
late. If augmented with Little Mac, each Lambda or Worker could
be assigned a subprocess that determines its lexical and dynamic
scope, based on the application it belongs to and the user’s request.
This assignment would provide each serverless runtime with a non-
bypassable foundation in the subprocess as enforced by the monitor.
Since Little Mac multiplexes (virtualizes and mediates) all resource
access on-behalf-of a given subprocess, an integration between the
endokernel and the original serverless runtime that accommodates
JIT code would be required to achieve this augmentation, but the
serverless runtime would greatly benefit from enhanced security
measures without incurring the performance overhead associated
with splitting into multiple Lambdas or Workers for isolation.

Sandboxing using a nested system call monitor. Application ker-
nels like gVisor [18] use a system-call monitor running in a separate
process that multiplexes system resources and enforces developer
policy regarding system calls originating from a given sandboxed,
containerized application. However, this approach incurs a signifi-
cant performance overhead from IPC and can only enforce limited
policies via common mechanisms such as seccomp, when compared
to Little Mac. Replacing gVisor’s monitor with the endokernel, we
could eliminate the overhead of having a separate monitor process,
since endokernel both isolates itself and nests within the process.

Unikernels. The Unikernel [38] packs an application into a single
address space, eliminating need for a traditional kernel. However,
intra-unikernel risks presented by potentially vulnerable or buggy
components within the unikernel to other unikernel components
naturally still remain [53]. The endokernel offers security guaran-
tees at a minimal cost, as it is specifically designed for isolating
components and does not have any additional default abstractions.
By treating the core of the unikernel as a subprocess, it could be pro-
tected while minimizing the performance impact typically associ-
ated with switching through system call instructions. This approach
effectively reduces the security risks associated with running mul-
tiple potentially distrusting components within a single address
space. Moreover, developers would be enabled to enhance both
security and reliability by leveraging annotations within their ap-
plication code to further isolate components or data associated with
external users using Little Mac.

6.2 Mechanism Portability
Hardware. Different hardware mechanisms can be used to im-

plement the Endoprocess. In addition to MPK, a popular capability
hardware mechanism, CHERI, encodes privileges (capabilities) in
new pointer types that can be used by the compiler to implement
compartmentalization. Also, since user programs can only obtain
specific entry point addresses, they cannot break the Endokernel’s
abstraction, and all switches depend on the Endokernel providing
the correct target function address. Based on this, the implemen-
tation of system calls is similar to that of MPK. Therefore, we can
still implement the Endokernel on such hardware.

OS Interface. The endokernel isolates memory and prevents ways
that existing OS interfaces can violate that isolation. Extending the
endokernel to non-POSIX system interfaces (such as Windows) is
possible and would demonstrate the portability of the approach.

7 RELATEDWORK
Process-based Sandbox Process-based sandboxing [7, 30, 46] is a
common approach to isolate untrusted code. It is nowwidely used in
browsers, such as Chromium and Firefox, because processes provide
strong isolation at the address space level. Ptrace and seccomp are
used to monitor the system call usage of sandboxed processes and
sometimes SELinux, Apparmor, and namespaces are also used to
further restrict resource access.

However, beyond the inability to enforce subprocess level polices,
these approaches lack flexibility. SELinux is based on pre-defined
rule files and cannot be changed dynamically. Seccomp-BPF’s filter
program has limited ability—it cannot check if the open path is
legal because it can only access the values of CPU registers. IPC is
thus often used to communicate with a privileged process to enable
complex policies. At the same time, mutual access between isolated
modules must be translated into access to the IPC interface. This
brings additional development costs and overhead to adapt existing
applications to the sandbox, and limits its granularity.
OS-based Isolation Some works [4, 14, 25, 35, 39] depend on the
operating system to provide the functionality needed for isolation
within the same process space. The kernel creates separate page
tables for modules that need to be isolated. And the kernel is respon-
sible for switching page tables when switching between modules.
This allows sharing between different modules. And since the ker-
nel has information about user-space isolation, it can also mediate
vulnerabilities caused by system interfaces [35].

However, switching between page tables via system calls still
has a relatively large overhead. In addition to the syscall, page table
switching also reduces the overall efficiency of the application’s
access to memory. And, for security reasons, operating systems can
only provide relatively rigid interfaces to applications. Thus, similar
to process isolation, they are constrained in policy programmability,
and cannot accommodate the needs of different applications.
Virtualization-based Isolation Hodor and SeCage [23, 37] use
virtualization instructions like Intel® VT-X [2] for switching mem-
ory views instead of system calls. This approach enhances the
efficiency of context switching and has shown encouraging results.
However, like OS-based isolation, these mechanisms still cannot
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provide effective and flexible protection for system resources. More-
over, virtualization can only be effectively accelerated on the host
machine, which limits its usage.
MPK based Isolation Intel® MPK [2, 44] enables switching mem-
ory permissions without kernel intervention, improving isolation
efficiency and allowing for finer-grained isolation, yet posing poten-
tial security risks. Subsequent works, like ERIM [57] andHodor [23],
focused on MPK’s efficiency and instruction protection. However,
they ignore the necessity of fortifying monitors against operat-
ing system interface based bypass [10]. Enclosure [17] and PKRU-
Safe [31] utilize MPK to provide memory sandbox for specific lan-
guages. They offer limited system call filters akin to seccomp using
the language runtime to enforce policies. Unless employing a strict
sandbox policy, they also suffer from issues similar to those faced
by ERIM. Cerberus [59] introduced a PKU-based sandboxing frame-
work to protect in-process monitors, but it lacks signal support and
doesn’t address operating system resource limitations. Jenny [49]
further proposed a system-wide solution with programmable sys-
tem call filters for modules, but signal support remains limited and
security concerns persist.

MPK suffers from having only 16 hardware PKEYs. libmpk [44]
mitigates this issue by multiplexing PKEYs. EPK [20] combines
VMFUNC and MPK to allow more domains through the extended
page tables. VDom [63] achieves this more efficiently by employing
page tables in combination with PCID, thereby avoiding the VM
overhead and also reducing the TLB shootdown. VDom, remains
insecure to exploits at interfaces however could be used as an
alternative mechanism for implementing the Endoprocess.

8 FUTURE WORK
We will refine the endoprocess model to support rich real-world
application scenarios, such as providing isolation for each user ses-
sion in multi-user applications. This is orthogonal to lexical scope
isolation, creating a client context for private data and privileges,
and enabling mediated interactions between user and module data.

We will explore automatic generation of boundaries and access
control policies. Static and dynamic analysis will be used to infer
global data sharing relationships and the use and transfer of data
through interfaces. The aim is to allocate, copy, and manage ac-
cess rights. This kind of analysis will be field-sensitive, providing
information to disaggregate related structures to minimize sharing.

We will explore alternative protection mechanisms for isolat-
ing the endokernel and subprocess to demonstrate portability and
explore performance trade-offs. For instance, compared to Intel®
MPK, which changes memory accessibility directly through instruc-
tions, the ARM platform offers extensions for pointer protection.
These features allow for finer-grained and more flexible memory
sharing and permission management. However, they also present
new challenges for the design and construction of nested monitors.
This is because their security can’t be simply attributed to the pro-
tection of register states and control flow. Instead, it depends on the
confidentiality of these pointers during the program’s execution,
including interactions with the operating system.

9 CONCLUSION
In this paper, we propose the radical idea of moving away from
the process abstraction as the fundamental unit of isolation. As
applications already adopt this approach, and more following suit,
we propose the use of the Endoprocess approach that nests a pro-
tection monitor inside the process. This approach offers complete
isolation and exports the simple subprocess interface. The sub-
process allows for fine-grained isolation without unnecessarily
burdening the endokernel. Furthermore, it supports extensible and
programmable abstractions through a translation layer. This trans-
lation layer can simplify usability and enable new applications to
quickly build on the base layers while closely aligning with the spe-
cific requirements of each application. By leveraging a well-tested
organizational philosophy (microkernel), the endokernel provides
an essential substrate with powerful portability, flexibility, and
performance features.
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