The VLDB Journal (2024) 33:1283-1306
https://doi.org/10.1007/s00778-024-00849-w

REGULAR PAPER

®

Check for
updates

Data distribution tailoring revisited: cost-efficient integration of

representative data

Jiwon Chang'® - Bohan Cui' - Fatemeh Nargesian'

. Abolfazl Asudeh?

- H. V. Jagadish3

Received: 15 July 2023 / Revised: 9 January 2024 / Accepted: 13 March 2024 / Published online: 12 April 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Data scientists often develop data sets for analysis by drawing upon available data sources. A major challenge is ensuring that
the data set used for analysis adequately represents relevant demographic groups or other variables. Whether data is obtained
from an experiment or a data provider, a single data source may not meet the desired distribution requirements. Therefore,
combining data from multiple sources is often necessary. The data distribution tailoring (DT) problem aims to cost-efficiently
collect a unified data set from multiple sources. In this paper, we present major optimizations and generalizations to previous
algorithms for this problem. In situations when group distributions are known in sources, we present a novel algorithm
RATIOCOLL that outperforms the existing algorithm, based on the coupon collector’s problem. If distributions are unknown,
we propose decaying exploration rate multi-armed-bandit algorithms that, unlike the existing algorithm used for unknown DT,
does not require prior information. Through theoretical analysis and extensive experiments, we demonstrate the effectiveness

of our proposed algorithms.

1 Introduction

The standard assumption in machine learning is that we have,
at hand, a training data set that is a representative sample
of the data that will be seen in production. This assump-
tion is easily satisfied if the training data can be obtained by
randomly sampling from the “full” data set in production.
However, such random sampling is frequently not possible.

This research is supported in part by NSF 1741022, 2107290,
1934565, 2107050, the Google research scholar award, and the
Schwartz Discover Grant.

< Jiwon Chang
jchang38 @ur.rochester.edu

Bohan Cui
bcui2 @u.rochester.edu

Fatemeh Nargesian
fnargesian @rochester.edu

Abolfazl Asudeh
asudeh@uic.edu

H. V. Jagadish
jag@umich.edu

1 University of Rochester, Rochester, NY, USA

2 University of Illinois Chicago, Chicago, Illinois, USA

3 University of Michigan, Ann Arbor, Michigan, USA

Often, this is because production data has not yet been gen-
erated at the time the model is trained. At other times, the
entire point may be to repurpose and reuse data collected for
other purposes. Insufficiently representative training data has
resulted in many data science debacles [2-5].

Even when the distribution is accurately characterized, it
may not be so easy to obtain training data from the same dis-
tribution. For example, surveys may be sent out to a carefully
chosen random sample, but only a fraction of the surveys are
returned, with the return rate not being completely random
(Table 1). Survey statistics has developed sophisticated tech-
niques to handle such lack of randomness [6]. Similar issues
arise when analyzing online comments or tweets to gauge
popular opinion. We wish that the opinions expressed by
representatives of the target population of interest (e.g., all
voters or all customers), but we know that we only have a
skewed sample with the most vocal individuals, potentially
skewing young and more tech-savvy individuals. Beyond
the need for representation to reduce model error, it may
sometimes be important to show adequate consideration of
minority groups. Even where representative samples can be
obtained for training data, that still may not be sufficient
in some circumstances. To ensure that minority entities are
adequately considered, we may need to train with data in
which small minorities are intentionally over-represented
[7, 8]. Similarly, when we are interested in characteriz-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00849-w&domain=pdf
http://orcid.org/0000-0003-3945-925X
http://orcid.org/0000-0002-4710-8719
http://orcid.org/0000-0002-5251-6186
http://orcid.org/0000-0003-0724-5214

1284 J.Chang et al.
Table 1 Comparison of algorithms

Scenario Algorithm Section Space Time (Initial) Time (Per Iter.) Bounds

Known DP [1] §3.1 oI, 01 O(nm /L, Qi) o(l) Optimal
Known CoupCoLL [1] §3.2 O(n+ m) O(nm) O(m) Theorem 1
Known RATIOCOLL §3.3 O(n + m) O(nm) 0(m) Theorem 1, 2
Unknown UCB [1] §4.2 O(n + m) O(n+ m) O(n) O (log T) regret
Unknown EPSILONGREEDY §4.3 O(nm) O(nm) O(nm) Theorem 3
Unknown EXPLOREEXPLOIT §433 O (nm) O (nm) O(m) None

Each algorithm has a straightforward duplicate-aware variant. We discuss the duplicate-aware variants of the algorithms in § 3.2.2. This modification

requires O (nm + Q) space for bookkeeping, O (nm) initial time to set up trackers, and O (nm) time per iteration to recompute heuristics

ing rare events, we may need training data that has rare
events over-represented. For example, to learn how to han-
dle emergencies, we need car-driving data with accidents and
near-accidents over-represented: representative driving data
may involve few challenging scenarios [9].

Data scientists may also need to acquire additional data to
fix an existing model. Collecting data indiscriminately could
introduce data imbalance issues and incur unnecessary costs.
For instance, it is common for models to perform poorly on
just a small subset of feature combinations, or slices. The
problem of finding such slices efficiently has garnered atten-
tion in the data management community [10, 11]. Prior work
also demonstrated how to compute the optimal amount of
additional data per slice by estimating their learning rates
and correlations [12]. Such methods may be used to obtain
sophisticated distribution requirements. To summarize, data
scientists often have distribution requirements on data sets
they wish to use for training or analysis.

To see how to meet these requirements, we now turn to
where the data come from. Sometimes, the data may explic-
itly be collected by the data scientist for the analysis at hand,
using surveys, sensors, or other data collection means. Alter-
natively, data scientists could rely on secondary data instead:
using data that have been collected previously for some other
purpose. The number and variety of data sources available
has been increasing rapidly, making secondary data analy-
sis much more attractive. In fact, the data scientist on many
occasions may be spoiled for choice. Since each data source
is collected in some manner over some population, it will
have its own distribution, which may differ from the dis-
tribution desired by the data scientist. The question to ask
then is whether data from multiple sources can be mixed to
achieve the desired distribution. This is the central problem
we study in this paper.

Example 1 A data science company has been asked to build
an ML model for a local bank in Texas who wants to offer
a loan to employees with yearly income of more than $75K.
The model should predict the likelihood that an individual
will pay back the loan. The company considers building
a model on an in-house data set. Being aware of recent

@ Springer

incidents of racial/gender biases in similar predictive tools
[13], the company wants to make sure different demographic
groups are suitably considered. It, however, turns out the
data set is skewed: while around 40% of samples are white
male, it only 15% are non-white female. The com-
pany realizes there are alternative external data sources (such
as TexasTribune ') they could consider for collecting the
data. It establishes a target distribution on counts from differ-
ent demographic groups (e.g., 25% from each demographic
group in a data set of 1K samples). The challenge the com-
pany faces is how to efficiently query these data sources to
collect the data.

Obtaining data from a data source is not free. Our focus lies
on the most costly cases. An increasingly common situation
where the costs are explicit is when data is purchased from a
commercial data provider [14—18]. Data acquisition via sur-
vey sampling or crowdsourcing human annotations [19] also
involves monetary costs for labor. Even for primary data col-
lection there is a cost per tuple, in terms of access, storage,
indexing, and so on. The access cost is especially high if data
sources are complex join queries over large, relational data.
In all cases, we can characterize the cost of obtaining data
from any source in a pricing model. Given a set of these data
sources, each with its own distribution and pricing model, our
goal is to obtain, at least cost, an aggregate data set that satis-
fies our distribution requirements. This problem is difficult to
solve in general because each source has its own distribution,
and none may have a distribution that we seek. Furthermore,
no combination of sources may provide us with the desired
distribution either. In general, we may have to over-purchase
and then “throw away” excess data items. And even so, we
cannot be guaranteed it is feasible to obtain the desired dis-
tribution.

Summary of Results In our prior work, we proposed
sampling strategies for two scenarios: (1) when the meta-
data about the data distribution is available and (2) when
sources are opaque with unknown distributions [1]. For

1 https://salaries.texastribune.org.

https://salaries.texastribune.org

Data distribution tailoring...

known distributions, we proposed a strategy based on the
Coupon Collector’s problem. For unknown distributions, we
adopted a multi-arm bandit strategy with a customized reward
function. In this manuscript, we revisit the proposed strate-
gies and, building upon our observations, present alternative
strategies and show their superiority. In particular, in the prior
work, the (empirical) distribution of groups in sources and the
costs of sources are considered the main factors in the source
selection strategy. Intuitively, the strategies were designed
to focus on collecting data for minorities at the lowest pos-
sible cost per unit, because minorities are less likely to be
sampled from an arbitrary source than majorities. While this
strategy is effective, our observation is that when a planner
has reached the point that requires collecting a large number
of majorities compared to minorities, prioritizing majorities
can lead to a more cost-effective plan. In this manuscript,
we present theoretical and empirical results suggesting that
an adaptive sampling strategy with the consideration of the
remaining group count requirements at different iterations is
crucial to cost estimation and optimization. The following
are our specific contributions.

— We reexamine the existing work on the Data distribution
tailoring (DT) problem [1]. (§ 2)

— We propose an improved algorithm, called RATIOCOLL,
based on a heuristic that simultaneously prioritizes rare
groups and groups with high remaining query counts.
§3)

— We generalize the problem to scenarios where distribu-
tions are unknown and no prior information about overall
demographics are available. We propose an e-greedy
multi-armed bandit algorithm, called EPSTLONGREEDY,
that uses the same objective function as RATIOCOLL. (§ 4)

— We establish a tight asymptotic expected cost on RATI-
OCOLL under constrained scenarios, and a sublinear
asymptotic regret for EPSILONGREEDY.

— To validate and evaluate the performance of the proposed
algorithms, we conduct comprehensive experiments on
real and synthetic data. (§ 5)

2 Problem definition

In this section, we formally define the data distribution tailor-
ing (DT) problem. We adopt the framework proposed in [1],
with some modifications to the notations and assumptions.
The notations are listed in Table 2. Formally, an instance of
the DT problem is represented by data sources D, groups G,
query costs C, and query requirements Q. The output is a
unified data set O. We elaborate on each element below.

1285

Table 2 Table of notations

Symbol Description

n Number of data sources

D; a data source

G; a group

m Number of groups

0 Total query count, i.e., Q = 3 ;) Q)

Q; Desired number of tuples from group G ;

Ci Cost of sampling from D;

N;i Number of samples taken from D;

N; Number of samples of G ; taken from D;

N/ j Number of unique samples of G ; taken
from D;

o Collected target data set so far

G* Priority group at current iteration

D; Data source with minimum expected cost
of collecting an item of G ; at current
iteration

P Proportion G in D;, i.e., |G; N D;|/|D;|

Pi/,j Proportion of non-duplicate tuples of G
in D;,i.e., |G; N D;\ O|/|Dj|

P/ Overall frequency of G ; in all data
sources, i.e., |G |/|(;epn Dil

ie, |G\ Ol/INiepm Dil
t Total number of samples taken so far

2.1 Data sources

The first input of the DT problem is a collection of sources
D = {Dy, ..., D,}. We assume there is a way of unifying
the schemata of sources and the user’s target schema [20] and
each tuple in a source can be associated with a group. This
can be done by inspecting its sensitive attributes or annotat-
ing using classifiers and crowdsourcing. Data sources can
be external, accessible through limited interfaces or APIs, or
data views that are the outcome of the discovery and integra-
tion over underlying data sets.

In general, web services such as Google Flights API [21],
open data lakes, such as data.gov and CKAN API, data
markets such as Dawex [14], Xignite [15], and WorldQuant
[16], as well as data brokers [17, 18] are examples of external
data sources. Another setting is crowd-based data annotation
and collection. Similar to incentive-based [22], distribution-
aware [23], and cost-effective [24] crowdsourcing, each
worker can be considered as a source providing annotated
data with a possibly unknown distribution and potential bias.
This calls for adaptive worker selection. Finally, when data
sources are collections of tabular data sets, a source may be
defined by a project-join query defined over a database or a
data lake [25].

@ Springer

1286

J.Chang et al.

Sometimes obtaining a source with the same schema as
the target schema requires data integration using a projection-
join query over data sets that contain some attributes of
the query. Continuing with the loan approval example,
a data source using the TexasTribune database [26], the
query [Trace,gender,income,.-(€Mployees < salary b<
loans) provides a data source. Of course, since the target
schema is user-specific, and given the potentially large size
of data sets, computing and materializing the full join for all
sources is not efficient. Instead of offline join, existing work
proposes ways for obtaining independent and/or uniformly
distributed random tuples from the result of join without exe-
cuting the join [27-29].

We model each data source as a disjoint set of tuples.
Furthermore, to abstract the access model, we assume sam-
pling one tuple at a time with replacement. Although in
some settings such as data markets the data is purchased or
downloaded in one shot, this query interface is akin to the pro-
gramming interfaces available in many online services [30].
In particular, these interfaces support selection and count
queries, i.e., filtering predicates and integer counts for the
number of returned tuples are stated or tuned in the query
[31]. Moreover, this assumption is aligned with external data
sources, such as web databases, where a limited interface is
often enforced that returns a subset of top-k results per query
[32-35]. Finally, in a crowd-based data collection setting,
workers provide data in smaller batches of tuples.

By default, we assume that the probability change of
sampling the same tuple multiple times is negligible. This
assumption is reasonable for large data sources and relatively
small query requirements. For practical uses, we consider
duplicate-aware algorithms as well. In the bulk of the paper,
we assume exactly one tuple is returned per query. In § 7,
we discuss how our algorithms can be adjusted to relax this
assumption.

2.2 Groups

We assume that each data point belongs to one of the dis-
joint groups G = {G1, ..., Gy} suchthat Dy U...UD, =
G1U...UG,,. These groups may be independent, dependent,
or omitted variables, as well as subgroups of more than one
variable. To illustrate, consider the motivating example in
which data scientists are training an ML model to automate
the loan approval process. To ensure fair and reliable classi-
fication of all groups of interest, data scientists may consider
the following minimum count requirements.

— Independent variables. For example, all income brackets
must be adequately represented.

— Dependent variables. For example, manual intervention
is required to oversample the minority outcome class due
to low loan approval rates [7, 36].

@ Springer

— Protected variables. Stepping out of the loan approval
example, using models that discriminate based on age
or ethnicity for employment decision is illegal in the US
[37]. Mitigating disparate impact [38], without also sac-
rificing accuracy, requires an adequate number of data
points for protected groups.

— Subgroups. Instead of top-level groups, we may have
minimum query count requirements to ensure more
than one constraint is met at the same time. Subgroups
could also be useful for preventing fairness gerryman-
dering, where fairness requirements are met for top-level
groups but not subgroups [39—41]. For example, the sub-
groupswhite male,non-white male,white female,
and non-white female are used in Example 1. A slice
[10] is a synonym for a subgroup.

For the rest the paper, we assume that the number of groups
is some constant m. The number of subgroups, however,
grows exponentially with respect to the number of top-level
groups or features. In order to limit computation time, the
maximum depth—the number of top-level groups that a sub-
group intersects—may need to be limited, as in [42]. Another
way to limit the number of subgroups is to use techniques
such as Slice Finder or Sliceline [10, 11] to find only the most
problematic slices in terms of model performance. These
algorithms also offer parameters to limit computation time.

2.3 Cost model

Obtaining samples from different data sources is not for free.
Acquiring samples is associated with a cost either monetary
or in the form of computation, memory access, or network
access cost. Web database APIs (such as Google Flights), for
example, allow a limited number of free queries per day from
each IP address or would charge per query while enforcing
a top-k interface [32-35]. Similarly, relying on data brokers
and data marketplaces may incur monetary costs [14—18]. In
survey sampling, amortized cost per query could be charged
by digital marketing services or be used to reward respon-
dents. Crowdsourcing services such as Amazon Mechanical
Turk [19] are frequently used for data annotation and col-
lection, which charges for labor per query per user. For
tabular data sources represented by view, we may need to
apply costly pre-processing and sampling steps. The litera-
ture on join size estimation and approximate query answering
shows that online uniform and independent sampling over
join queries requires repetitive sampling with sometimes high
reject ratios [28, 29] and non-trivial delay complexity for
obtaining successful samples [43]. Furthermore, such costs
may vary from one source to another, depending on factors
such as the length of join paths, their joinability, statistics of
data sets, and matching cost [44].

Data distribution tailoring...

1287

To generalize across different contexts, we summarize all
costs of sampling a source D; as a positive constant C;. For
the cases where each query returns more than one sample or
even the whole source, we can amortize the cost across the
number of samples.

2.4 Query model

Our goal is to enable integrating data from multiple sources
to construct a target data set. A user query describes a target
data set with a target schema, consisting of a collection of
attributes. We abstract the user’s query as [Q1, ..., On], a
list of nonnegative minimum count requirements. Let O be
the collected target data set. We say that a query is satisfied
in O when for each group G;, |O NG| = Q;. We make no
assumptions about processing of tuples obtained that exceed
the minimum count requirements. They may be discarded or
undersampled as needed. Many variants of requirements can
be posed, depending on the desired application. We discuss
several of these in § 7.

2.5 Summary

Definition 1 (Data Distribution Tailoring Problem) We are
given n data sources, m groups, sampling cost for each data
source, and query requirements as defined above. We aim
to collect a target data set O which satisfies the minimum
query counts by querying different data sources in a sequen-
tial manner while minimizing the expected total query cost.

We define four variants of DT that lie on a quadrant. First,
we categorize whether the discrete probability distribution
of groups in each data source is known. This dichotomy is
necessary, since in many application settings, such as data in
the wild, we may not know much about the data sources. In
particular, we may not know the count aggregates for differ-
ent groups. Solving this variant requires us to learn group
distributions for each data source on the fly. Second, we
categorize whether the probability of sampling a duplicate
already in the unified data set is negligible. Accounting for
duplicates requires more bookkeeping which could increase
runtime and memory usage. This overhead may be necessary
if query requirements are large compared to the size of data
sources.

3 Known distribution model

In this section, we consider the DT problem with known
group distributions for each data source. We study an optimal
dynamic programming solution (§ 3.1) as well as approxi-
mation algorithms that utilize previous heuristic (§ 3.2), and
our improved heuristic (§ 3.3).

3.1 Dynamic programming

Given the count descriptions Q@ = {Qy, - - - , O}, our objec-
tive is to find the optimal strategy with the minimum expected
cost F(Q). The process of collecting the target data set is a
sequence of iterative steps, where at every step, the algo-
rithm chooses a data source, queries it, and keeps the queried
tuple if it is not a duplicate. Our first attempt is to develop a
dynamic programming (DP) solution.

An optimal source at each iteration minimizes the sum
of its sampling cost plus the expected cost of collecting the
remaining required groups (F;(Q)), based on its sampling
outcome. The dynamic programming analysis evaluates this
cost recursively by considering all future sampling outcomes
and selecting the optimal source in each iteration accordingly.
Using the probabilities of discovering a fresh tuple from each
group for every data source D;, the optimal expected query
cost for some query Q has the following recurrence relation.

m
F(Q) = v%?é‘p (c[+ ; PijFi(Q)
0;>0

+ (1 - i Pi,j)F(Q)>
30

ey

Here, P; ; is the ratio of tuples from group G; in source
D;. To simplify the notation, we have introduced F;(Q) =
FQ1,---,Q0j—1,---, Qp). If a sample of G; is added
to the target (because it is fresh and belongs to a group
whose count requirement is not fulfilled), the remaining
cost for building the target is F;(Q). Therefore, the term
Z?:l,on P; jF;(Q) is the expected cost of the target if
we add the current sample to the target. The probability of a
sample being redundant is (1 - ZT=1,Q,->O P,-’j) and in this
case we will have to pay the cost F(Q).

In our DP algorithm, we assume that for all sources and
groups, |D; N G| is either zero or sufficiently larger than
Q ;. This assumption ensures that the probability of discov-
ering a fresh tuple of a particular not-yet-satisfied group from
a data source does not change over different iterations. If
|Pi” i~ P;.j| < eforalli, j,then each recursion call of Eq. 1
magnifies multiplicative error of F;(Q) by at most

Ite (1 n |F,(Q>—Fj<9>> 1=

T—e F(0) TFe
max [
lde _ 1=e (1 _ [F(Q-Fi(Q
1—e€ 1+e F;i(Q)

where F;(Q) is an outdated value of F;(Q). The depth of
recursion calls is bounded by max Q;. Thus, there exists
some large | D; NG ;| that ensures F'(Q) are within a bounded

@ Springer

1288

J.Chang et al.

Table 3 Specification of our toy c G G,
problem
D, 1 0.4 0.6
D, 1 0.1 0.9

factor throughout runtime. The precise bound is not our pri-
mary concern, rather the existence of one. If this assumption
does not hold, then the tabulation described below may need
to be recomputed periodically as probabilities change.

We can solve Eq. 1 using tabulation [45]. If a query has a
total query count of Q + 1, then its expected cost depends
only on the subproblems with a total query count of Q. Thus,
we start from Q0 = 0 and increase the query counts until it
reaches the user’s query requirement. In addition to mem-
orizing F(Q), we also memorize which data source was
optimal under each query by looking at which argument was
the smallest in Eq. I’s min term. The initial tabulation takes
o (ani”;1 Q,») time and O (171”; | Qi) space. Each iteration
takes O (1) time via a single table lookup.

Example 2 Consider sources Di, D, and groups G, G».
Furthermore, consider the costs and conditional probabili-
ties in Table 3.

We would like to collect one tuple from each group, i.e.,
Q = [1, 1]. Trivially,

F(0,0) =0.

We can also compute

1
4

|

F(1,0) =min<

) =25,
) =1.111.
9

1404-1.11140.6-2.5
0.4+0.6 ’

1+0.1.1.111+0.9.2.5)
0.14+0.9

= min (2.944, 3.361) = 2.944.

o
o
—_

|H
|’_

’

F@©O,1) :min(

e
o
=

This gives us

F(, 1) :min(

We see that Dq is the optimal data source to sample from,
and that the optimal expected cost to satisfy query (1, 1) is
approximately 2.944.

Figure 1 visualizes F(Q1, Q») for all Q1, Q2 < 1000.
We see that it is a monotonically increasing convex surface,
though convexity may not hold in general. Equation 1 satis-
fies a weaker condition of total convex monotonicity [46], in
the sense that F(a,c) > F(b,c) — F(a,d) > F(b,d)
for alla < b and ¢ < d. This is trivially true since Eq. 1 is

@ Springer

1200
1000

Fig. 1 Surface formed by the optimal cost function applied to Exam-
ple 2. Color corresponds to the vertical axis: expected cost required to
satisfy the query

Algorithm 1 CourCoOLL

Require: An instance of DT (D, G, C, Q).
Ensure: Unified data set O.

1: 0 <0

2: while 3j € [m]s.t. Q; > 0do

(7))
argmax mm
G;€G,0;>0 \i€l \ Pi j

. . (Ci)
D™ = argmin
D;eD Pi «
s < Query(D*)
0O < 0O U{s}
7: end while
8: return O

33 G*=

A A

monotonically increasing. Total convex monotonicity allows
us to utilize convex dynamic programming algorithms which
are often faster. However, even convex DP takes n‘h-degree
polynomial time [47], which motivates us to investigate faster
heuristic algorithms for general cases with non-trivial num-
ber of data sources.

3.2 Approximation algorithm: prior solution

As an alternative to the expensive DP solution, [1] developed
an approximation algorithm that models the problem as m
instances of coupon collector problem [48], where every jth
instance aims to collect samples from the group G ;. They
also used union bound [48] to come up with an upper bound
on the expected cost of this COUPCOLL algorithm.

3.2.1 CouprCoLL algorithm

Nargesian et al. observed that first collecting data from
minority groups helps optimize total cost. This is due to a
piggybacking effect, where the chance of collecting data

Data distribution tailoring...

1289

from other groups while collecting data for minorities is
higher than finding minorities while targeting to collect other
groups.

Algorithm 1 describes the full COUPCOLL algorithm. In
each iteration, it first identifies the minority group, which
is the group for which the most cost-effective data source
requires the maximum expected cost. This minority group is
defined as

C‘
argmax (_rnin <—')) . 2)
G;€G,0,;>0 i€[n] P,',j

Then, the algorithm samples from the data source which
minimizes the expected cost to sample from the minority
group. Let P; , be a shorthand for the probability to sample
G* from D;. Then,

C;
).)

If probabilities P; ; are stationary, then Eqs.2 and 3 can
be pre-computed. As such, COUPCOLL takes O (m) time per
iteration with an upfront O (nm) time and O (n + m) space
cost to memorize the values.

G* =

D* = argmin (
D;eD

3.2.2 CourCOLLDUPE modification

Unlike our formulation of COUPCOLL in Algorithm 1, the
algorithm as presented in [1] assumed that duplicates can-
not simply be ignored. In these cases, Eqs.2 and 3 must
be modified to subsitute P; ; with Pl.’) i the probability of
sampling a non-duplicate tuple of G; from D;. To com-
pute P/ ; efficiently, COUPCOLLDUPE keeps track of N/ j»
the total number of unique tuples of G; sampled from D;.
Then, Pi/,j = P,',j — Ni/,j/lDi|'

It costs O(nm) time once to initialize the trackers and
O (nm) space to store them. In each iteration, Eqs.2 and 3
need to be recomputed, which takes O (nm) time. Uniqueness
is tested in O (1) time using a hash set to store O, with size
at most Q, the total query count. Overall, COUPCOLLDUPE
takes O (nm + Q) space as opposed to O (n + m) space, and
O (nm) time per iteration as opposed to O (m) time.

Most other algorithms introduced in the following sec-
tions also have duplicate-aware variants, specified with the
DUPE suffix. The modifications follow the same method of
replacing P; ; with P/ i

3.2.3 Analysis of CourCoLL and COUPCOLLDUPE

Both variants of the COUPCOLL algorithm always prioritize a
group with a nonzero remaining query count. As such, it is at
least as efficient as satisfying each group’s query requirement
independently, then combining all results at the very end.

That is, we run m instances of a coupon collector algorithm,
where the j™ instance repeatedly samples from D;f until Q;
is satisfied.

Let C;f be the query cost associated with D;. Then, the
expected cost to satisfy the query Q jis O . (C;f/P,‘,j). Thus,
if duplicates are negligible, then the expected cost of queries
issued by COUPCOLL, ¥, is bounded as the following.

Q,Cy

v < Z > €
jelm]

If duplicates cannot be ignored, then COUPCOLLDUEPE is
used instead. The same m-parallel-coupon-collectors proce-
dure can be used as an upper bound, though the upper bound
is greater due to duplicates. Using the well-known logarith-
mic expectation to gather a collection of coupons [48], [1]
derived the following upper bound.

Theorem 1 Assume that the probability to get duplicate data
points is not negligible. Furthermore, assume that each data
source D;f forall j € [m] contains at least Q j samples from
Gj. Then, the expected total query cost issued by COUP-
COLLDUEPE is at most

DY NG|
Y CiID I
Fered |D7 il = Q;

Proof Let ; be the number of queries the algorithm would
issue to collect Q; unique tuples from G;. We note the
queries issued to discover the tuples from a group G; may
also discover some tuples from other groups. As a result,
the set of queries for different groups may intersect. The
union bound [48] indicates that the probability of the union
of events is no more than the sum of their probabilities. In
DT, the cost of collecting the required tuples of all groups is
bounded by the sum of the cost of the tuples of each group.
This is because while sampling sources for collecting the
next tuple of a particular group, DT keeps the useful tuples
of other groups. Using this principle, the expected cost of
queries issued by the algorithm, ¥, is bounded by

v =) CiE[y] ®)

j=1

For the group G, the algorithm queries the data source
Dj. Let epoch j[k] be the number of queries issued to collect
the k-th tuple of a group G ;. For example, epoch j[1] is the
expected number of queries the algorithm issues until the
first tuple from G is discovered. Now, if the k-th item from
G| is discovered at the k’-th query, we have epoch j[k] =

@ Springer

1290

J.Chang et al.

(k" — epoch j[k — 1]). The number of queries issued at every
epoch, v, is computed as follows.

Qj
Y= Zepochj[k]

k=1

Consider a query that is issued for group G ; to D}‘ during
the k-th epoch. Let P7, be the probability that such query
is successful, i.e., it discovers a new tuple from G;. Also
let N7 be the number of tuples of G; in D7, ie., N* =
|D* NG j|. The algorithm has so far discovered (k —1) tuples
and there are (N ¥ —k + 1) undiscovered tuples from G ; at
D;. Therefore,

—k+1

* —
j.k — *
Nj

(6)

The geometric distribution represents the expected number
of trials before success in a series of Bernoulli trials. When
the probability of discovering a fresh tuple of group G; is
IP’jf, o following the geometric distribution, we have

2[epoch;[K]] P
— o“|epoch =—
]P);k Pj‘,k

E[epochj [k]] =

As a result, we have

Q;j (] Qj
1
[1//J |:Z epoch [k]} = ZE[epochj[k]] = Z P

k=1 k=1 k=1 " J.k
*
N;

) !

k
k=(N¥—Q;+1)

N¥ N —Q;
L1 .
=Nj (Z i k) = N(Hy; —Hov-))

J
1
J;N;F—k—l—l 4

Now, using Eq. 5, we have

*

* *
U= ZCNln Q,

j=1

3.2.4 Binary equi-cost DT revisited
In Theorem 1 of [1], the authors posited that the COUPCOLL

algorithm is optimal under the equi-cost binary-groups con-
straint. We revisit this result here and argue that while the

@ Springer

strategy of selecting the minority first is typically more effi-
cient than the majority strategy, it may incur unnecessary
costs for query counts highly skewed toward the majority.
First, we restate the theorem as the following proposition.

Proposition 1 Consider a DT problem under the availabil-
ity of group distributions where there are two groups and
costs for querying data sources are equal. On iteration I, if
group Gy is the minority, i.e., P|" < P}, then selecting DY is
optimal.

Under the equi-cost binary constraint, COUPCOLL prior-
itizes the minority group G until Q; is satisfied, at which
point it switches to D; to prioritize G2. We can also define
the opposite strategy, which prioritizes G». Let A; and A; be
the shorthand for these two algorithms. The following exam-
ple demonstrates the situation in which A, is more efficient
than A;.

Example 3 Consider the toy problem from Example 2 with
query requirement [Q1, @>] = [1, 10]. We derive an analyt-
ical equation for the expected cost of running .4; and A,
respectively.

Consider the event in which j copies of G, are sampled
while sampling from D1, with j ranging from 0 to co. In such
an event, the algorithm samples from D1, for (Q1 + j) times,
and it samples from D, for max(Q» — j, 0) number of times
in expectation. Furthermore, the probability of said event is
(Q'J;.j_l)(Pl"‘)Ql (1 — Pj")/ since (Q‘J;j_l) is the number of
combinations for j samples of G, and all but the last copy
of G 1-

oo

E[A1]=Z<Q1+J'+

Jj=0

% <Q1 +J] - 1)(P1*)Ql(l _ PI*)/'

=Y +/>(Q1+]’)(Pf‘)Qla—Pf‘)-f

J

max(Q» —j,0)>
Py

=0
imaX(Qz—j 0)(Q1 +j- 1)
j

- (PH2 A= PPy
j=0
+) ;
=0 2}%(&*)@(1 — Py
p=
0r-1
£y sz; (Q'+]’)(Pf‘)Ql(l—Pl*)f
Jj=0
01 & o-jloi+j-1 :
=t e (; >(P1*)Q'(1 — Py

Data distribution tailoring...

1291

Algorithm 2 RATIOCOLL

Require: An instance of DT (D, G, C, Q).
Ensure: Unified data set O.

1: O <@

2: while 3j € [m]s.t. Q; > 0do

33 G*=

argmax

(e (55))
i - min
G;€G,0,;>0 T et \ Py

. . (Ci)
D™ = argmin
D;eD P; «
s < Query(D*)
: O < 0O U{s}
7: end while
8: return O

A A

Similarly,

Q-1 . .

— +i—1 .

E[A] = —Iszf + > lel* / <Q2 j’)(P;)Qza s
j=0

While this combinatorial equation is impractical to com-
pute for large query counts, we computed [.A;] and E[.A4;]
for Q1, Q2 < 250 numerically. We find that E[.4,] tends to
be smaller than E[.4;]if Q7 is well over five times as large as
01, with a nearly linear separation between the two regions
of the problem space. Neither algorithm is optimal.

As a concrete example, for query (Q1, Q2) = (1, 10),
E[A;] = 11.9545 and E[A;] = 11.982, meaning .A; is more
efficient. With just one more query count requirement for G,
however, E[A;] = 13.0616 and E[A>] = 13.0067, thus the
majority-first algorithm is cheaper. While the minority-first
algorithm is typically more efficient than the majority-first
algorithm, it may incur unnecessary cost for query counts
highly skewed toward the majority.

This example illustrates that the optimal algorithm should
balance two priorities at the same time: the minority group
and the group with high query count requirement.

3.3 RATIOCOLL: new solution
3.3.1 Modified heuristic

Although CouPCOLL is suboptimal, the exact solution from
§ 3.1 is not tractable for even moderately large queries. Con-
sequently, we propose a simple heuristic that is on par or
better than COUPCOLL, which we show empirically in § 5.
The modified algorithm RATIOCOLL is shown in Algorithm 2.

RATIOCOLL chooses the priority group based on the
expected cost for satisfying the counts of each group inde-
pendently. Note that C; / P;; is the expected cost per sample
of G;. Thus, (Q; Cj) /P I’F is the expected cost to satisty Q;
on its own, where Cfl'f is the cost of D;‘ and P /’.k is the prob-
ability of sampling G; from D’/k The following equation is

nearly identical to Eq. 2, but with an additional Q; term.

C.
argmax (Qj - min (—l>> @)
jelm].0;>0 i€l \ P, j

This modification makes our algorithm balance prioritizing
groups that are rare (small P; ;), expensive (large C;), or have
a high query count (large Q ;). Once the priority group G* is
chosen, we then choose the optimal data source using Eq. 3.
In scenarios where duplicates cannot be ignored, we make
an analogous modification as discussed in Sect.3.2.2.

A natural question is whether assigning weights to the

Gi =

terms Qj and min (PC—’> would be necessary. For instance,
VD;eD hJ

in a particular scenario, prioritizing a group with a high query
count may be much more important than prioritizing a rare
group, or vice versa.

We justify our choice by reframing the behavior of RATI-
OCoOLL as follows. Recall that Eq. 7 prioritizes groups based
on the expected cost to satisfy the group’s query require-
ment. Thus, at any given point, RATIOCOLL tries to ensure
that the expected cost to satisfy a group’s query requirement
isroughly equal to that of other groups. In other words, RATI-
0CoLL’s goal is when

OnC,,

01C7 02C5

Pl* Pz* P

The sum of all the terms is a constant m times one of the
terms.

0;Cy
=L
1 I3

0;Cy
—=L
P;

= 0rC = Vois
" Ykem T Q Xketm B

Which gives us
Z
] <

——
Q m Zke[m] c_'};

Normalizing such that Q;/Q for each group sums to 1, we
get an expression for R;, the proportion of remaining Q ;
compared to Q that RATIOCOLL aims to reach.

.
i
Cj

P

R; =
Zke[m] c_%

Qj
~ =L 8

That is, assuming that the total query count Q is fixed, it
wants to have a large proportion of the total query to be
occupied by a group that is relatively cheap to obtain. For
instance, if G is the minority compared to G», then a query

@ Springer

1292 J.Chang et al.
1.0 4 —— Optimal Ratio Table4 Optimal 9 when Q = 5000 vs Ry
----- Heuristic Ratio)
08 P Py Optimal Q;/Q Ratio Ry
0.1 0.95 0.065 0.095
064 0.5 0.6 0.44 0.45
0.4 OCOLL is modified to account for duplicates, the same union
bound as shown in Theorem 1 holds.
0.2
3.3.3 Asymptotic result
0.0 e
While it is difficult to obtain a tight analysis in general, we

0 1000 2000 3000 4000 5000
Total Query (Q)

Fig.2 Optimal Q; : Q> ratio as Q varies

of (20, 80) is easier to satisfy than (80, 20), even though the
total query count is the same. It does so by prioritizing the
group whose current ratio Q;/Q is high compared to R;.
RATIOCOLL, over time, brings the ratio of remaining query
counts for each group to be closer to the heuristic ratio.

This heuristic ratio is, in many scenarios, remarkably close
to the optimal ratio which may be computed exactly by com-
puting the DP table. As a concrete example, we computed
the exact values of the DP table in Example 2 with decimal
point computation to eliminate any numerical issues. Then,
for each total query count 0 < Q < 5000, we enumerated
each possible Q1, Q> combination such that Q1 + Q> = Q.
We then found the O, Q> combination which had the lowest
computed F(Q1, Q2) value for the given Q. Figure?2 visu-
alizes this result. As Q grows, the optimal ratio approaches
0.35, whereas the heuristic ratio is

0.4

R = ~ 0.31.

04 _:_ 0.9
If Q1/Q is maintained at 0.31 across the runtime of the algo-
rithm, then while it may not be optimal, it will be close to
optimal with dramatically lower runtime compared to DP.
Table 4 shows two other combinations of P}, P} under
binary-optimal constraint, and the optimal Q1/Q ratio as
QO grows larger compared to the heuristic ratio R;. We see
that the optimal ratio is close to the heuristic in both cases,
even though RATIOCOLL is orders of magnitude faster than
DP.

3.3.2 Upper bound for RATIOCOLL
Similar to COUPCOLL, RATIOCOLL only prioritizes a group

with nonzero remaining query count. As such, the same loose
upper bound shown in Eq. 4 holds. Furthermore, when RATI-

@ Springer

show that the expected cost of RATIOCOLL is asymptotically
close to optimal under a series of constraints.

Theorem 2 Consider an instance of DT problem withm = 2,
0=01+0201:0=P:P,C =C=1,and
P+ P} > 1. Also assume sampling with replacement from
a source which almost surely does not produce duplicates.
Recall that F(Q1, Q») is the expected cost required to satisfy
query Q = (Q1, Q2). Then

Pf+ P}
V2m Pf Py

The proof amounts to reducing the constrained DT prob-
lem into a generalized variant of the coupon collector’s
problem studied by Brown and Ross [49]. To proceed with
the proof, we first restate their problem definition.

Jim VOIF(Q1, 02) — 0] = ©)

Definition 2 [Generalized Coupon Collector’s Problem] Sup-
pose there are two types of coupons in a bag. In each iteration,
a coupon is drawn randomly with replacement. The prob-
ability of drawing coupon 1 is p, and that for coupon 2
is 1 — p. Our goal is to sample type-1 coupon k times,
and type-2 coupon r times. Furthermore, we are given that
p = k/(k+r). Estimate the expected time required to satisfy
the requirement, denoted Ny ,.

Proof In order to maintain the ideal ratio, after some ¢ itera-
tions, RATIOCOLL must have sampled ¢ R; data points from
G1, and t R data points from G,. Let X/, X} be the num-
ber of data points collected from each group at time ¢. Since
P1*+P2* > 1,ast — 00,

. X Ry
lim E — | ==
t—00 X2 R>

F(01,
Consequently, Qlirn M =1.

—00 Ni.r

Brown and Ross proved in [49] that

lim /v[E[N S
Jim JU[E[Ni,r] —v] = ZTT

Data distribution tailoring... 1293
b as follows.
Substitute v = Q, Ni, = F(Q1, Q2), p = =355, and
1 2
pr) T
q = pripy to obtain L(T)=E [Z (niaf) — u(a,))} (10)
=1
. , _ N 2
Qll_r)noo \/E[F (Q1,02) - 01 = \/W Different strategies have been proposed to balance explo-
12 ration, which allows the agent to better estimate i (a;), and
which concludes the proof. O exploitation, which allows the agent to reap rewards from

The significance of Theorem 2 is twofold. First, it is much
tighter than Theorem 1. Second, as explained in § 3.3.1,
RATIOCOLL tends to stabilize the ratio of remaining query
counts to Ry : Rp. Thus, we expect Q1 : Q2 & Ry : Ry to
be a reasonably common scenario even if the initial query
requirements are not exactly as specified in the theorem.

4 Unknown distribution model

In this section, we study the DT problem without knowledge
of group probability distributions. A naive solution is to first
issue “enough” random queries to each of the data sources
and estimate the distributions. Then, knowing these distribu-
tions, we can use the techniques proposed in § 3. However,
this solution can spend too much of the limited query budget
estimating the distributions, especially when there are many
data sources or only a small result data set is desired. There-
fore, we seek to collect data directly, without first discovering
the distributions. To do so, we model the DT problem in the
unknown distribution case as a (multi-armed) bandit prob-
lem [50-52] (§ 4.1). We then study bandit algorithms for
scenarios with (§ 4.2) and without (§ 4.3) prior information.

4.1 Modeling as multi-armed bandit

Multi-armed bandit (MAB) refers to a general class of
sequential problems with exploration and exploitation trade-
off. Formally, a stochastic bandit problem is defined as
follows. Consider a set of n arms, where each arm a; is
associated with an unknown probability distribution v; with
mean (a;). In a sequential setting, with a time horizon T', a
planner needs to take action by selecting an arm at every iter-
ation. Let A = ay, - - - , ar be the sequence of arms chosen
by the agent. Upon selecting an arm a;, the agent receives
a stochastic reward R(a;), from an unknown distribution v;
with parameter w1 (a;). We have E[R(a;)] = n(a;).

The objective of the agent is to maximize its expected
cumulative reward E [Zthl a,]. Let the optimal arm at time

t be af. Then, the optimal strategy A* = aj, - - - , aj would
have the expected cumulative reward Zszl wu(a;). Based on

this, the regret for not taking the optimal actions is computed

highly valuable arms. As a naive baseline, we may consider
the e-greedy strategy with a fixed exploration rate . In each
iteration, with probability ¢ € [0, 1], the planner randomly
chooses an arm to explore. Otherwise, it chooses the greedy
arm argmax [i1(a;)], i.e., the arm with the highest sample
mean. Each exploration round incurs O(1) regret since it
is impossible to optimize random sampling. As such, fixed
exploration rate strategies incur O(T') regret.

A sublinear regret bound can be achieved using decreas-
ing exploration rate strategies. These strategies exploit the
fact that exploration is more valuable earlier than later, and
vice versa. The e-greedy strategies with ¢ decreasing over
time at an appropriate rate achieves O (7?3 log T'/3) regret
[52]. This bound can be brought down to O(Tl/2 log T2
through variable exploration rate strategies such as upper
confidence bound (UCB) bandit [53].

There is a straightforward mapping of unknown DT prob-
lem to stochastic bandit problems, where every data source
D; is an arm. In a sequential manner, we would like to select
arms in order to collect Q ; tuples from every group G ;. We
still need to design the reward function according to the out-
come of a query and the cost of issuing the query, which
we explain in the following sections. The design of these
reward functions varies depending on the extent to which
prior knowledge of the overall distribution is available.

4.2 DT as MAB: with prior knowledge

In order to be able to apply the bandit algorithm, we must
define a reward function for each group G . In order to com-
pute the reward of collecting a tuple from group G;, we raise
the question of how “hard” itis to collect one tuple of a group.
For example, if 90% of the tuples across different data sources
belong to G ;, most queries will return a tuple from G ;. On
the other hand, collecting a tuple from a group that is rare
requires more effort, and so should be worth more in reward.
As aresult, one can argue that the reward of obtaining a tuple
from G| is proportional to how “rare” this group is across
different data sources. In other words, what is the expected
cost one needs to pay in order to collect a tuple from G ;.

In order to compute the expected cost, we assume we know
the overall distribution of groups as prior information. Such
an assumption is reasonable in many scenarios, where overall
aggregates are often available in public forms such as Bureau

@ Springer

1294

J.Chang et al.

Algorithm 3 UCB

Require: An instance of DT (D, G, C, Q).
Ensure: Unified data set O.
I: O «<¥
2: N; <1 Vie|n]
:fori =1tondo
s < Query(D;)

3
4
50 Dy «
6
7

—— wheres € G;
PIC; ’
: end for

: while3j € [m]s.t. 0; > 0do

* _ 2Int
8: D¥ < argmax | (D;) +
DieD Ni
9: s < Query(D*)
) Ny - (D)) + i
10: (D;) < T where s € G;

11: N; < N; +1
122 O < O U{s}
13: end while
14: return O

reports. Let P; be the overall frequency of a group G, i.e.,
P;j =|Gl/| Uie[n] D;|. Following the principle of deferred
decisions [48] (page 55), if we randomly select a source to
query, the expected number of queries required to collect a
tuple from G is 1/ P;. Since any source can be selected for
sampling, the average cost is ¢ = (Z?Zl C;)/n. Therefore,
the expected cost to collect a tuple from G j is ¢/ P;. We would
like to assign a high reward to sources that contain tuples of a
rare group G ; (small P;). We also penalize the reward based
on the cost of sampling from the source, C;. Therefore, the
reward of source D; with respect to G, namely R(i, j) is
¢/(Pj-C;). Since ¢ is constant across all sources and groups,
we remove it from the reward function and write the reward
function as following.

1 . .
o 7~ if @; > 0 and query result is new
R(, j) =1 P'C ’

(1D
0 otherwise

In order to efficiently compute the average reward of each
data source, we keep a running sample mean i (D;) for each

data source D;. Once we sample an extra tuple of G; from
D;, we update the sample mean as

Ni - u(Di) + R(, j)
N; +1

u(D;) <=

Otherwise, Algorithm 3 follows a standard UCB strategy. It
requires O (n +m) space to store trackers N;, (D;) and P;.
Each iteration requires O (n) time. Since Algorithm 3 follows
the UCB bandit strategy, and its reward is bounded within a
finite range, it incurs O (log T') regret [52].

@ Springer

Algorithm 4 EPSILONGREEDY

Require: An instance of DT, exploration rate «.
Ensure: Unified data set O.

1: 0«9

2: Nij <0 Vieln],je[m]

3: while3j € [m]s.t. Q; > 0do

4: if t < nthen D* < D,

5: else

6: r <— a uniformly random number in [0, 1]

7: if » < a/Int/f) then

8: D* <« arandom data source

9: else

10: R(Gj)<—(Qj-_min<§\}'N_">> VGjeg
i€ln] L

11: D* <« argmax (C% Zje[m]NN;;f ~R(Gj)>

D;eD
12: end if
13: endif

14: 5 < Query(D*)

15: 0 < O U({s}

16: Nij < N;j+1wheres € G;
17: N;j < N; +1

18: end while

19: return O

4.3 DT as MAB: without prior knowledge

Although the reward function of equation 11 performs well
empirically (§ 5), there are scenarios in which it would not be
applicable. Overall demographic statistics may not be avail-
able for the problem setting, especially if data points are not
individuals. While external statistics could be a substitute,
they may deviate significantly from the distribution of given
data sources.

4.3.1 Proposed EPSILONGREEDY algorithm

Motivated by the aforementioned limitations, we propose
an algorithm for the DT problem with unknown statistics
and unknown overall demographics. Algorithm 4 shows the
EPSILONGREEDY algorithm. It first samples each data source,
then explores a random data source with decrease in prob-
ability. Otherwise, it chooses the data source which has the
highest expected reward by estimating Eq. 7 from the groups
sampled so far from each data source. It exploits further
cost optimizations in the same manner as RATIOCOLL by
directly utilizing Eq. 7 as the reward function. Although Q
and C; can be treated as constants in each iteration, P; ; is
unknown by definition. As such, each action does not return
a numeric reward, unlike the standard MAB problem def-
inition. Instead, the agent estimates P; ; with increase in
accuracy as it samples each data source. This then allows
it to estimate Eq. 7 more accurately over time. It requires
O (nm) space to store trackers and O (nm) time per iteration.

Notice that the feedback given to EPSILONGREEDY is the
group of sampled data point, and not a numerical reward.

Data distribution tailoring...

1295

Table 5 Terms for analysis of EPSILONGREEDY

Symbol Description
X! Number of exploration rounds by time ¢
Xi Number of times D; was explored by time ¢
Yl.{ i Number of times G ; was sampled from D;
' by time ¢

P Probability of sampling G ; from D;
R(G)) Reward from group G, as in equation 7

. ci

1.€., R(Gj) = Qj P7£‘

J

u(D;) Expected reward from D;

ie., u(D;) = Z_,‘g[m] Pi,jR(Gj)
L(1) Regret by time ¢
ie, L) =Y/, f(D*) —ELf(D})]

where D* is the optimal source, and D" is the
source chosen by the algorithm at time ¢

This is the main deviation from the standard bandit problem
definition (§ 4.1). As such, we cannot rely on prior results.
In designing a bandit algorithm for this modified problem
definition, we could consider a UCB strategy. However, this
is not feasible, as the reward of each arm is non-local. Fur-
thermore, the reward of each arm is non-local. In order to
accurately estimate the reward from D;, we need to explore
all data sources, not just D;. This limitation is why we opt
for an e-greedy strategy with ¢ that decays over time.

4.3.2 Analysis of EPSILONGREEDY

Surprisingly, despite an additional layer of statistical infer-
ence, our EPSILONGREEDY algorithm has a big-O bound
identical to ¢-greedy bandit algorithms in the standard bandit
problem setting.

Theorem 3 The EPSILONGREEDY algorithm achieves asymp-
totic regret of O (t2/3(10g t)1/3) at time t, when C; = 1
forall i € [n], n,m, Q;j are fixed, and p* is the min-
imum optimal probability for any group defined as p* =
min [max (Pi,j)] > 0.

J€lm] | i€[n]

Notice that Theorem 3 assumes all Q; to be constants.
This is a limitation imposed by the fact that remaining query
counts at a certain iteration is unpredictable. However, once
the query counts converge to the ratio imposed by Eq. 8§,
we argue that the remaining query count for a group relative
to all remaining queries will stay mostly constant through-
out the rest of the algorithm’s runtime with high probability.
As such, fixing Q; as constant is a reasonable simplifying
assumption that does not significantly impact the implica-
tions of the theorem.

To proceed with the proof, we define some new terms and
recall others in Table 5. Another concept we must define is
the clean event, which occurs when all values of X', X l’ ,and
Y i" j are not far from expectation.

Definition 3 We define events £, &, and &3 as the events in
which equations 12, 13, or 14 hold, respectively.

X —E[X']| < 0 (1~ (0g)~ /*) BLX'] (12)
X!z E[X!] - 0 ("7 ogn ™) ELX]]

Vi e [n] (13)
Y[t,j > E I:Yit’j] -0 (t—1/3(10gt)—1/6>]E[Yit’j]

Vi € [n]Vj € [m] (14)

The clean event &, is the event in which all three equations
hold, i.e., & = & N & N &;. The complement of the clean
event is called the dirty event, denoted &,.

Finally, any term with a horizontal bar above it (e.g., P;, i
(D)) is an estimate of the ground truth obtained through
sampling.

The proof strategy is straightforward: we bound the terms
in Table 5 one by one with high probability using standard
concentration bounds. For organization, the proof is split into
lemmas. Lemma 1 shows that if the clean event holds, then
w(D;) is closely estimated. Lemma 2 bounds regret given the
clean event. Lemma 3 bounds probability of the dirty event.
From these lemmas, Theorem 3 follows directly.

Lemma 1 If the clean event holds, then

(D) = (D)) = 0 (17 10g) ™) w(Dy).

Proof Since the clean event holds, as a direct application of
Eq. 13 and Eq. 14,

|Pj—Pijl <O (l_1/3(10gl)_1/6) P ;.

As a shorthand, let § = t_1/3(10g t)_l/6.
The bound on |P; ; — P; ;| implies a similar bound on
|R(Gj) = R(Gj)|.

1 1
\R(Gj) . R(Gj)| < max { (11—8)1’*,/’ 1P*.j

Py j - (1+40) Py

1 1
< —
T (A=8P; (48P
28 1
- (1=82) Py

@ Springer

1296

J.Chang et al.

—1/3 ~1/6
_ 0 (t Q(log 1)) R(G))
ey

LIRG)) = RG I = 0 (7P ogn™/°) RG))

‘We obtain a similar bound for |t (D;) — w(D;)| by repeat-
ing the same technique.

| (D;) — (D)

=Y P jRG)— Y PijR(G)

Jj€lm] J€lm]

= D [1PjRG)| — [P RG]
Jjelm]

< Y |PjR(G))— PijR(G))|
Jj€lm]

The summand is simplified as follows.
|P,,jR(Gj) — P, jR(G))|
< max (I+8P; j(1+8)R(Gj)— P jR(G))
PijR(G)— (1 =8P ;(1-8)R(G))
<[1+8*—1-8*P ;R(G))
= 45P; jR(G))
= 43R(G)
1R D) = D) = 0 (7P dogn ™) (D)

Lemma 2 [f the clean event holds, then

L(t) <0 <t2/3(log t)1/3>.

Proof Similar to the proof of lemma 1,lets =¢~'/3(logr)~1/¢
as a shorthand.

Regret can incur during exploration rounds and during
exploitation rounds. Consider the exploration rounds first.
Since the clean event holds, by equation 12, X' is upper
bounded by

X' < (14 OEXT < (140 (1717 + (log)~/%)) ELX'].
Since the exploration rate is /In 7 /£, by integration and alge-

braic simplification, E[X'] = © (t2/3 (log t)1/3). Thus, by
substitution,

X' <0 (t2/3(logt)1/3).

Each iteration of exploration round incurs at most O(1)
regret, since p* > 0 implies that the maximum possible

@ Springer

reward is bounded. As such, the regret from exploration
rounds is at most O (r*/3(log 1)!/3).

Now consider the regret from exploitation rounds. There
is at most t — (1 — 8§)E[X’] < O(r) exploitation rounds.
For each exploitation round, if a suboptimal source D; was
chosen instead of the optimal source D*, it must be that

[1 +0 (t_1/3(logt)_l/6)] w(D;)
> [1 -0 (fl/3(logt)71/6)] n(D*)
which means

(D) = = 0 Pdogn) (D*)
K = 150 (Blogn-176) "7

Maximum reward in any source is 1/p*, so

1 1—0 (" Bdogn)~1%) 1
D) — (D) < — —
w(D™) — p(D;) < D 1+0 (t—1/3(10gt)_1/6) p*

1 (1 1—O(t_1/3(10gt)_1/6)>
p*
1

"1+ 0@ B3logr)-1/6)
20~ B log)=1/%)

T (1 +0(~1(log t>—1/6>>

= 0@t Pogr)9).

Thus, the regret from exploitation rounds is at most O (r~!/3
(log1)=/%).

Combining the regret from exploration rounds and exploita-
tion rounds,

L) = 0@ (logn)!?) + 0P ogn)~1/0),
L) < 0P dogn)'?).

]

Lemma 3 The dirty event occurs with probability at most
o).

Proof Let us denote the event in which Eq. 12 holds as &y,
the event in which Eq. 13 holds as &, and the event in which
Eq. 14 holds as &3. Then, the clean event & = £ N E N &3,
s0 P(E) = P(ENP(&ENP(E3|E N E).

First, we lower bound P (&) with multiplicative Hoeffd-
ing bound.

P[IX' —E[X']| > SE[X']] < 2% EX1/3,

We set § = 2~ 1/3(log 1)~/ such that Eq. 12 holds. Then
by substitution,

26—32E[X’]/3 -0 (t_4> ’

Data distribution tailoring...

1297

soP(E)=1—0@1%).
Second, we lower bound P (&,|€7). Since event £ holds,
by substitution,

X' > (1 -8E[X],
X' > (1 20713 log)~ 1/6) (2/3(10gt)”3).

After simplification, we get

(2/3(10g t)1/3> < X'

Each X! is a sum of independent random variables. So
again, by the multiplicative Hoeffding bound,

PX! > (1—8OE[X!]| &] < e EXI2,

Setting 8§ = 2~ 1/3(log r)~!/% ensures that Eq. 13 holds. By
substitution, P(&[E1) > 1 — O(t™).
Then by a similar process as above,

gl

where § = t~'/3(logr)~1/®. This means P (&1 N &) >
1—0@™).
Combining the above results,

vl —EIY)| 2 SR 11 &N &) s 067

P (&) =PEDP(&EIENPEIEINEY)

> (1 — 0(:‘4)) (1 - 0(¢‘4))” (1

>1-—0@.

P (&) = o0a. o

Now we may prove Theorem 3.

- O(t_4))m
Thus,

Proof The regret per iteration given the dirty event is O (1)
by the same reasoning as why regret per exploration round
is O(1). Then, we have

L) <O <t2/3(log t)1/3> +ou o)

-0 (t2/3(10gt)1/3>

which completes the proof. O
4.3.3 A practical variant

Although EPSILONGREEDY has the best theoretical regret
bound at arbitrary time 7, an EXPLOREEXPLOIT strategy
described in Algorithm 5 could be much more efficient in
practice. This is because the expected time horizon is at
most some unknown constant multiple of Q, as established

Algorithm 5 EXPLOREEXPLOIT

Require: An instance of DT, exploration rate «.
Ensure: Unified data set O.
1: 0«9
2: Nij <0 Vieln],je[m]
fori = 1to [@Q?3] do
s < Query(D¢ mod n)+1)
N,‘qj <~ N,',j + 1 where s € Gj
N;i < N; +1
end for
Run RATIOCOLL with P; ; =

A

Nij
Ni

in Eq.4. As such, the time horizon can be crudely approxi-
mated as T &~ Q, and the exploration rate set to a7%/> for
some tunable parameter «. Given a known time horizon, it is
highly advantageous to perform all explorations at the begin-
ning. Furthermore, EXPLOREEXPLOIT’s simplicity means the
exploration rounds can be batched and parallelized, and an
existing implementation of RATIOCOLL can be reused as a
subroutine. Although there is no firm theoretical bound, if the
time horizon is accurately estimated, then by a direct appli-
cation of Theorem 3, EXPLOREEXPLOIT achieves the same
sublinear regret as EPSILONGREEDY.

5 Experiments

We have developed the RATIOCOLL algorithm in this paper
for the case of known distributions, which improves upon
CouprCoLL from [1]. We also developed UCB for the case
of unknown distributions with prior information, and EPSI-
LONGREEDYand EXPLOREEXPLOIT for the case of no prior
information. We empirically study the performance of the
algorithms and compare them against baselines.

We use a RANDOM baseline that chooses a random data
source in each iteration. For the unknown scenario, we also
consider a FIXEDEXPLORATION baseline which uniformly
explores for 10% of total query Q then runs RatioColl using
sample statistics. For each algorithm, their duplicate-aware
variants are denoted by the DUPE suffix, replacing P; ; with
P/ ; as discussed in Sect. 3.2.2.

We design a series of experiments that verify our the-
oretical results under a range of problem sizes and test the
robustness of our proposed algorithms under a variety of sce-
narios. In total, we conduct six experiments as listed below.

1. Comparing the performance of algorithms while varying
the proportion of the query count requirement occupied
by minority versus majority group. (Sect.5.2.1, Fig. 3)

2. Comparing RATIOCOLL and its theoretical bounds (The-
orem 1,2) while varying Q to test the practical usefulness
of analysis. (Sect.5.2.2, Fig.4a)

@ Springer

1298

J.Chang et al.

3. Comparing FIXEDEXPLORATION baseline with decaying
exploration rate bandits EXPLOREEXPLOIT and EPSILON-
GREEDY while varying Q. (Sect.5.2.3, Fig. 4b)

4. Testing the proposed algorithms on a large practical data
set. (Sect.5.2.4, Fig.4c)

5. Testing the proposed algorithms and their duplicate-
aware variants on a small practical data set. (Sect.5.2.5,
Fig.4d)

6. Comprehensive performance evaluation while varying
cost model, n, m, and whether each group has a source
where it is the majority group. (Sect.5.2.6, Figs. 5,6)

5.1 Data

Flights [54]: Airborne Flights database, published by the
Bureau of Transportation Statistics, contains detailed flight
statistics from 1987 to present. The carrier on-time perfor-
mance of each flight is represented by OP_CARRIER_AIRLINE
_ID, ORIGIN_STATE_NM, and ARR_DELAY, among other
attributes. We considered the flight information of carrier
airlines from 2018 to 2020, each row representing a single
flight. There were 18 million flights in total. The data set
was split into 11 data sources, each representing an airline
network. We categorize data points into 51 groups by their
destination state, including U.S. Pacific territories.
COMPAS [55]: The Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS) data set
was used to demonstrate racial bias in the COMPAS
recidivism algorithm [56]. It is now used as an exam-
ple of a biased data set [41, 57, 58]. We deduplicated
rows based on an individual’s ID, resulting in a data
set of 18,610 individuals. We split the data set based
on the month of their screening, with a total of 24 data
sources over two years. We categorized each individual into
demographic groups: Caucasian Male, Non-Caucasian
Male, Caucasian Female, and Non-Caucasian Female.
The largest group Caucasian Male had 9,407 tuples, and
the smallest group Non-Caucasian Female had 1,706.
BenchDL: We synthesized a benchmark to evaluate DT on
various cost and data distribution settings. It can generate
n random synthetic data sources with m groups, where each
data source generates unique tuples on the fly according to an
underlying probability distribution. BenchDL has two modes
of randomly generating the underlying probability distribu-
tions: majority and minority. Majority distribution means that
for all group G, P;‘ > 1/m, whereas a minority distribution
means that for at least one group, P;.“ < 1/m. BenchDL gen-
erates majority distributions by allocating a probability of
1/m to each group in at least one data source, then randomly
splitting remaining probabilities. It generates minority dis-
tributions by allocating a probability that lies in (0, 1/m) to
all data sources to at least one group, then randomly splitting
remaining probabilities.

@ Springer

BenchDL assigns a constant cost to each data source, cho-
sen by one of three cost models.

1. Uniform: C; = 1 foralli € [n].

2. Random: A random floating point number in (0, 2].

3. Skewed: We generate a number from the Pareto distribu-
tion with parameter « = 2, then subtract 1 to obtain a
number in range (0, o).

The parameters are set such that E[C;] = 1 for all cost
models, which means the expected cost per iteration for the
RANDOM baseline is 1. This property allows us to discern
which algorithms better exploit the cheaper data sources.

5.2 Experiment design & results

5.2.1 Experiment 1: query ratio under equi-cost binary
constraint

The goal of this experiment is to compare the performance
of the discussed algorithms under an equi-cost binary con-
straint with various P|*, Py combinationsand Q : Q5 ratios.
We set n = 2,m = 2 and use the uniform cost model.
Furthermore, in all rounds, we set the total query count
Q = 100. There are three independent variables: Q1, P}
and P;. We vary P} and P} among values 0.1, 0.3,0.5, 0.7,
and 0.9. Since there are only two data sources, combinations
where Pl* + P2* < 1 are infeasible, and combinations where
P/ + P} = 1 result in identical Dy and D5. Thus, we only
consider P|" 4+ P) > 1. Some combinations are omitted due
to symmetry. We vary Q1 from 0 to 100.

The results are shown in Fig.3. In the known setting,
CourCoLL and RATIOCOLL consistently outperforms the
RANDOM baseline. Furthermore, there are regions of Q1 val-
ues where COUPCOLL consistently outperforms RATIOCOLL,
particularly when Qg is relatively small. This effect is most
evident in Fig. 3(d-f). This is to be expected, since we always
set G to be the minority group; COUPCOLL is inefficient
when the minority group has small query requirements.

Though variance is high in the unknown setting, bandit
strategies tend to outperform RANDOM with the exception of
UCB. While UCB tends to outperform RANDOM, it may, in
certain configurations, be worse than the RANDOM baseline.
UCB’s lackluster performance in certain scenarios confirms
our claim that the reward function for UCB, even if known,
may not be applicable.

5.2.2 Experiment 2: doubling test for bounds

In this experiment, we test the applicability of analysis on
RATIOCOLL for reasonably small query counts under the con-
ditions of Theorem 2. Specifically, we setn = 2, m = 2,
P = 0.5, and Py = 0.75 with uniform query costs. As

Data distribution tailoring...

1299

P¥1 =03, P*2 =09

P*1 =0.5,P*2 =0.7

P*¥1 =05, P¥2=0.9

—— Random —— Random

—— CoupColl 240{ — CoupColl
RatioColl

220 — EpsilonGreedy
ucs

500 RatioColl
—— EpsilonGreedy
ucs

200

180

Avg Cost

160

140
200

120

100 100

—— Random

—— CoupColl
RatioColl

350{ — EpsilonGreedy

ucs

0 20 40 60 80 100 0 20
G1 Query %

(a) Py =0.3,Pf =0.9

P*1 = 0.7, P2 = 0.7

G1 Query %

(b) Py =0.5,P; =0.7

P*1=0.7,P*2 =0.9

60 80 100 0 20 40 60 80 100
G1 Query %

(c) Pf =0.5,Pf =0.9

P*1 = 0.9, P¥2 = 0.9

—— Random

— CoupColl
RatioColl

—— EpsilonGreedy

ucse

200 275 — Random

—— CoupColl
RatioColl

—— EpsilonGreedy
ucs

250

225

200

Avg Cost

175

120

100 100

150
1259 NM v ’/’, 150

—— Random

— CoupColl
RatioColl

—— EpsilonGreedy
ucs

DAl

100 =

0 20 40 60 80 100 0 20
G1 Query %

(d) Py =0.7,P; =0.7

G1 Query %

(e) Py =0.7,P; =0.9

60 80 100 0 20 40 60 80 100
G1 Query %

(f) Py =0.9,P; =0.9

Fig.3 Performance of all algorithms under equi-cost binary constraint with varying Q1 : Q5 ratio, and P/ + P;* > 1. P, Py was chosen from

0.3,0.5,0.7,0.9

the independent variable, we vary the total query count Q
from 32 to 5,096 as a doubling test. We also ensure that
Q1 : 02 =~ 0.5:0.75 to the nearest integer regardless of Q.
We run the RANDOM and RATIOCOLL algorithms, and com-
pare their results with the union bound (Theorem 1) and the
asymptotic expectation (Theorem 2). For each query count
and algorithm, we repeat for 30 repetitions and take the aver-
age.

The result is shown in Fig. 4a. Even with a relatively small
query count requirement in the thousands, the asymptotic
expectation is very close to the average costissued by RATIO-
CoOLL to satisfy the query. Furthermore, union bound is loose
compared to the asymptotic expectation, far surpassing even
the random baseline.

5.2.3 Experiment 3: fixed versus uniform exploration
strategies

In this experiment, we compare the FIXEDEXPLORATION
baseline with our proposed decaying exploration rate ban-
dit algorithms EPSILONGREEDY and EXPLOREEXPLOIT (o =
0.5) as query size Q increases. We set n = 5, m = 10, with
no majority groups and skewed cost model. We then doubled
Q from 2% to 214,

The result is shown in Fig.4b. It plots the average cost
for each strategy per Q divided by the random baseline. As

Q increases, the bandit strategies trend toward significantly
outperforming the random baseline. Out of the three bandits,
EXPLOREEXPLOIT is the clear winner. Intriguingly, EPSILON-
GREEDY performs worse than the baselines for certain values
of O but nonetheless improves in an asymptotic manner.

5.2.4 Experiment 4: real world, no duplicates

We run the COUPCOLL, RATIOCOLL, UCB, EPSILONGREEDY,
and RANDOM algorithms on the flights data set, with the group
count requirements set as 100 per group. Thus, O = 5, 100
which s less than 0.3% of all data. Since Q is small compared
to the data sources, we ignore the effect of duplicates. We
also assume a uniform cost model, since all data sources
come from the same publisher. We report the average over
10 rounds.

The result is shown in Fig.4c. RATIOCOLL outperforms
CourCoLL, which out-perofrms the RANDOM baseline.
Futhermore, the query cost issued by EPSILONGREEDY is
competitive to RATIOCOLL, especially in contrast to UCB
that does not outperform RANDOM. The probability distribu-
tions of the flight data set might be one where UCB’s heuristic
is not the most applicable.

@ Springer

1300

J.Chang et al.

P*1 = 0.5, P¥2 = 0.75

80004 ——- Random
RatioColl
70004 Union-Bound
----- Asymptotic
6000
5000 -
g
S 4000
3000 A
2000 -
1000 -

10? 103
Total Query

(a) Comparing RATIOCOLL and theoretical bounds under
equi-cost binary as @) grows.

140000 -

120000

100000

80000

Avg Cost

60000 -

40000 -

20000

Random

Coupcoll

Ratiocoll EpsilonGreedy ucB
Algorithm

(c) Proposed algorithms tested on Flights dataset.

Fig.4 Results of Experiment 2-5

5.2.5 Experiment 5: real world, duplicates

We run the CoupCOLL, COUPCOLLDUPE, RATIOCOLL, RATI-
OCOLLDUPE (a natural duplicate-aware variant of RATIO-
CoLL), UCB, EPSILONGREEDY, EPSILONGREEDYDUPE, and
RANDOM algorithms on the COMPAS data set. The smallest
P; j value is around 50, so we set each group’s query require-
ment as 50 to ensure that duplicates are non-negligible. We
report the average over 50 rounds.

The result is shown in Fig.4d. Since the data sources
are very small compared to the query requirement, non-
duplicate-aware algorithms are highly inefficient compared
to even just the RANDOM baseline or their duplicate-aware
variants. COUPCOLLDUPE and RATIOCOLLDUPE seems to
outperform the RANDOM baseline by a small margin. EPSI-
LONGREEDY fares much better, even though it is not

@ Springer

1.05 4 /{\

o =
© o
v o

\

Cost / Random Baseline
o
©
o

o

o

[l
s

—— Random

0.807 EpsilonGreedy
FixedExploration
0.75 4 —— ExploreExploit

é ‘7 é é lb 1‘1 1‘2 1‘3 1‘4
Total Query (Log Scale)

(b) Varying @ for uniform-exploration bandit strategies.

1400 -

Avg Cost

Random Coup Coup Ratio Ratio Epsilon Epsilon UCB
Coll Coll Coll Coll Greedy Greedy
Dupe Dupe Dupe
. Algorithm A)
(d) Duplicate-Aware and Non-Duplicate-Aware Variants

on COMPAS Dataset.

duplicate-aware. This may be due to the fact that the total
query requirement is very small, so exploration rate is still
high.

5.2.6 Experiment 6: synthetic, general case

In this experiment, we run all algorithms under the following
combinations of independent variables.

1. Cost model: We test all three cost models in BenchDL ,
namely uniform, random, and skewed.

2. Varying n: In half of all experiments, we fix m = 10 and
vary n as 2,4, 6, 8, or 10.

3. Varying m: In the other half of all experiments, we fix
n = 10 and vary m as 10, 20, 30, 40, or 50.

Data distribution tailoring...

1301

We set n, m values such that n < m since the non-duplicate-
aware algorithms sample from at most m data sources. As
such, scenarios in which n > m are redundant. Further-
more, we split the results into two sets of plots for both
known and unknown distributions. The total query count is
fixed at 10, 000 and the group count requirements are evenly
distributed among groups. We repeat each combination of
independent variables 25 times and report the average.

The results of Experiment 5 are shown in Figs.5 and 6,
split into known and unknown DT. In known DT, RATI-
OCOLL tends to outperform COUPCOLL, which outperforms
the RANDOM baseline. In unknown DT, while UCB and EPSI-
LONGREEDY tend to outperform the RANDOM baseline, there
is no clear winner between the two bandit algorithms. In
certain scenarios, the heuristic for UCB fits well, in which
case the O(logt) regret of UCB is highly desirable over the
O (t*/3 log t) regret of EPSILONGREEDY. On the other hand,
if the reward function for UCB is not quite applicable, then
EPSILONGREEDY may outperform UCB.

As a general trend, the cost difference between the RAN-
DOM baseline and our proposed algorithms is the smallest for
uniform cost model, and the largest for skewed cost model.
As all proposed algorithms take the cost of data sources into
account, they are adept at exploiting the cheap outlier sources.

Increasing the number of groups tends to increase the cost
required to satisfy the query, since rare groups become much
harder to find. EPSILONGREEDY is affected particularly hard
by this trend. On the other hand, increasing the number of
data sources tends to decrease the total cost. With many data
sources to choose from, our algorithms are better able to
exploit the outlier data sources which have highly desirable
probability distributions.

5.3 Summary of results

In the experiments, we demonstrated the effectiveness of our
proposed algorithms over the RANDOM baseline and algo-
rithms proposed in [1]. We list the major takeaways below.

1. RATIOCOLL outperforms COUPCOLL when minority
group’s query count requirements are small.

2. Decaying exploration rate bandits are superior to a fixed
exploration baseline as Q increases.

3. EXPLOREEXPLOIT may be superior over EPSILONGREEDY
in practice for many scenarios due to exploring at the
beginning.

4. Duplicate-aware modification is effective in high-
duplicate settings.

5. As the variance in costs increases, the gap between the
RANDOM baseline and our algorithms increases.

6. With higher group and source counts, the gap between
the RANDOM baseline and our algorithms increases.

6 Related work

Responsible Data Science The bulk of work in algorithmic
fairness and responsible data science has been on building fair
ML models [59]. At a high level, the interventions to achieve
fairness in ML fall in three major categories [60]: pre-process
techniques [38, 61-63], algorithm modification (in-process)
[64-67], and post-process techniques [68—70] that change
model outcomes. Alongside other communities, fairness has
been a central topic in the premier database research. Related
work on data management for algorithmic fairness includes
data repair [63, 71], ranking [72-75], and data/model anno-
tation [76, 77], as well as different keynotes [78, 79] and
tutorials [80-82].

Bias and Representativeness in Data Biases have been
studied for a long time in statistics community [83] but social
data presents different challenges [59, 84, 85]. For social
data, the term bias refers to demographic disparities in the
sampled data that compromises its representativeness and
are objectionable for societal reasons [59, 84]. Given that
“an algorithm is only as good as the data it works with”
[85], fairness-aware data collection is considered as a way
to address unfairness in predictive models [86, 87]. Repre-
sentativeness of data collection have been widely studied in
the literature [88]. A notion of data representativeness has
been proposed as data coverage [42, 89-92], identifying the
demographic subgroups that are not represented in data. The
input target distribution to a DT problem can be inferred from
the result of coverage analysis. Bias has also been studied in
the context of approximate query answering [93], where a
database is considered as a sample and the goal is to answer
approximate queries as if the queries were issued on the true
population.

Data Discovery and Data Pricing Existing approaches for
data set discovery [20, 94], source selection [95, 96], and
schema mapping [97-99] can be necessary for the source
generation step of DT and their cost can be folded into the
cost model. Data set discovery is often formulated as a search
problem on repositories using keywords [100, 101] or another
data set [20, 94] and the goal is to find relevant data sets based
on the relevance to the keywords or integration-inspired mea-
sures. A complementary problem to DT is query-based data
pricing [102] which decides the price of the data from the per-
spective of providers. The output of the data pricing problem
can be plugged into the cost model of DT.

Data Distillation and Cleaning DT is an instance of the
data augmentation problem with some additional conditions
on the group counts [103]. Moreover, data distillation [104] is
particularly applicable in determining the group that a sam-
pled tuple is associated with if such information is absent.
Moreover, data cleaning is included in the source prepara-
tion process and its cost can be folded into the cost model.

@ Springer

1302 J.Chang et al.

Majority, uniform costs Majority, uniform costs Majority, uniform costs Minority, uniform costs
25000
20000 | == Fandom 20000] == Random 20000 = random
- CoupColl 20000 = CoupColl 20000 = Coupcll [20000
Ratocol Ratocol Ratocoll Ratocol
17500 17500 17500 17500 20000 20000
15000
15000 15000
15000 15000 15000
15000
12500 12500 12500 12500 15000
K g £ K H K £
S 10000 100002 S 10000 100005 S 10000 w0002 S 2
10000 10000
7500 7500 7500 7500
so00
s000 so00 5000 so00 so00 so00 oo
2500 2500 2500 2500
o o o o o o o 0
3
Grouss
Majority, random costs Minority, random costs Majority, random costs Minority, random costs
120000
17500 = random | s0o00 = random = random | 30000 30000 = fandom | 70000
= couscol = coupcal = coupCol = coupcol
RatioColl 20000 RatioColl RatioColl RatioColl
15000 70000 100000 20000 25000 25000 60000
so000
12500
15000 80000 0000 20000 50000
50000 15000
, 10000 "
B ¢ ¢ 40000
8 so0d oo § 8 10002 & 15000 H
7500 10000 10000 30000
30000
a0000 20000 10000
s000 20000
20000 00 oo
20000
2500 10000 5000 s000 10000
o o o o o o o 0
) % T
Groups # Groups # Sources
Majority, skewed costs Minority, skewed costs Majority, skewed costs Minority, skewed costs
= random
Loooo | == coupcal
Ratocol 25000
8000 20000
5 o 15000 §
4000 10000
2000 s000
o o
To 3 B3 3 o T B3 ™ 3 3 4 3
Groups # Groups # Sources

(i))] (k) 1

Fig.5 Known DT for Minority and Majority Distributions and Equal, Random, and Skewed Cost Models

Majority, uniform costs Minority, uniform costs Mafority, uniform costs Minority, uniform costs
20000 25000
16000 == Random 30000 = Random 20000 = Random
14000 e 1500 uce veo
14000 25000 = cpsionGreeay [= epsioncreedy | 17500 20000 =gy |
12000 15000 N
12000 4 15000
20000 o000
10000 - =
10000 -‘ - 12500 o | 12500 15000 15000
3 ¢ e g P ¢
§ e oo § F oo soo0E § 10000 w002 S H
10000
so000 500 10000
6000 Lo000 o000 7500
4000 000 5000
5000 so00 oo
s000 5000
2000 2000 2500 2500
o o o 0 o o
7 T 3 T o T i T T it
Sources # sources
Majority, random costs Minority, random costs Mafority, random costs Minority, random costs
17500 = Random 0000 = Random 70000 000 = Random 30000 30000 == Random 70000
onGre 20000 sionGre sionGrees lonGree
15000 = epsionGreedy | | = EpsionGreedy o000 = psioncreedy | 55000 . = EpsionGreedy | go000
20000
12500 30000 S0000 50000
15000 20000 20000
25000 15000
, 10000 P w00, g PR 0000,
& S B i g woo0f & somn i
10000
7500 30000 10000 30000
15000) : 10000 10000 B
s000 20000 20000
10000
e so00 5000 s000
2500 so00 10000 10000
o o o o o
it) B © E)) B) o E) 3 T
Groups # Groups # Sources # Sources
Majority, skewed costs Minority, skewed costs Majority, skewed costs Minority, skewed costs
= fndom 35000 120000 = fandom = Random = Random
. 25000 30000
100001 = e \ ucs 30000 20000 uee e s0000
== EpsionGreedy EpsiionGreedy = EpsionGreedy = EpsionGreedy
30000 100000 3
25000 20000 25000
s000 40000
25000 15000
50000
20000 20000
5 6000 w000y g P 1000y g 30000 ¢
8 2 S8 60000 2 8 £ S 2
15000 10000 15000
15000 oo
000 E 20000
40000 10000
10000 10000
000 s000
2000 <00 20000 s000 s000 10000
o o o o o o o 3
bt E) B © E)) B) B E) T T T T o 7 T 3 T)
Groups # Groups # sources # Sources

(1))] (k) 1)

Fig.6 Unknown DT for Minority and Majority Distributions and Equal, Random, and Skewed Cost Models

Cleaning tasks such as entity resolution are necessary for ify complex constraints over answer sets [105, 106]. Package
determining the freshness of samples. queries could be used to query representative data sets effi-
Data Acquisition and Databases Matteo Brucato et al. ciently from an RDBMS. For instance, users could enforce
extended SQL queries to handle package queries that spec-

@ Springer

Data distribution tailoring...

1303

count constraints over labels and define a cost minimization
objective.

7 Extensions

k > 1 Query Model So far in the paper, we assumed a data
source returns one sample per query. First, if a query returns
more than one tuple, all of those samples will be used to col-
lect the target data set. In a setting where a query to a source
returns more than one tuple (k > 1), typically, k is a small
constant (e.g., 10). This will not require notable changes in
the designed algorithms. For KNOWN- BINARY, except for the
marginal cases, the algorithm remains near-optimal. Recall
that KNOWN- BINARY keeps querying the source that has the
highest ratio for the minorities. If the data source returns
more than one sample, the algorithm still queries the same
data source but it updates its counts using all returned tuples.
This is equivalent to the algorithm calling the data source
multiple times, something the optimal algorithm does, except
in marginal cases where either the minority group changes
or it finds a better data source. It is easy to see such marginal
cases are unlikely to happen in practice. Even if it happens,
such cases will reduce the cost by a small constant. The same
argument is also valid for the COUPCOLL algorithm. We leave
further investigations about these cases, as well as theoretical
analyses of our algorithms under k > 1 query model, as part
of our future work. The multi-armed bandit algorithms also
work as-is for k > 1. The major impact of the new model on
the algorithms is that, depending on the underlying distribu-
tions and the sizes Q j» the bandit algorithms may not have
enough “time” to effectively identify the good data sources
to query. As a result, its performance advantage compared to
baseline may decline.

Count Requirements on Multiple Groups The count
requirements may be on multiple groups individually, for
example, we may need 100 of gender=F and 100 of
gender=M as well as 100 of race=W and 100 of
race=NW. We can achieve this target by performing a
sequence of independent DTs for group requirements. We
start by a DT that collects a target data set that satisfies the
requirements of one group. In the following DT instances,
tuples of the current target data set are replaced with new
tuples of required groups while making sure that the counts
of the groups of previous runs remain unchanged.

Complex Distributions on Groups We may have scenar-
ios that require more sophisticated distribution functions on
groups rather than count requirements. For example, a count
requirement may be a range, i.e., as soon as the count of a
group becomes equal to or greater than the lower bound of a
range interval, the requirement is satisfied and the algorithm
must start discarding samples of this group once the count
becomes equal to the upper bound.

Overlapping Sources In real world, independent data
sources have minimal overlap and we did not consider the
overlap between sources in our optimization. For future work,
we design algorithms that further optimize the cost, using the
information about overlaps.

Diversity Maximization A potential downside of the cost
minimization objective in DT is that it tends to sample heav-
ily from a small number of most cost-efficient sources. The
distribution of the unified data set could potentially be skewed
compared to the ground truth, which is problematic in AI/ML
applications where i.i.d. sampling is often assumed. A pos-
sible remedy is to incorporate diversity maximization as a
constraint or objective. If a single data source only covers a
small region of the entire vector space, maximizing a diver-
sity metric such as max-min diversity [107] would entail
sampling from a variety of data sources. We could adapt
existing algorithms for diversity maximization under fairness
constraint [108, 109] into the DP framework. A diversity-
maximizing DP algorithm would avoid repeatedly sampling
from data sources that cover highly overlapping regions of
the vector space while staying under a cost budget.

8 Conclusions

In this paper, we studied the DT problem, which aims to
cost-efficiently gather a unified data set from many data
sources with fairness constraints. In the known statistics case,
we developed the RATIOCOLL algorithm which has a tight
asymptotic expected cost and empirically outperforms the
previously proposed COUPCOLL algorithm. In the unknown
statistics case, we generalized the problem to situations in
which the heuristic proposed in [1] is not applicable. We
developed the EPSILONGREEDY bandit algorithm that does
not require any prior information. In practice, it performs on
par with UCB, even though it uses less information.

Our practical recommendation is to use RATIOCOLL when
probability distributions are known, and EXPLOREEXPLOIT
otherwise. Furthermore, the duplicate-aware variants should
be preferred for all but the most massive data sources.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00778-024-00849-
W.

References

1. Nargesian, F., Asudeh, A., Jagadish, H.V.: Tailoring data source
distributions for fairness-aware data integration. Proceed. VLDB
Endow. 14(11), 2519-2532 (2021). https://doi.org/10.14778/
3476249.3476299

2. Rose, A.: Are face-detection cameras racist? Time Business

(2010)

@ Springer

https://doi.org/10.1007/s00778-024-00849-w
https://doi.org/10.1007/s00778-024-00849-w
https://doi.org/10.14778/3476249.3476299
https://doi.org/10.14778/3476249.3476299

1304

J.Chang et al.

10.

11.

12.

13.

14.
15.

16.
17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Mulshine, M.: A major flaw in google’s algorithm allegedly
tagged two black people’s faces with the word ’gorillas’. Busi-
ness Insider (2015)

Townsend, T.: Most engineers are white and so are the faces they
use to train software. Recode (2017)

Dastin, J.: Amazon scraps secret ai recruiting tool that showed
bias against women. Reuters (2018)

Holt, D., Elliot, D.: Methods of weighting for unit non-response.
J. R. Stat. Soc. Series D (The Statistician) 40(3), 333-342 (1991)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.:
Smote: synthetic minority over-sampling technique. J. Artif.
Intell. Res. 16, 321-357 (2002)

Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior
of several methods for balancing machine learning training data.
ACM SIGKDD Explorations Newsl 6(1), 20-29 (2004)

Parsa, A.B., Taghipour, H., Derrible, S., Mohammadian, A.K.:
Real-time accident detection: coping with imbalanced data. Acci-
dent Anal. Prevent. 129, 202-210 (2019)

Chung, Y., Kraska, T., Polyzotis, N., Tae, K.H., Whang, S.E.: Slice
finder: Automated data slicing for model validation. In: 2019 IEEE
35th International Conference on Data Engineering (ICDE), pp.
1550-1553. IEEE (2019)

Sagadeeva, S., Boehm, M.: Sliceline: Fast, linear-algebra-based
slice finding for ml model debugging. In: Proceedings of the 2021
International Conference on Management of Data, pp. 2290-2299
(2021)

Tae, K.H., Whang, S.E.: Slice tuner: A selective data acquisition
framework for accurate and fair machine learning models. In: Pro-
ceedings of the 2021 International Conference on Management of
Data, pp. 1771-1783 (2021)

Bartlett, R., Morse, A., Stanton, R., Wallace, N.: Consumer-
lending discrimination in the fintech era. Tech. rep, National
Bureau of Economic Research (2019)

Dawex: Dawex: Sell, buy and share data. https://www.dawex.
com/en

Xignite: Market data solutions. https://www.xignite.com/
WorldQuant: Worldquant. https://www.worldquant.com

Singer, N.: A data broker offers a peek behind the curtain. The
New York Times (2013)

. of California, S.: Data broker registry. https://oag.ca.gov/data-

brokers (2020)

. Turk, A.M.: Amazon mechanical turk. Retrieved August 17,2012

(2012)

Nargesian, F., Zhu, E., Pu, K.Q., Miller, R.J.: Table union search
on open data. PVLDB 11(7), 813-825 (2018)

Rapid: Google flights api: Incorporate travel data into your app.
The Rapid API Blog (2020)

Chai, C., Fan, J., Li, G.: Incentive-based entity collection using
crowdsourcing. In: ICDE, pp. 341-352 (2018)

Fan, J., Wei, Z., Zhang, D., Yang, J., Du, X.: Distribution-aware
crowdsourced entity collection. IEEE Trans. Knowl. Data Eng.
31(7), 1312-1326 (2019)

Chai, C., Li, G, Li, J., Deng, D., Feng, J.: Cost-effective crowd-
sourced entity resolution: a partial-order approach. In: SIGMOD,
pp- 969-984 (2016)

Asudeh, A., Nargesian, F.: Towards distribution-aware query
answering in data markets. Proc. VLDB Endow. 15(11), 3137—
3144 (2022)

The texas tribune data set. https://salaries.texastribune.org (2021)
Luo, G., Ellmann, C.J., Haas, P.J., Naughton, J.F.: A scalable hash
ripple join algorithm. In: SIGMOD, pp. 252-262 (2002)

Li, F,, Wu, B., Yi, K., Zhao, Z.: Wander join: online aggregation
via random walks. In: SIGMOD, pp. 615-629 (2016)

Zhao, Z., Christensen, R., Li, F., Hu, X., Yi, K.: Random sampling
over joins revisited. In: SIGMOD, pp. 1525-1539 (2018)

@ Springer

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

The socrata open data api. https://developer.twitter.com/en/
products/twitter-api/enterprise

Li, Y., Yu, X., Koudas, N.: Data acquisition for improving machine
learning models. Proc. VLDB Endow. 14(10), 1832-1844 (2021)
Sheng, C., Zhang, N., Tao, Y., Jin, X.: Optimal algorithms
for crawling a hidden database in the web. arXiv preprint
arXiv:1208.0075 (2012)

Madhavan, J., Ko, D., Kot, £, Ganapathy, V., Rasmussen, A.,
Halevy, A.: Google’s deep web crawl. Proceed. VLDB Endow.
1(2), 1241-1252 (2008)

Asudeh, A., Thirumuruganathan, S., Zhang, N., Das, G.: Discov-
ering the skyline of web databases. PVLDB 9(7), 600-611 (2016)
Asudeh, A., Zhang, N., Das, G.: Query reranking as a service.
PVLDB 9(11), 888-899 (2016)

Sundarkumar, G.G., Ravi, V.: A novel hybrid undersampling
method for mining unbalanced datasets in banking and insurance.
Eng. Appl. Artif. Intell. 37, 368-377 (2015)

Select Issues: Assessing Adverse Impact in Software, Algorithms,
and Artificial Intelligence Used in Employment Selection Proce-
dures Under Title VII of the Civil Rights Act of 1964 (2023)
Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkata-
subramanian, S.: Certifying and removing disparate impact. In:
proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 259-268 (2015)
Kearns, M., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness ger-
rymandering: Auditing and learning for subgroup fairness. In:
International conference on machine learning, pp. 2564-2572.
PMLR (2018)

Kearns, M., Neel, S., Roth, A., Wu, Z.S.: An empirical study of
rich subgroup fairness for machine learning. In: Proceedings of
the Conference on Fairness, Accountability, and Transparency,
pp. 100-109 (2019)

Foulds, J.R., Islam, R., Keya, K.N., Pan, S.: An intersectional def-
inition of fairness. In: 2020 IEEE 36th International Conference
on Data Engineering (ICDE), pp. 1918-1921. IEEE (2020)
Asudeh, A., Jin, Z., Jagadish, H.V.: Assessing and remedying
coverage for a given dataset. In: ICDE, pp. 554-565 (2019)
Deng, S., Lu, S., Tao, Y.: On join sampling and the hardness of
combinatorial output-sensitive join algorithms. In: PODS, pp. 99—
111. ACM (2023)

Asudeh, A., Nargesian, F.: Towards distribution-aware query
answering in data markets. Proc. VLDB Endow. 15(11), 3137—
3144 (2022)

Bird, R.S.: Tabulation techniques for recursive programs. ACM
Comput. Surveys 12(4), 403—417 (1980). https://doi.org/10.1145/
356827.356831

Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wllber, R.:
Geometric applications of a matrix searching algorithm. In:
Proceedings of the Second Annual Symposium on Compu-
tational Geometry (1986). https://dl.acm.org/doi/pdf/10.1145/
10515.10546

Galil, Z., Park, K.: Dynamic programming with convexity, con-
cavity and sparsity. Theor. Comput. Sci. 92(1), 49-76 (1992).
https://doi.org/10.1016/0304-3975(92)90135-3

Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge
university press (1995)

Brown, M., Ross, S.M.: Optimality results for coupon collection.
J. Appl. Probab. 53(3), 930-937 (2016)

Katehakis, M.N., Jr., A.F.V.: The multi-armed bandit problem:
Decomposition and computation. Math. Oper. Res. 12(2), 262—
268 (1987)

Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Found. Trends Mach.
Learn. 5(1), 1-122 (2012)

https://www.dawex.com/en
https://www.dawex.com/en
https://www.xignite.com/
https://www.worldquant.com
https://oag.ca.gov/data-brokers
https://oag.ca.gov/data-brokers
https://salaries.texastribune.org
https://developer.twitter.com/en/products/twitter-api/enterprise
https://developer.twitter.com/en/products/twitter-api/enterprise
http://arxiv.org/abs/1208.0075
https://doi.org/10.1145/356827.356831
https://doi.org/10.1145/356827.356831
https://dl.acm.org/doi/pdf/10.1145/10515.10546
https://dl.acm.org/doi/pdf/10.1145/10515.10546
https://doi.org/10.1016/0304-3975(92)90135-3

Data distribution tailoring...

1305

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Slivkins, A.: Introduction to Multi-Armed Bandits. Foundations
and Trends® in Machine Learning 12(1-2), 1-286 (2019). https://
doi.org/10.1561/2200000068

Auer, P, Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the
multiarmed bandit problem. Mach. Learn. 47, 235-256 (2002)
of Transportation Statistics, B.: Airborne flights database.
U.S. Department of Transportation, https://www.transtats.bts.gov
(2021)

ProPublica: Compas-analysis. ProPublica (2023). https://github.
com/propublica/compas-analysis

Mattu, J.,, Angwin, L., Kirchner, S., Larson, J.
How We Analyzed the COMPAS Recidivism Algo-
rithm (2016). https://www.propublica.org/article/

how-we-analyzed-the-compas-recidivism-algorithm?
token=TiqCeZIj4uLbX191e3wM2PnmnWbCVOVS

Lagioia, F., Rovatti, R., Sartor, G.: Algorithmic fairness through
group parities? the case of compas-sapmoc. Al & SOCIETY pp.
1-20 (2022)

Fabris, A., Messina, S., Silvello, G., Susto, G.A.: Algorithmic
fairness datasets: the story so far. Data Min. Knowl. Disc. 36(6),
2074-2152 (2022)

Barocas, S., Hardt, M., Narayanan, A.: Fairness and machine
learning: Limitations and opportunities. URL: fairmlbook.org
(2019)

Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choud-
hary, S., Hamilton, E.P., Roth, D.: A comparative study of fairness-
enhancing interventions in machine learning. In: Proceedings of
the conference on fairness, accountability, and transparency, pp.
329-338 (2019)

Kamiran, F,, Calders, T.: Data preprocessing techniques for clas-
sification without discrimination. Knowl. Inf. Syst. 33(1), 1-33
(2012)

Calmon, F., Wei, D., Vinzamuri, B., Ramamurthy, K.N., Varshney,
K.R.: Optimized pre-processing for discrimination prevention. In:
Advances in Neural Information Processing Systems, pp. 3992—
4001 (2017)

Salimi, B., Rodriguez, L., Howe, B., Suciu, D.: Interventional
fairness: Causal database repair for algorithmic fairness. In: SIG-
MOD, pp. 793-810 (2019)

Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware
classifier with prejudice remover regularizer. In: Joint European
Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 35-50. Springer (2012)

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning
fair representations. In: ICML (2013)

Zafar, M.B., Valera, 1., Rodriguez, M.G., Gummadi, K.P.: Fair-
ness constraints: Mechanisms for fair classification. CoRR,
abs/1507.05259 (2015)

Zhang, H., Chu, X., Asudeh, A., Navathe, S.: Omnifair: A declara-
tive system for model-agnostic group fairness in machine learning.
SIGMOD (2021)

Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware
decision tree learning. In: 2010 IEEE International Conference on
Data Mining, pp. 869-874. IEEE (2010)

Hardt, M., Price, E., Srebro, N.: Equality of opportunity in super-
vised learning. arXiv preprint arXiv:1610.02413 (2016)
Woodworth, B., Gunasekar, S., Ohannessian, M.I., Srebro, N.:
Learning non-discriminatory predictors. In: Conference on Learn-
ing Theory, pp. 1920-1953. PMLR (2017)

Salimi, B., Howe, B., Suciu, D.: Database repair meets algorithmic
fairness. ACM SIGMOD Rec. 49(1), 34-41 (2020)

Asudeh, A., Jagadish, H., Stoyanovich, J., Das, G.: Designing fair
ranking schemes. In: SIGMOD, pp. 1259-1276 (2019)
Kuhlman, C., Rundensteiner, E.: Rank aggregation algorithms for
fair consensus. PVLDB 13(12), 27062719 (2020)

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Asudeh, A., Jagadish, H., Miklau, G., Stoyanovich, J.: On obtain-
ing stable rankings. PVLDB 12(3) (2019)

Guan, Y., Asudeh, A., Mayuram, P., Jagadish, H., Stoyanovich,
J., Miklau, G., Das, G.: Mithraranking: A system for responsible
ranking design. In: SIGMOD, pp. 1913-1916 (2019)

Sun, C., Asudeh, A., Jagadish, H., Howe, B., Stoyanovich, J.:
Mithralabel: Flexible dataset nutritional labels for responsible
data science. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp.
2893-2896 (2019)

Yang, K., Stoyanovich, J., Asudeh, A., Howe, B., Jagadish, H.,
Miklau, G.: A nutritional label for rankings. In: SIGMOD, pp.
1773-1776 (2018)

Getoor, L.: Responsible data science. In: SIGMOD (2019)
Stoyanovich, J., Howe, B., Jagadish, H.: Responsible data man-
agement. PVLDB 13(12), 3474-3488 (2020)

Shah, N.B., Lipton, Z.: Sigmod 2020 tutorial on fairness and bias
in peer review and other sociotechnical intelligent systems. In:
SIGMOD, pp. 2637-2640 (2020)

Venkatasubramanian, S.: Algorithmic fairness: measures, meth-
ods and representations. In: PODS, pp. 481-481 (2019)

Asudeh, A., Jagadish, H.V.: Fairly evaluating and scoring items
in a data set. PVLDB 13(12), 3445-3448 (2020)

Neyman, J., Pearson, E.S.: Contributions to the theory of testing
statistical hypotheses. Stat. Res. Memoirs (1936)

Olteanu, A., Castillo, C., Diaz, F., Kiciman, E.: Social data: Biases,
methodological pitfalls, and ethical boundaries. Front. Big Data
2,13 (2019)

Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. L.
Rev. 104, 671 (2016)

Chen, 1., Johansson, F.D., Sontag, D.: Why is my classifier dis-
criminatory? In: S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, R. Garnett (eds.) Advances in Neural
Information Processing Systems, vol. 31, pp. 3539-3550 (2018)
Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M.,
Wallach, H.: Improving fairness in machine learning systems:
What do industry practitioners need? In: Proceedings of the 2019
CHI conference on human factors in computing systems, pp. 1-16
(2019)

Drosou, M., Jagadish, H., Pitoura, E., Stoyanovich, J.: Diversity
in big data: A review. Big data 5(2) (2017)

Lin, Y., Guan, Y., Asudeh, A., V., J.H.: Identifying insufficient data
coverage in databases with multiple relations. PVLDB 13(11),
2229-2242 (2020)

Jin,Z., Xu, M., Sun, C., Asudeh, A., Jagadish, H.: Mithracoverage:
A system for investigating population bias for intersectional fair-
ness. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 2721-2724 (2020)
Accinelli, C., Minisi, S., Catania, B.: Coverage-based rewriting
for data preparation. In: EDBT/ICDT Workshops (2020)
Asudeh, A., Shahbazi, N., Jin, Z., Jagadish, H.: Identifying insuf-
ficient data coverage for ordinal continuous-valued attributes.
SIGMOD (2021)

Orr, L.J., Balazinska, M., Suciu, D.: Sample debiasing in the
themis open world database system. In: SIGMOD, pp. 257-268
(2020)

Zhu, E., Nargesian, F., Pu, K.Q., Miller, R.J.: LSH ensemble:
internet-scale domain search. PVLDB 9(12), 1185-1196 (2016)
Sadiq, S.W., Dasu, T., Dong, X.L., Freire, J., Ilyas, L.F., Link, S.,
Miller, R.J., Naumann, F., Zhou, X., Srivastava, D.: Data quality:
The role of empiricism. SIGMOD Rec. 46(4), 35-43 (2017)
Rekatsinas, T., Deshpande, A., Dong, X.L., Getoor, L., Srivas-
tava, D.: Sourcesight: Enabling effective source selection. In:
SIGMOD, pp. 2157-2160 (2016)

@ Springer

https://doi.org/10.1561/2200000068
https://doi.org/10.1561/2200000068
https://www.transtats.bts.gov
https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm?token=TiqCeZIj4uLbXl91e3wM2PnmnWbCVOvS
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm?token=TiqCeZIj4uLbXl91e3wM2PnmnWbCVOvS
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm?token=TiqCeZIj4uLbXl91e3wM2PnmnWbCVOvS
http://arxiv.org/abs/1610.02413

1306 J.Chang et al.
97. Shen, Y., Chakrabarti, K., Chaudhuri, S., Ding, B., Novik, L.: 108. Wang, Y., Fabbri, F., Mathioudakis, M.: Streaming algorithms for
Discovering queries based on example tuples. In: SIGMOD, pp. diversity maximization with fairness constraints. In: 2022 IEEE
493-504 (2014) 38th International Conference on Data Engineering (ICDE), pp.

98. Qian, L., Cafarella, M.J., Jagadish, H.V.: Sample-driven schema 41-53. IEEE (2022)
mapping. In: SIGMOD, pp. 73-84 (2012) 109. Wang, Y., Mathioudakis, M., Li, J., Fabbri, F.: Max-min diver-

99.

100.

101.

102.

103.

104.

105.

106.

107.

Lehmberg, O., Bizer, C.: Synthesizing n-ary relations from web
tables. In: WIMS, pp. 17:1-17:12 (2019)

Pimplikar, R., Sarawagi, S.: Answering table queries on the web
using column keywords. PVLDB 5(10), 908-919 (2012)
Brickley, D., Burgess, M., Noy, N.F.: Google dataset search:
Building a search engine for datasets in an open web ecosystem.
In: WWW, pp. 1365-1375 (2019)

Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., Suciu, D.:
Query-based data pricing. J. ACM 62(5), 43:1-43:44 (2015)
Chepurko, N., Marcus, R., Zgraggen, E., Fernandez, R.C., Kraska,
T., Karger, D.: ARDA: automatic relational data augmentation for
machine learning. PVLDB 13(9), 13731387 (2020)
Radosavovic, 1., Dollar, P., Girshick, R.B., Gkioxari, G., He, K.:
Data distillation: Towards omni-supervised learning. In: CVPR,
pp. 4119-4128 (2018)

Brucato, M., Beltran, J.F., Abouzied, A., Meliou, A.: Scalable
package queries in relational database systems. arXiv preprint
arXiv:1512.03564 (2015)

Brucato, M., Mannino, M., Abouzied, A., Haas, P.J., Meliou,
A.: spaqltools: a stochastic package query interface for scalable
constrained optimization. Proceedings of the VLDB Endowment
13(12) (2020)

Erkut, E.: The discrete p-dispersion problem. Eur. J. Oper. Res.
46(1), 48-60 (1990)

@ Springer

sification with fairness constraints: Exact and approximation
algorithms. In: SIAM nternational Conference on Data Mining
(SDM23) (2023)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

http://arxiv.org/abs/1512.03564

	Data distribution tailoring revisited: cost-efficient integration of representative data
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Data sources
	2.2 Groups
	2.3 Cost model
	2.4 Query model
	2.5 Summary

	3 Known distribution model
	3.1 Dynamic programming
	3.2 Approximation algorithm: prior solution
	3.2.1 CoupColl algorithm
	3.2.2 CoupCollDupe modification
	3.2.3 Analysis of CoupColl and CoupCollDupe
	3.2.4 Binary equi-cost DT revisited

	3.3 RatioColl: new solution
	3.3.1 Modified heuristic
	3.3.2 Upper bound for RatioColl
	3.3.3 Asymptotic result

	4 Unknown distribution model
	4.1 Modeling as multi-armed bandit
	4.2 DT as MAB: with prior knowledge
	4.3 DT as MAB: without prior knowledge
	4.3.1 Proposed EpsilonGreedy algorithm
	4.3.2 Analysis of EpsilonGreedy
	4.3.3 A practical variant

	5 Experiments
	5.1 Data
	5.2 Experiment design & results
	5.2.1 Experiment 1: query ratio under equi-cost binary constraint
	5.2.2 Experiment 2: doubling test for bounds
	5.2.3 Experiment 3: fixed versus uniform exploration strategies
	5.2.4 Experiment 4: real world, no duplicates
	5.2.5 Experiment 5: real world, duplicates
	5.2.6 Experiment 6: synthetic, general case

	5.3 Summary of results

	6 Related work
	7 Extensions
	8 Conclusions
	References

