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Abstract
Data scientists often develop data sets for analysis by drawing upon available data sources. A major challenge is ensuring that
the data set used for analysis adequately represents relevant demographic groups or other variables. Whether data is obtained
from an experiment or a data provider, a single data source may not meet the desired distribution requirements. Therefore,
combining data from multiple sources is often necessary. The data distribution tailoring (DT) problem aims to cost-efficiently
collect a unified data set from multiple sources. In this paper, we present major optimizations and generalizations to previous
algorithms for this problem. In situations when group distributions are known in sources, we present a novel algorithm
RatioColl that outperforms the existing algorithm, based on the coupon collector’s problem. If distributions are unknown,
we propose decaying exploration rate multi-armed-bandit algorithms that, unlike the existing algorithm used for unknownDT,
does not require prior information. Through theoretical analysis and extensive experiments, we demonstrate the effectiveness
of our proposed algorithms.

1 Introduction

The standard assumption inmachine learning is that we have,
at hand, a training data set that is a representative sample
of the data that will be seen in production. This assump-
tion is easily satisfied if the training data can be obtained by
randomly sampling from the “full” data set in production.
However, such random sampling is frequently not possible.
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Often, this is because production data has not yet been gen-
erated at the time the model is trained. At other times, the
entire point may be to repurpose and reuse data collected for
other purposes. Insufficiently representative training data has
resulted in many data science debacles [2–5].

Even when the distribution is accurately characterized, it
may not be so easy to obtain training data from the same dis-
tribution. For example, surveys may be sent out to a carefully
chosen random sample, but only a fraction of the surveys are
returned, with the return rate not being completely random
(Table 1). Survey statistics has developed sophisticated tech-
niques to handle such lack of randomness [6]. Similar issues
arise when analyzing online comments or tweets to gauge
popular opinion. We wish that the opinions expressed by
representatives of the target population of interest (e.g., all
voters or all customers), but we know that we only have a
skewed sample with the most vocal individuals, potentially
skewing young and more tech-savvy individuals. Beyond
the need for representation to reduce model error, it may
sometimes be important to show adequate consideration of
minority groups. Even where representative samples can be
obtained for training data, that still may not be sufficient
in some circumstances. To ensure that minority entities are
adequately considered, we may need to train with data in
which small minorities are intentionally over-represented
[7, 8]. Similarly, when we are interested in characteriz-
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Table 1 Comparison of algorithms

Scenario Algorithm Section Space Time (Initial) Time (Per Iter.) Bounds

Known DP [1] § 3.1 O(
∏m

i=1 Qi ) O(nm
∏m

i=1 Qi ) O(1) Optimal

Known CoupColl [1] § 3.2 O(n + m) O(nm) O(m) Theorem 1

Known RatioColl § 3.3 O(n + m) O(nm) O(m) Theorem 1, 2

Unknown UCB [1] § 4.2 O(n + m) O(n + m) O(n) O(log T ) regret

Unknown EpsilonGreedy § 4.3 O(nm) O(nm) O(nm) Theorem 3

Unknown ExploreExploit § 4.3.3 O(nm) O(nm) O(m) None

Each algorithm has a straightforward duplicate-aware variant.We discuss the duplicate-aware variants of the algorithms in § 3.2.2. This modification
requires O(nm + Q) space for bookkeeping, O(nm) initial time to set up trackers, and O(nm) time per iteration to recompute heuristics

ing rare events, we may need training data that has rare
events over-represented. For example, to learn how to han-
dle emergencies, we need car-driving data with accidents and
near-accidents over-represented: representative driving data
may involve few challenging scenarios [9].

Data scientists may also need to acquire additional data to
fix an existing model. Collecting data indiscriminately could
introduce data imbalance issues and incur unnecessary costs.
For instance, it is common for models to perform poorly on
just a small subset of feature combinations, or slices. The
problem of finding such slices efficiently has garnered atten-
tion in the data management community [10, 11]. Prior work
also demonstrated how to compute the optimal amount of
additional data per slice by estimating their learning rates
and correlations [12]. Such methods may be used to obtain
sophisticated distribution requirements. To summarize, data
scientists often have distribution requirements on data sets
they wish to use for training or analysis.

To see how to meet these requirements, we now turn to
where the data come from. Sometimes, the data may explic-
itly be collected by the data scientist for the analysis at hand,
using surveys, sensors, or other data collection means. Alter-
natively, data scientists could rely on secondary data instead:
using data that have been collected previously for some other
purpose. The number and variety of data sources available
has been increasing rapidly, making secondary data analy-
sis much more attractive. In fact, the data scientist on many
occasions may be spoiled for choice. Since each data source
is collected in some manner over some population, it will
have its own distribution, which may differ from the dis-
tribution desired by the data scientist. The question to ask
then is whether data from multiple sources can be mixed to
achieve the desired distribution. This is the central problem
we study in this paper.

Example 1 A data science company has been asked to build
an ML model for a local bank in Texas who wants to offer
a loan to employees with yearly income of more than $75K.
The model should predict the likelihood that an individual
will pay back the loan. The company considers building
a model on an in-house data set. Being aware of recent

incidents of racial/gender biases in similar predictive tools
[13], the company wants to make sure different demographic
groups are suitably considered. It, however, turns out the
data set is skewed: while around 40% of samples are white
male, it only 15% are non-white female. The com-
pany realizes there are alternative external data sources (such
as TexasTribune 1) they could consider for collecting the
data. It establishes a target distribution on counts from differ-
ent demographic groups (e.g., 25% from each demographic
group in a data set of 1K samples). The challenge the com-
pany faces is how to efficiently query these data sources to
collect the data.

Obtainingdata fromadata source is not free.Our focus lies
on the most costly cases. An increasingly common situation
where the costs are explicit is when data is purchased from a
commercial data provider [14–18]. Data acquisition via sur-
vey sampling or crowdsourcing human annotations [19] also
involves monetary costs for labor. Even for primary data col-
lection there is a cost per tuple, in terms of access, storage,
indexing, and so on. The access cost is especially high if data
sources are complex join queries over large, relational data.
In all cases, we can characterize the cost of obtaining data
from any source in a pricing model. Given a set of these data
sources, eachwith its own distribution and pricingmodel, our
goal is to obtain, at least cost, an aggregate data set that satis-
fies our distribution requirements. This problem is difficult to
solve in general because each source has its own distribution,
and none may have a distribution that we seek. Furthermore,
no combination of sources may provide us with the desired
distribution either. In general, we may have to over-purchase
and then “throw away” excess data items. And even so, we
cannot be guaranteed it is feasible to obtain the desired dis-
tribution.

Summary of Results In our prior work, we proposed
sampling strategies for two scenarios: (1) when the meta-
data about the data distribution is available and (2) when
sources are opaque with unknown distributions [1]. For

1 https://salaries.texastribune.org.
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known distributions, we proposed a strategy based on the
Coupon Collector’s problem. For unknown distributions, we
adopted amulti-armbandit strategywith a customized reward
function. In this manuscript, we revisit the proposed strate-
gies and, building upon our observations, present alternative
strategies and show their superiority. In particular, in the prior
work, the (empirical) distribution of groups in sources and the
costs of sources are considered the main factors in the source
selection strategy. Intuitively, the strategies were designed
to focus on collecting data for minorities at the lowest pos-
sible cost per unit, because minorities are less likely to be
sampled from an arbitrary source than majorities. While this
strategy is effective, our observation is that when a planner
has reached the point that requires collecting a large number
of majorities compared to minorities, prioritizing majorities
can lead to a more cost-effective plan. In this manuscript,
we present theoretical and empirical results suggesting that
an adaptive sampling strategy with the consideration of the
remaining group count requirements at different iterations is
crucial to cost estimation and optimization. The following
are our specific contributions.

– We reexamine the existing work on theData distribution
tailoring (DT) problem [1]. (§ 2)

– We propose an improved algorithm, called RatioColl,
based on a heuristic that simultaneously prioritizes rare
groups and groups with high remaining query counts.
(§ 3)

– We generalize the problem to scenarios where distribu-
tions are unknown and no prior information about overall
demographics are available. We propose an ε-greedy
multi-armed bandit algorithm, called EpsilonGreedy,
that uses the same objective function asRatioColl. (§ 4)

– We establish a tight asymptotic expected cost on Rati-
oColl under constrained scenarios, and a sublinear
asymptotic regret for EpsilonGreedy.

– To validate and evaluate the performance of the proposed
algorithms, we conduct comprehensive experiments on
real and synthetic data. (§ 5)

2 Problem definition

In this section, we formally define the data distribution tailor-
ing (DT) problem. We adopt the framework proposed in [1],
with some modifications to the notations and assumptions.
The notations are listed in Table 2. Formally, an instance of
the DT problem is represented by data sources D, groups G,
query costs C, and query requirements Q. The output is a
unified data set O . We elaborate on each element below.

Table 2 Table of notations

Symbol Description

n Number of data sources

Di a data source

G j a group

m Number of groups

Q Total query count, i.e., Q =∑
j∈[m] Q j

Q j Desired number of tuples from group G j

Ci Cost of sampling from Di

Ni Number of samples taken from Di

Ni, j Number of samples of G j taken from Di

N ′
i, j Number of unique samples of G j taken

from Di

O Collected target data set so far

G∗ Priority group at current iteration

D∗
j Data source with minimum expected cost

of collecting an item of G j at current
iteration

Pi, j Proportion G j in Di , i.e., |G j ∩ Di |/|Di |
P ′
i, j Proportion of non-duplicate tuples of G j

in Di , i.e., |G j ∩ Di \ O|/|Di |
P j Overall frequency of G j in all data

sources, i.e., |G j |/|
⋂

i∈[n] Di |
i.e., |G j \ O|/|⋂i∈[n] Di |

t Total number of samples taken so far

2.1 Data sources

The first input of the DT problem is a collection of sources
D = {D1, . . . , Dn}. We assume there is a way of unifying
the schemata of sources and the user’s target schema [20] and
each tuple in a source can be associated with a group. This
can be done by inspecting its sensitive attributes or annotat-
ing using classifiers and crowdsourcing. Data sources can
be external, accessible through limited interfaces or APIs, or
data views that are the outcome of the discovery and integra-
tion over underlying data sets.

In general, web services such as Google Flights API [21],
open data lakes, such as data.gov and CKAN API, data
markets such as Dawex [14], Xignite [15], and WorldQuant
[16], as well as data brokers [17, 18] are examples of external
data sources. Another setting is crowd-based data annotation
and collection. Similar to incentive-based [22], distribution-
aware [23], and cost-effective [24] crowdsourcing, each
worker can be considered as a source providing annotated
data with a possibly unknown distribution and potential bias.
This calls for adaptive worker selection. Finally, when data
sources are collections of tabular data sets, a source may be
defined by a project-join query defined over a database or a
data lake [25].
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Sometimes obtaining a source with the same schema as
the target schema requires data integration using a projection-
join query over data sets that contain some attributes of
the query. Continuing with the loan approval example,
a data source using the TexasTribune database [26], the
queryΠrace,gender,income,···(employees %& salary %&
loans) provides a data source. Of course, since the target
schema is user-specific, and given the potentially large size
of data sets, computing and materializing the full join for all
sources is not efficient. Instead of offline join, existing work
proposes ways for obtaining independent and/or uniformly
distributed random tuples from the result of join without exe-
cuting the join [27–29].

We model each data source as a disjoint set of tuples.
Furthermore, to abstract the access model, we assume sam-
pling one tuple at a time with replacement. Although in
some settings such as data markets the data is purchased or
downloaded in one shot, this query interface is akin to the pro-
gramming interfaces available in many online services [30].
In particular, these interfaces support selection and count
queries, i.e., filtering predicates and integer counts for the
number of returned tuples are stated or tuned in the query
[31]. Moreover, this assumption is aligned with external data
sources, such as web databases, where a limited interface is
often enforced that returns a subset of top-k results per query
[32–35]. Finally, in a crowd-based data collection setting,
workers provide data in smaller batches of tuples.

By default, we assume that the probability change of
sampling the same tuple multiple times is negligible. This
assumption is reasonable for large data sources and relatively
small query requirements. For practical uses, we consider
duplicate-aware algorithms as well. In the bulk of the paper,
we assume exactly one tuple is returned per query. In § 7,
we discuss how our algorithms can be adjusted to relax this
assumption.

2.2 Groups

We assume that each data point belongs to one of the dis-
joint groups G = {G1, . . . ,Gm} such that D1 ∪ . . . ∪ Dn =
G1∪. . .∪Gm . These groupsmay be independent, dependent,
or omitted variables, as well as subgroups of more than one
variable. To illustrate, consider the motivating example in
which data scientists are training an ML model to automate
the loan approval process. To ensure fair and reliable classi-
fication of all groups of interest, data scientists may consider
the following minimum count requirements.

– Independent variables. For example, all income brackets
must be adequately represented.

– Dependent variables. For example, manual intervention
is required to oversample the minority outcome class due
to low loan approval rates [7, 36].

– Protected variables. Stepping out of the loan approval
example, using models that discriminate based on age
or ethnicity for employment decision is illegal in the US
[37]. Mitigating disparate impact [38], without also sac-
rificing accuracy, requires an adequate number of data
points for protected groups.

– Subgroups. Instead of top-level groups, we may have
minimum query count requirements to ensure more
than one constraint is met at the same time. Subgroups
could also be useful for preventing fairness gerryman-
dering, where fairness requirements are met for top-level
groups but not subgroups [39–41]. For example, the sub-
groups white male, non-white male, white female,
and non-white female are used in Example 1. A slice
[10] is a synonym for a subgroup.

For the rest the paper,we assume that the number of groups
is some constant m. The number of subgroups, however,
grows exponentially with respect to the number of top-level
groups or features. In order to limit computation time, the
maximum depth—the number of top-level groups that a sub-
group intersects—may need to be limited, as in [42]. Another
way to limit the number of subgroups is to use techniques
such as Slice Finder or Sliceline [10, 11] to find only themost
problematic slices in terms of model performance. These
algorithms also offer parameters to limit computation time.

2.3 Cost model

Obtaining samples from different data sources is not for free.
Acquiring samples is associated with a cost either monetary
or in the form of computation, memory access, or network
access cost. Web database APIs (such as Google Flights), for
example, allow a limited number of free queries per day from
each IP address or would charge per query while enforcing
a top-k interface [32–35]. Similarly, relying on data brokers
and data marketplaces may incur monetary costs [14–18]. In
survey sampling, amortized cost per query could be charged
by digital marketing services or be used to reward respon-
dents. Crowdsourcing services such as Amazon Mechanical
Turk [19] are frequently used for data annotation and col-
lection, which charges for labor per query per user. For
tabular data sources represented by view, we may need to
apply costly pre-processing and sampling steps. The litera-
ture on join size estimation and approximate query answering
shows that online uniform and independent sampling over
join queries requires repetitive samplingwith sometimes high
reject ratios [28, 29] and non-trivial delay complexity for
obtaining successful samples [43]. Furthermore, such costs
may vary from one source to another, depending on factors
such as the length of join paths, their joinability, statistics of
data sets, and matching cost [44].
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To generalize across different contexts, we summarize all
costs of sampling a source Di as a positive constant Ci . For
the cases where each query returns more than one sample or
even the whole source, we can amortize the cost across the
number of samples.

2.4 Querymodel

Our goal is to enable integrating data from multiple sources
to construct a target data set. A user query describes a target
data set with a target schema, consisting of a collection of
attributes. We abstract the user’s query as [Q1, . . . , Qm], a
list of nonnegative minimum count requirements. Let O be
the collected target data set. We say that a query is satisfied
in O when for each group G j , |O ∩G j | ≥ Q j . We make no
assumptions about processing of tuples obtained that exceed
the minimum count requirements. They may be discarded or
undersampled as needed. Many variants of requirements can
be posed, depending on the desired application. We discuss
several of these in § 7.

2.5 Summary

Definition 1 (Data Distribution Tailoring Problem) We are
given n data sources, m groups, sampling cost for each data
source, and query requirements as defined above. We aim
to collect a target data set O which satisfies the minimum
query counts by querying different data sources in a sequen-
tial manner while minimizing the expected total query cost.

We define four variants of DT that lie on a quadrant. First,
we categorize whether the discrete probability distribution
of groups in each data source is known. This dichotomy is
necessary, since in many application settings, such as data in
the wild, we may not know much about the data sources. In
particular, we may not know the count aggregates for differ-
ent groups. Solving this variant requires us to learn group
distributions for each data source on the fly. Second, we
categorize whether the probability of sampling a duplicate
already in the unified data set is negligible. Accounting for
duplicates requires more bookkeeping which could increase
runtime and memory usage. This overhead may be necessary
if query requirements are large compared to the size of data
sources.

3 Known distributionmodel

In this section, we consider the DT problem with known
group distributions for each data source.We study an optimal
dynamic programming solution (§ 3.1) as well as approxi-
mation algorithms that utilize previous heuristic (§ 3.2), and
our improved heuristic (§ 3.3).

3.1 Dynamic programming

Given the count descriptionsQ = {Q1, · · · , Qm}, our objec-
tive is to find the optimal strategywith theminimumexpected
cost F(Q). The process of collecting the target data set is a
sequence of iterative steps, where at every step, the algo-
rithm chooses a data source, queries it, and keeps the queried
tuple if it is not a duplicate. Our first attempt is to develop a
dynamic programming (DP) solution.

An optimal source at each iteration minimizes the sum
of its sampling cost plus the expected cost of collecting the
remaining required groups (Fj (Q)), based on its sampling
outcome. The dynamic programming analysis evaluates this
cost recursively by considering all future sampling outcomes
and selecting the optimal source in each iteration accordingly.
Using the probabilities of discovering a fresh tuple from each
group for every data source Di , the optimal expected query
cost for some queryQ has the following recurrence relation.

F(Q) = min
∀Di∈D

(
Ci +

m∑

j=1
Q j>0

Pi, j Fj (Q)

+
(
1 −

m∑

j=1
Q j>0

Pi, j
)
F(Q)

) (1)

Here, Pi, j is the ratio of tuples from group G j in source
Di . To simplify the notation, we have introduced Fj (Q) =
F(Q1, · · · , Q j − 1, · · · , Qm). If a sample of G j is added
to the target (because it is fresh and belongs to a group
whose count requirement is not fulfilled), the remaining
cost for building the target is Fj (Q). Therefore, the term∑m

j=1,Q j>0 Pi, j Fj (Q) is the expected cost of the target if
we add the current sample to the target. The probability of a
sample being redundant is

(
1−∑m

j=1,Q j>0 Pi, j
)
and in this

case we will have to pay the cost F(Q).
In our DP algorithm, we assume that for all sources and

groups, |Di ∩ G j | is either zero or sufficiently larger than
Q j . This assumption ensures that the probability of discov-
ering a fresh tuple of a particular not-yet-satisfied group from
a data source does not change over different iterations. If
|P ′

i, j − Pi, j | < ε for all i, j , then each recursion call of Eq.1
magnifies multiplicative error of Fj (Q) by at most

max






1+ε
1−ε

(
1+ |Fj (Q)−Fj (Q)|

Fj (Q)

)
− 1−ε

1+ε

1+ε
1−ε − 1−ε

1+ε

(
1 − |Fj (Q)−Fj (Q)|

Fj (Q)

)

where Fj (Q) is an outdated value of Fj (Q). The depth of
recursion calls is bounded by max Q j . Thus, there exists
some large |Di ∩G j | that ensures F(Q) are within a bounded
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Table 3 Specification of our toy
problem

C G1 G2

D1 1 0.4 0.6

D2 1 0.1 0.9

factor throughout runtime. The precise bound is not our pri-
mary concern, rather the existence of one. If this assumption
does not hold, then the tabulation described below may need
to be recomputed periodically as probabilities change.

We can solve Eq.1 using tabulation [45]. If a query has a
total query count of Q + 1, then its expected cost depends
only on the subproblems with a total query count of Q. Thus,
we start from Q = 0 and increase the query counts until it
reaches the user’s query requirement. In addition to mem-
orizing F(Q), we also memorize which data source was
optimal under each query by looking at which argument was
the smallest in Eq.1’s min term. The initial tabulation takes
O
(
nmΠm

i=1Qi
)
time and O

(
Πm

i=1Qi
)
space. Each iteration

takes O(1) time via a single table lookup.

Example 2 Consider sources D1, D2 and groups G1,G2.
Furthermore, consider the costs and conditional probabili-
ties in Table 3.

We would like to collect one tuple from each group, i.e.,
Q = [1, 1]. Trivially,

F(0, 0) = 0.

We can also compute

F(1, 0) = min
(

1
0.4

,
1
0.1

)
= 2.5,

F(0, 1) = min
(

1
0.6

,
1
0.9

)
= 1.111.

This gives us

F(1, 1) = min
(1+ 0.4 · 1.111+ 0.6 · 2.5

0.4+ 0.6
,

1+ 0.1 · 1.111+ 0.9 · 2.5
0.1+ 0.9

)

= min (2.944, 3.361) = 2.944.

We see that D1 is the optimal data source to sample from,
and that the optimal expected cost to satisfy query (1, 1) is
approximately 2.944.

Figure 1 visualizes F(Q1, Q2) for all Q1, Q2 ≤ 1000.
We see that it is a monotonically increasing convex surface,
though convexity may not hold in general. Equation1 satis-
fies a weaker condition of total convex monotonicity [46], in
the sense that F(a, c) ≥ F(b, c) ,⇒ F(a, d) ≥ F(b, d)
for all a < b and c < d. This is trivially true since Eq. 1 is

Fig. 1 Surface formed by the optimal cost function applied to Exam-
ple 2. Color corresponds to the vertical axis: expected cost required to
satisfy the query

Algorithm 1 CoupColl
Require: An instance of DT (D,G, C,Q).
Ensure: Unified data set O .
1: O ← ∅
2: while ∃ j ∈ [m] s.t. Q j > 0 do

3: G∗ = argmax
G j∈G,Q j>0

(
min
i∈[n]

(
Ci

Pi, j

))

4: D∗ = argmin
Di∈D

(
Ci

Pi,∗

)

5: s ← Query(D∗)
6: O ← O ∪ {s}
7: end while
8: return O

monotonically increasing. Total convex monotonicity allows
us to utilize convex dynamic programming algorithms which
are often faster. However, even convex DP takes nth-degree
polynomial time [47],whichmotivates us to investigate faster
heuristic algorithms for general cases with non-trivial num-
ber of data sources.

3.2 Approximation algorithm: prior solution

As an alternative to the expensive DP solution, [1] developed
an approximation algorithm that models the problem as m
instances of coupon collector problem [48], where every j th

instance aims to collect samples from the group G j . They
also used union bound [48] to come up with an upper bound
on the expected cost of this CoupColl algorithm.

3.2.1 CoupColl algorithm

Nargesian et al. observed that first collecting data from
minority groups helps optimize total cost. This is due to a
piggybacking effect, where the chance of collecting data
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from other groups while collecting data for minorities is
higher than findingminorities while targeting to collect other
groups.

Algorithm 1 describes the full CoupColl algorithm. In
each iteration, it first identifies the minority group, which
is the group for which the most cost-effective data source
requires the maximum expected cost. This minority group is
defined as

G∗ = argmax
G j∈G,Q j>0

(
min
i∈[n]

(
Ci

Pi, j

))
. (2)

Then, the algorithm samples from the data source which
minimizes the expected cost to sample from the minority
group. Let Pi,∗ be a shorthand for the probability to sample
G∗ from Di . Then,

D∗ = argmin
Di∈D

(
Ci

Pi,∗

)
. (3)

If probabilities Pi, j are stationary, then Eqs. 2 and 3 can
be pre-computed. As such, CoupColl takes O(m) time per
iteration with an upfront O(nm) time and O(n + m) space
cost to memorize the values.

3.2.2 CoupCollDupemodification

Unlike our formulation of CoupColl in Algorithm 1, the
algorithm as presented in [1] assumed that duplicates can-
not simply be ignored. In these cases, Eqs. 2 and 3 must
be modified to subsitute Pi, j with P ′

i, j , the probability of
sampling a non-duplicate tuple of G j from Di . To com-
pute P ′

i, j efficiently, CoupCollDupe keeps track of N ′
i, j ,

the total number of unique tuples of G j sampled from Di .
Then, P ′

i, j = Pi, j − N ′
i, j/|Di |.

It costs O(nm) time once to initialize the trackers and
O(nm) space to store them. In each iteration, Eqs. 2 and 3
need to be recomputed,which takesO(nm) time.Uniqueness
is tested in O(1) time using a hash set to store O , with size
at most Q, the total query count. Overall, CoupCollDupe
takes O(nm+ Q) space as opposed to O(n+m) space, and
O(nm) time per iteration as opposed to O(m) time.

Most other algorithms introduced in the following sec-
tions also have duplicate-aware variants, specified with the
Dupe suffix. The modifications follow the same method of
replacing Pi, j with P ′

i, j .

3.2.3 Analysis ofCoupColl andCoupCollDupe

Both variants of theCoupColl algorithm always prioritize a
group with a nonzero remaining query count. As such, it is at
least as efficient as satisfying each group’s query requirement
independently, then combining all results at the very end.

That is, we run m instances of a coupon collector algorithm,
where the j th instance repeatedly samples from D∗

j until Q j
is satisfied.

Let C∗
j be the query cost associated with D∗

j . Then, the
expected cost to satisfy the query Q j is Q j . (C∗

j /Pi, j ). Thus,
if duplicates are negligible, then the expected cost of queries
issued by CoupColl, Ψ , is bounded as the following.

Ψ ≤
∑

j∈[m]

Q jC∗
j

Pi, j
(4)

If duplicates cannot be ignored, then CoupCollDupe is
used instead. The same m-parallel-coupon-collectors proce-
dure can be used as an upper bound, though the upper bound
is greater due to duplicates. Using the well-known logarith-
mic expectation to gather a collection of coupons [48], [1]
derived the following upper bound.

Theorem 1 Assume that the probability to get duplicate data
points is not negligible. Furthermore, assume that each data
source D∗

j for all j ∈ [m] contains at least Q j samples from
G j . Then, the expected total query cost issued by Coup-
CollDupe is at most

∑

j∈[m]
C∗

j |D∗
j | ln

|D∗
j ∩ G j |

|D∗
j ∩ G j | − Q j

.

Proof Let ψ j be the number of queries the algorithm would
issue to collect Q j unique tuples from G j . We note the
queries issued to discover the tuples from a group G j may
also discover some tuples from other groups. As a result,
the set of queries for different groups may intersect. The
union bound [48] indicates that the probability of the union
of events is no more than the sum of their probabilities. In
DT, the cost of collecting the required tuples of all groups is
bounded by the sum of the cost of the tuples of each group.
This is because while sampling sources for collecting the
next tuple of a particular group, DT keeps the useful tuples
of other groups. Using this principle, the expected cost of
queries issued by the algorithm, Ψ , is bounded by

Ψ ≤
m∑

j=1

C∗
jE
[
ψ j
]

(5)

For the group G j , the algorithm queries the data source
D∗

j . Let epoch j [k] be the number of queries issued to collect
the k-th tuple of a group G j . For example, epoch j [1] is the
expected number of queries the algorithm issues until the
first tuple from G j is discovered. Now, if the k-th item from
G j is discovered at the k′-th query, we have epoch j [k] =
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(k′ − epoch j [k − 1]). The number of queries issued at every
epoch, ψ j , is computed as follows.

ψ j =
Q j∑

k=1

epoch j [k]

Consider a query that is issued for group G j to D∗
j during

the k-th epoch. Let P∗
j,k be the probability that such query

is successful, i.e., it discovers a new tuple from G j . Also
let N∗

j be the number of tuples of G j in D∗
j , i.e., N

∗
j =

|D∗
j ∩G j |. The algorithm has so far discovered (k−1) tuples

and there are (N∗
j − k + 1) undiscovered tuples from G j at

D∗
j . Therefore,

P∗
j,k =

N∗
j − k + 1

N∗
j

(6)

The geometric distribution represents the expected number
of trials before success in a series of Bernoulli trials. When
the probability of discovering a fresh tuple of group G j is
P∗
j,k , following the geometric distribution, we have

E
[
epoch j [k]

]
= 1

P∗
j,k

σ 2[epoch j [k]
]
=

1 − P∗
j,k

P∗
j,k

2

As a result, we have

E
[
ψ j
]
= E




Q j∑

k=1

epoch j [k]



 =
Q j∑

k=1

E
[
epoch j [k]

]
=

Q j∑

k=1

1
P∗
j,k

= N∗
j

Q j∑

k=1

1
N∗

j − k + 1
= N∗

j

N∗
j∑

k=(N∗
j −Q j+1)

1
k

= N∗
j




N∗

j∑

k=1

1
k

−
N∗

j −Q j∑

k=1

1
k



 = N∗
j
(
HN∗

j
− H(N∗

j −Q j )

)

1 N∗
j ln

N∗
j

N∗
j − Q j

Now, using Eq.5, we have

Ψ =
m∑

j=1

C∗
j N

∗
j ln

N∗
j

N∗
j − Q j

23

3.2.4 Binary equi-cost DT revisited

In Theorem 1 of [1], the authors posited that the CoupColl
algorithm is optimal under the equi-cost binary-groups con-
straint. We revisit this result here and argue that while the

strategy of selecting the minority first is typically more effi-
cient than the majority strategy, it may incur unnecessary
costs for query counts highly skewed toward the majority.
First, we restate the theorem as the following proposition.

Proposition 1 Consider a DT problem under the availabil-
ity of group distributions where there are two groups and
costs for querying data sources are equal. On iteration l, if
group G1 is the minority, i.e., P∗

1 < P∗
2 , then selecting D∗

1 is
optimal.

Under the equi-cost binary constraint, CoupColl prior-
itizes the minority group G1 until Q1 is satisfied, at which
point it switches to D2 to prioritize G2. We can also define
the opposite strategy, which prioritizesG2. LetA1 andA2 be
the shorthand for these two algorithms. The following exam-
ple demonstrates the situation in which A2 is more efficient
than A1.

Example 3 Consider the toy problem from Example 2 with
query requirement [Q1, Q2] = [1, 10]. We derive an analyt-
ical equation for the expected cost of running A1 and A2,
respectively.

Consider the event in which j copies of G2 are sampled
while sampling from D1, with j ranging from 0 to∞. In such
an event, the algorithm samples from D1, for (Q1+ j) times,
and it samples from D2, for max(Q2− j, 0) number of times
in expectation. Furthermore, the probability of said event is(Q1+ j−1

j

)
(P∗

1 )
Q1(1− P∗

1 )
j since

(Q1+ j−1
j

)
is the number of

combinations for j samples of G2 and all but the last copy
of G1.

E[A1] =
∞∑

j=0

(
Q1 + j + max(Q2 − j, 0)

P∗
2

)

×
(
Q1 + j − 1

j

)
(P∗

1 )
Q1 (1 − P∗

1 )
j

=
∞∑

j=0

(Q1 + j)
(
Q1 + j − 1

j

)
(P∗

1 )
Q1 (1 − P∗

1 )
j

+
∞∑

j=0

max(Q2 − j, 0)
P∗
2

(
Q1 + j − 1

j

)
(P∗

1 )
Q1 (1 − P∗

1 )
j

= Q1

∞∑

j=0

(Q1 + j)!
j !Q1!

(P∗
1 )

Q1 (1 − P∗
1 )

j

+
Q2−1∑

j=0

Q2 − j
P∗
2

(
Q1 + j − 1

j

)
(P∗

1 )
Q1 (1 − P∗

1 )
j

= Q1

P∗
1
+

Q2−1∑

j=0

Q2 − j
P∗
2

(
Q1 + j − 1

j

)
(P∗

1 )
Q1 (1 − P∗

1 )
j
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Algorithm 2 RatioColl
Require: An instance of DT (D,G, C,Q).
Ensure: Unified data set O .
1: O ← ∅
2: while ∃ j ∈ [m] s.t. Q j > 0 do

3: G∗ = argmax
G j∈G,Q j>0

(
Q j · min

i∈[n]

(
Ci

Pi, j

))

4: D∗ = argmin
Di∈D

(
Ci

Pi,∗

)

5: s ← Query(D∗)
6: O ← O ∪ {s}
7: end while
8: return O

Similarly,

E[A2] =
Q2

P∗
2
+

Q1−1∑

j=0

Q1 − j
P∗
1

(
Q2 + j − 1

j

)
(P∗

2 )
Q2 (1 − P∗

2 )
j .

While this combinatorial equation is impractical to com-
pute for large query counts, we computed [A1] and E[A2]
for Q1, Q2 ≤ 250 numerically. We find that E[A2] tends to
be smaller thanE[A1] if Q2 is well over five times as large as
Q1, with a nearly linear separation between the two regions
of the problem space. Neither algorithm is optimal.

As a concrete example, for query (Q1, Q2) = (1, 10),
E[A1] = 11.9545 andE[A2] = 11.982,meaningA1 ismore
efficient.With just onemore query count requirement forG2,
however, E[A1] = 13.0616 and E[A2] = 13.0067, thus the
majority-first algorithm is cheaper. While the minority-first
algorithm is typically more efficient than the majority-first
algorithm, it may incur unnecessary cost for query counts
highly skewed toward the majority.

This example illustrates that the optimal algorithm should
balance two priorities at the same time: the minority group
and the group with high query count requirement.

3.3 RatioColl: new solution

3.3.1 Modified heuristic

Although CoupColl is suboptimal, the exact solution from
§ 3.1 is not tractable for even moderately large queries. Con-
sequently, we propose a simple heuristic that is on par or
better than CoupColl, which we show empirically in § 5.
Themodified algorithmRatioColl is shown inAlgorithm2.

RatioColl chooses the priority group based on the
expected cost for satisfying the counts of each group inde-
pendently. Note that Ci/Pi j is the expected cost per sample
of G j . Thus, (Q jC∗

j )/P
∗
j is the expected cost to satisfy Q j

on its own, where C∗
j is the cost of D

∗
j and P∗

j is the prob-
ability of sampling G j from D∗

j . The following equation is

nearly identical to Eq.2, but with an additional Q j term.

Gk = argmax
j∈[m],Q j>0

(
Q j · min

i∈[n]

(
Ci

Pi, j

))
(7)

This modification makes our algorithm balance prioritizing
groups that are rare (small Pi, j ), expensive (largeCi ), or have
a high query count (large Q j ). Once the priority group G∗ is
chosen, we then choose the optimal data source using Eq.3.
In scenarios where duplicates cannot be ignored, we make
an analogous modification as discussed in Sect. 3.2.2.

A natural question is whether assigning weights to the
terms Q j and min

∀Di∈D

(
Ci
Pi, j

)
would be necessary. For instance,

in a particular scenario, prioritizing a groupwith a high query
count may be much more important than prioritizing a rare
group, or vice versa.

We justify our choice by reframing the behavior of Rati-
oColl as follows. Recall that Eq. 7 prioritizes groups based
on the expected cost to satisfy the group’s query require-
ment. Thus, at any given point, RatioColl tries to ensure
that the expected cost to satisfy a group’s query requirement
is roughly equal to that of other groups. In otherwords,Rati-
oColl’s goal is when

Q1C∗
1

P∗
1

= Q2C∗
2

P∗
2

= . . . = QmC∗
m

P∗
m

.

The sum of all the terms is a constant m times one of the
terms.

1
m

=
Q jC∗

j
P∗
j

∑
k∈[m]

QkC∗
k

P∗
k

=
Q jC∗

j
P∗
j

Q
∑

k∈[m]
C∗
k

P∗
k

Which gives us

Q j

Q
=

P∗
j

C∗
j

m
∑

k∈[m]
P∗
k

C∗
k

.

Normalizing such that Q j/Q for each group sums to 1, we
get an expression for R j , the proportion of remaining Q j
compared to Q that RatioColl aims to reach.

R j =
P∗
j

C∗
j

∑
k∈[m]

P∗
k

C∗
k

≈ Q j

Q
(8)

That is, assuming that the total query count Q is fixed, it
wants to have a large proportion of the total query to be
occupied by a group that is relatively cheap to obtain. For
instance, if G1 is the minority compared to G2, then a query
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Fig. 2 Optimal Q1 : Q2 ratio as Q varies

of (20, 80) is easier to satisfy than (80, 20), even though the
total query count is the same. It does so by prioritizing the
group whose current ratio Q j/Q is high compared to R j .
RatioColl, over time, brings the ratio of remaining query
counts for each group to be closer to the heuristic ratio.

This heuristic ratio is, inmany scenarios, remarkably close
to the optimal ratiowhich may be computed exactly by com-
puting the DP table. As a concrete example, we computed
the exact values of the DP table in Example 2 with decimal
point computation to eliminate any numerical issues. Then,
for each total query count 0 ≤ Q ≤ 5000, we enumerated
each possible Q1, Q2 combination such that Q1+ Q2 = Q.
We then found the Q1, Q2 combinationwhich had the lowest
computed F(Q1, Q2) value for the given Q. Figure2 visu-
alizes this result. As Q grows, the optimal ratio approaches
0.35, whereas the heuristic ratio is

R1 =
0.4
1

0.4
1 + 0.9

1

≈ 0.31.

If Q1/Q is maintained at 0.31 across the runtime of the algo-
rithm, then while it may not be optimal, it will be close to
optimal with dramatically lower runtime compared to DP.
Table 4 shows two other combinations of P∗

1 , P
∗
2 under

binary-optimal constraint, and the optimal Q1/Q ratio as
Q grows larger compared to the heuristic ratio R1. We see
that the optimal ratio is close to the heuristic in both cases,
even though RatioColl is orders of magnitude faster than
DP.

3.3.2 Upper bound forRatioColl

Similar to CoupColl, RatioColl only prioritizes a group
with nonzero remaining query count. As such, the same loose
upper bound shown in Eq.4 holds. Furthermore, whenRati-

Table 4 Optimal
Q1

Q
when Q = 5000 vs R1

P∗
1 P∗

2 Optimal Q1/Q Ratio R1

0.1 0.95 0.065 0.095

0.5 0.6 0.44 0.45

oColl is modified to account for duplicates, the same union
bound as shown in Theorem 1 holds.

3.3.3 Asymptotic result

While it is difficult to obtain a tight analysis in general, we
show that the expected cost of RatioColl is asymptotically
close to optimal under a series of constraints.

Theorem 2 Consider an instance of DT problemwithm = 2,
Q = Q1 + Q2, Q1 : Q2 = P∗

1 : P∗
2 , C1 = C2 = 1, and

P∗
1 + P∗

2 > 1. Also assume sampling with replacement from
a source which almost surely does not produce duplicates.
Recall that F(Q1, Q2) is the expected cost required to satisfy
query Q = (Q1, Q2). Then

lim
Q→∞

√
Q[F(Q1, Q2) − Q] = P∗

1 + P∗
2√

2π P∗
1 P

∗
2
. (9)

The proof amounts to reducing the constrained DT prob-
lem into a generalized variant of the coupon collector’s
problem studied by Brown and Ross [49]. To proceed with
the proof, we first restate their problem definition.

Definition 2 [GeneralizedCouponCollector’s Problem]Sup-
pose there are two types of coupons in a bag. In each iteration,
a coupon is drawn randomly with replacement. The prob-
ability of drawing coupon 1 is p, and that for coupon 2
is 1 − p. Our goal is to sample type-1 coupon k times,
and type-2 coupon r times. Furthermore, we are given that
p = k/(k+r). Estimate the expected time required to satisfy
the requirement, denoted Nk,r .

Proof In order to maintain the ideal ratio, after some t itera-
tions, RatioColl must have sampled t R1 data points from
G1, and t R2 data points from G2. Let Xt

1, X
t
2 be the num-

ber of data points collected from each group at time t . Since
P∗
1 + P∗

2 > 1, as t → ∞,

lim
t→∞E

[
Xt
1

Xt
2

]
= R1

R2
.

Consequently, lim
Q→∞

F(Q1, Q2)

Nk,r
= 1.

Brown and Ross proved in [49] that

lim
v→∞

√
v[E[Nk,r ] − v] = 1√

2π pq
.
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Substitute v = Q, Nk,r = F(Q1, Q2), p = P∗
1

P∗
1 +P∗

2
, and

q = P∗
2

P∗
1 +P∗

2
to obtain

lim
Q→∞

√
Q[F ′(Q1, Q2) − Q] = P∗

1 + P∗
2√

2π P∗
1 P

∗
2

which concludes the proof. 23

The significance of Theorem 2 is twofold. First, it is much
tighter than Theorem 1. Second, as explained in § 3.3.1,
RatioColl tends to stabilize the ratio of remaining query
counts to R1 : R2. Thus, we expect Q1 : Q2 ≈ R1 : R2 to
be a reasonably common scenario even if the initial query
requirements are not exactly as specified in the theorem.

4 Unknown distributionmodel

In this section, we study the DT problem without knowledge
of group probability distributions. A naive solution is to first
issue “enough” random queries to each of the data sources
and estimate the distributions. Then, knowing these distribu-
tions, we can use the techniques proposed in § 3. However,
this solution can spend too much of the limited query budget
estimating the distributions, especially when there are many
data sources or only a small result data set is desired. There-
fore, we seek to collect data directly, without first discovering
the distributions. To do so, we model the DT problem in the
unknown distribution case as a (multi-armed) bandit prob-
lem [50–52] (§ 4.1). We then study bandit algorithms for
scenarios with (§ 4.2) and without (§ 4.3) prior information.

4.1 Modeling as multi-armed bandit

Multi-armed bandit (MAB) refers to a general class of
sequential problems with exploration and exploitation trade-
off. Formally, a stochastic bandit problem is defined as
follows. Consider a set of n arms, where each arm ai is
associated with an unknown probability distribution νi with
mean µ(ai ). In a sequential setting, with a time horizon T , a
planner needs to take action by selecting an arm at every iter-
ation. Let A = a1, · · · , aT be the sequence of arms chosen
by the agent. Upon selecting an arm ai , the agent receives
a stochastic reward R(at ), from an unknown distribution νi
with parameter µ(ai ). We have E[R(at )] = µ(ai ).

The objective of the agent is to maximize its expected
cumulative reward E

[∑T
t=1 at

]
. Let the optimal arm at time

t be a∗
t . Then, the optimal strategyA∗ = a∗

1 , · · · , a∗
T would

have the expected cumulative reward
∑T

t=1 µ(a
∗
t ). Based on

this, the regret for not taking the optimal actions is computed

as follows.

L(T ) = E
[

T∑

t=1

(
µ(a∗

t ) − µ(at )
)
]

(10)

Different strategies have been proposed to balance explo-
ration, which allows the agent to better estimate µ(ai ), and
exploitation, which allows the agent to reap rewards from
highly valuable arms. As a naive baseline, we may consider
the ε-greedy strategy with a fixed exploration rate ε. In each
iteration, with probability ε ∈ [0, 1], the planner randomly
chooses an arm to explore. Otherwise, it chooses the greedy
arm argmax [µ̄(ai )], i.e., the arm with the highest sample
mean. Each exploration round incurs O(1) regret since it
is impossible to optimize random sampling. As such, fixed
exploration rate strategies incur O(T ) regret.

A sublinear regret bound can be achieved using decreas-
ing exploration rate strategies. These strategies exploit the
fact that exploration is more valuable earlier than later, and
vice versa. The ε-greedy strategies with ε decreasing over
time at an appropriate rate achieves O

(
T 2/3 log T 1/3) regret

[52]. This bound can be brought down to O(T 1/2 log T 1/2)

through variable exploration rate strategies such as upper
confidence bound (UCB) bandit [53].

There is a straightforward mapping of unknown DT prob-
lem to stochastic bandit problems, where every data source
Di is an arm. In a sequential manner, we would like to select
arms in order to collect Q j tuples from every group G j . We
still need to design the reward function according to the out-
come of a query and the cost of issuing the query, which
we explain in the following sections. The design of these
reward functions varies depending on the extent to which
prior knowledge of the overall distribution is available.

4.2 DT as MAB: with prior knowledge

In order to be able to apply the bandit algorithm, we must
define a reward function for each group G j . In order to com-
pute the reward of collecting a tuple from group G j , we raise
the question of how “hard” it is to collect one tuple of a group.
For example, if 90%of the tuples across different data sources
belong to G j , most queries will return a tuple from G j . On
the other hand, collecting a tuple from a group that is rare
requires more effort, and so should be worth more in reward.
As a result, one can argue that the reward of obtaining a tuple
from G j is proportional to how “rare” this group is across
different data sources. In other words, what is the expected
cost one needs to pay in order to collect a tuple from G j .

In order to compute the expected cost,we assumeweknow
the overall distribution of groups as prior information. Such
an assumption is reasonable inmany scenarios, where overall
aggregates are often available in public forms such as Bureau
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Algorithm 3 UCB
Require: An instance of DT (D,G, C,Q).
Ensure: Unified data set O .
1: O ← ∅
2: Ni ← 1 ∀i ∈ [n]
3: for i = 1 to n do
4: s ← Query(Dt )

5: µ̄(Dt ) ← 1
P jCi

where s ∈ G j

6: end for
7: while ∃ j ∈ [m] s.t. Q j > 0 do

8: D∗ ← argmax
Di∈D

(

µ̄(Di )+
√
2 ln t
Ni

)

9: s ← Query(D∗)

10: µ̄(Di ) ←
N1 · µ̄(Di )+ 1

P jCi

Ni + 1
where s ∈ G j

11: Ni ← Ni + 1
12: O ← O ∪ {s}
13: end while
14: return O

reports. Let Pj be the overall frequency of a group G j , i.e.,
Pj = |G j |/|

⋃
i∈[n] Di |. Following the principle of deferred

decisions [48] (page 55), if we randomly select a source to
query, the expected number of queries required to collect a
tuple from G j is 1/Pj . Since any source can be selected for
sampling, the average cost is c̄ = (

∑n
i=1 Ci )/n. Therefore,

the expected cost to collect a tuple fromG j is c̄/Pj .Wewould
like to assign a high reward to sources that contain tuples of a
rare group G j (small Pj ). We also penalize the reward based
on the cost of sampling from the source, Ci . Therefore, the
reward of source Di with respect to G j , namely R(i, j) is
c̄/(Pj ·Ci ). Since c̄ is constant across all sources and groups,
we remove it from the reward function and write the reward
function as following.

R(i, j) =
{

1
P jCi

if Q j > 0 and query result is new

0 otherwise
(11)

In order to efficiently compute the average reward of each
data source, we keep a running sample mean µ̄(Di ) for each
data source Di . Once we sample an extra tuple of G j from
Di , we update the sample mean as

µ̄(Di ) ← Ni · µ̄(Di )+ R(i, j)
Ni + 1

.

Otherwise, Algorithm 3 follows a standard UCB strategy. It
requires O(n+m) space to store trackers Ni , µ̄(Di ) and Pj .
Each iteration requires O(n) time. SinceAlgorithm3 follows
the UCB bandit strategy, and its reward is bounded within a
finite range, it incurs O(log T ) regret [52].

Algorithm 4 EpsilonGreedy
Require: An instance of DT, exploration rate α.
Ensure: Unified data set O .
1: O ← ∅
2: Ni, j ← 0 ∀i ∈ [n], j ∈ [m]
3: while ∃ j ∈ [m] s.t. Q j > 0 do
4: if t ≤ n then D∗ ← Dt
5: else
6: r ← a uniformly random number in [0, 1]
7: if r < α 3

√
ln t/t) then

8: D∗ ← a random data source
9: else

10: R(G j ) ←
(
Q j · min

i∈[n]

(
Ci Ni
Ni, j

))
∀G j ∈ G

11: D∗ ← argmax
Di∈D

(
1
Ci

∑
j∈[m]

Ni, j
Ni

· R(G j )
)

12: end if
13: end if
14: s ← Query(D∗)
15: O ← O ∪ {s}
16: Ni, j ← Ni, j + 1 where s ∈ G j
17: Ni ← Ni + 1
18: end while
19: return O

4.3 DT as MAB: without prior knowledge

Although the reward function of equation 11 performs well
empirically (§ 5), there are scenarios in which it would not be
applicable. Overall demographic statistics may not be avail-
able for the problem setting, especially if data points are not
individuals. While external statistics could be a substitute,
they may deviate significantly from the distribution of given
data sources.

4.3.1 Proposed EpsilonGreedy algorithm

Motivated by the aforementioned limitations, we propose
an algorithm for the DT problem with unknown statistics
and unknown overall demographics. Algorithm 4 shows the
EpsilonGreedy algorithm. It first samples each data source,
then explores a random data source with decrease in prob-
ability. Otherwise, it chooses the data source which has the
highest expected reward by estimating Eq.7 from the groups
sampled so far from each data source. It exploits further
cost optimizations in the same manner as RatioColl by
directly utilizing Eq. 7 as the reward function. Although Q j
and Ci can be treated as constants in each iteration, Pi, j is
unknown by definition. As such, each action does not return
a numeric reward, unlike the standard MAB problem def-
inition. Instead, the agent estimates Pi, j with increase in
accuracy as it samples each data source. This then allows
it to estimate Eq. 7 more accurately over time. It requires
O(nm) space to store trackers and O(nm) time per iteration.

Notice that the feedback given to EpsilonGreedy is the
group of sampled data point, and not a numerical reward.
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Table 5 Terms for analysis of EpsilonGreedy

Symbol Description

Xt Number of exploration rounds by time t

X t
i Number of times Di was explored by time t

Y t
i, j Number of times G j was sampled from Di

by time t

Pi, j Probability of sampling G j from Di

R(G j ) Reward from group G j , as in equation 7

i.e., R(G j ) = Q j
C∗

j
P∗
j

µ(Di ) Expected reward from Di

i.e., µ(Di ) =
∑

j∈[m] Pi, j R(G j )

L(t) Regret by time t

i.e., L(t) =∑T
t=1 f (D∗) − E[ f (D∗

t )]
where D∗ is the optimal source, and D∗

t is the
source chosen by the algorithm at time t

This is the main deviation from the standard bandit problem
definition (§ 4.1). As such, we cannot rely on prior results.
In designing a bandit algorithm for this modified problem
definition, we could consider a UCB strategy. However, this
is not feasible, as the reward of each arm is non-local. Fur-
thermore, the reward of each arm is non-local. In order to
accurately estimate the reward from Di , we need to explore
all data sources, not just Di . This limitation is why we opt
for an ε-greedy strategy with ε that decays over time.

4.3.2 Analysis of EpsilonGreedy

Surprisingly, despite an additional layer of statistical infer-
ence, our EpsilonGreedy algorithm has a big-O bound
identical to ε-greedy bandit algorithms in the standard bandit
problem setting.

Theorem 3 TheEpsilonGreedyalgorithmachieves asymp-
totic regret of O

(
t2/3(log t)1/3

)
at time t, when Ci = 1

for all i ∈ [n], n,m, Q j are fixed, and p∗ is the min-
imum optimal probability for any group defined as p∗ =
min
j∈[m]

[
max
i∈[n]

(
Pi, j

)]
> 0.

Notice that Theorem 3 assumes all Q j to be constants.
This is a limitation imposed by the fact that remaining query
counts at a certain iteration is unpredictable. However, once
the query counts converge to the ratio imposed by Eq. 8,
we argue that the remaining query count for a group relative
to all remaining queries will stay mostly constant through-
out the rest of the algorithm’s runtime with high probability.
As such, fixing Q j as constant is a reasonable simplifying
assumption that does not significantly impact the implica-
tions of the theorem.

To proceed with the proof, we define some new terms and
recall others in Table 5. Another concept we must define is
the clean event, which occurs when all values of Xt , Xt

i , and
Y t
i, j are not far from expectation.

Definition 3 We define events E1, E2, and E3 as the events in
which equations 12, 13, or 14 hold, respectively.

∣∣Xt − E[Xt ]
∣∣ ≤ O

(
t−1/3(log t)−1/6

)
E[Xt ] (12)

Xt
i ≥ E

[
Xt
i
]
− O

(
t−1/3(log t)−1/6

)
E[Xt

i ]
∀i ∈ [n] (13)

Y t
i, j ≥ E

[
Y t
i, j

]
− O

(
t−1/3(log t)−1/6

)
E[Y t

i, j ]
∀i ∈ [n]∀ j ∈ [m] (14)

The clean event Ec is the event in which all three equations
hold, i.e., Ec = E1 ∩ E2 ∩ E3. The complement of the clean
event is called the dirty event, denoted Ec.

Finally, any term with a horizontal bar above it (e.g., P̄i, j ,
µ̄(Di )) is an estimate of the ground truth obtained through
sampling.

The proof strategy is straightforward: we bound the terms
in Table 5 one by one with high probability using standard
concentration bounds. For organization, the proof is split into
lemmas. Lemma 1 shows that if the clean event holds, then
µ(Di ) is closely estimated. Lemma 2 bounds regret given the
clean event. Lemma 3 bounds probability of the dirty event.
From these lemmas, Theorem 3 follows directly.

Lemma 1 If the clean event holds, then

|µ̄(Di ) − µ(Di )| ≤ O
(
t−1/3(log t)−1/6

)
µ(Di ).

Proof Since the clean event holds, as a direct application of
Eq. 13 and Eq. 14,

|P̄i, j − Pi, j | ≤ O
(
t−1/3(log t)−1/6

)
Pi, j .

As a shorthand, let δ = t−1/3(log t)−1/6.
The bound on |P̄i, j − Pi, j | implies a similar bound on

|R̄(G j ) − R(G j )|.

∣∣R̄(G j ) − R(G j )
∣∣ ≤ max

{
1

(1−δ)P∗, j − 1
P∗, j

1
P∗, j − 1

(1+δ)P∗, j

≤ 1
(1 − δ)P∗, j

− 1
(1+ δ)P∗, j

= 2δ
(1 − δ2)

1
P∗, j
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= O
(
t−1/3(log t)−1/6)

Ω(1)
R(G j )

∴ |R̄(G j ) − R(G j )| ≤ O
(
t−1/3(log t)−1/6

)
R(G j )

We obtain a similar bound for |µ̄(Di )−µ(Di )| by repeat-
ing the same technique.

|µ̄(Di ) − µ(Di )|

=

∣∣∣∣∣∣

∑

j∈[m]
P̄i, j R̄(G j ) −

∑

j∈[m]
Pi, j R(G j )

∣∣∣∣∣∣

=
∑

j∈[m]

[∣∣P̄i, j R̄(G j )
∣∣−

∣∣Pi, j R(G j )
∣∣]

≤
∑

j∈[m]

∣∣P̄i, j R̄(G j ) − Pi, j R(G j )
∣∣

The summand is simplified as follows.

∣∣P̄i, j R̄(G j ) − Pi, j R(G j )
∣∣

≤ max

{
(1+ δ)Pi, j (1+ δ)R(G j ) − Pi, j R(G j )

Pi, j R(G j ) − (1 − δ)Pi, j (1 − δ)R(G j )

≤ [(1+ δ)2 − (1 − δ)2]Pi, j R(G j )

= 4δPi, j R(G j )

= 4δR(G j )

∴ |µ̄(Di ) − µ(Di )| ≤ O
(
t−1/3(log t)−1/6

)
µ(Di )

23
Lemma 2 If the clean event holds, then

L(t) ≤ O
(
t2/3(log t)1/3

)
.

Proof Similar to theproof of lemma1, let δ= t−1/3(log t)−1/6

as a shorthand.
Regret can incur during exploration rounds and during

exploitation rounds. Consider the exploration rounds first.
Since the clean event holds, by equation 12, Xt is upper
bounded by

Xt ≤ (1+ δ)E[Xt ] ≤
(
1+ O

(
t−1/3 + (log t)−1/6))E[Xt ].

Since the exploration rate is 3
√
ln t/t , by integration and alge-

braic simplification, E[Xt ] = Θ
(
t2/3(log t)1/3

)
. Thus, by

substitution,

Xt ≤ O
(
t2/3(log t)1/3

)
.

Each iteration of exploration round incurs at most O(1)
regret, since p∗ > 0 implies that the maximum possible

reward is bounded. As such, the regret from exploration
rounds is at most O

(
t2/3(log t)1/3

)
.

Now consider the regret from exploitation rounds. There
is at most t − (1 − δ)E[Xt ] ≤ O(t) exploitation rounds.
For each exploitation round, if a suboptimal source Di was
chosen instead of the optimal source D∗, it must be that

[
1+ O

(
t−1/3(log t)−1/6

)]
µ(Di )

≥
[
1 − O

(
t−1/3(log t)−1/6

)]
µ(D∗)

which means

µ(Di ) ≥ 1 − O
(
t−1/3(log t)−1/6)

1+ O
(
t−1/3(log t)−1/6

)µ(D∗).

Maximum reward in any source is 1/p∗, so

µ(D∗) − µ(Di ) ≤ 1
p∗ − 1 − O

(
t−1/3(log t)−1/6)

1+ O
(
t−1/3(log t)−1/6

) 1
p∗

= 1
p∗

(
1 − 1 − O(t−1/3(log t)−1/6)

1+ O(t−1/3(log t)−1/6)

)

= 1
p∗

(
2O(t−1/3(log t)−1/6)

1+ O(t−1/3(log t)−1/6)

)

= O(t−1/3(log t)−1/6).

Thus, the regret from exploitation rounds is at most O(t−1/3

(log t)−1/6).
Combining the regret fromexploration rounds and exploita-

tion rounds,

L(t) ≤ O(t2/3(log t)1/3)+ O(t−1/3(log t)−1/6),

∴ L(t) ≤ O(t2/3(log t)1/3).

23

Lemma 3 The dirty event occurs with probability at most
O(t−4).

Proof Let us denote the event in which Eq. 12 holds as E1,
the event in which Eq. 13 holds as E2, and the event in which
Eq. 14 holds as E3. Then, the clean event Ec = E1 ∩ E2 ∩ E3,
so P(Ec) = P(E1)P(E2|E1)P(E3|E1 ∩ E2).

First, we lower bound P(E1) with multiplicative Hoeffd-
ing bound.

P
[
|Xt − E[Xt ]| ≥ δE[Xt ]

]
≤ 2e−δ2E[Xt ]/3.

We set δ = 2t−1/3(log t)−1/6 such that Eq. 12 holds. Then
by substitution,

2e−δ2E[Xt ]/3 = Θ
(
t−4

)
,
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so P(E1) ≥ 1 − O(t−4).
Second, we lower bound P(E2|E1). Since event E1 holds,

by substitution,

Xt ≥ (1 − δ)E[Xt ],
Xt ≥

(
1 − 2t−1/3(log t)−1/6

)
Θ
(
t2/3(log t)1/3

)
.

After simplification, we get

Θ
(
t2/3(log t)1/3

)
≤ Xt .

Each Xt
i is a sum of independent random variables. So

again, by the multiplicative Hoeffding bound,

P
[
Xt
i ≥ (1 − δ)E[Xt

i ] | E1
]

≤ e−δ2E[Xt
i ]/2.

Setting δ = 2t−1/3(log t)−1/6 ensures that Eq. 13 holds. By
substitution, P(E2|E1) ≥ 1 − O(t−4).

Then by a similar process as above,

P
[∣∣∣Y t

i, j − E[Y t
i, j ]

∣∣∣ ≥ δE[Y t
i, j ] | E1 ∩ E2

]
≤ Θ(t−4)

where δ = t−1/3(log t)−1/6. This means P(E3|E1 ∩ E2) ≥
1 − O(t−4).

Combining the above results,

P (Ec) = P(E1)P(E2|E1)P(E3|E1 ∩ E2)

≥
(
1 − O(t−4)

) (
1 − O(t−4)

)n (
1 − O(t−4)

)m

≥ 1 − O(t−4).

Thus, P
(
Ec
)

≤ O(t−4). 23

Now we may prove Theorem 3.

Proof The regret per iteration given the dirty event is O(1)
by the same reasoning as why regret per exploration round
is O(1). Then, we have

L(t) ≤ O
(
t2/3(log t)1/3

)
+ O(t−4)O(1)

= O
(
t2/3(log t)1/3

)

which completes the proof. 23

4.3.3 A practical variant

Although EpsilonGreedy has the best theoretical regret
bound at arbitrary time t , an ExploreExploit strategy
described in Algorithm 5 could be much more efficient in
practice. This is because the expected time horizon is at
most some unknown constant multiple of Q, as established

Algorithm 5 ExploreExploit
Require: An instance of DT, exploration rate α.
Ensure: Unified data set O .
1: O ← ∅
2: Ni, j ← 0 ∀i ∈ [n], j ∈ [m]
3: for i = 1 to 9αQ2/3: do
4: s ← Query(D(i mod n)+1)
5: Ni, j ← Ni, j + 1 where s ∈ G j
6: Ni ← Ni + 1
7: end for
8: Run RatioColl with P̄i, j = Ni, j

Ni

in Eq.4. As such, the time horizon can be crudely approxi-
mated as T ≈ Q, and the exploration rate set to αT 2/3 for
some tunable parameter α. Given a known time horizon, it is
highly advantageous to perform all explorations at the begin-
ning. Furthermore, ExploreExploit’s simplicity means the
exploration rounds can be batched and parallelized, and an
existing implementation of RatioColl can be reused as a
subroutine. Although there is no firm theoretical bound, if the
time horizon is accurately estimated, then by a direct appli-
cation of Theorem 3, ExploreExploit achieves the same
sublinear regret as EpsilonGreedy.

5 Experiments

We have developed the RatioColl algorithm in this paper
for the case of known distributions, which improves upon
CoupColl from [1]. We also developed UCB for the case
of unknown distributions with prior information, and Epsi-
lonGreedyand ExploreExploit for the case of no prior
information. We empirically study the performance of the
algorithms and compare them against baselines.

We use a Random baseline that chooses a random data
source in each iteration. For the unknown scenario, we also
consider a FixedExploration baseline which uniformly
explores for 10% of total query Q then runs RatioColl using
sample statistics. For each algorithm, their duplicate-aware
variants are denoted by the Dupe suffix, replacing Pi, j with
P ′
i, j as discussed in Sect. 3.2.2.
We design a series of experiments that verify our the-

oretical results under a range of problem sizes and test the
robustness of our proposed algorithms under a variety of sce-
narios. In total, we conduct six experiments as listed below.

1. Comparing the performance of algorithms while varying
the proportion of the query count requirement occupied
by minority versus majority group. (Sect. 5.2.1, Fig. 3)

2. Comparing RatioColl and its theoretical bounds (The-
orem 1,2) while varying Q to test the practical usefulness
of analysis. (Sect. 5.2.2, Fig. 4a)
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3. Comparing FixedExploration baseline with decaying
exploration rate banditsExploreExploit andEpsilon-
Greedy while varying Q. (Sect. 5.2.3, Fig. 4b)

4. Testing the proposed algorithms on a large practical data
set. (Sect. 5.2.4, Fig. 4c)

5. Testing the proposed algorithms and their duplicate-
aware variants on a small practical data set. (Sect.5.2.5,
Fig. 4d)

6. Comprehensive performance evaluation while varying
cost model, n, m, and whether each group has a source
where it is the majority group. (Sect. 5.2.6, Figs. 5,6)

5.1 Data

Flights [54]: Airborne Flights database, published by the
Bureau of Transportation Statistics, contains detailed flight
statistics from 1987 to present. The carrier on-time perfor-
mance of eachflight is represented byOP_CARRIER_AIRLINE
_ID, ORIGIN_STATE_NM, and ARR_DELAY, among other
attributes. We considered the flight information of carrier
airlines from 2018 to 2020, each row representing a single
flight. There were 18 million flights in total. The data set
was split into 11 data sources, each representing an airline
network. We categorize data points into 51 groups by their
destination state, including U.S. Pacific territories.
COMPAS [55]: The Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS) data set
was used to demonstrate racial bias in the COMPAS
recidivism algorithm [56]. It is now used as an exam-
ple of a biased data set [41, 57, 58]. We deduplicated
rows based on an individual’s ID, resulting in a data
set of 18,610 individuals. We split the data set based
on the month of their screening, with a total of 24 data
sources over two years. We categorized each individual into
demographic groups: Caucasian Male, Non-Caucasian

Male, Caucasian Female, and Non-Caucasian Female.
The largest group Caucasian Male had 9,407 tuples, and
the smallest group Non-Caucasian Female had 1,706.
BenchDL: We synthesized a benchmark to evaluate DT on
various cost and data distribution settings. It can generate
n random synthetic data sources with m groups, where each
data source generates unique tuples on the fly according to an
underlying probability distribution. BenchDL has twomodes
of randomly generating the underlying probability distribu-
tions:majority andminority.Majority distributionmeans that
for all group G j , P∗

j ≥ 1/m, whereas a minority distribution
means that for at least one group, P∗

j ≤ 1/m. BenchDL gen-
erates majority distributions by allocating a probability of
1/m to each group in at least one data source, then randomly
splitting remaining probabilities. It generates minority dis-
tributions by allocating a probability that lies in (0, 1/m) to
all data sources to at least one group, then randomly splitting
remaining probabilities.

BenchDL assigns a constant cost to each data source, cho-
sen by one of three cost models.

1. Uniform: Ci = 1 for all i ∈ [n].
2. Random: A random floating point number in (0, 2].
3. Skewed: We generate a number from the Pareto distribu-

tion with parameter α = 2, then subtract 1 to obtain a
number in range (0,∞).

The parameters are set such that E[Ci ] = 1 for all cost
models, which means the expected cost per iteration for the
Random baseline is 1. This property allows us to discern
which algorithms better exploit the cheaper data sources.

5.2 Experiment design & results

5.2.1 Experiment 1: query ratio under equi-cost binary
constraint

The goal of this experiment is to compare the performance
of the discussed algorithms under an equi-cost binary con-
straintwith various P∗

1 , P
∗
2 combinations and Q1 : Q2 ratios.

We set n = 2,m = 2 and use the uniform cost model.
Furthermore, in all rounds, we set the total query count
Q = 100. There are three independent variables: Q1, P∗

1
and P∗

2 . We vary P∗
1 and P∗

2 among values 0.1, 0.3, 0.5, 0.7,
and 0.9. Since there are only two data sources, combinations
where P∗

1 + P∗
2 < 1 are infeasible, and combinations where

P∗
1 + P∗

2 = 1 result in identical D1 and D2. Thus, we only
consider P∗

1 + P∗
2 > 1. Some combinations are omitted due

to symmetry. We vary Q1 from 0 to 100.
The results are shown in Fig. 3. In the known setting,

CoupColl and RatioColl consistently outperforms the
Random baseline. Furthermore, there are regions of Q1 val-
ues whereCoupColl consistently outperformsRatioColl,
particularly when Q1 is relatively small. This effect is most
evident in Fig.3(d-f). This is to be expected, since we always
set G1 to be the minority group; CoupColl is inefficient
when the minority group has small query requirements.

Though variance is high in the unknown setting, bandit
strategies tend to outperform Random with the exception of
UCB. While UCB tends to outperform Random, it may, in
certain configurations, be worse than the Random baseline.
UCB’s lackluster performance in certain scenarios confirms
our claim that the reward function for UCB, even if known,
may not be applicable.

5.2.2 Experiment 2: doubling test for bounds

In this experiment, we test the applicability of analysis on
RatioColl for reasonably small query counts under the con-
ditions of Theorem 2. Specifically, we set n = 2,m = 2,
P∗
1 = 0.5, and P∗

2 = 0.75 with uniform query costs. As
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Fig. 3 Performance of all algorithms under equi-cost binary constraint with varying Q1 : Q2 ratio, and P∗
1 + P∗

2 > 1. P∗
1 , P

∗
2 was chosen from

0.3, 0.5, 0.7, 0.9

the independent variable, we vary the total query count Q
from 32 to 5,096 as a doubling test. We also ensure that
Q1 : Q2 ≈ 0.5 : 0.75 to the nearest integer regardless of Q.
We run the Random and RatioColl algorithms, and com-
pare their results with the union bound (Theorem 1) and the
asymptotic expectation (Theorem 2). For each query count
and algorithm, we repeat for 30 repetitions and take the aver-
age.

The result is shown in Fig. 4a. Even with a relatively small
query count requirement in the thousands, the asymptotic
expectation is very close to the average cost issued byRatio-
Coll to satisfy the query. Furthermore, union bound is loose
compared to the asymptotic expectation, far surpassing even
the random baseline.

5.2.3 Experiment 3: fixed versus uniform exploration
strategies

In this experiment, we compare the FixedExploration
baseline with our proposed decaying exploration rate ban-
dit algorithms EpsilonGreedy and ExploreExploit (α =
0.5) as query size Q increases. We set n = 5, m = 10, with
no majority groups and skewed cost model. We then doubled
Q from 24 to 214.

The result is shown in Fig. 4b. It plots the average cost
for each strategy per Q divided by the random baseline. As

Q increases, the bandit strategies trend toward significantly
outperforming the random baseline. Out of the three bandits,
ExploreExploit is the clearwinner. Intriguingly,Epsilon-
Greedy performs worse than the baselines for certain values
of Q but nonetheless improves in an asymptotic manner.

5.2.4 Experiment 4: real world, no duplicates

Werun theCoupColl,RatioColl,UCB,EpsilonGreedy,
andRandom algorithmson theflights data set,with the group
count requirements set as 100 per group. Thus, Q = 5, 100
which is less than 0.3%of all data. Since Q is small compared
to the data sources, we ignore the effect of duplicates. We
also assume a uniform cost model, since all data sources
come from the same publisher. We report the average over
10 rounds.

The result is shown in Fig. 4c. RatioColl outperforms
CoupColl, which out-perofrms the Random baseline.
Futhermore, the query cost issued by EpsilonGreedy is
competitive to RatioColl, especially in contrast to UCB
that does not outperform Random. The probability distribu-
tions of the flight data setmight be onewhereUCB’s heuristic
is not the most applicable.
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Fig. 4 Results of Experiment 2–5

5.2.5 Experiment 5: real world, duplicates

Werun theCoupColl,CoupCollDupe,RatioColl,Rati-
oCollDupe (a natural duplicate-aware variant of Ratio-
Coll), UCB, EpsilonGreedy, EpsilonGreedyDupe, and
Random algorithms on the COMPAS data set. The smallest
Pi, j value is around 50, so we set each group’s query require-
ment as 50 to ensure that duplicates are non-negligible. We
report the average over 50 rounds.

The result is shown in Fig. 4d. Since the data sources
are very small compared to the query requirement, non-
duplicate-aware algorithms are highly inefficient compared
to even just the Random baseline or their duplicate-aware
variants. CoupCollDupe and RatioCollDupe seems to
outperform the Random baseline by a small margin. Epsi-
lonGreedy fares much better, even though it is not

duplicate-aware. This may be due to the fact that the total
query requirement is very small, so exploration rate is still
high.

5.2.6 Experiment 6: synthetic, general case

In this experiment, we run all algorithms under the following
combinations of independent variables.

1. Cost model: We test all three cost models in BenchDL ,
namely uniform, random, and skewed.

2. Varying n: In half of all experiments, we fix m = 10 and
vary n as 2, 4, 6, 8, or 10.

3. Varying m: In the other half of all experiments, we fix
n = 10 and vary m as 10, 20, 30, 40, or 50.
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We set n,m values such that n ≤ m since the non-duplicate-
aware algorithms sample from at most m data sources. As
such, scenarios in which n > m are redundant. Further-
more, we split the results into two sets of plots for both
known and unknown distributions. The total query count is
fixed at 10, 000 and the group count requirements are evenly
distributed among groups. We repeat each combination of
independent variables 25 times and report the average.

The results of Experiment 5 are shown in Figs. 5 and 6,
split into known and unknown DT. In known DT, Rati-
oColl tends to outperform CoupColl, which outperforms
theRandom baseline. In unknownDT,whileUCB andEpsi-
lonGreedy tend to outperform the Random baseline, there
is no clear winner between the two bandit algorithms. In
certain scenarios, the heuristic for UCB fits well, in which
case the O(log t) regret of UCB is highly desirable over the
O(t2/3 log t) regret of EpsilonGreedy. On the other hand,
if the reward function for UCB is not quite applicable, then
EpsilonGreedy may outperform UCB.

As a general trend, the cost difference between the Ran-
dom baseline and our proposed algorithms is the smallest for
uniform cost model, and the largest for skewed cost model.
As all proposed algorithms take the cost of data sources into
account, they are adept at exploiting the cheapoutlier sources.

Increasing the number of groups tends to increase the cost
required to satisfy the query, since rare groups become much
harder to find. EpsilonGreedy is affected particularly hard
by this trend. On the other hand, increasing the number of
data sources tends to decrease the total cost. With many data
sources to choose from, our algorithms are better able to
exploit the outlier data sources which have highly desirable
probability distributions.

5.3 Summary of results

In the experiments, we demonstrated the effectiveness of our
proposed algorithms over the Random baseline and algo-
rithms proposed in [1]. We list the major takeaways below.

1. RatioColl outperforms CoupColl when minority
group’s query count requirements are small.

2. Decaying exploration rate bandits are superior to a fixed
exploration baseline as Q increases.

3. ExploreExploitmaybe superior overEpsilonGreedy
in practice for many scenarios due to exploring at the
beginning.

4. Duplicate-aware modification is effective in high-
duplicate settings.

5. As the variance in costs increases, the gap between the
Random baseline and our algorithms increases.

6. With higher group and source counts, the gap between
the Random baseline and our algorithms increases.

6 Related work

Responsible Data Science The bulk of work in algorithmic
fairness and responsible data sciencehas beenonbuilding fair
MLmodels [59]. At a high level, the interventions to achieve
fairness inML fall in threemajor categories [60]: pre-process
techniques [38, 61–63], algorithm modification (in-process)
[64–67], and post-process techniques [68–70] that change
model outcomes. Alongside other communities, fairness has
been a central topic in the premier database research. Related
work on data management for algorithmic fairness includes
data repair [63, 71], ranking [72–75], and data/model anno-
tation [76, 77], as well as different keynotes [78, 79] and
tutorials [80–82].
Bias and Representativeness in Data Biases have been
studied for a long time in statistics community [83] but social
data presents different challenges [59, 84, 85]. For social
data, the term bias refers to demographic disparities in the
sampled data that compromises its representativeness and
are objectionable for societal reasons [59, 84]. Given that
“an algorithm is only as good as the data it works with”
[85], fairness-aware data collection is considered as a way
to address unfairness in predictive models [86, 87]. Repre-
sentativeness of data collection have been widely studied in
the literature [88]. A notion of data representativeness has
been proposed as data coverage [42, 89–92], identifying the
demographic subgroups that are not represented in data. The
input target distribution to aDT problem can be inferred from
the result of coverage analysis. Bias has also been studied in
the context of approximate query answering [93], where a
database is considered as a sample and the goal is to answer
approximate queries as if the queries were issued on the true
population.
Data Discovery and Data Pricing Existing approaches for
data set discovery [20, 94], source selection [95, 96], and
schema mapping [97–99] can be necessary for the source
generation step of DT and their cost can be folded into the
cost model. Data set discovery is often formulated as a search
problemon repositories usingkeywords [100, 101] or another
data set [20, 94] and the goal is to find relevant data sets based
on the relevance to the keywords or integration-inspiredmea-
sures. A complementary problem to DT is query-based data
pricing [102]which decides the price of the data from the per-
spective of providers. The output of the data pricing problem
can be plugged into the cost model of DT.
Data Distillation and Cleaning DT is an instance of the
data augmentation problem with some additional conditions
on the group counts [103].Moreover, data distillation [104] is
particularly applicable in determining the group that a sam-
pled tuple is associated with if such information is absent.
Moreover, data cleaning is included in the source prepara-
tion process and its cost can be folded into the cost model.

123



1302 J. Chang et al.

Fig. 5 Known DT for Minority and Majority Distributions and Equal, Random, and Skewed Cost Models

Fig. 6 Unknown DT for Minority and Majority Distributions and Equal, Random, and Skewed Cost Models

Cleaning tasks such as entity resolution are necessary for
determining the freshness of samples.
Data Acquisition and Databases Matteo Brucato et al.
extended SQL queries to handle package queries that spec-

ify complex constraints over answer sets [105, 106]. Package
queries could be used to query representative data sets effi-
ciently from an RDBMS. For instance, users could enforce
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count constraints over labels and define a cost minimization
objective.

7 Extensions

k > 1 Query Model So far in the paper, we assumed a data
source returns one sample per query. First, if a query returns
more than one tuple, all of those samples will be used to col-
lect the target data set. In a setting where a query to a source
returns more than one tuple (k > 1), typically, k is a small
constant (e.g., 10). This will not require notable changes in
the designed algorithms. ForKnown- Binary, except for the
marginal cases, the algorithm remains near-optimal. Recall
thatKnown- Binary keeps querying the source that has the
highest ratio for the minorities. If the data source returns
more than one sample, the algorithm still queries the same
data source but it updates its counts using all returned tuples.
This is equivalent to the algorithm calling the data source
multiple times, something the optimal algorithmdoes, except
in marginal cases where either the minority group changes
or it finds a better data source. It is easy to see such marginal
cases are unlikely to happen in practice. Even if it happens,
such cases will reduce the cost by a small constant. The same
argument is also valid for theCoupColl algorithm.We leave
further investigations about these cases, as well as theoretical
analyses of our algorithms under k > 1 query model, as part
of our future work. The multi-armed bandit algorithms also
work as-is for k > 1. The major impact of the new model on
the algorithms is that, depending on the underlying distribu-
tions and the sizes Q j , the bandit algorithms may not have
enough “time” to effectively identify the good data sources
to query. As a result, its performance advantage compared to
baseline may decline.
Count Requirements on Multiple Groups The count
requirements may be on multiple groups individually, for
example, we may need 100 of gender=F and 100 of
gender=M as well as 100 of race=W and 100 of
race=NW. We can achieve this target by performing a
sequence of independent DTs for group requirements. We
start by a DT that collects a target data set that satisfies the
requirements of one group. In the following DT instances,
tuples of the current target data set are replaced with new
tuples of required groups while making sure that the counts
of the groups of previous runs remain unchanged.
Complex Distributions on Groups We may have scenar-
ios that require more sophisticated distribution functions on
groups rather than count requirements. For example, a count
requirement may be a range, i.e., as soon as the count of a
group becomes equal to or greater than the lower bound of a
range interval, the requirement is satisfied and the algorithm
must start discarding samples of this group once the count
becomes equal to the upper bound.

Overlapping Sources In real world, independent data
sources have minimal overlap and we did not consider the
overlapbetween sources in our optimization. For futurework,
we design algorithms that further optimize the cost, using the
information about overlaps.
Diversity Maximization A potential downside of the cost
minimization objective in DT is that it tends to sample heav-
ily from a small number of most cost-efficient sources. The
distributionof the unifieddata set could potentially be skewed
compared to the ground truth, which is problematic inAI/ML
applications where i.i.d. sampling is often assumed. A pos-
sible remedy is to incorporate diversity maximization as a
constraint or objective. If a single data source only covers a
small region of the entire vector space, maximizing a diver-
sity metric such as max-min diversity [107] would entail
sampling from a variety of data sources. We could adapt
existing algorithms for diversitymaximization under fairness
constraint [108, 109] into the DP framework. A diversity-
maximizing DP algorithm would avoid repeatedly sampling
from data sources that cover highly overlapping regions of
the vector space while staying under a cost budget.

8 Conclusions

In this paper, we studied the DT problem, which aims to
cost-efficiently gather a unified data set from many data
sourceswith fairness constraints. In the known statistics case,
we developed the RatioColl algorithm which has a tight
asymptotic expected cost and empirically outperforms the
previously proposed CoupColl algorithm. In the unknown
statistics case, we generalized the problem to situations in
which the heuristic proposed in [1] is not applicable. We
developed the EpsilonGreedy bandit algorithm that does
not require any prior information. In practice, it performs on
par with UCB, even though it uses less information.

Our practical recommendation is to useRatioCollwhen
probability distributions are known, and ExploreExploit
otherwise. Furthermore, the duplicate-aware variants should
be preferred for all but the most massive data sources.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00778-024-00849-
w.
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