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1 | INTRODUCTION

| Brian Buma®® | Anke Jentsch?

| Kayla C. Mathes! |

Abstract

Understanding what regulates ecosystem functional responses to disturbance is es-
sential in this era of global change. However, many pioneering and still influential
disturbance-related theorie proposed by ecosystem ecologists were developed prior
to rapid global change, and before tools and metrics were available to test them. In
light of new knowledge and conceptual advances across biological disciplines, we pre-
sent four disturbance ecology concepts that are particularly relevant to ecosystem
ecologists new to the field: (a) the directionality of ecosystem functional response
to disturbance; (b) functional thresholds; (c) disturbance-succession interactions; and
(d) diversity-functional stability relationships. We discuss how knowledge, theory,
and terminology developed by several biological disciplines, when integrated, can
enhance how ecosystem ecologists analyze and interpret functional responses to
disturbance. For example, when interpreting thresholds and disturbance-succession
interactions, ecosystem ecologists should consider concurrent biotic regime change,
non-linearity, and multiple response pathways, typically the theoretical and analyti-
cal domain of population and community ecologists. Similarly, the interpretation of
ecosystem functional responses to disturbance requires analytical approaches that
recognize disturbance can promote, inhibit, or fundamentally change ecosystem func-
tions. We suggest that truly integrative approaches and knowledge are essential to
advancing ecosystem functional responses to disturbance.
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TAXONOMY CLASSIFICATION
Ecosystem ecology

across fields of ecology. In ecosystem ecology, prominent historical

and enduring theoretical frameworks emphasize disturbance effects
on systems-level biomass, and energy pools and fluxes over time and
space (Bormann & Likens, 1979; Odum, 1969; Whittaker et al., 1974).

While the influence of these theories continues, their inception did

Disturbances affect every scale and level of biological organization.
However, disturbance studies are generally guided by discipline-

specific theories, terminology, and literature, limiting coherence
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not account for interactions with rapidly changing climate or climate
extremes, permanent (i.e., state-) changes in biogeochemical cycles,
species introductions, or novel disturbances (Corman et al., 2019;
Sala et al,, 2000). Yet, the multitemporal and spatially integrative
nature of ecosystem ecology requires long-term consideration
(Gaiser et al., 2020) of uncertain future conditions (Stern, 2008), dy-
namic resource ratios and stoichiometries (Jentsch & White, 2019),
and community-to-landscape structural reorganization (Carpenter
et al., 2001; Pickett et al., 2011; Scheffer et al., 2001; Scheffer &
Carpenter, 2003). Moreover, many historical conceptual models still
embraced by ecosystem ecologists were not testable when proposed
because of technological constraints and more limited quantitative
metrics and methods. For example, Odum's (1969) seminal work, “The
Strategy of Ecosystem Development,” which is cited more now than
it was a half century ago, long-preceded meteorological “flux” tower
networks (Baldocchi, 2008; Novick et al., 2018) measuring ecosys-
tem processes such as net ecosystem CO, exchange and ecosystem
respiration, nomenclature that was standardized in the 21st Century
(Chapin et al., 2006).

Now, following decades of observations and theoretical ad-
vances (Gaiser et al., 2020; Jentsch & White, 2019; Kranabetter
et al., 2016; Lin et al., 2022), we consider how contemporary dis-
turbance theory and knowledge can inform core themes addressed
by ecosystem ecologists. Here, the term functioning encompasses
system-wide processes, such as net primary production, ecosystem
respiration, evapotranspiration, and energy balance. Rather than an
exhaustive review, we present a broadly accessible outline for the
novice in advance of a more comprehensive dive into a rich but tech-
nical literature spanning multiple biological disciplines and decades.
We conclude by inviting readers to contribute their own commen-
tary and suggested readings, acknowledging that interdisciplinary
perspectives, theories, and observations are necessary to enrich and

unify disturbance ecology paradigms.

2 | DISTURBANCE MAY STIMULATE,
REDUCE, OR CREATE NEW ECOSYSTEM
FUNCTIONS, ALL AT THE SAME TIME

With the origins of disturbance theory rooted outside of ecosys-
tem ecology (e.g., Clements, 1916; Gleason, 1917), conceptual and
analytical frameworks for interpreting disturbance responses histori-
cally emphasized population, community, and, later, landscape struc-
ture (Pickett et al., 2011) rather than ecosystem function (Pulsford
et al., 2016). For example, White and Pickett's (1985) often-cited defi-
nition describes disturbance as a discrete event in time and space “that
disrupts the structure of an ecosystem, community, or population, and
changes resource availability or the physical environment.” While this
definition does not exclude ecosystem functioning, its emphasis un-
derscores foundations outside of ecosystem ecology.

With an emphasis on disruptive effects, many conceptual and ana-
lytical models adopted by ecosystem ecologists assume or predict aloss
of ecosystem functioning following disturbance relative to a control or

baseline (Amiro et al., 2010; Anderegg et al., 2016). In nature, however,
different disturbances have different impacts on ecosystem processes,
and different functions may have different responses to the same dis-
turbance. For example, disturbance severity has variable effects on
processes regulating forest carbon uptake and loss (Clay et al., 2022;
Gough, Atkins, et al., 2021; Shabaga et al., 2022). Over successional
timescales, disturbance may stimulate some functions at the expense
of others, for example, by increasing nitrogen leaching and decreasing
nitrogen-limited primary production (White et al., 2004). While distur-
bances sometimes reduce the population sizes of dominant species
and drastically alter community structure (e.g., by reducing biodiver-
sity, Hillebrand & Kunze, 2020), the reallocation of limiting resources
such as light, nutrients, and water may also increase whole-ecosystem
resource-use efficiency. For example, phloem-disrupting disturbances
that killed a fraction of trees and reduced species richness increased
carbon-use efficiency and, consequently, enhanced the primary pro-
duction of a temperate forest (Gough, Bohrer, et al., 2021). Moderate
severity or partial disturbances from fire, wind, or thinning that re-
duce competition and liberate growth-limiting resources can similarly
increase the production of temperate and tropical forests (Buma &
Schultz, 2020; Kweon & Comeau, 2019; Munoz et al., 2021; Nunes
et al., 2018). Thus, there is no consistent impact of disturbance on the
(positive, negative, or neutral) directionality of ecosystem functioning
and, in some cases, opposing processes offset one another, limiting
the “net effects” (sensu Pickett et al., 2009) of disturbance on inte-
grative ecosystem processes. For example, low intensity disturbances
that reduce plant competition may increase ecosystem carbon uptake
(i.e., gross primary production, GPP) and carbon losses (i.e., ecosystem
respiration, ER), resulting in no change in net ecosystem CO, exchange
(=GPP-ER) (Gough, Bohrer, et al., 2021).

Analytical frameworks that accommodate the multiple direc-
tional and temporal responses of ecosystem functioning to distur-
bance have been proposed and are described in detail elsewhere
(Figure 1; Mathes et al., 2021). These frameworks help differentiate
and interpret time-dependent disturbance responses, and highlight
how the apparent effects of disturbance on ecosystem functioning
depends on when measurements are taken. While not yet widely
embraced by ecosystem ecologists, the use of such frameworks
could help address a number of knowledge gaps in the realm of
disturbance ecology, including three fundamental aspects: First,
to what extent structure and function are coupled following dis-
turbance; second, whether initial responses to disturbance predict
long-term change; and third, which disturbance regimes and sources

deplete versus enhance structure and function.

3 | NON-LINEAR THRESHOLD
RESPONSES TO DISTURBANCE ARE
COMMON

Ecosystem ecologists have long-considered how ecosystem func-
tions respond to disturbance. For example, the effects of differ-
ent disturbance sources (e.g., fire, insects, wind) on systems-level
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carbon cycling processes have been examined in several ecosystems
(Amiro et al., 2010; Rebane et al., 2019; Senf & Seidl, 2021). Theory,
experiments, and models generally assume that for most functional
processes, the magnitude of change is correlated with disturbance
frequency, severity, or duration (Anderegg et al., 2015; Bond-
Lamberty et al., 2015). For example, insects killing 50% of all trees
within a forest stand are expected to reduce net primary production
by a similar amount, a logical hypothesis that is sometimes observed
in nature (Hicke et al., 2012) and routinely predicted by models (Bond-
Lamberty et al., 2015). Although predicting thresholds is difficult
(Hillebrand et al., 2020), some ecosystems absorb substantial distur-
bance without commensurate changes in functioning, exhibiting non-
linear threshold responses to more frequent, severe, or longer lasting
disturbances (Flower & Gonzalez-Meler, 2015; Stuart-Haentjens
et al., 2015). Indeed, non-linear changes in ecosystem composition

and structure are increasingly reported, motivating novel research
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FIGURE 1 Disturbance is often assumed to have disruptive
effects on ecosystem processes, but observed responses may be
positive, negative, or neutral and change over time, influencing
how disturbance effects are perceived and reported. Such dynamic
responses may also explain why conflicting disturbance responses
are reported in the literature and underscore the need for long-
term repeated measurements.
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questions asking why ecosystem processes respond with varying de-
grees of resilience to disturbance (Turner et al., 2020).

The concept of non-linear thresholds and the statistical tools for
their detection (Jiang et al., 2018; Lenton et al., 2008, 2019; Toms
& Lesperance, 2003) are widespread across ecological disciplines
(Briske et al., 2005; Groffman et al., 2006; Johnston et al., 2021), but
underutilized by ecosystem ecologists. Ecological thresholds include
non-linear changes in populations, community and landscape struc-
ture, and ecosystem processes following disturbance (Groffman
et al., 2006) such as changing resource ratios and limiting factors
(Jentsch & White, 2019), and their detection, description, and overall
typology depends heavily on the organizational scale being observed
(Spake et al., 2022). The published literature contains relatively few
studies emphasizing ecosystem-scale functioning. For example, a
Web of Science key word search (on 03-08-24) yielded 414 articles

*n *

referencing “threshold*” and “ecolog*” and “ecosystem function*”,

*0

while substituting the latter for “communit*” and “population*” re-
turned 3865 and 4868 articles, respectively. Moreover, population
and community—rather than ecosystem—ecologists have generally
led advances in the conceptualization of ecological thresholds, in-
cluding the data visualization and quantification of non-linear behav-
ior (Jentsch & White, 2019; Seidl et al., 2016) and the application of
basin attractor analogies (Holling, 1973; Huisman & Weissing, 2001;
van Nes & Scheffer, 2007).

When integrated with ecosystem ecology principles, popula-
tion-, community-, and landscape ecology-originated theories pro-
vide a basis for interpreting the mechanisms underlying ecosystems'
response to disturbance. For example, disturbance has non-random
impacts that are dependent upon frequency, severity, source, and
duration, resulting in the retention of different biotic (e.g., species
abundances) and abiotic (e.g., nutrient capital) legacies. Impacted
ecosystems may maintain pre-disturbance functioning, but are
frequently more fragile as a result, leading to threshold behav-
ior if additional stressors or interacting, compound disturbances
occur (Burton et al., 2020; Johnstone et al., 2016; Peterson, 2019).

Functional threshold

N

Basin—"

FIGURE 2 Drawing from theoretical frameworks developed by community ecologists and recent observations of ecosystem processes,
functional thresholds can be conceptualized as abrupt non-linear transitions from one functional regime to another resulting from press or
pulse disturbance (a) and using a basin attractor analogy (b). Press disturbances, such as sustained drought or gradually rising temperatures,
may push a function closer to its threshold as limiting resources decline, priming the system for greater sensitivity to subsequent pulse

disturbance.
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Similarly, slow and lasting “press” disturbances such as prolonged
drought may incrementally exhaust material legacies at broad scales
(Smith et al., 2024) until a more abrupt “pulse” disturbance, like ex-
treme weather events or insect mortality, pushes the system beyond
its limit, resulting in threshold change and potential reorganization
that forces new stable dynamics (Harley & Paine, 2009; Renwick
et al.,, 2016). Merging these concepts, thresholds in ecosystem func-
tioning can be illustrated as a basin attractor model, in which a loss
of limiting resources or material legacies linearly or non-linearly di-
minishes functioning, and reduces the barrier to permanent func-
tional regime change (Figure 2).

4 | DISTURBANCE GIVES RISE TO
MULTIPLE SUCCESSIONAL PATHWAYS

The interplay between ecological succession and disturbance has
been an object of theoretical and empirical study for over a cen-
tury (Shelford, 1912), with ecosystem ecologists considering func-
tioning in this context by the middle 20th century (Odum, 1969;
Whittaker, 1960). Initial theoretical models and observations empha-
sized a single axis of successional change, with disturbance partially
or fully resetting succession, depending on the degree of severity
(e.g., Tansley, 1935, Figure 2a). Some conceptions were dominated
by primarily a single trajectory, while others allowed for alternative
trajectories (Connell & Slatyer, 1977) depending on initial conditions,
but disturbance still played a “resetting” role (Young et al., 2001). In
this general model, primary production increases rapidly in young,
aggrading ecosystems as pioneer plant species with little compe-
tition and an abundance of resources populate an area and grow
rapidly; eventually, primary production stabilizes as mortality and
replacement achieve steady state. In some ecosystems, arrested
succession (Walker & del Moral, 2003) or retrogression emerges as
declines in nutrient availability or other constraints begin to limit
productivity (Peltzer et al., 2010). With recognition that there are
exceptions to this general trajectory (Pulsford et al., 2016), observa-
tions show that primary production, in the absence of disturbance,
aligns with early theory and progresses over timescales of decades
to centuries in a relatively predictable and conserved way (Luyssaert
et al., 2008; Pregitzer & Euskirchen, 2004).

Early theorists and empiricists, however, generally formulated
their understanding in the absence of novel disturbance regimes and
rapid climate change and without the benefit of modern ecosystem-
scale measurements of biomass pools and fluxes. Moreover, they
typically assumed that disturbance categorically reset—partially
or fully—ecosystem functioning (Grime, 1979). While contempo-
rary disturbance theory allows for multiple successional pathways
(Pickett et al., 2009), such flexibility is not often represented in pop-
ular conceptions of succession-disturbance interactions, including
foundational ecology texts. Indeed, a Google search (10-19-22) of
“ecological succession” and “ecological succession and disturbance”

yielded only textbook illustrations of linear, single-axis change, and,

when depicted, disturbance without exception rewound the succes-
sional clock (Figure S1).

Outside of ecosystem ecology, examples of “accelerated” suc-
cession and even full ecological regime change abound and inform
a more nuanced model of how succession-disturbance interactions
influence functioning (Higgs et al., 2018). For example, moderate
severity disturbances causing only partial mortality can promote
microclimatic conditions that favor shade-tolerant late succes-
sional, rather than pioneer, species (Abrams & Scott, 1989; Fahey
et al., 2015; Jenkins & Parker, 1998; Meigs & Keeton, 2018; Trammell
et al., 2017). Severe or frequent (Calder & Shuman, 2017; Johnstone
et al., 2020), linked or compounding (Buma, 2015; Crausbay
et al., 2017), or novel disturbances (Dijkstra et al., 2017) can redi-
rect community successional dynamics altogether into new regimes,
giving rise to separate axes of functional change and, possibly, long-
term stability (Buma, Harvey, et al., 2019; Jasinski & Payette, 2005;
Williams et al., 2011); furthermore, community composition inter-
acts with disturbance history (Averill et al., 2022). Examples of func-
tional regime change at the ecosystem scale (Scheffer et al., 2001),
while less documented, include coral reef shifts from coral- to algal-
dominated systems, with concurrent changes in productivity and nu-
trient status (Crisp et al., 2022; Nystrom et al., 2000), shifts between
forests and grass dominated systems (Berdugo et al., 2022; Buma
& Wessman, 2011), or major changes in hydrological functioning
associated with fire in fire-naive forest ecosystems, leading to wa-
terlogging and subsequent conversion to bog-like landscapes (Diaz
et al., 2007). In some cases, disturbances restructure ecosystems,
making them more functionally resistant to emerging climate con-
ditions (Buma & Schultz, 2020; Thom et al., 2017). These examples
demonstrate the potential for disturbances to push ecosystems
along multiple axes over long timescales—not only the “traditional”
forward or backward on a pre-defined successional continuum but
also in alternate and novel directions.

We suggest that ecosystem ecology more broadly adopt updated
conceptual frameworks that acknowledge disturbances can reset or
increase functioning or redirect successional trajectories all together
(Pickett et al., 2011). Indeed, rate and direction of successional dy-
namics after disturbance depend on local energy flux potential,
resource availability, and biotic traits (Jentsch & White, 2019). For
example, in secondary succession, rates of change are initially high
and decrease through time as available resources are accumulated in
biomass or are lost from circulation, again highlighting how measure-
ment timing influences the interpretation of disturbance response.
While the original model of succession (Figure 3a) may be valid
under some conditions, this updated framing is more realistic and
opens avenues for steering toward future directions of sustained
ecosystem functioning in an era of global change and shifting dis-
turbance regimes (Figure 2b). Moreover, an updated model of func-
tional disturbance-succession interactions should acknowledge the
“accelerating” effects of some disturbances, particularly those that
reduce or eliminate early successional species and produce greater

biological and structural complexity.
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(b) Updated plant community theory

Resetting disturbance

Partial disturbance

Pulse-initiated

state change Novel succession

(c) Ecosystem functional observations
-NPP, NEP, Rs?

Pulse-initiated acceleration

Small-scale mortality

Novel succession

-/=/+NPP, NEP, Rs3*

Establishmentmsssp Pioneer species s Transitional mmmp Subclimax s Climax ZZZ Retrogression

+NEP, -ER, =GPPS
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Novel succession

NEP, =NPP, +Rs
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FIGURE 3 Early community ecology-driven successional theory posited and often observed partial to full resetting of plant community
development in response to disturbance (a). Observations of plant community and ecosystem functioning dynamics suggest that disturbance
can alternatively advance or change axes of succession altogether, and site degradation can lead to retrogression. Disturbance may increase
some elements of ecosystem functioning, while reducing others, resulting in potentially neutral “net effects” in which opposing fluxes offset
one another. For example, within the same north temperate forested landscape, different neighborhood-scale disturbance-succession
interactions caused variable initial responses in net primary production (NPP), net ecosystem production (NEP), soil respiration (Rs), gross
primary production (GPP), and ecosystem respiration (ER). -, =, and + indicate negative, neutral, and positive responses; ‘Gough et al. 2007;
2Gough et al. 2021; 3Scheuermann et al. 2018; 4Clay etal. 2022; 5Stuart—Haentjens etal., 2023; 6Gough etal. 2021.

5 | MULTIPLE FORMS OF DIVERSITY
SUPPORT FUNCTIONAL STABILITY,
MOSTLY FOR THE SAME REASONS

Biological diversity plays a key role in the stabilization of cellular to
landscape processes and is therefore a central determinant of distur-
bance response across scales of biological organization. For example,
functionally redundant gene products provide “functional buffer-
ing” at the cellular level; response mechanism diversity (Elmqvist
et al., 2003) and genetic diversity (Schippers et al., 2015) provide
analogous landscape-scale stability following disturbance (Frelich &
Reich, 1999; Kellner et al., 2009; Li et al., 2003; Scholl et al., 2023).
While functional redundancy underlies stability across levels of bio-
logical organization, scale-centric biological disciplines sometimes
approach, conceptualize, and define diversity differently.

Moreover, while the interplay between structural, genetic,
trophic, trait, and other aspects of diversity that give rise to eco-

systems' functional redundancy are debated in the literature

(Eisenhauer et al., 2019), the controlling variables are tightly inter-
twined in nature. For example, inter- and intraspecific genetic di-
versity, species diversity, and structural diversity are correlated in
forest communities (Gough et al., 2020), suggesting that the isola-
tion of a single controlling influence is impossible in natural (but per-
haps not constructed) ecosystems. Attempts to identify the effects
of single metrics of diversity on functioning are likely insufficient
and may miss important covariates or potentially confound unmea-
sured causes with measured correlates (Buma, Bisbing, et al., 2019).
Moreover, functional trade-offs determine community and ecosys-
tem responses to disturbance across biomes (Conti et al., 2023).
Therefore, we suggest that models and conceptual frameworks
considering diversity's effects on ecosystem functioning incorpo-
rate a multivariate perspective with input from a variety of disci-
plines, including molecular biologists focused on genetic diversity,
community ecologists emphasizing species diversity, and ecosystem
ecologists studying structural diversity and biogeochemical interac-

tions across trophic levels.
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6 | CONCLUSIONS

Disturbances are changing in frequency, intensity, and cause world-
wide (e.g., in forests: Weed et al., 2013, Seidl et al., 2017; grasslands:
Joyce et al., 2016; Chen et al., 2023; drylands: Maestre et al., 2022;
coral: Vercelloni et al., 2020; Chen et al., 2023). In addition to advanc-

ing fundamental knowledge in disturbance ecology (Wohlgemuth

et al., 2022), updated and more integrative theories relevant to eco-
system functioning are needed to guide disturbance management,
and better anticipate and simulate ecosystems' responses to distur-
bance in this era of rapid global change. The effect of disturbance
on ecosystem processes will be a primary determinant of the future
functioning and service provisioning of ecosystems in the face of
these changing disturbance regimes (Seidl et al., 2016). Understanding

TABLE 1 Disturbance theoretical frameworks originating outside of ecosystem ecology with applicability to ecosystem functioning.

Theory

Biogeochemical
dynamics

Multidimensional
stability

Intermediate
disturbance
hypothesis

Disturbance legacies

Tipping points,
thresholds, and
alternate stable
states

Diversity and
resilience

Landscape dynamics

Functional buffering

Abrupt Changes in
Ecosystems

Net effects and
indeterminate
directionality
of successional
processes

Origin

Biogeo-chemistry

Population and
community
ecology

Community ecology

Population and
community
ecology

Population and
community
ecology

Community ecology

Landscape ecology

Cellular biology

System theory

Community ecology

What it said:

The partitioning ratio of soil and
plant nutrient stocks will undergo
a predictable trajectory after
disturbance.

There are multiple, quantifiable
dimensions of community
and population response to
disturbance.

Moderate intensity disturbances
may increase species diversity by
augmenting or diversifying habitat
and resource availability.

Traits and adaptations, as well as the
residual abiotic and biotic materials
that persist through disturbance
determine ecological responses.

High intensity or frequency
disturbance may force a permanent
(i.e., stable) shift in population or
community structure.

Diverse communities respond to
disturbance with greater functional
stability.

Spatially and temporally asynchronous
disturbance responses, when
balanced, may have a stabilizing
influence over landscape level
structure and function.

The functional redundancy of cellular
components rescues whole-cell
function.

Interactions among multiple drivers
often produce abrupt change in
ecosystems.

Ecological restoration and succession
more generally, is informed by
synthetic and updated vegetation
dynamic theories that consider
net effects and indeterminate
successional pathways.

How it applies to ecosystem ecology:

Offers a framework to assess
ecosystem biogeochemical
response to disturbance using
nutrient partitioning ratios.

Provides a conceptual and
mathematical framework for
interpreting and comparing
ecosystem functional responses
to disturbance.

Species diversity, habitat breadth,
and resource availability affect
ecosystem functional responses
to disturbance, suggesting
moderate intensity disturbance
could increase mass and energy
fluxes.

Disturbance legacies may be critical
determinants of ecosystem
functional responses to
disturbance.

Ecosystems may exhibit similar
non-linear threshold responses to
disturbance, changing long-term
functioning.

Diversity, broadly defined, may
increase the stability of
ecosystem functioning.

Patchy disturbance within an
ecosystem may not be
functionally destabilizing when
uniform in time and space.

Functional buffering mechanisms
exist across levels of biological
organization, from cellular to
ecosystems

Suggests research priorities to
advance understanding of abrupt
changes in ecosystems in the face
of climate change.

Just as the net effects of multiple
interacting community processes
influence overall vegetation
dynamics, ecosystem processes
such as net primary production
and net ecosystem production
are determine by aggregate
and sometimes opposing flux
responses.

Note: We invite additional recommendations and comments from the community here: https://osf.io/a5zvp/.
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the varied impacts of disturbance on ecosystem functions will be an
essential component of both recognizing and mitigating the effects
of climate and global change factors on the health of ecosystems
(Thom et al., 2017). For example, monitoring of ecosystem functions
can provide an “early warning system” of potential ecosystem transi-
tions or state changes (Contosta et al., 2023; Keen et al., 2022). The
frameworks discussed here highlight the value of integrative theory
when considering applications and illustrate a potential roadmap for
incorporating multiple response types and trajectories into long-term
ecosystem monitoring practice. In addition to monitoring, ecosystem
functional response to disturbance can be used as both a predictor
and outcome assessment tool for evaluating the impact of manage-
ment focused on promoting ecosystem adaptation to climate change
and related stressors (Seidl & Turner, 2022). For example, climate-
adaptive management in forested ecosystems is generally conducted
using silvicultural plans that focus on forest structure and species
composition and diversity (Janowiak et al., 2014; Nagel et al., 2017),
but often with the goal of promoting stability in functions such as
carbon or water cycling (Halofsky et al., 2018; Ontl et al., 2020).
Understanding how disturbance structural outcomes and changes in
species identities, traits, and diversity are linked with the response
of ecosystem functions is therefore essential to understanding both
near-term responses of forests to climate-adaptive management and
also the longer-term response of future ecosystems to projected
changes (Aquilué et al., 2020; Clark et al., 2022; Messier et al., 2019).

While disturbance occurs at all scales of biological organization,
disciplinary science has sometimes resulted in disparate rather than
integrative theories, terminology, and concepts. Comprehensively
updating disturbance theories relevant to ecosystem ecologists re-
quires outside-of-the-disciplinary-box thinking, and such thinking
necessitates reading, discussion, and research that spans disciplines.
While not exhaustive, Table 1 provides a sampling of literature from
biological disciplines outside of ecosystem ecology that is relevant
to the four theoretical areas discussed in this commentary. We invite
your contributions to this list via https://osf.io/a5zvp/.
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