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ABSTRACT
Causal data discovery is crucial in scienti�c research by uncovering 
causal links among a variety of observed variables. Causal dataset 
discovery is the task of identifying datasets that contain columns 
that have causal relationships with columns in a query dataset. 
Discovering causal links from large-scale repositories faces three 
major challenges: vast scale of data, inherent sparsity of causal 
links, and incompleteness of variables present. Identifying causal 
relationships among datasets is a complex and time-intensive task, 
especially because it requires joining datasets, to bring all variables 
together, before applying causal link discovery. In this paper, we 
introduce the Causal Dataset Discovery problem and propose a 
large language model (LLM)-based framework to discover potential 
pairwise causal links between columns from di�erent datasets. We 
heuristically improve LLM’s grasp of causality through prompting 
and �ne-tuning and prevent the extreme imbalance in causal candi-
date distributions due to natural sparsity of causal connections. We 
create benchmarks speci�c to this task1, experimentally show that 
our framework achieves remarkable performance with GPT-3.5 and 
GPT-4. We summarize the distinctive behaviors of di�erent LLM 
strategies, and discuss improvements for future research.
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1 INTRODUCTION
Causal discovery, crucial in scienti�c research, involves identifying 
causal relationships from observational data, as conducting random-
ized experiments is often not feasible. These methods, which have 
attracted substantial interest, usually try to deduce causality within 
a single dataset assuming no hidden confounders and missing vari-
ables [31]. They assume all key variables are captured for analysis, 
while this often fails in complex, multi-dataset environments where 
variables across di�erent datasets may interact in unexpected ways, 
which can lead to erroneous conclusions about the nature and di-
rection of causality when a su�cient set cannot be ensured [3]. On 
the other hand, in the era of big data, with its vast volume, variety,
1The Chicago Causal Link Discovery Benchmark is open-source and can be ac-
cessed through https://github.com/Je�Liu114514/Chicago-Causal-Link-Discovery-
Benchmark.
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and velocity, traditional approaches are becoming less effective in 
grasping and understanding dataset interrelationships and selecting 
relevant datasets for analysis [4].

Data lakes have emerged as a solution to the challenges posed 
by big data [24]. While relationships such as joinability [40, 41] 
and unionability [25] have been extensively explored, there is a 
growing need to discover target datasets based on other implicit 
and semantic relationships with query datasets, such as causal rela-
tions [16, 37]. Discovering causal relations can assist in identifying 
causally relevant datasets within a data repository. Firstly, it en-
hances targeted dataset browsing for specific needs on causally 
linked tables. Augmenting a query dataset with causally linked 
tables could potentially yield more robust features for model train-
ing [28]. Additionally, the identified datasets become ideal candi-
dates for augmenting knowledge bases. Lastly, causal relevance 
among datasets contributes to a better understanding of underly-
ing structures and dependencies in complex data environments, 
which supports more informed decision-making and efficient data 
management strategies.

Maintaining numerical correspondence between the columns 
found with causal relations is crucial for discovering relationships 
among datasets in a data-driven fashion. One effective strategy for 
achieving this is through table joins based on common columns, 
which can ensure that variables from different datasets are aligned 
in a way that preserves the integrity of the relationships, including 
causality. However, join operations pose substantial computational 
costs, which intensifies with the volume of data and the need for 
precise variable alignment across numerous datasets, making pair-
wise or outer joins computationally expensive. There has been 
research on searching joinable tables and hashing schemes for effi-
cient dataset search. For example, Santos et al. introduced a novel 
hashing scheme for identifying the top-k tables joinable with a 
query table efficiently [30], based on numerical data correlations, 
using a sketch-based index, which we adapt in this paper.

Large language models (LLMs) are emerging as powerful tools 
in various research areas, showing particular potential in causal 
discovery and inference [18]. Recent advancements in LLMs have 
demonstrated their ability to comprehend and generate complex 
textual content, suggesting their potential for uncovering and rea-
soning about causal relationships in natural language [2]. These 
models demonstrate promising performance across various causal 
tasks, including pairwise causal discovery and actual causality de-
termination [18, 19]. This capability opens new avenues for causal 
dataset discovery, particularly in scenarios where traditional statis-
tical methods may be limited by their assumptions.
In this study, we make the following contributions:

• We present the causal dataset discovery problem in data lakes.

https://doi.org/10.1145/3665939.3665968
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• We propose a novel join-based technique for discovering poten-
tial causal links over join across datasets. Our technique leverages
the power of LLMs in three stages of prompting and �ne-tuning.

• We create an open-source benchmark designed to evaluate causal
dataset discovery techniques. We evaluate our technique over
this benchmark.

• We discuss �ndings on di�erent LLM strategies’ distinctive be-
haviors, summarize the limitations of this study, and suggest
potential improvements.
Discovering causal links among tables has the potential to en-

hance the dataset browsing experience by identifying potentially
causally linked datasets [28], increase the robustness of feature
engineering by augmenting a query dataset with causally linked
features, and allow users to make informed decisions by providing
an understanding of underlying structures and dependencies in
complex data environments.

2 PROBLEM DEFINITION
Let )& (- , - , . . .) and )⇠ (. , . , . . .) be two tables in a data lake
with numerical columns - 2 )& and . 2 )⇠ and categorical
columns  - 2 )& and  . 2 )⇠ . We de�ne candidate pairs of
columns - ,. on the join of )⇠ and )& as follows.

{(- ,. ) |- 2 )& ,. 2 )⇠ , 9 - , . ,)& ùû - = . )⇠ }
De�nition 2.1 (Correlation Link over Join). Candidate columns -

and . have a correlation link over )& ùû - = . )⇠ , if their correla-
tion after the join is higher than a threshold ⇠ .

As discussed in the correlation link discovery (section 3.1.3), we
use mutual information as the correlation measure to e�ectively
identify the pairs of columns that are likely to have potential causal
links.

De�nition 2.2 (Potential Causal Link over Join). For a given can-
didate pair (- ,. ) a potential causal link over join )& ùû - = . )⇠
exists if 1) there exists a correlation link between - and . in the
joined table and 2) post the application of causal inference algo-
rithms, the link between - and . is con�rmed as causal, with its
direction being either clearly established or not determined.

The outcome from a correlation link ()& h - ,- i,)⇠ h . ,. i) can
be one of the following:

A) )& h - ,- i causes )⇠ h . ,. i)
B) )⇠ h . ,. i causes )& h - ,- i
C)No causal relation exists between)& h - ,- i and)⇠ h . ,. i)

We de�ne two tables )& and )⇠ causally linked if there exists
at least one pair of potentially causal link between columns h- ,. i
from tables )& and )⇠ after join.

De�nition 2.3 (Causal Dataset Discovery Problem). Given a query
dataset )& and a data lake of datasets L, �nd all datasets )⇠ 2 L
such that )⇠ and )& have at least one causal link.

The desired output of causal dataset discovery is a list of datasets
)⇠ , each containing a list of column-level potential causal links.
Note that dataset discovery is often formulated as a top- [22, 40]
or threshold-based search problem [41]. However, we consider the
problem of �nding all potentially causal links between a data lake
and a query dataset. This is because the degree of causality is not
necessarily quanti�able.

3 CAUSAL DATASET DISCOVERY
Our hypothesis is that large language models (LLMs) possess the
potential to identify causal relationships between variables thanks
to extensive training across diverse texts, including domain-speci�c
knowledge and scienti�c literature [18]. Nonetheless, the challenges
of time e�ciency and computational demands are signi�cant, es-
pecially given the sparsity of causal relations and the skewed dis-
tribution between positive and negative causal pairs in large data
lakes [39]. Moreover, LLMs may lack the nuanced understanding
of statistical and causal inference principles necessary for robust
causal analysis [39]. They may struggle to distinguish between cor-
relation and causation due to reliance on patterns in their training
data rather than underlying causal mechanisms [17]. Our method-
ology is mainly designed to tackle these challenges. To discover
the causal links, we propose a �lter-veri�cation technique. First,
we minimize the number of causal candidates as input to LLMs by
�ltering the table pairs that are not joinable, the duplicate candi-
date pairs, as well as candidate pairs with low mutual information.
Afterward, we verify the remaining candidates using LLMs. We
employ appropriate prompting and �ne-tuning to enhance LLM’s
understanding of causality to strengthen its performance on causal
tasks.

3.1 Candidates Generation and Screening
We divide the causal pair candidates generation and screening
procedure into three steps: 1) candidate pairs generation via hash
join and �ltering via joinability, which produces raw candidate
pairs from the input data repository; 2) duplicate pairs �ltering
via index-based vector similarity search on pairs, which extracts
unique candidate pairs from raw candidate pairs; 3) correlation link
discovery through �ltering by a correlation coe�cient threshold,
which discovers correlation links from candidate pairs.

3.1.1 Candidate Generation. Within the context of our problem
scenario, the input is a repository of datasets, which de�nes the
search space of potential causal pairs to be all combinations of
two columns from di�erent tables given they are joinable. After-
ward, we exhaustively perform hash joins on every combination of
categorical columns from two tables. If two tables are joinable on
some columns, then all combinations of numerical columns from
the two tables are considered as the raw candidate pairs. We deal
with many-to-many joins by grouping tuples based on the join
column values and aggregating tuples within each group by the
MEAN operator.

3.1.2 Duplicate Filtering. The goal of this step is to re�ne the
pool of candidate pairs by eliminating instances that represent
highly similar variables, thus preventing the redundancy of
nearly identical pairs in the analysis. The potential overlap
of variables may convey analogous or duplicate informa-
tion. For example, the column STREET NUMBER from datasets
CDPH_Storage_Tanks.csv could form a candidate pair with both
Community Area Number and Community Area from dataset
Chicago_Energy_Benchmarking_-_Covered_Buildings.csv.
This may mislead downstream tasks such as top- causal dataset
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Figure 1: Pipeline Visualization for Causal Dataset Discovery

search. When the table CDPH_Storage_Tanks.csv is queried, the
duplicate causal links increase unnecessary weights on the table
Chicago_Energy_Benchmarking_-_Covered_Buildings.csv,
which may undermine the ranking’s e�ectiveness and cause more
causally related datasets undiscovered. To address this concern, we
apply an index-based vector similarity search on variable pairs’
text embeddings to reduce the number of such duplicate pairs. We
�rst utilize pre-trained text encoders to transform the information
of each candidate pair into vector representations [5]. In our
implementation, this transformation includes metadata encoding
of the the names of the join (categorical) columns, and the names
of the tables. Afterwards, our pipeline constructs three indices [10],
one for each category of encoded vectors: numerical column
names, categorical column names, and table names. These indices
serve as the foundation for conducting fast approximate nearest
neighbor (ANN) search. We compare each candidate pair against
others within these indices: a candidate pair is deemed redundant
and consequently removed from consideration if another pair
exhibits high similarity across all three categories.

3.1.3 Correlation Link Discovery. The duplicate �ltering step sig-
ni�cantly narrows down the pool of candidate pairs, ensuring a
focused selection of candidate pairs. The objective of this phase is to
further narrow down the search by using an e�ective causality in-
dicator to reduce negative pairs while retaining positive causations,
thereby reducing candidates of causal links with high recall.

Correlation measures like the Pearson, Kendall’s and Spearman’s
rank coe�cients [38] quantify relationships between variables and

o�er insights toward causality but are limited by their need for lin-
ear or monotonic relationships or assumptions on the observational
variable like normal distribution. This is problematic in cases such
as the Yerkes-Dodson Law [36]. Consider the stress level as cause
and performance as e�ect. The increase in stress level can result
in �rst increase then decrease of performance, showing their non-
linearity, while both stress levels and cognitive performance in this
scenario normally exhibit skewed and non-normal distributions.

Di�ering from Pearson and Spearman’s rank correlation coe�-
cients, mutual information is a measure of mutual dependence that
quanti�es the amount of information obtained about one variable
through the other. Although Pearson correlation has been used in
the existing works [13], due to sensitivity to all types of dependen-
cies and �exibility with respect to data distributions, we believe
mutual information is a more meaningful indicator of causality.
Therefore, we discover the correlation links over join from all can-
didate pairs through a mutual information threshold to �lter out
candidate pairs that likely indicate a weaker or non-existent causal
relationship, which empirically re�nes the distribution of causal
relations in candidate pairs.

3.1.4 Optimized Alternative. In previous sections, we have dis-
cussed a naive pipeline for generating the correlation links over
join. We noted that exhaustive table joins are extremely computa-
tionally expensive. As a result, we adapted and modi�ed the idea of
correlation sketches, by Santos et al. [30], for �nding approximate
join-correlations to replace table joins and correlation calculation
in steps 3.1.1 and 3.1.3.

Given two tables aggregated on join columns)- and). as input,
Santos et al.’s approach utilizes index sketching to emulate the cor-
relation of the result of aggregated join. In summary, it �rst pairs
categorical columns  - ,  . with a numerical column - , . at ran-
dom from aggregated table )- , ). , respectively. Then, it hashes all
values in the aggregated categorical column into integers without
collision and then hashes integers again into real numbers, which
maps distinct values randomly and uniformly to the unit interval [0,
1]. By using the bottom- of hashed values, the correlation sketch
resolves the alignment issue of the emulated joined table between
the pairs and randomly takes : samples for correlation estimation.
Therefore, the output would be an e�cient estimation of the corre-
lation A- ùû. of the numerical attributes -- ùû. and .- ùû. in )- ùû.
without having to compute the full join for )- and ). .

3.2 Causal Link Discovery using Large
Language Models

The objective of causal link discovery will be identifying the un-
derlying potential causal relation from the correlation links ob-
tained from the previous steps. The problem becomes a natural
language classi�cation problem if a causal direction is explicitly
identi�ed, as introduced in the de�nition 2.2. Because downstream
tasks including causal dataset discovery problem do not require
explicit directions of causal links, the outcome can be a binary re-
sponse on whether there is a causal relation between )& h - ,- i
and )⇠ h . ,. i) only.

Common practices for improving LLMs’ capabilities on highly
specialized tasks include prompting and �ne-tuning.
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Table 1: Benchmark Statistics

Benchmark#1 Benchmark#2 Benchmark#3

# of source tables 20 40 64
total # of pairs w/o duplicates 1095 1265 1838
# of pairs pass MI threshold 312 405 668
# of Positive causal relations 61 12 78

Prompting, also known as in-context learning, involves provid-
ing a carefully designed input to in�uence LLMs’ output with-
out making changes to the model’s internal parameters, which is
highly sensitive to the choice of examples, order, and the prompt
format to retrieve the pre-trained knowledge of the model [20].
Role-prompting assigns speci�c roles, such as a domain-speci�c
assistant, to LLMs as context [8]; Socratic prompting, involving the
inclusion of de�nitions within prompts, aims to re�ne alignment
with the intended task. These two prompting techniques encour-
age the model to utilize a targeted knowledge base and produce
goal-aligned responses [7] and will serve as the default prompts
in this study unless otherwise speci�ed. Chain of Thought (CoT)
aids multi-step reasoning by generating intermediate steps before
reaching conclusions [35]. Ban et al. introduce a three-stage method
for identifying causal statements with LLMs: using role-prompting
for generating de�nitions, CoT for concluding causal relations, and
error revision for verifying accuracy, addressing the complexities
in identifying causal relationships [2]. Prompting templates used
in this study can be found in Appendix A.1.

Fine-tuning, on the other hand, involves adjusting the model’s in-
ternal parameters through additional training on a speci�c dataset
tailored to a particular task or domain. We create the training
dataset with tailored class distribution to balance among three
classes, which prevents over�tting due to the skewed distribution
of positive and negative causal relations, and use di�erent bench-
marks created from a disjoint set of tables separately for training
and testing to prevent data leakage, where the speci�c dataset in-
formation can be found in Section 4.2.

4 EVALUATION
We performed extensive experiments on real-world datasets to em-
pirically evaluate the e�ectiveness of our causal dataset discovery
method.

4.1 Chicago Causal Link Discovery Benchmark
While there exist benchmarks for dataset discovery [32] and bench-
marks for causal inference between two variables [15, 21] and for
causal graph discovery within a single dataset [11, 34], to the best
of our knowledge, there exists no benchmarks for causal dataset
discovery problem across di�erent tables via join.Therefeore, to
evaluate algorithms for Causal Dataset Discovery Problem, we pre-
pare a benchmark with ground truths of underlying causal links
via join among columns from distinct tables.

We create a benchmark named Chicago Causal Link Discovery
from the Chicago Data Portal [1] for evaluating the causal dataset
discovery problem. Three micro-benchmarks are created indepen-
dently with a disjoint set of tables. Benchmark#1 includes 20 rel-
atively large tables, each containing on average 34 columns and
46,963 rows, designed to simulate intensive datasets with high join-
ability and dense potential causal links; benchmark#2 includes 40

smaller tables with on average 12 columns and 14,993 rows, de-
signed to simulate datasets with small tables thus low joinability
and sparse potential causal links; benchmark#3, the largest datasets,
includes 64 tables, which contains all tables in benchmarks#1 and
#2, with on average 22 columns and 42,316 rows. All three micro-
benchmarks cover all public data categories to comprehensively
represent diverse data sources in large data repositories.

To minimize the e�ort of human labellers, we apply the steps
described in 3.1 to reduce the sheer number of column pairs to
be annotated. To get exact join results and correlation scores over
join for our benchmarks, we execute joins via hash join instead of
resorting to our adaptation of correlation-join index. Performing
joins on the categorical columns of all benchmark datasets and
enumerating all candidate pairs yield 10041, 10490, and 13650 pairs
for benchmark#1, #2, and #3, respectively. Through ANN searches
among text embeddings of columnmetadata with a cosine similarity
threshold of 0.9, we eliminate 89.09%, 87.94%, and 85.93% of these
candidate pairs as highly similar duplicates. The remaining 1095,
1265, and 1838 pairs constitute the three micro-benchmarks. For
each candidate pair in the benchmark, we create labels for the
benchmark through a majority voting of two human labellers and
the prompting result of GPT-4 [26].

4.2 Implementation and Setup
Within the duplicates �ltering step, to generate text embeddings, we
leverage FastText [5]. It excels in capturing the nuances of text data
by considering subword information, which enables it to e�ectively
understand and represent the semantics of column and table names,
even when dealing with abbreviations, acronyms, or words not
seen during training. To implement similarity search e�ciently, we
employ Faiss [10], an optimized library designed speci�cally for
similarity search and clustering of dense vectors, which enables
the high-speed execution of ANN searches across a large amount
of candidate pairs. The large language model involved in this study
is implemented through API requests to GPT models provided by
OpenAI, speci�cally gpt-3.5-turbo-0125 when refered as GPT-3.5 [6]
and gpt-4-0125-preview when referred as GPT-4 [26].

We conduct prompting and �netuning experiments and present
results on benchmarks#1, #2, and #3. Prompting tests include de-
fault, Chain of Thought, and three-stage prompts introduced in
Section 3.2 and speci�c prompts can be found in Appendix A.1.
To avoid data leakage, �ne-tuned models’ performance on bench-
marks #1 or #2 are tested on the other benchmark to ensure that
training and testing data do not overlap, i.e., the test results of GPT-
3.5 �ne-tuned model shown in benchmark#2 section is trained on
benchmark #1 and vice versa. The model �ne-tuned on benchmark
#3 is trained and tested through 8-2 split of the entire benchmark,
which may include overlapping variables but no identical causal
candidate pairs in train and test datasets. The training set’s distri-
bution is tailored such that each class’s percentage does not exceed
the sum of the other two classes to ensure that choice C (No causal
relation exists) does not dominate and cause over�tting.

4.3 Experimental Results
We empirically �nd the best mutual information (MI) threshold ⇠
by searching over a threshold space with minimum granularity W
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Table 2: Causal Links Discovery Results

Benchmark#1 Benchmark#2 Benchmark#3

Measurement precision recall accuracy F-1 Score precision recall accuracy F-1 Score precision recall accuracy F-1 Score

GPT-3.5 + default prompts 73.97 75.27 74.26 74.26 41.64 52.50 66.67 66.67 59.37 70.16 68.00 68.00
GPT-3.5 + CoT prompts 54.18 54.46 41.58 41.58 36.41 29.79 23.53 23.53 40.67 45.45 27.00 27.00
GPT-3.5 + 3-stage prompts 85.54 75.14 80.20 81.00 77.54 49.52 80.39 82.00 84.69 56.11 78.00 80.41
GPT-3.5 �netuned 81.43 78.68 80.20 80.20 75.16 66.76 86.27 86.27 84.11 75.73 88.00 88.00

GPT-4 + default prompts 97.08 93.07 95.05 95.05 91.71 83.81 94.12 94.12 97.75 88.94 95.00 95.00

Table 3: Causal Links Identi�cation Results

Benchmark#1 Benchmark#2 Benchmark#3

Measurement precision recall accuracy F-1 Score precision recall accuracy F-1 Score precision recall accuracy F-1 Score

GPT-3.5 + default prompts 80.0 89.80 84.16 84.62 47.62 83.33 74.51 60.61 58.00 93.55 77.00 71.60
GPT-3.5 + CoT prompts 52.75 97.96 56.44 68.57 25.58 91.67 35.29 40.00 32.95 93.55 39.00 48.74
GPT-3.5 + 3-stage prompts 100 66.67 84.00 80.00 100 33.33 84.00 50.00 100 37.93 81.44 55.00
GPT-3.5 �netuned 90.70 79.59 86.14 84.78 88.89 66.67 90.20 76.19 95.83 74.19 91.00 83.64

GPT-4 + default prompts 100 89.80 95.05 94.62 100 83.33 96.08 90.91 100 83.87 95.00 91.23

with the highest F-1 score in terms of �nding positive causal links
among candidate pairs. The optimal MI threshold is at 0.501 where
correlation link discovery extracts 312, 405, and 668 correlation links
from 1095, 1265, and 1838 pairs while maintaining a high recall of
80.32%, 100.00%, and 83.56% for three benchmarks, respectively.

We present the experiments of causal link discovery with sepa-
rate criteria. Table 2 shows the average precision, recall, accuracy,
and F-1 score for the 3-class causal discovery problem which re-
quires the causal direction being explicitly determined, while table 3
shows the results for causal determination, as introduced in Sec-
tion 3.2. The observation is that GPT-4 performs dominantly in
3-class classi�cation, which indicates its capability at both identi-
fying causal links and directions. GPT-4’s superior performance
on most academic benchmarks has shown its comprehensive capa-
bilities [26], which explains its higher pro�ciency at causal tasks.
Chain of thoughts (CoT) gives strong bias to respond with positive
causal links but is very inaccurate; 3-stage approach performs in an
opposite manner against CoT as it is precise, especially at identify-
ing causal links, while giving low recall. This sharp comparison is
mainly contributed by the self-revision step in the 3-stage approach.
We speculate that an ensemble of CoT and 3-stage approach may
lead to better overall performance. Finally, �ne-tuning gives the
best general performance among all GPT-3 based approaches. Given
non-overlapping training and testing data with distinctive data dis-
tribution, we believe the boost in performance through �ne-tuning
demonstrates LLMs’ potential to learn and generalize causality.

Causal links discovered are then used for testing the perfor-
mance downstream tasks, the causal dataset discovery, where re-
sults can be found in Table 4. We evaluate the average precision
and recall of each tables’ query results given the causal links discov-
ered within the benchmark. The general observation aligns with
causal link discovery results but with more polarized performance,
which is because causal connections between tables are naturally
skewed. Large amount of causal links could concentrate between
speci�c table pairs, for example, table Selected Socioeconomic

Indicators have 38 causal links with Selected Public Health

Indicators in benchmark #1, which is already more than half of
the positive causal relations in the benchmark, while most table
pairs are not causally linked. Returning tables when there is no
causally linked tables to the query table or failing to return causally
linked tables will largely a�ect the precision and recall.

5 RELATEDWORK
Dataset Discovery Dataset discovery identi�es datasets that meet
certain informational needs, supported by tools that improve search
and navigation e�ectiveness and scalability[27]. Dataset organiza-
tion and discovery are essential for e�cient data navigation, re-
trieval, and analysis, which involves techniques for �nding joinable,
or semantically similar datasets with approaches ranging frommeta-
data analysis to multi-dimensional similarities. Relevant dataset
discovery includes DeepJoin[9] which o�ers an embedding-based
method using Pre-trained Language Models and ANN Search to
e�ciently locate joinable datasets[14], and data lake organization
de�ned by Nargesian et al. as identifying optimal structure for
e�ciently locating the required dataset within a data lake[23].
Causal Discovery Causal discovery aims to uncover causal re-
lationships from observational data to create Directed Graphical
Causal Models (DGCMs). These models focus on d-separation and
Markov Equivalence Classes (MECs) essential for de�ning the
Causal Faithfulness Assumption[12]. Most causal discovery meth-
ods focus on causal relations within a single dataset. The founda-
tional PC Algorithm assumes i.i.d. sampling and iterates to reduce
from a fully-connected graph to a causal DAG’s MECs, with its cor-
rectness hinging on the causal Markov and faithfulness conditions.
The FCI Algorithm, extending PC’s framework, accommodates undi-
rected edges and latent confounders. GES, in contrast, starts with
no connections and incrementally adds edges based on metrics like
Bayesian information criterion(BIC), mapping �nal models to their
MECs.[12][31]. Huang et al. introduced CD-MiNi, a method for
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Table 4: Causal Dataset Discovery Results

Benchmark#1 Benchmark#2 Benchmark#3

Measurement avg precision avg recall avg precision avg recall avg precision avg recall

GPT-3.5 + default prompts 50.83 81.25 43.89 76.67 65.71 83.33
GPT-3.5 + CoT prompts 37.69 100 32.89 100 53.33 100
GPT-3.5 + 3-stage prompts 100 43.75 100 38.33 100 12.50
GPT-3.5 �netuned 100 43.75 82.14 55.00 100 12.50

GPT-4 + default prompts 100 62.50 100 85.00 100 58.33

identifying causal relationships over the complete set of variables
that are non-identical from multiple datasets using two estimation
approaches, showed theoretical identi�ability of causal structures,
and extended applications to confounding and cyclic scenarios[16].
Salimi et al. proposed a declarative language for causal queries
in relational domains, which involves constructing causal DAGs
without exogenous variables[29].
Causality and LLMs Advances in LLMs have notably improved
their performance on generating viable responses and insights
from textual schemas.[18] Immanuel Trummer’s work shows that
even smaller LLMs can accurately predict data correlations us-
ing just column names, applicable across various data correlation
metrics[33]. Kıcıman et al. highlight the potential of LLMs in causal
reasoning, showing their e�ectiveness in pairwise causal discov-
ery tasks, suggesting their use to complement traditional causal
analysis[18]. Long et al. see LLMs as imperfect experts in causal
discovery, demonstrating how LLMs can re�ne outputs of causal dis-
covery algorithms, though results vary by dataset and model[19].
However, it has been arguable regarding LLMs’ capabilities on
causal tasks. Jin et al. challenge the capability of LLMs in causal
tasks, showing through the CORR2CAUSE task that even �ne-tuned
LLMs struggle with causal inference from correlation, generally
failing in out-of-distribution generalization[17]. Similarly, Zečević
et al. argue LLMs lack genuine reasoning in causal tasks and only
mimic training data[39].

6 DISCUSSION AND FUTUREWORK
The current study, while pioneering in its approach to discovering
causal links over join in complex datasets, encounters several lim-
itations that could impact the robustness and applicability of its
�ndings.

A primary challenge arises from the size of the Chicago Causal
Link Discovery Benchmark, where the construction of this bench-
mark is an intensive process due to the inherent rarity of causal
relations and therefore the intensive manual labeling e�orts at
identifying positive causal links. Given the constraints of time and
resources, our ability to develop a more expansive benchmark, en-
riched with high-quality labels, was restricted. This limitation is
particularly pertinent as we envision the application of our method-
ology in expansive data repositories such as data lakes, where
the scope and scale of data signi�cantly exceed the benchmark’s
current capacity. Future work should, therefore, focus on expand-
ing the benchmark to better represent the vastness and variety of

real-world data, enhancing the generalizability and e�ectiveness in
production environments.

Moreover, an alternative data-driven method is desired as there
is an absence of suitable approaches to supplement LLMs for causal
relation identi�cation. Determining causal relations among enor-
mous datasets across various �elds will inevitably involve important
missing variables, It is anticipated to have crucial covariates missing
from observational datasets across various �elds, and thus typical
statistical measures are unable to take place without strong assump-
tions on missing variables, usually by disregarding them. Besides,
data-driven methods are likely to conclude that similar or identical
variables are causally linked, for example, “% of employees with
Debt” could be causally linked with “# of employees with Debt”,
where we do not wish to see such redundancy. In addition, it may
also be arguable to include column values in the prompts such that
LLMs respond with reference to data. However, we empirically
�nd LLMs perform worse with a sample of column values, but it
is open for future study to see if integrating column values with
other strategies could work better.

Meanwhile, we currently use exhaustive iteration to �nd join-
able tables by attempting to join every combination of tables on
every categorical column, while algorithms that discover joinable
tables could potentially simplify this process by e�ciently �ltering
joinable columns and tables. Besides, our methodology focuses on
numerical column pairs joined over categorical columns due to
tractability concerns, but it could be extended to include categorical
columns and use numerical columns for joining with advanced
optimization techniques.

Last but not least, the e�ectiveness of LLMs in understanding
causality is debated, as they may overly rely on causal facts from
training data without a nuanced grasp of causality[39], possibly
limiting their generalization in real-world causal dataset discovery
tasks. Potential substitutes to LLMs may include encoder models for
semantics and contextual understanding and a classi�er for causal
link determination, which also bene�ts from lower computational
costs. Future research is encouraged to explore the capabilities of
LLMs for causality more deeply and the possibilities of alternative
approaches.
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A APPENDIX
A.1 LLM Prompting Templates
Default Prompts with Role-prompting and De�nitions
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant for causal reasoning. Include
answer A, B, or C within the tags <Answer>A/B/C</Answer>."
},
{
"role": "user",
"content": "Causality is an in�uence by which one event, process,
state, or object contributes to the production of another event,
process, state, or object where the cause is partly responsible for
the e�ect, and the e�ect is partly dependent on the cause.Choose
the correct causal relation between {var1} and {var2}: A. {var1}
causes {var2}; B. {var2} causes {var1}; C. no causal relation between
{var1} and {var2}." } ] }

Chain of Thought(CoT) prompt
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant for causal reasoning. Include
answer A, B, or C within the tags <Answer>A/B/C</Answer>."
},
{
"role": "user",
"content": "Causality is an in�uence by which one event, process,
state, or object contributes to the production of another event,
process, state, or object where the cause is partly responsible for
the e�ect, and the e�ect is partly dependent on the cause.Choose
the correct causal relation between {var1} and {var2}: A. {var1}

causes {var2}; B. {var2} causes {var1}; C. no causal relation between
{var1} and {var2}.
Let’s work this out in a step by step way to be sure that we
have the right answer. Provide your �nal answer within the tags
<Answer>A/B/C</Answer>." } ] }

Three-stage prompt
{
"messages": [
{
"role": "system",
"content": "You are an expert in analyzing public data."
},
{
"role": "user",
"content": "You are investigating the cause-and-e�ect relationships
between {var1} and {var2}. Please understand the real meaning of
each variable, and explain them in order." },
{
"role": "assistant",
"content": {step-1 response}
},
{
"role": "user",
"content": "Causality is an in�uence by which one event, process,
state, or object contributes to the production of another event, pro-
cess, state, or object where the cause is partly responsible for the
e�ect, and the e�ect is partly dependent on the cause. Based on
{step-1 response}, analyze the cause-and-e�ect relationships be-
tween them. Choose the correct causal relation between {var1} and
{var2}: A. {var1} causes {var2}; B. {var2} causes {var1}; C. no causal
relation between {var1} and {var2}.
Let’s work this out in a step by step way to be sure that we have
the right answer. Provide your �nal answer within the tags <An-
swer>A/B/C</Answer>." },
{
"role": "assistant",
"content": {step-2 response}
},
{
"role": "user",
"content": "Based on your explanation, check whether the causal
statement {step-2 response} between A and B is correct, and give
the reasons. If you believe the causal statement is true, respond
with <Answer>True</Answer>. If you believe the causal statement
is false, analyze the cause-and-e�ect relationships between them:
Which cause-and-e�ect relationship is more likely?" },
] }

https://arxiv.org/abs/2305.08741
https://arxiv.org/abs/2308.13067
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.14778/2994509.2994534

	Abstract
	1 Introduction
	2 Problem Definition
	3 Causal Dataset Discovery
	3.1 Candidates Generation and Screening
	3.2 Causal Link Discovery using Large Language Models

	4 Evaluation
	4.1 Chicago Causal Link Discovery Benchmark
	4.2 Implementation and Setup
	4.3 Experimental Results

	5 Related Work
	6 Discussion and Future Work
	References
	A Appendix
	A.1 LLM Prompting Templates


