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Robustly encoding certainty in a metastable neural circuit model
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Localized persistent neural activity can encode delayed estimates of continuous variables. Common experi-

ments require that subjects store and report the feature value (e.g., orientation) of a particular cue (e.g., oriented

bar on a screen) after a delay. Visualizing recorded activity of neurons along their feature tuning reveals

activity bumps whose centers wander stochastically, degrading the estimate over time. Bump position therefore

represents the remembered estimate. Recent work suggests bump amplitude may represent estimate certainty

reflecting a probabilistic population code for a Bayesian posterior. Idealized models of this type are fragile

due to the fine tuning common to constructed continuum attractors in dynamical systems. Here we propose

an alternative metastable model for robustly supporting multiple bump amplitudes by extending neural circuit

models to include quantized nonlinearities. Asymptotic projections of circuit activity produce low-dimensional

evolution equations for the amplitude and position of bump solutions in response to external stimuli and

noise perturbations. Analysis of reduced equations accurately characterizes phase variance and the dynamics

of amplitude transitions between stable discrete values. More salient cues generate bumps of higher amplitude

which wander less, consistent with experiments showing certainty correlates with more accurate memories.

DOI: 10.1103/PhysRevE.110.034404

I. INTRODUCTION

Working memory involves the essential ability to encode

and store information for short periods of time [1]. Since

estimation errors can propagate through subsequent compu-

tations [2], robust and flexible maintenance of information is

key for daily tasks like decision making and planned move-

ment [3–5]. Delayed estimates of a continuous object feature

value are encoded by persistent and spatially localized neu-

ral activity across multiple brain regions [6] sustained by

feature-specific excitation and lateral inhibition [1,7]. Esti-

mate abnormalities can be indicators of neural dysfunctions

arising in schizophrenia [8], autism [9], and attention deficit

hyperactivity disorder [10]. Thus identifying mechanisms

supporting working memory stability may guide diagnos-

tics for predicting neuropsychopathologies [11]. Biologically

aligned computational models are useful for identifying how

such disorders present and may also act as a testbed for inter-

vention [10,12,13].

We focus here on extending neural circuit models of visu-

ospatial working memory, building on decades of successful

interaction between oculomotor delayed response experi-

ments and physiologically inspired models [5,7,14]. In the

task, a subject must identify and remember the position of

a briefly presented cue and then indicate the remembered

location after a few seconds. Neural recordings reveal that

the centroid of neural activity bumps encodes the remem-

bered location of the cue during the delay and response

[15]. Connections between pyramidal (excitatory) neurons
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maintain persistent activity during the delay and interneuron

(inhibitory) populations help localize activity to those with

similar feature tuning as the cue [1]. Fluctuations in neural

and synaptic activity cause the activity bump to wander diffu-

sively, generating response error variance that scales roughly

linearly with time [15–18].

Subjects also appear to reliably encode confidence (or

certainty) in their delayed estimates [19]. Confidence reports

align with accuracy, suggesting delayed estimates are rep-

resented probabilistically, possibly by the firing rate level

of persistent activity in neurons encoding the estimate [20]

which has been observed to increase with training and higher

working memory performance [21]. Peak neural activity dur-

ing retention periods has been shown to increase with strength

of evidence [4,22], consistent with Bayesian computation

[23–25]. Visual attention [26], stimulus presentation duration

[27,28], and cue contrast [26,27] all can increase spike rates

and corresponding estimates in neural circuits representing

recalled sensory stimuli [29–31]. Overall, these experiments

suggest increased (decreased) activity during delay periods

generates higher (lower) certainty and more (less) accuracy

in estimates [19,22,32].

Our models relate neural activity amplitude and response

errors along these lines. Building on physiologically inspired

models [7,15] and stochastic methods [33,34] linking neural

circuit activity to delayed estimates, we develop a theory of

activity-based encoding of confidence and its impact on re-

sponse accuracy. Larger-amplitude bumps have steeper spatial

profiles and wander less in response to fluctuations, bet-

ter retaining estimates [35]. The theory of bump attractors

must be extended to consider how bump amplitude impacts

estimate storage and readout [24,36]. Most circuit models

support bumps of a single amplitude, generating a bistable
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FIG. 1. Schematic of local metastability in a ring attractor network. Consistent with recording [43,44] and modeling [45,46] studies of

metastable neural circuits, stronger and/or longer stimuli successively and discretely recruit more active microclusters locally in a neural

circuit. Such microclusters may emerge spontaneously in development due to interactions of self-sustained activity with neuronal migration

and outgrowth [47,48]. Macroscale connectivity has ring topology akin to that inferred and observed in recordings of neural circuits encoding

periodic continuum variables [14,49–51].

amplitude space in which a stable quiescent state and stable

wide bump are separated by an unstable narrow bump [37,38].

Bumps are either instantiated or not but cannot encode cer-

tainty in bump amplitude since they filter out richer cue infor-

mation often represented in neural recordings [29]. Here we

propose and analyze a mechanism for robust encoding of cer-

tainty in activity bumps with graded amplitude values which

can be reached in response to variable stimulus features.

Metastability of firing rate states is a common phenomenon

in the brain, observed across multiple timescales. Single

neurons can occupy multiple possible discrete firing rates

states without drive [39], which could arise due to network

level phenomena revealed in stochastically switching firing

rate sequences [40,41]. Single-neuron models with multiple

bistable dendritic compartments exhibit robust and quantized

firing rate sets, providing short-term memory of transient in-

puts represented by quasicontinuous staircaselike firing rate

functions [39]. Recent complementary work has suggested

strong and sustained oscillatory input from intrinsic cell

mechanisms or circuitry may work similarly [42], producing

phase-locked states with graded firing rate amplitudes. Alter-

natively, recorded macroscale neural population activity also

exhibits multiple metastable states with local attractor-like

dynamics [40]. Furthermore, transitions between metastable

state sequences observed in neural data are well captured

by clustered population spiking models that globally exhibit

discrete firing rate increases [see Fig. 1 and Refs. [40,41,43]].

In contrast to metastable neural circuit models [45,46,52],

theory has also pursued finely tuned circuit models to sup-

port activity bumps with continuously graded amplitudes

[24,25,36]. Fixing the gain of a piecewise linear firing rate

function in spatially extended rate models generates activity

bumps whose position and amplitude jointly lie on a planar

continuum attractor [36]: radial location encodes amplitude

and angle encodes position. However, model perturbations

destroy the line attractor [53,54] and the bump amplitude

wanders in response to noise. Such fragility is alleviated by

breaking the symmetry of such continuum attractors, stabiliz-

ing a discrete set of attractors separated by saddles [55,56];

more aligned with the discrete and quasicontinuous firing

rates sets examined in other studies [39–42].

Thus, we introduce and analyze a neural circuit model

supporting metastable dynamics akin to those observed and

derived in a number of prior models [39,42,44,45,57] and

supported here with staircase shaped input-firing rate relation-

ships. Metastability is conceived as arising from successive

activation of neural microclusters with increasing cue salience

(Fig. 1). Stable activity bump solutions have multiple graded

amplitudes allowing stimulus-dependent encoding of estimate

certainty (Sec. II), whose dynamics are characterized by re-

duced phase-amplitude equations (Sec. III). Our model is

more robust to perturbations than prior models with a contin-

uum of amplitudes [36] or an all-or-none (bistable) response

[37]. Bumps subjected to fluctuating inputs retain a roughly

constant amplitude for long time intervals, and their ampli-

tude dependent wandering dynamics can be determined from

reduced equations (Sec. IV).

II. MODEL EQUATIONS

Our network attractor model encodes an angle on the cir-

cle � ∈ [−π, π ), a common requirement of memory and

navigational tasks [14,49,51] (see Table I for parameters).

Excitatory and inhibitory neural populations are collapsed to

a single neural field (integrodifferential) equation organized

TABLE I. Numerical and model parameters for Eq. (1).

Parameter Definition Value

x Domain [−180, 180]◦

dx Spatial increment 360

n
where n = 212 + 1

dt Time step 0.025

Ae E strength 1.5

Ai I strength 0.5

κe E synaptic footprint 20

κi I synaptic footprint 1

M Fourier modes 20

N Firing rate steps 5

θ Firing thresholds [0.035,0.1,0.165,0.234,0.298]

Ac Cue amplitude 1

ac Cue radius 0.02 radians or ≈1.15◦
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(a)

(d)

(b) (c)

FIG. 2. Model structure and core dynamics. (a) Excitatory and inhibitory network connectivity depends on difference in stimulus angle

preference. (b) Broader and weaker inhibitory connectivity promotes stable and localized activity bumps which can exhibit multiple graded

amplitude values due to stairstep firing rate nonlinearities [see panel (d)]. Bump activity U (x) is plotted here as a function of angle x (in

degrees, not radians). (c) Phase-amplitude space plots of bumps reveal concentric ring attractors separated by unstable ring repellers, stabilizing

amplitude representations. (d) Increasing input successively engages higher firing rate states in the stairstep transfer function.

with a ring topology. Effective input u(x, t ) to local clusters

at time t is indexed by angular preference along a continuum

(x ∈ [−π, π ) for analysis, but sometimes converted to degrees

180x/π for plotting), and clusters with similar orientation

preferences are strongly coupled by excitation while those

with dissimilar preferences effectively inhibit each other [37].

Evolution of network activity is described by the spatially

extended Langevin equation:

du(x, t ) =
[

−u(x, t ) +
∫ π

−π

w(x − y) f (u(y, t ))dy

+ Ic(x, t )

]

dt +
√

εdW (x, t ). (1)

Recurrent connectivity targeting clusters x from angular posi-

tion y is described by the effective synaptic kernel, w(x − y)

[Fig. 2(a)], which is locally excitatory and laterally inhibitory.

A single stationary bump solution is generated when con-

sidering a Heaviside step nonlinearity f (u) = H (u − θ ) with

H (u − θ ) = 1 if u � θ and 0 otherwise [33,34,37,58,59]. To

incorporate certainty we examine a sequence of metastable

amplitude states; generating stationary bump solutions

[Fig. 2(b)] of different amplitudes [Fig. 2(c)] when we con-

sider staircase firing rate functions with N steps [Fig. 2(d)]

f (u) =
1

N

N
∑

k=1

H (u − θk ). (2)

Each step on the staircase reflects successive cluster activa-

tions (similarly to Ref. [41]), prompting increased popula-

tion level firing activity associated with distinct metastable

states (Fig. 1). Appropriate choices of the thresholds

θ = [θ1, . . . , θN ] provide for N stable bump solutions [e.g.,

N = 5 in Fig. 2(b)]. Bumps are marginally stable to shifts and

so translationally invariant [Fig. 2(c)]. Unstable solutions act

as separatrices between the stable bumps. Section III provides

details on the stability analysis.

Two limits of Eq. (2) are of interest from previous stud-

ies of attractor solutions to Eq. (1). First, taking N = 1,

we recover a Heaviside nonlinearity, imposing a model with

all-or-none responses, either exhibiting stable bumps or no

activity, as shown by Amari [37]. This limit has been useful

in analyses of the dynamics of bumps as it allows for ex-

plicit calculation of solutions, localization of linear stability

calculations, and interface methods for determining nonlin-

ear dynamics [35,37,58,60]. Alternatively, fixing θk = θ · k/N

with k ∈ {1, 2, . . . , N} and taking N → ∞ generates a piece-

wise linear firing rate function

f (u) =

⎧

⎨

⎩

1, u � θ,

u/θ, 0 < u < θ,

0, u � 0.

Selecting the gain 1/θ fine-tunes the model [54] so it exhibits

bumps with a continuum of amplitudes [36]. Other continuous

forms of firing rate function f (u) could be obtained in the

limit N → ∞ with careful choices of θk .

Network connectivity w(x) is assumed to be shaped as

the difference w(x − y) = wE (x − y) − wI (x − y), collapsing

excitation and inhibition into a single population, which can

be done rigorously using a separation of timescales anal-

ysis [37,61]. Contributions from excitatory and inhibitory

populations are given by von Mises distributions wk (x) =
Akexp[κk[cos(x) − 1]]. Approximation of the effective weight

function w(x) = wE (x) − wI (x) using a finite set of even
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Fourier modes allows us to write

w(x) = W0 +
M

∑

j=1

Wj cos( jx),

where the first mode ( j = 1) is dominant and has positive

weight, due to the local excitation and lateral inhibition

[1,14,15].

Cue contrast, size, and clarity is parameterized by the

convolution:

Ic(x, t ) =
Ac(t )

2
w(x) ∗

[

erf
x + ac

σc

− erf
x − ac

σc

]

, (3)

where Ac(t ) = AcueI[t c
α ,t c

ω](t ) describes the temporally depen-

dent strength of the cue, I
(t ) = 1 for t ∈ 
 (cue on) and

0 otherwise (indicator function), and ac is the cue halfwidth.

Increasing σc � 0 smooths the input so that in limits σc → ∞
flattens the profile and σc → 0+ yields a top hat convolved

with the weight kernel.

Spatially extended Wiener process increments have

zero mean, spatial correlations 〈dW (x, t )dW (y, z)〉 = C(x −
y)δ(t − s)dtds with δ(x) the Dirac delta distribution, and

are scaled to be weak (0 < ε � 1). Spatial correlations are

simulated by spatially convolving white noise increments

dϒ(x, t ) with an appropriate filter F (x), so that if dW (x, t ) =
F (x) ∗ dϒ(x, t ), it can be shown that C(x − y) =

∫ π

−π
F (x −

z)F (y − z)dz [33].

Numerical simulations (see Appendix A for details) show

cues of increasing salience (e.g., strength, time-length, size)

generate bumps of increasing amplitude [Fig. 2(b)]. We next

derive conditions for bumps, their stability, and their phase-

amplitude dynamics in response to perturbations.

III. DETERMINISTIC ANALYSIS

Explicit bump solutions to Eq. (1) can be directly con-

structed using self-consistency. Stability is determined by an

associated linearized operator. An appropriate ansatz inspired

by observations from stability calculations then paved the way

for low-dimensional reductions of bump dynamics to a set of

evolution equations. We conclude this section by identifying

how our metastable neural circuit models provide more robust

representations of certainty and input angle than past models.

A. Stationary solutions

Time-independent solutions u(x, t ) = U (x) to Eq. (1) with

ε ≡ 0 and Ic ≡ 0 satisfy U (x) = w(x) ∗ f (U (x)). Decompos-

ing the weight function into M Fourier modes, leveraging

trigonometric identities, and examining even solutions, we

find stationary solutions take the form:

U (x) =
M

∑

j=0

Wj〈cos( jx), f (U (x))〉
︸ ︷︷ ︸

Ū j

cos( jx), (4)

where 〈p(x), q(x)〉 =
∫ π

−π
p(x)q(x)dx is an inner product. For

any firing rate function, we can form a dense, nonlinear,

implicit system for the coefficients Ū j [33,38,62]

Ū j = Wj

〈

cos( jx), f

[
M

∑

j=0

Ū j cos( jx)

]
〉

. (5)

For the staircase firing rate f , Eq. (2), we can find N thresholds

(θ1 < · · · < θN ) such that there are N possible bump solutions.

Index bump states as B = 1, . . . , N (e.g., B = 1 and B = N

represent the lowest and highest bump-amplitude states), then

there are B interfaces (or halfwidths) ai satisfying the level set

conditions, U (±ai ) = θi. The profile of the Bth bump crosses

B levels of the firing rate function, where 1 � B � N , so

stationary bumps satisfy

U (x) =
2

N

B
∑

k=1

⎡

⎣W0ak +
M

∑

j=1

Wj cos( jx)

j
sin( jak )

⎤

⎦.

Utilizing the threshold-crossing conditions θi = U (ai ) for

i = 1, . . . , B one can implicitly define the half-widths ai from

the system of equations

θi =
2

N

B
∑

k=1

⎡

⎣W0ak +
M

∑

j=1

Wj cos( jai )

j
sin( jak )

⎤

⎦ (6)

for i = 1, . . . , B. The system Eq. (6) can be numeri-

cally solved iteratively across a range of thresholds (see

Appendix B). Cascades of saddle node bifurcations for

each half-width and threshold pair emerge (see Fig. 9 in

Appendix B). Up to N + 1 stable solutions (including the

quiescent state, U ≡ 0) exist for a neural field with an

N-step staircase firing rate, separated by N unstable bumps

[see Fig. 3(a) for N = 2 example]. Alternatively, one can also

utilize approximations to stationary bump solutions assuming

they are parameterized by a single amplitude A which repre-

sents the scaling of the peak [Fig. 3(b)].

B. Stability

Stability of bumps can be determined by examining the lin-

ear dynamics of perturbations at the interfaces defined by the

level sets u(x, t ) = θi analogously to Refs. [33,37,58,59,61].

We study small smooth perturbations of the bump using

the ansatz u(x, t ) = U (x) + ψ (x, t ), where ||ψ || << 1. For a

given bump solution state 1 � B � N , we plug in the ansatz,

Taylor expand, and truncate to first order to obtain the lin-

earized dynamics,

∂tψ = −ψ +
1

N

B
∑

k=1

∑

a=±ak

ψ (a)w(x − a)

|U ′(ak )|
≡ Lψ, (7)

where we define the linear operator

Lu(x) = −u(x) + w(x) ∗ [ f ′(U (x))u(x)]. (8)

Note, to obtain this result, we have formally Taylor expanded

the Heaviside nonlinearities that comprise f (u) and whose

discontinuities are shielded by integration against the pertur-

bations ψ (x, t ). Formulas for the distributional derivatives are
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(a) (b)

FIG. 3. Stationary bump solutions. (a) All five possible solutions U (x) to Eq. (1) are plotted in degrees x for the case of a staircase firing

rate Eq. (2) with N = 2: Stable “off” state U ≡ 0; stable (purple) and unstable (red) B = 1 bump profiles only intersect lower threshold

U (a1) = θ1 (light dash dot line); stable and unstable B = 2 bump profiles intersect both low U (a1) = θ1 and high U (a2 ) = θ2 (dark dash dot

line) thresholds. (b) Bump solutions U (x) all have roughly the same normalized profile (Ũ (x) = U (x)/U (0)) allowing us to represent them

by near-exact amplitude solutions to the implicit equation A = 〈w(x), f (AŨ (x))〉, revealing the “off” state (blue); unstable bumps (red); and

stable bumps (purple) as points along the line of amplitudes A.

obtained by noting

δ(x + ak ) − δ(x − ak ) =
d

dx
[H (x + ak ) − H (x − ak )]

=
d

dx
H (U (x) − θk )

= H ′(U (x) − θk )U ′(x)

and then dividing by the odd function U ′(x). Summing, we

then find

f ′(U (x)) =
1

N

B
∑

k=1

δ(x − ak ) + δ(x + ak )

|U ′(ak )|
, (9)

where we can determine

U ′(x) =
1

N

B
∑

k=1

[w(x + ak ) − w(x − ak )].

Separating solutions ψ (x, t ) = ψ (x)eλt and evaluating Eq. (7)

at interfaces x = ±a1, . . . ,±aB localizes the stability problem

to a discrete eigenvalue problem determined by a 2B × 2B

matrix. The quiescent solution u = 0 is stable [Fig. 2(d)], due

to the pure linear decay arising when ψ (±ak ) ≡ 0 for all k in

Eq. (7). For each B where bump solutions exist, we generally

find two stationary solutions: a stable wide solution and an

unstable narrow solution that is a separatrix between the wide

solution and the state below [33,37], finding no more than

N + 1 stable solutions and N unstable solutions arising due

to amplitude quantization of the metastable N step firing rate

function.

To illustrate how the stairstep firing rate function impacts

the stability problem beyond the standard single step (N = 1)

case [37], consider N = 2, so the linearized and localized

eigenproblem becomes

(λ + 1)ψ (x) =
1

2

2
∑

k=1

∑

a=±ak

ψ (a)w(x − a)

|U ′(ak )|
(10)

for x = ±a1,±a2, a 4 × 4 system. As expected, the bump is

marginally stable to shifts. Assuming ψ (−ak ) = −ψ (ak ) for

k = 1, 2, plugging in λ = 0, and enforcing self-consistency,

we obtain a single equation relating perturbations of the inner

ψ (a2) and outer ψ (a1) interfaces

ψ (a1)

ψ (a2)
=

w(0) − w(2a1) + w(�a) − w(a+)

w(0) − w(2a2) + w(�a) − w(a+)
,

where �a = a2 − a1 and a+ = a1 + a2. This reflects the

marginal stability due to translation invariance. We do not

expect general bump stability conditions to emerge from

examining these perturbations. Stability is often determined

by studying width perturbations which are even symmet-

ric ψ (−ak ) = ψ (ak ) for k = 1, 2. This generates a 2 × 2

eigenproblem whose solutions imply stability given positive

determinant and negative trace of the associated matrix, pro-

viding the conditions

2w(2a1)w(2a2) > (w(2a1) + w(2a2))(w(�a) − w(a+))

and

(w(�a) − w(a+))2 > −2w(2a1)w(2a2)

+ 2(w(2a1) + w(2a2))(w(0) + w(�a) − w(a+)).

Alternative conditions can be constructed for other perturba-

tion types, including cases where interfaces at different levels

are shifted in opposite directions.

C. Reduced equation for amplitude evolution

Low-dimensional reductions of neural field dynamics on

the ring x ∈ [−π, π ) can be derived using Fourier decom-

positions [33,38,62–65]. A complementary approach uses

eigenfunctions of the linearized system to partition dynamics

into a position variable for a bump (phase) and its amplitude

[36,66]. Such an approach starts with the ansatz

u(x, t ) = A(t )Ũ (x − �(t )) +
√

εψ (x − �(t ), t ), (11)

with � = O(
√

ε). Changes in amplitude can be large in the

event of transitions to neighboring states by external input or

accumulated noise; thus we consider dA > O(
√

ε). In general

we assume to leading order that perturbations of the bump

shift its amplitude A(t ) and/or phase �(t ) but otherwise the

bump roughly retains its shape defined as Ũ (x) = U (x)/U (0).
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(a) (b)

FIG. 4. Stimulus-driven bump-amplitude dynamics. (a) Increasing cue duration in Eq. (1) generates larger activity responses, which settle

into larger-amplitude bumps. (b) Amplitude ansatz Eq. (11) and the amplitude evolution Eq. (15) approximate the buildup and relaxation of

the bump amplitude in the full Eq. (1) well. Mild inaccuracies arise due to the assumption of fixed shape u(x, t )/u(0, t ) ≈ Ũ (x).

A low-dimensional description of input-driven bump dynam-

ics can then be obtained by first plugging Eq. (11) into a

noise-free version of Eq. (1), expanding and truncating to

obtain leading-order terms:

A′Ũ (x) − �′AŨ ′(x) + ψt − L(ψ )

≈ −AŨ (x) + w(x) ∗ f (AŨ (x)) + Ic(x + �, t ),

with the linear operator L as defined in Eq. (8). To obtain

the evolution equation for the amplitude, A, we truncate to

leading order and exploit the even symmetry of Ũ (x) to isolate

the temporal derivative. To next order we have the following

terms:

−�′AŨ ′(x) + ψt − L(ψ ) ≈ Ic(x + �, t ). (12)

The eigenvalue associated with shifts (U (x − �) ≈ U (x) −
�U ′(x)) is zero, LU ′ ≡ 0. To ensure bounded solutions we

require the right hand side of the equation to be orthogonal to

the null space of the adjoint operator

L∗(q(x)) = −q(x) + f ′(U )(x)[w(x) ∗ p(x)]. (13)

The null(L∗) is spanned by a single odd function de-

fined for a stationary solution in state 1 � B � N , φo(x) ≡
f ′(U (x))U ′(x), where f ′(U ) is as defined in Eq. (9):

L∗( f ′(U )U ′) = − f ′(U )U ′ + f ′(U )[w ∗ [ f ′(U )U ′]] ≡ 0,

since U ′ = w
′ ∗ f (U ) = w ∗ [ f ′(U )U ′] from integration by

parts. Thus taking the inner product of f ′(U (x))U ′(x) with

Eq. (12) yields the evolution equation for �. Together we have

the system

A′ = −A + G(A) + JA(�, t ), (14a)

�′ = −
1

A
J�(�, t ), (14b)

where ||p||2 = 〈p(x), p(x)〉 is the squared norm induced by

the inner product and

G(A) =
〈Ũ (x),w(x) ∗ f (AŨ (x))〉

||Ũ (x)||2

describes the impact of recurrent connectivity on the bump

amplitude, and

JA(�, t ) =
〈Ũ (x), Ic(x + �, t )〉

||Ũ (x)||2
,

J�(�, t ) =
〈 f ′(U (x))U ′(x), Ic(x + �, t )〉

〈 f ′(U (x))U ′(x), Ũ ′(x)〉
,

describe how the even and odd parts of the cue input steer

the amplitude and phase. The phase is shifted by cues that

apply odd perturbations to the bump, though increasing the

amplitude A of the bump decreases these shifting responses.

Amplitudes relax to a stable steady state once cues are

shut off, determined by the basin of attraction demarcated

by θi where they reside [Fig. 4(a)]. Changing cue contrast,

size, and clarity also alters long-term bump amplitudes (see

Appendix C and Fig. 10). Assuming separability of the cue

Ic(x, t ) = IA(t )J (x), the phase � in Eq. (14) will not shift, so

taking �(0) = 0 without loss of generality, we can reduce the

system to

A′ = −A + G(A) + J̄ IA(t ), (15)

where J̄ = 〈Ũ (x),J (x)〉/||Ũ (x)||2. Dynamics of Eq. (15)

match the buildup and relaxation to steady-state amplitudes

determined from full simulations with low error [Fig. 4(b)].

We can thus use Eq. (15) to approximate the transient dynam-

ics and stable bump profiles expected (freezing IA(t ) ≡ ĪA) as

the input amplitude is varied.

D. Bump robustness to model perturbations

Activity states in metastable neural circuits are robust to

dynamic perturbations, and also structural perturbations like

changes to connectivity or firing rate relations [39]. Line

attractor models which finely encode stimulus differences

can be generated by considering piecewise linear firing rate

relations [67], as in hand-designed neural circuit models

with a continuum of bump attractor amplitudes [24,25,36].

Their low-dimensional dynamics lie on a planar attractor

whose angular direction encodes stimulus estimates and ra-

dial dimension represents estimate certainty. However, even

mild structural perturbations [Fig. 5(a)] destroy the carefully
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(a) (c)

(b)

FIG. 5. Metastable neural circuit robustly encodes amplitude. (a) Memory robustness and flexibility tradeoff in circuits with quantized

firing rates. Amplitudes of stationary bumps A = maxx U (x) are represented as intersections (dots) of the inner product 〈w, f (AŨ )〉 (thick

line) and line of unity (thin line). Single step nonlinearities f (u) = H (u − θ ) support one stable bump, while staircase nonlinearities, Eq. (2),

with N steps can support N stable bumps. Equilibria persist in both models even when f (u) is perturbed (gray lines). A finely tuned piecewise

linear firing rate supports a continuum of bumps, but perturbations (see inset for slope perturbations) annihilate the line attractor. (b) Inputs of

varying time lengths either lead to a single active bump amplitude or no activity for the Heaviside network, a discrete and graded set of bumps

amplitudes for the staircase network, and a set of graded amplitudes along a continuum for the piecewise linear network [36]. The Heaviside

and staircase networks maintain these solutions under model perturbations. (c) Perturbations to the piecewise linear firing rate function lead to

bump collapse or the trivial quiescent solution, breaking the amplitude coding of the finely tuned system.

crafted continuum of amplitudes [Fig. 5(c)], motivating more

robust representations. Commonly used single step (Heavi-

side) nonlinearities in f (u) in Eq. (1) can only support bumps

with a single amplitude or a quiescent state, depending on

the duration of cues [Fig. 5(b)], but bump solutions are more

robust.

Our intermediate solution balances robustness and flexi-

bility by considering staircase firing rate functions, Eq. (2),

retaining multiple stable bump-amplitude states even when

structurally perturbed [Figs. 5(a) and 5(b)]. Even weak cues

can generate bumps, which do not arise in the single step

case. On the other hand while the piecewise linear firing

rate supports a continuum of possible amplitude states for

different cue durations [Fig. 5(b)], infinitesimal structural

perturbations (e.g., slope or threshold changes to the fir-

ing rate function, connectivity perturbations) annihilate the

line attractor [Fig. 5(c)], whereas the quantized firing rate

function allows for robustness to structural perturbations

while still providing an appreciable resolution of stimulus

representations.

IV. STOCHASTIC DYNAMICS OF BUMP PHASE

AND AMPLITUDE

Responses from tasks requiring delayed estimates of con-

tinuum quantities have been reliably modeled by bump

attractor models and their low-dimensional approximations

[7,15,56,68]. The phase �(t ) (e.g., centroid or peak) of

the bump encodes the estimate [15], so the phase variance

〈(�(t ) − �(0))2〉 across trials models memory degradation

[33,69] and scales linearly with delay time [17,70] (see,

however, Refs. [68,71] for more complex accounts of mem-

ory degradation). Strengthening cues in our model increases

the salience of bumps and the estimates they encode.

Noise in Eq. (1) causes bumps to wander diffusively with

larger-amplitude bumps wandering less [33,35,36], and bump

amplitudes can transition to neighboring values (Fig. 6). We

can derive accurate estimates of the rate of these transitions,

providing a new and extended theory of the degradation of

delayed estimate accuracy in neural circuits. Our reduced

phase-amplitude equations can also be used to estimate phase

variance across all possible bump amplitudes.

A. Stochastic phase-amplitude equations

In the analogous deterministic system, we showed the

ansatz Eq. (11) decomposes the effects of odd (even) per-

turbations into shifts (scalings) of the bump. Stochastic

perturbations from the spatially extended Wiener process

noise in Eq. (1) generate wandering in the phase variable

�(t ) [33], and occasional transitions in bump amplitude A(t )

to neighboring attractors. Plugging in the ansatz Eq. (11)

and integrating against the even and odd functions Ũ (x) and

f ′(U (x))U ′(x), we find a coupled system of stochastic differ-

ential equations

dA = [−A + G(A) + JA(�, t )]dt +
√

εdZA(�, t ), (16a)

d� = −
1

A
J�(�, t )dt −

√
ε

A
dZ�(�, t ), (16b)
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(a)

(b)

FIG. 6. Bump-amplitude transitions. (a) Noise (ε = 0.001) perturbs neural activity (purple heatmap) so the bump wanders within a trial.

Note that level sets (purple lines) u = θi. The reduction of attention between trials is modeled by an increase in noise (ε = 0.01) which rapidly

drives the bump to extinction through transitions in amplitude states. (b) Comparison of amplitude dynamics identified in the full model

simulation (purple) Eq. (1) and amplitude ansatz (orange) Eq. (17).

where noise increments are obtained by separating even and

odd parts,

dZA(�, t ) =
〈Ũ (x), dW (x + �, t )〉

||Ũ (x)||2
,

dZ�(�, t ) =
〈 f ′(U (x))U ′(x), dW (x + �, t )〉

〈 f ′(U (x))U ′(x), Ũ ′(x)〉
.

Increasing the bump amplitude dampens the impact of per-

turbations on the phase. Eq. (16) describes the stochastic

dynamics of the bump phase and amplitude, accounting

for nonequilibrium dynamics of the amplitude A (see also

Ref. [66]). Amplitude dynamics in Eq. (16a) can be further

approximated by a quantized chain of Markovian states as-

suming amplitudes remain near equilibria until fluctuations

kick them to neighboring steady states of the deterministic

system, which are roots of A = G(A) [33,72]. The phase �

lies on a continuum ring attractor [−π, π ), wandering with

a diffusion coefficient determined by the bump amplitude A.

We leverage our phase-amplitude system to estimate the mean

time to transition between amplitude states (Fig. 6), which im-

pacts the wandering of bump phase and the estimate retention.

B. Mean time for amplitude transitions

Defining stable (Ās
i ) and unstable (Āu

i ) bump amplitudes of

the noise-free system (A = G(A)), we have observed (Fig. 6)

that the full system tends to dwell near stable amplitudes

(Ās
i ) on short timescales, eventually hopping to neighboring

values (Ās
i±1). In Eq. (16), the amplitude A must pass through

unstable bump amplitudes (Āu
i or Āu

i+1) when transitioning.

Between transitions and in the absence of inputs, the trans-

lation symmetry of the spatially extended Wiener process

statistics ensures Eq. (16a) behaves as a one-dimensional

stochastic differential equation

dA = [−A + G(A)]dt +
√

εdZ̄A(t ). (17)

Fluctuation-induced transitions in amplitude A are deter-

mined by analyzing the associated Fokker-Planck equation of

Eq. (17). We can then formulate the mean exit time prob-

lem for A(t ) to depart the interval [Āu
i , Āu

i+1] when starting

at Ās
i (i = 0, 1, . . . , N). On the boundaries, Āu

0 → −∞ and

Āu
N+1 → ∞. The variance and diffusion coefficient of the

noise in Eq. (17) can be determined as 〈Z̄A(t )2〉 = DAt , where

DA =
〈Ũ (x), Ũ (x) ∗ C(x)〉

||Ũ (x)||4
.

The probability density p(A, t ) evolves according to the

Fokker-Planck equation

pt = −
∂

∂A
[(−A + G(A))p] +

DA

2
pAA, (18)

and p(A, 0) = δ(A − Ā0), the amplitude starts at some value

A0 ∈ [Āu
i , Āu

i+1]. We expect A0 = Ās
i , but to determine first

passage time statistics, we determine quantities across the

interval. Since it determines the timescale on which a station-

ary approximation of A in Eq. (16b) is valid, as well as the

higher-order dynamics of A, we are interested in the random

time T (A0) the amplitude in Eq. (17) escapes the interval

[Āu
i , Āu

i+1]. The mean time T (A0) = 〈T (A0)〉 is determined by

leveraging the backward Fokker-Planck (FP) equation [73],

describing the evolution of the probability q ≡ p(A, t |A0, 0)

we find the amplitude at A at time t given it started at A0 at

t = 0. The state variable in the backward FP equation is the

initial condition A0 and we use the adjoint linear operator of

Eq. (18) to define the flux

qt = [−A0 + G(A0)]qA0
+

DA

2
qA0A0

, (19)

= −J (A, t |A0, 0).

The probability we find the amplitude within [Āu
i , Āu

i+1] at time

t is given by integrating the density

∫ Āu
i+1

Āu
i

p(A, t |A0, 0)dA = G(A0, t ) = P(T (A0) > t ),

where the last equality follows from the fact that the amplitude

leaves the interval after t if it has not left by then. Integrating
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the backward FP Eq. (19), we obtain a related equation for

G(A0, t )

Gt = [−A0 + G(A0)]GA0
+

DA

2
GA0A0

, (20)

with boundary conditions G(A0, 0) = 1 if A0 ∈ [Āu
i , Āu

i+1] and

0 otherwise, while G(Āu
i , t ) = G(Āu

i+1, t ) = 0. The mean first

passage time can then be computed

T (A0) = −
∫ ∞

0

tGt (A0, t )dt =
∫ ∞

0

G(A0, t )dt .

A differential equation for T (A0) can be derived by integrat-

ing Eq. (20) over t ∈ (0,∞), finding

[−A0 + G(A0)]T ′ +
DA

2
T ′′ = −1, (21)

along with boundary conditions T (Āu
i ) = T (Āu

i+1) = 0. Equa-

tion (21) can be solved by integrating to find

T (A) =
2

DA�
(

Āu
i , Āu

i+1

)

[

�
(

Āu
i , A0

)
∫ Āu

i+1

A0

V
(

Āu
i , y′)

ν(y′)
dy′

−�
(

A0, Āu
i+1

)
∫ A0

Āu
i

V
(

Āu
i , y′)

ν(y′)

]

,

where V (a, b) =
∫ b

a
ν(x)dx and �(a, b) =

∫ b

a
dx

ν(x)
and

ν(A0) = exp

[
2

DA

(

V
(

Āu
i

)

− V (A0)
)
]

. (22)

Stochastic amplitude dynamics are strongly determined by

the potential function [Fig. 7(a)], formed by integrating

V (A) =
∫ A

−∞[A′ − G(A′)]dA′, which biases transitions to

lower-amplitude states over time. The energy barrier the

stochastic particle must surmount is lower on the left side

[Fig. 7(a)], so increases in neural variability following task-

relevant epochs (when variability is lower, due perhaps to

attention [74,75]) could serve to annihilate persistent activity

[see Fig. 6 and Refs. [33,66]].

To approximate the rate of transition over either barrier,

we assume that the mean time of escape over either bound-

ary will be roughly the same T ±(Ās
i ) ≈ T (Ās

i ) as is often

the case even with asymmetric potentials [72,73]. We then

approximate the rate of transition over either barrier r±
i ≈

π±
i (Ās

i )/T (Ās
i ) as the escape probability scaled by the mean

time. Exit probabilities π±
i (Ās

i ) are determined by deriving the

appropriate differential equation. First, integrate the probabil-

ity current through the boundary of interest J (Āu
i+1, t |A0, 0)

or −J (Āu
i , t |A0, 0). For instance, the probability the particle

exits via A = Āu
i+1 after time with t is

g+(A0, t ) ≡
∫ ∞

t

J
(

Āu
i+1, t ′∣∣A0, 0

)

dt ′

=
∫ ∞

t

[

(A0 − G(A0))q −
DA

2
qA0

]

dt ′.

Using the fact that q = p(Āu
i+1, t |A0, 0) satisfies Eq. (19), we

find that g+(A0, t ) satisfies

g+
t = (−A0 + G(A0))g+

A0
+

DA

2
∂2

A0
g+

A0A0
.

(a)

(b)

(c)

FIG. 7. Amplitude potential landscape and transition dynamics.

(a) Amplitude potential well landscape V (A) (blue line) deter-

mines drift via the descent of its gradient −V ′(A) = −A + G(A).

Potential peaks (red dashed) separate stable minima. Stochastic fluc-

tuations drive amplitude (purple particle) to escape minima, usually

downhill towards the off state (A ≡ 0). (b) Markov chain approxi-

mation of well-hopping dynamics. Transition rates from a state Ās
i to

its neighbor Ās
i±1 are approximated r±

i ≈ π±
i (Ās

i )/T (Ās
i ) by the ratio

of the escape probability and mean first passage time. Stable bump

amplitudes are enumerated from 0 (the off state) and 5 (the highest-

amplitude state). Noise ε = 0.01. (c) Mean transition times were

estimated by averaging over 1000 simulations (Mean: orange “x”;

blue lines: standard deviation) comparing well with theory (orange

line). See Appendix B for simulation details.

Taking t → 0+ and defining π+
i (A0) := g+(A0, 0), we

see that J (Āu
i+1, 0|A0, 0) vanishes if A0 �= Āu

i+1, since

p(Āu
i+1, 0|A0, 0) = δ(A0 − Āu

i+1), so g+
t (A0, 0) → 0 and

(−A0 + G(A0))∂A0
π+

i (A0) +
DA

2
∂2

A0
π+

i (A0) = 0,

where π+
i (Āu

i+1) = 1, π+
i (Āu

i ) = 0, and π+
i (A0) + π−

i (A0) =
1. We solve and π+

i (A0) = N (A0)/N (Āu
i+1) and π−

i (A0) =
1 − π+

i (A0), where N (A) =
∫ A

Āu
i

dy

ν(y)
. The escape probability

and exit rate associated with the left boundary of each well is

larger than for the right boundary [Fig. 7(b)], so A(t ) will tend

towards 0, and all bumps are eventually extinguished given a

long delay time, as suggested by behavior [76].

Mean transition time estimates align well with full system

simulations [Fig. 7(c)], making two key predictions. First,
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(a) (b)

(d
e
g
)

FIG. 8. Increased cue duration decreases wandering. (a) Top: Estimate distributions computed from bump peak after delay for cue durations

tc = 30, 70, 110 ms. Bottom: Wandering bumps u(x, t ) of low-, medium-, and high-amplitude following cues of different lengths. (b) Response

variance decreases with cue duration due to increasing bump amplitude. Noise ε = 0.01. See Table I for other parameters and Appendix A for

numerical methods.

higher-amplitude bumps transition to neighboring amplitudes

(usually lower) quicker than low-amplitude bumps. This does

not negate our overall claim that high-amplitude bumps are

more robust, since transitions from high amplitudes still gen-

erate medium to high-amplitude bumps. Second, transition

frequency increases with the fluctuation strength. Asymptotic

errors in approximating the potential exponentially impact

passage time estimates, which is obvious at low noise levels.

C. Phase variance estimates

We now study how bump amplitude shapes the wander-

ing of the bump phase �(t ). As has been found previously,

higher-amplitude bumps wander less [33,36]. Since the phase

encodes the remembered stimulus value �0, the variance

〈(�(t ) − �0)2〉 measures recall error. Variance is determined

by analyzing the reduced and forced equation for the phase,

Eq. (16b), which we write out in terms of integrals without

external inputs

d� = −
√

ε

A

〈 f ′(U (x))U ′(x), dW (x + �, t )〉
〈 f ′(U (x))U ′(x), Ũ ′(x)〉

. (23)

Fixing the amplitude A ≈ Ā ∈ Ās
0:N in Eq. (23) in the case of

rare transitions due to weak noise and/or short delays, we

compute variance 〈(� − �0)2〉 = D(ε)t , where

D(ε) =
ε

Ā2

〈 f ′(U (x))U ′(x), f ′(U (x))U ′(x) ∗ C(x)〉
[〈 f ′(U (x))U ′(x), Ũ ′(x)〉]2

.

Larger amplitudes Ā reduce the variance (Fig. 8), well pre-

dicted by our theory, as in findings showing higher certainty

reduces response errors [19,22]. Increased neural responses

(bumps of higher amplitude) occur in response to longer,

brighter, clearer, and larger cues generating more accurate

responses (i.e., there is less wandering).

V. DISCUSSION

Metastability is a powerful mechanism for supporting ro-

bust representation of information in neural circuits [43–45].

Recent works have begun to explore possible roles of multi-

stability in neuron firing arising from cell mechanisms such

as nonlinear denditric compartmentalization [39] and intrin-

sic subthreshold oscillation bands [42] which link steplike

firing rate sets of neurons and graded amplitudes of neuron

activity. On the macroscale, we have proposed a neural circuit

model inspired by microclustered architecture [45,46] of such

multistable neurons with population firing dependent on clus-

ter activation [41] which sustains neural population activity

bumps with multiple amplitudes. Rather than employing a

fragile model with a fine-tuned transfer function [24,25,36],

we considered a quantized firing rate function generating a

robust model reminiscent of metastable single-neuron models

with bistable dendritic compartments [39]. Our neural circuit

model’s dynamics can be reduced to evolution equations that

clearly account for how stochasticity and perturbations im-

pact delay encoding and confidence. Our analysis provides a

simple and understandable theory for increased accuracy of

delayed estimates made from more salient cues [22,28,29].

Our neural field model can support up to N pairs of bumps,

each pair including one stable and one unstable, when its

stairstep firing rate function possesses N steps. Active so-

lutions of the neural field asymptotically relax to similarly

shaped bump profiles, strongly suggesting an ansatz for low-

dimensionalizing system dynamics. Both external inputs and

noise can drive neural activity bumps between neighboring

amplitude values, as described by our reduced system. Our re-

duced equations not only accurately predict the wandering of

bumps in response to noise but also the timing and preference

of amplitude transitions. We find bumps formed from more

salient cues are more resilient to fluctuations and generate

more accurate response estimates.

Our analysis could be extended in several ways. Short-term

plasticity can further stabilize bumps during delay periods

[77], effects that could be analyzed using an interface based

analysis [59]. We could also consider models with separate

excitatory and inhibitory populations and develop theory sep-

arately tracking each bump’s phase and amplitude dynamics

[34]. Our phase-amplitude ansatz makes near-equilibrium as-

sumptions about the shape of the bump, but perturbations may

warp the bump profile in ways not well described by multi-

plicative scalings. Consideration of such additive changes to

neural population responses could more fully characterize the
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(a) (b) (c)

FIG. 9. Iteratively identifying bumps and stairstep firing thresh-

olds. We briefly illustrate the sequential procedure of determining

stable or unstable bump branches and stairstep firing thresholds.

(a) Select θ1 and find the B = 1 set of bump solution branches

(blue branch is stable); (b) After choosing θ1 find the second set of

branches (green or red lines in green region). (c) Iterate for thresholds

θ3:N . Gaps between solution regions arise since B = k + 1 bumps

must all have higher amplitudes than B = k bumps (lowest point on

neighboring red branch sits above blue branch).

continuum of spontaneous modulations to neural tuning [78].

Accounting for dynamic perturbations of bump profiles may

also improve the accuracy of our amplitude transition theory.

Also, our analysis is limited to firing rate functions with a few

steps, N = O(1), but could be extended to examine the limit

of many steps (N � 1) with frequent transitions between or

the impact of more irregular step spacings.

Quantized representation of inputs and even behavior

variables is supported by a number of other computational

and experimental studies. Clustered spiking networks can

also generate staircase firing rate relations [41,46], suggest-

ing that a mean-field analysis of such models could be a

fruitful direction of future study. Complementarily, modular

cortical networks exhibiting clustering at larger scales have

also demonstrated improved working memory performance

[6,79–81], further supporting the hypothesis that architectures

that engender metastability could underlie more robust delay

encoding. More recently, an analysis of neural activity in

hypothalamus has revealed that general behavioral states like

aggression may be encoded along a discrete and approximate

line attractor [82]. It is important to note that the destruction

of a line attractor may not be catastrophic for coding delayed

estimates or other states as long as the resulting evolution

of the dynamics is slow compared to the needed encoding

time [83].

Our neuromechanistic model provides several links be-

tween circuit features and behavioral response trends, pro-

viding a testbed for physiological theories of increased

errors and impaired processing for continuum estimates

in schizophrenia [8,28], autism spectrum disorders [9], or

attention deficit hyperactivity disorder [84]. Early detec-

tion of such abnormalities using noninvasive psychophysics

could speed diagnoses and the implementations of behavioral

interventions to help manage executive function in neurodi-

vergent populations [85,86]. Models that can connect aberrant

response statistics to underlying neurophysiology require

carefully balancing mathematical tractabilty and the inclusion

of hitherto unexplored features of the underlying biological

circuits.

Python code for simulating and analyzing our neural field

models are available [87].

APPENDIX A: MODEL EQUATION SIMULATIONS

Convolutions and spatially filtered noise were computed

using fast Fourier transforms. Euler-Maruyama is used to time

step Eq. (1) with initial conditions and inputs centering bumps

at x = 0. Numerical quadrature is performed using Riemann

sums. Table I gives simulation parameters unless otherwise

indicated in figure captions.

Amplitude transition times are found by (1) initializing

simulations starting with a bump having an amplitude corre-

sponding to a stable stationary bump, (2) running a stochastic

simulation until the estimated amplitude crosses through a

neighboring unstable bump value (or until a maximum time

is reached), and (3) recording the time of transition for 1000

trials with transitions detected within the delay or terminat-

ing when 25 successive or 100 cumulative trials have failed

to transition, which we take to indicate that the mean tran-

sition time is too close to or far beyond the cutoff time

for our parameterized method to make an accurate estimate.

Bump amplitudes are estimated as the peak activity value

maxx u(x, t ).

APPENDIX B: ITERATIVE CONSTRUCTION OF BUMPS

Bumps are constructed by identifying threshold intervals

in which solutions of successively higher amplitude exist.

Starting by solving the threshold condition Eq. (6) at the

first level (i = 1) and constraining θ1 < U (0), we can find

θ1 values that admit stable or unstable branches of B = 1

bumps. Then, finding the peak of the maximum U (0) for the

stable B = 1 bumps, we constrain an interval of possible θ2

values and use the Fourier coefficient equations Eq. (5) to

determine the next larger family of bumps of sufficiently high

amplitude so that θ2 < U (0). For a satisfactory θ2, we can

continue branches of stable or unstable bumps. This process

is then repeated by choosing an appropriate θk+1 > U (0) for

all B = k bumps calculated from the Fourier decomposition

given by Eq. (5), using Eq. (5) to compute the next branches

such that U (0) > θk+1 until k + 1 = N . See Fig. 9 for an

illustration.

APPENDIX C: AMPLITUDE DEPENDENCE

ON CUE CHARACTERISTICS

Here we qualitatively compare bump amplitudes to other

cue properties. Experiments show longer encoding periods

lead to higher accuracy and increased neural responses

[27,28], consistent with longer cue durations generating

bumps of higher amplitude [Fig. 4(a)]. Increasing cue con-

trast (stimulus amplitude) also increases neural responses [see

Refs. [26,27] and Fig. 10(a)]. Larger cues can also elicit higher

neural responses [see Ref. [88] and Fig. 10(b)]. Cue blurriness

can also impact detection and encoding [see Refs. [30,89] and

Fig. 10(c)].
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(a) (b) (c)

FIG. 10. Cue characteristics and certainty. Cue profile (Ac(t )[erf x+ac

σc
− erf x−ac

σc
] portion of Ic(x, t )) features are varied and resulting bump

amplitude determined. (a) Contrast controls cue strength Acue (bottom panel), whose increase generates higher-amplitude bumps. (b) Wider

cues generated by increasing the diameter 2ac increase bump amplitude. (c) Cue clarity (sharpness) is reduced by decreasing σc in Eq. (3),

decreasing encoded bump amplitude.
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