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ABSTRACT
“Simulation-based inference” is often considered a pedagogical strategy for helping students develop
inferential reasoning, for example, giving them a visual and concrete reference for deciding whether the
observed statistic is unlikely to happen by chance alone when the null hypothesis is true. In this article, we
highlight for teachers some implications of different simulation strategies when analyzing two variables.
In particular, does it matter whether the simulation models random sampling or random assignment? We
present examples from comparing twomeans and simple linear regression, highlighting the impact on the
standard deviation of the null distribution. We also highlight some possible extensions that simulation-
based inference easily allows. Supplementary materials for this article are available online.
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1. Introduction

The term “Simulation-based inference” (SBI) has come to indi-
cate curricula that focus on using tactile and computer-based
simulations before, or instead of, “normal-based” and “theory-
based” approaches, to help students understand the process of
statistical inference. For example, for a one-proportion test of
significance students can be asked to examine a distribution of
“could-have been” values of the statistic, obtained from a process
thatmodels the null hypothesis and the randomness in the study
design. For a 50/50 process, a tactile simulation could have every
student in class toss a coin n times, and then crowd-source their
simulated sample proportions of heads in a dotplot on the board
to seewhere the observed sample proportion from the study falls
in this distribution. This method for assessing the strength of
evidence against the null hypothesis is arguably more intuitive
than using the binomial or normal distributions alone (Cobb
2007; Rossman and Chance 2014).

With two variables, the question of how to best design
the simulation is debatable. For example, with two categorical
variables, one could design the simulation to model random
sampling by taking random samples from two different pop-
ulations with the same population proportion. Or one could
design the simulation tomodel random assignment by shuffling
the response outcomes (e.g., writing “success” and “failure” on
index cards) and reassigning them to the explanatory variable
groups. An advantage to using the second approach is that
reshuffling the response values models the process of “breaking
the association” between the explanatory and response variables
which provides students with a concrete illustration of what
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could happen (for any choice of statistic) “by chance alone.” This
method of reshuffling can be applied to all two-variable situa-
tions in the introductory course (e.g., testing two proportions,
two means, simple linear regression).

So what’s the problem with using random shuffling?
Nothing—If the study data arise from a randomized exper-
iment, the simulation helps reinforce the role of the study
design on the analysis and scope of conclusions. However, if
the study is not a randomized experiment but does involve
random sampling, then the first simulation approach is more
appropriate. The choice of simulation model used can impact
the analysis, primarily through estimation of the standard error
of the statistic. Our goal in this article is to explore which types
of studies/datasets are most impacted by the way the simulation
is carried out, with an eye toward implications on teaching
practice. The intention of this article is not to debate which
simulation approach ismore valid in practice (e.g., LockMorgan
2017) or even which simulation approach is more intuitive for
students (e.g., Chance et al. 2022). Rather, we hope to help
instructors understand the differences in the simulation strate-
gies to better inform their own decisions of how to adapt a
simulation approach for their classes and to better respond to
student questions that may arise.

2. Example 1: Comparing GroupMeans

2.1. Dung Beetle Study

An example in Intermediate Statistical Investigations (see
Appendix) examines whether a view of the night sky influences
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Figure 1. Distributions of (a) travel times of 18 beetles overall and (b) separated into two treatment groups. Notice the large difference between the overall variability
(SD = 46.93 sec) and the within group variability (22.19 and 15.52 sec).

the speed at which dung beetles can navigate a dung ball to
the edge of a circular platform (away from center). Noctur-
nal African dung beetles (Scarabaeus satyrus) were randomly
assigned to wear either a clear cap or a black cap, the lat-
ter obscuring their view of a moonless but starry night sky.
Consider the output in Figure 1 (slightly modified from the
actual research study to have equal sample sizes for the initial
discussion):

There is clearly a large difference in the mean time to reach
the platform edge between the two experimental groups (yblack−
yclear = 83.8 sec). In fact, a p-value is really not necessary
here as there is no overlap in the distributions of the times
between the two groups and the observed group split is the
most extreme possible out of the C(18,9) = 48,620 possible
assignments. Regardless, we find this study an engaging context
for discussing a randomization test: how large a difference in
the experimental group means would we expect to see if these
18 times were randomly redistributed to two groups of 9.

To illustrate this process, we begin with a tactile simulation:

• Each student (or pair of students) is given 18 index cards to
match the 18 beetles in the study.

• Students write the 18 observed responses on the 18 cards.We
tell students this step models the idea that the beetle travel
time is “fixed” and not impacted by which experimental
group the beetles are assigned to. In other words, assuming
the null hypothesis of “no experimental effect” is true.

• Students shuffle their 18 cards and deal them out to two
groups of 9, computing yblack − yclear for their random reas-
signment.

• Each student (pair) adds their shuffled difference in means
to a dotplot on the board in the classroom, creating a null
distribution of could-have-been differences in means just by
random chance alone.

• Students then determine how unusual it is to find a difference
in means as extreme as the observed difference in means of
83.8 sec.

We feel this activity, which results in each student (pair) hav-
ing a dot in the null distribution, is very helpful in students’
understanding of the simulation process and what the p-value
measures. After the tactile simulation, we then have students
use an applet to generate thousands of random reshuffles of the
data. Below, we show the results of 10,000 shuffles from the
Rossman/Chance Comparing Groups applet.

Students see that 83.8 rarely occurs in 10,000 random shuf-
fles, if at all, yielding a very small p-value. For more information
and advice on teaching with simulation-based inference see for
example Case and Jacobbe (2018), Chance et al. (2022), Chance,
Chung, and Tintle (2022); and the “SBI blog” (https://www.
causeweb.org/sbi/).

In our introductory course, we then follow the randomiza-
tion test analysis with a comparison to the t-test. We teach stu-
dents to calculate the t-statistic using SE

(
y1 − y2

)
. One option

for this computation uses the following formula to estimate the
standard deviation of the difference in sample means when the
population variances are unknown,

SE
(
y1 − y2

) =
√

s21
n1

+ s22
n2

=
√
22.1852

9
+ 15.5222

9
= 9.025

(1)
But wait a minute, this is nowhere near the simulated ran-

domization distribution’s standard deviation (e.g., SD= 22.005
in Figure 2)!

Because the process of random shuffling pools all of the data
values together, assuming they arise from the same population
distribution, and then redistributes them, perhaps we should
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Figure 2. Simulated randomization distribution for the difference in group means
from shuffling the 18 times back to two groups (Dung Beetles data). The standard
deviation of the difference in means from these 10,000 shuffles is 22.005 sec.

use the pooled standard error instead to match the simula-
tion results?

Pooled SE
(
y1 − y2

) = sp
√

1
n1

+ 1
n2

= 19.15
√
2
9

= 9.027 (2)

But this value is practically the same as the unpooled value
because the two groups have similar standard deviations and
equal sample sizes.Here iswhereweneed to remember that both
of these formulas assume independent random samples from
large populations.

2.2. Random Sampling

The output in Figure 3 shows the simulation results when tak-
ing 10,000 independent random samples from two populations
(salaries of the Western conference NBA players and salaries
of Eastern conference NBA players for the 2020–2021 season,
downloaded from http://www.espn.com/nba/salaries July 2021)
using the Rossman/Chance Sampling from Two Populations
applet.

The original standard deviation formula (see (1)), now using
the population standard deviations, works very well in predict-
ing the standard deviation of the sampling distribution (com-
pared to 4.09 in Figure 3):

SD
(
y1 − y2

) =
√

σ 2
1
n1

+ σ 2
2
n2

=
√
9.202

9
+ 8.452

9
= 4.16 (3)

Note that the population standard deviations (9.20 and 8.45) are
found by dividing by N (263 and 301) rather than N-1 because
we know μ for the entire population in each conference. We
could improve this SD calculation by considering the population
sizes and using a finite population correction factor for each
sample mean:

SD
(
y1 − y2

) =
√

σ 2
1 (N1 − n1)
n1 (N1 − 1)

+ σ 2
2 (N2 − n2)
n2 (N2 − 1)

(4)

=
√
9.202(263 − 9)
9(263 − 1)

+ 8.452(301 − 9)
9(301 − 1)

= 4.10

The difference between these two standard deviations, 4.16
and 4.10, is not large because the population sizes are more than
10 times the sample sizes, satisfying the “10% rule” so that the
population correction factors are approximately equal to one.

2.3. Exact Randomization Distribution

The simulation-based approach approximates the permutation
test that examines the distribution from all possible random
shuffles of the observed results.With a categorical response vari-
able, the hypergeometric distribution models the distribution
of the number of successes, out of the M total successes in the
sample, that end up among the n observations in “GroupA.” The
standard deviation of the hypergeometric distribution,√

N − n
(N − 1)

× n × M
N

× N − M
N

(5)

illustrates the source of the “finite population correction factor”
(N−n)/(N− 1) that accounts for the lack of dependence when
we select n observations from N.

In fact, population size is something we should also con-
sider with the randomization distribution in Example 1. (With
quantitative data, we need to know more than the number of
successes in group A, we need to also the resulting difference
in means for each possible random assignment.) Because we
always use the same 18 beetles, they are the population. By
splitting that population in half for our two samples (essentially
sampling 9 beetles from the population of 18 beetles for group
1), we are clearly violating the 10% rule. But even more impor-
tant, by simply putting the other 9 beetles into group 2, we are
also violating the “independent samples” rule. For example, if
the 9 fastest beetles are randomly assigned to the clear cap, then
we know the 9 slowest beetleswent to the black cap and themean
of that group is predetermined. In particular, the correlation
coefficient between the two groupsmeans is−1.With correlated
samples, we should use the formula below for the standard
deviation of the difference in means:

SD
(
y1 − y2

) =
√

σ 2
1
n1

+ σ 2
2
n2

− 2 × cov
(
Y1,Y2

)
(6)

So now applying

- the relationship between correlation and covariance,
- the finite population correction factor, and
- the distinction between “population” and “sample” standard

deviations

we can determine the expected standard deviation for the dif-
ference in group means for the randomization distribution:

SD
(
y1 − y2

) =
√√√√σ 2

1 (N1 − n1)
n1 (N1 − 1)

+ σ 2
2 (N2 − n2)
n2 (N2 − 1)

− 2 × (−1) ×
√

σ 2
1 (N1 − n1)
n1 (N1 − 1)

σ 2
2 (N2 − n2)
n2 (N2 − 1)

(7)
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Figure 3. Population distributions and simulated sampling distribution of difference in sample means for n1 = n2 = 9. The standard deviation of the difference in means
is 4.09 (thousand dollars).

Figure 4. Exact randomization distribution for Dung Beetle data. The standard deviation of the statistic is 22.12 sec.

A similar derivation can be found in Chapter 27, footnote 11 of
Freedman et al. (2007).

With a bit of algebra, and noting that N1 = N2 and n1 =
n2 = N1

2 and σ1 = σ2 = σ and s = σ

√
N

N−1 , this simplifies to

SD
(
y1 − y2

) = s
√

1
n1

+ 1
n2

!, (8)

where the exclamation point stands for amazement, not facto-
rial. For the Dung Beetle data,

SD
(
y1 − y2

) = 46.93
√
2
9

= 22.12, (9)

much more in agreement with the standard deviation obtained
in the simulation, 22.005.

How do we know this is the “right” answer? With a permu-
tation test, we can find the exact randomization distribution,
that is, the difference in means for all C(18,9) = 48,620 possible
random assignments. The histogram in Figure 4 (produced
using the “combn()” function in R, from the combinate pack-
age, assuming “times” contains the response variable values)
shows the distribution of all possible differences in groupmeans
applied to theDungBeetle data. (See alsoKaiser and Lacy 2009.)

In the exact randomization distribution for the Dung Beetle
data, the standard deviation of the difference in means (22.12)
is what we calculated taking into account the finite populations
and the correlation between the data values split between the
two groups. So to calculate the standard deviation of the ran-
domization distribution (which assumes no genuine difference
between the two groups), we should use the simplified (8) which
uses the standard deviation of the response overall, rather than
the traditional SE formula, (1), which uses the within group
standard deviations and often results in a much smaller value.

2.4. Assuming the Null Hypothesis is True

In theDung Beetle data, the evidence against the null hypothesis
was very strong. That is, the variability in the times explained
by the group membership (black vs. clear cap) was extremely
large. This leads to a very large difference between the value
of the traditional SE for the difference in means, (1), and the
randomization SE for the difference in means. When the evi-
dence against the null hypothesis ismuchweaker, the traditional
SE (1) will not look as different from the standard deviation of
the randomization distribution. Figure 5 shows output from a
study comparing the mean weight loss on the LEARN diet to



JOURNAL OF STATISTICS AND DATA SCIENCE EDUCATION 5

Figure 5. Comparing changes in BMI between two diets after one year. The standard deviation of the statistic is 0.336 kg.

Figure 6. Bootstrap distributions for theDung Beetle datawith andwithout pooling the groups together. The standard deviations of the difference inmeans are 21.422 sec
with pooling and 8.442 sec without pooling.

that on the Ornish diet (data fromGardner et al. 2007). Because
the overall standard deviation (2.064 kg) is similar to the pooled
standard deviation (2.07 kg) due to the large amount of over-
lap in the two experimental groups (small R2), the standard
deviation of the randomization distribution using (8) is similar
to the traditional SE using (1):

√
2.002
79 + 2.142

76 ≈ 0.333 versus

2.064
√

1
79 + 1

76 ≈ 0.332
The randomization distribution, assuming the null hypoth-

esis is true (so all variation is natural variation), can result in a
much larger SD of the differences in means than if the natural
variation only consists of within group variation (i.e., variation
in the residuals). In other words, this difference in the values
from these two methods of estimating the standard deviation
of the difference in means is larger the stronger the underlying
relationship between the response and explanatory variables.

The overall idea makes some intuitive sense: the randomiza-
tion distribution assumes the null hypothesis is true. If the null
hypothesis is actually not true, the overall standard deviation of
the data is much larger than the within group standard devia-
tions, leading to a much larger standard deviation of the differ-
ence in means in the randomization distribution than the tradi-
tional SE formula produces. A similar distinction is seen when
comparing two proportions where the formula for SE

(
p̂1 − p̂2

)
differs depending on whether we assume the null hypothesis is

true, that is, “pooled” (in the test statistic) or “unpooled” (used
for confidence intervals). The same distinction also arises with
bootstrapping—dowe pool the groups together first or resample
within each group? In the latter case, the individual sample
means will have much less sample-to-sample variation (e.g., a
time of 120 sec would only be observable in the black cap group
rather than being equally likely to be in either experimental
group) and will result in smaller variability in the difference in
means statistic. For the Dung Beetles data using the Comparing
Groups—Bootstrapping applet, Figure 6 shows that if we pool
the samples together first, the simulated standard deviation is
around 21.4 (similar to randomassignment), but if we don’t pool
the samples together first, the simulated standard deviation is
around 8.44 (more similar to the traditional formula (1)).

3. Example 2: Simple Linear Regression

Generalizing from comparing groups on a quantitative response
to a linear regression model, the same distinction appears.
Figure 7 shows a dataset of heights (inches) and foot lengths
(cm) for a sample of 20 college students (default data in theRoss-
man/Chance Two Quantitative variable applet, see Figure 7).

Figure 8 shows a randomization distribution of slopes using
the applet: each y-value is randomly reassigned to the observed
x-values. (The lines all pass through

(
x, y

)
because neithermean
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Figure 7. Sample data for heights (inches) and footlengths (cm) for 20 college students. Regression line: predicted height = 38.3 + 1.03footlength, residual SE =
3.61 inches.

Figure 8. Simulated regression lines from reshuffling heights to foot sizes and simulated randomization distribution of slopes. The standard deviation of the slope is
0.333 in.

changes when we shuffle the ordering of the values for the
response variable.)

After viewing the randomization distribution, we want
students to be able to interpret the standard deviation of the
shuffled slopes, for example, 0.333 in Figure 8, and we then have
them compare this value to the traditional regression output:

Term Coeff SE t-stat p-value
Intercept 38.30 6.905 5.55 <0.0001
footlength 1.03 0.241 4.29 0.0004

But again, we were initially troubled that the usual formula
for the standard error of the slope,

SE
(
β̂1

)
= σ̂√

(n − 1) × Var (X)
= 3.61√

19 × 3.45
= 0.241

(10)
produces a value that is not that similar to the randomization
result.

If we want to model random sampling instead, one approach
is to construct a bivariate population to sample from, with simi-
lar characteristics as the sample. To pick a value for “Population
x std,” we can use the sample standard deviation of foot lengths
(3.45 cm in Figure 7), but what about the standard deviation of
the heights? If there is no association between the two variables,
then we would expect similar variation about the horizontal
regression line as we saw in the sample (e.g., sy = 5.00 in). But if
there is an association, then the unexplained variation about the
regression line should be more similar to the residual standard
error (3.61 in Figure 7). For example, we wouldn’t want to assign
a 24 cm foot length to any height between 56 and 77 (the min
and max in the dataset) like random shuffling would, instead
a 24-cm foot length should correspond to lower height values
(≈ ŷ ± 2 × 3.61). Predictably, the choice of “Population sigma”
has a large impact on the variation of the slopes. In Figure 9,
when the population sigma is set to 5, the standard deviation in
the simulated slopes is 0.359. In Figure 10, when the population
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Figure 9. Constructed hypothetical population with no association but matching the descriptive statistics for the original sample, using σ = 5. Resulting regression lines
and sampling distribution of slopes are displayed to the right. The standard deviation of the slope is 0.359 in.

Figure 10. Constructed hypothetical population with no association but matching the descriptive statistics for the original sample, using σ = 3.61. Resulting regression
lines and sampling distribution of slopes are displayed to the right. The standard deviation of the slope is 0.257 in.

sigma is set to 3.61, the standard deviation in the simulated
slopes is 0.257. Note: In the simulations in Figures 9 and 10, we
take the x-values to be fixed at the observed values, yet another
simulation-design decision.

One interesting observation is that the regression lines from
random sampling do not all pass through the same point
because the x and y values change with each sample. As we
would expect, the smaller wemake the population sigma (unex-
plained variation about the population regression line), the
smaller the standard deviation in the sample slopes. When we
use the observed residual standard error, the simulation result
is much more similar to the usual formula ((10), 0.241).

If the residual standard error is closer to the standard devi-
ation of the responses themselves (smaller R2), the SE for the
slope will be more similar between these approaches. Themoral
being, don’t expect the regression output SE to match the simu-
lation results unless you use a dataset with a weaker association.

4. Extensions

In our introductory algebra-based statistics courses, we don’t
have this debate with our students on which simulation
approach to use. Instead, we emphasize that the approaches
make slightly different assumptions, including whether or not
the null hypothesis is true. We do briefly discuss with stu-
dents the distinction between the simulated randomization

distribution and the exact randomization distribution (show-
ing them the code and output) to reinforce that using 1000
or 10,000 repetitions in the simulation is quite adequate for
understanding the behavior of the distribution (see also Chance
and Rossman 2023). We do emphasize these distinctions a bit

Figure 11. Comparison of randomization distribution of t-statistics using the
“wrong”standard error and the theoretical t-distribution.
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Figure 12. The same t-distribution can be used to predict (a) the randomization distribution and (b) the sampling distribution of the standardized regression slope.

more with our mathematics and statistics majors and in our
intermediate statistics course, emphasizing why the randomiza-
tion distributions tend to have larger standard deviations than
formula (1) would predict.We have given the task of simplifying
formula (7) as an optional assignment for our math/stat majors
and a few did voluntarily take on the challenge, demonstrating
curiosity in the ideas and different learning preferences. We
also wonder whether showing students the impact of a nonzero
covariance more often, and how that simplifies to the SD of the
differences in a matched pairs design, would be beneficial. In
an intermediate course, you could also make the connections
with bootstrapping residuals. Below we describe a few other
extensions that you could take with introductory students.

4.1. t-statistics

In Section 2 we focused on comparing the standard deviation
of the difference in means depending on whether a simulation
models random assignment versus random sampling. What
about the randomization distribution of the t-statistic? It turns
out that if we use the unpooled t-statistic for each shuffle
(with the “wrong” standard error from (1) for the difference
in means), this randomization distribution is still well-modeled
by the t-distribution. When the simulated difference in means
is smaller, the t-statistic will divide by a larger SE, but when
the simulated difference in means is larger, the t-statistic will
divide by a smaller SE. The resulting distribution of random-
ization t-statistics ends up behaving more like the heavy-tailed
t-distribution than if we use the same (larger) SE (9) for all the
differences. For the Dung Beetle data, Figure 11 compares the
simulated and theoretical probabilities below t = −2. We can
see that these two probabilities are quite similar. (In Figure 11we
used t = −2, rather than the observed t-statistic for the Dung
Beetle data of t = −9.28 which gives a small p-value either way.)
The moral is that we can use the same t-test for both random
sampling and random assignment.

Similarly, Figure 12 shows that the theoretical t-distribution
is a reasonable approximation for both the randomization dis-
tribution and the sampling distribution of regression slopes for
the height/foot dataset in Example 2.

Another interesting observation from Figure 3 (NBA
Salaries) is how bell-shaped and symmetric the sampling

Figure 13. Simulated sampling distribution for NBA data using sample sizes of
n1 = 15 and n2 = 30. The sample sizes are larger than for Figure 3 but there is
more skewness in the distribution of t-statistics due to the unequal sample sizes.

distribution is even though the population distributions are
quite skewed and the sample sizes are small (n = 9). Using
such visual simulations allows quick confirmation that the t-
distribution works rather well when the population shapes are
similar and the sample sizes are the same, but less well if the
sample sizes differ, even when they are of more moderate sizes.
Figure 13 shows the sampling distribution after changing the
sample sizes to 15 and 30 and the resulting skewness in the
distribution of t-statistics.

4.2. Modeling an Alternative Hypothesis

Both random sampling and random assignment simulations
also give students the ability to model the case when a null
hypothesis is not true and then examine the resulting distribu-
tion of the statistic. For example, we can specify a hypothesized
difference of 50 sec (μclear − μblack = −50) and adjust for this
hypothesis before random shuffling. Figure 14 illustrates the
process of adding 50 to all times in the clear cap group (a) to
(b), then mixing which values are shuffled to each group (b) to
(c), akin to randomizing residuals, and then then subtracting
50 sec from the time for each beetle assigned to the clear group
(c) to (d). See the supplementary materials for an animated gif
dynamically visualizing this process from theComparingGroup
applet.
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Figure 14. Sequence showing the adjustment for treatment effects before ran-
domization. The difference inmeans is calculated each time, building up a random-
ization distribution matching the hypothesized effect.

Figure 15. A randomization distribution assuming y = μ+ (−50 if clear cap)+ ε,
found by adjusting for the clear cap effect and then randomizing the residuals. The
standard deviation of the difference in means is 12.051 sec.

The mean of the resulting randomization distribution in
Figure 15 is now−50 asmodeled, but also note the smaller SD of
the randomization distribution as we have accounted for a large
source of variation in the times, so the “unexplained variation”
is more similar to the pooled within-group variability.

Simulating under alternative hypotheses is useful for explor-
ing “non-central” distributions as well as power calculations.
We do sometimes ask students to carry out this simulation in
homework, asking them to explain what the applet is doing
and to explain why the mean of the simulation distribution has
changed and how that impacts the p-value (though we don’t
usually ask about the change in the standard deviation).

Students can also use the simulations to “invert the test”
to develop an interval of plausible values for the underlying

difference in treatment means and compare the results to the
t-interval. Another possible extension is to have students use
technology to examine the coverage of the t-interval procedure
for different standard deviation formulas and different cases of
the underlying treatment difference.

5. Summary

When using a theory-based approach for testing two population
means, we typically use the unpooled t-statistic formula, regard-
less of whether the study involved random sampling or random
assignment. Then we emphasize the point that students need
to consider the random sampling versus random assignment
distinction when drawing their final conclusions (e.g., gener-
alizability, causation). When using simulation-based inference,
changing the method of simulation depending on the type of
study, can help reinforce this distinction for students.

However, if you use simulation-based approaches to intro-
duce students to the reasoning of statistical significance when
comparing groups (including in simple linear regression), keep
in mind that random shuffling makes different assumptions
than the traditional theory-based formulas for the standard
error of the statistic (e.g., independence between groups, use
of overall vs. within group variability). Because of this, the
simulation-based standard error may not match that obtained
from the traditional formula. Our advice in order to avoid stu-
dents being distracted by this difference, is to start with a dataset
with aweaker association between the response and explanatory
variables. This means the SD of the statistic determined from
the randomization process will be similar to the calculated value
of the standard error of the statistic. This then allows students
to provide a reasonable interpretation of the standard error by
describing the simulation process and the “variation due to ran-
dom chance alone.” Then, once you switch to the standardized
statistic, the distinction between random sampling and random
assignment no longer matters in the analysis (but is still critical
to determining appropriate conclusions for the study).

Appendix

A.1. Introduction to Exploration 1.2 in Tintle et al. (2020)

Dacke, Baird, Byrne, Scholtz, and Warrant (“Dung Beetles Use the Milky
Way for Orientation,” Current Biology, 23, 2013) report on several exper-
iments they ran to document whether nocturnal African dung beetles
(Scarabaeus satyrus) use stars in the night sky to navigate. In one of their
studies, beetles were placed on top of a dung ball at the center of a circular
wooden platform (10 cm in diameter) and the researchers timed how long
it took each beetle to reach the edge of the platform (another way of
determining how straight a path was taken). Some of the beetles were given
a small, black cardboard “cap” which obscured their view of the sky (up) but
not of the edge of the platform (out), while others were given a transparent
cap. On a moonless, starry night beetles wearing the transparent cap took
an average of 40.1 sec to reach the edge, compared to an average time of
124.5 sec for beetles wearing the black cardboard cap.

SupplementaryMaterials

In the supplement, we provide an animated gif illustrating the visualization
possible in the Comparing Groups applet (https://www.rossmanchance.
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com/applets/2021/anovashuffle/AnovaShuffle.htm) to show how the ran-
domization simulation reflects the non-zero hypothesized difference in the
underlying treatment means.
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