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ARTICLE INFO ABSTRACT

Keywords: Development of a flexible Erlang mixture model for survival analysis is introduced. The model for
Bayesian non??rametrics the survival density is built from a structured mixture of Erlang densities, mixing on the integer
Dependent Dirichlet process shape parameter with a common scale parameter. The mixture weights are constructed through

Dirichlet process

A increments of a distribution function on the positive real line, which is assigned a Dirichlet process
Erlang distribution

Hazard function prior. The model has a relatively simple structure, balancing flexibility with efficient posterior

Markov chain Monte Carlo computation. Moreover, it implies a mixture representation for the hazard function that involves

Survival analysis time-dependent mixture weights, thus offering a general approach to hazard estimation. Extension
of the model is made to accommodate survival responses corresponding to multiple experimental
groups, using a dependent Dirichlet process prior for the group-specific distributions that define
the mixture weights. Model properties, prior specification, and posterior simulation are discussed,
and the methodology is illustrated with synthetic and real data examples.

1. Introduction

The Erlang mixture model is defined as a weighted combination of M Erlang densities f(t | M,0,®) = Zﬁle ,, Ex(t | m,0), for
t € R*, where Er(s | m,0) represents the Erlang densities with integer shape parameters, m, and scale parameter, 6, shared by all
densities. In the formulation, M and ® = (w,, ..., ®,,) are the number of mixture components and the mixing weights, respectively.
The model is completely specified by M, ® and 6. Hence, in contrast to traditional mixture models, Erlang mixtures comprise
identifiable mixture components and a parsimonious model formulation built from kernels that involve a single parameter that needs
to be estimated. Indeed, it is more natural to view the model as a basis representation for densities on R*, where the Er(z | m,0)
densities play the role of the basis densities and the w,, provide the corresponding weights. Erlang mixtures are flexible, making
them particularly useful in providing approximations for general densities on R*. For example, Venturini et al. (2008) used the
Erlang mixture model for density estimation, with fixed M and with a Dirichlet prior distribution for @. Another example is Ayala
et al. (2022) that developed a Dirichlet process mixture model (Antoniak, 1974) with Erlang kernels for phase-type distributions of
a Markov process. The resulting model can be expressed as a mixture of Erlang distributions in a form similar to f(r | M, 0, ®).

Different from the aforementioned approaches, the weights @ in Erlang mixtures can be constructed as increments of a distribution
function G on R*. In particular, we let w,, = G(m8) — G((m — 1)), for m=1,...,M — 1, and w,; =1 — G(M — 1)0). This formulation
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yields an important theoretical result for Erlang mixtures: as M — oo and 6 — 0, the Erlang mixture density converges pointwise to
the density of G (e.g., Butzer, 1954; Lee and Lin, 2010).

The Erlang mixture structure, in conjunction with the theoretical support from the convergence result, provides an appealing
setting for nonparametric Bayesian modeling and inference. The key ingredient for such modeling is a nonparametric prior for
distribution G, which, along with priors for § and M, yields the full Bayesian model. Regarding relevant existing approaches, we
are only aware of Xiao et al. (2021) where the Erlang mixture is used as a prior model for inter-arrival densities of homogeneous
renewal processes. Also related is the prior model for Poisson process intensities in Kim and Kottas (2022), although for that model
the weights are defined as increments of a cumulative intensity function.

To our knowledge, Erlang mixtures have not been explored as a general methodological tool for nonparametric Bayesian survival
analysis, and this is our motivation for the work in this article. The nonparametric Bayesian model is built from a Dirichlet process
(DP) prior (Ferguson, 1973) for distribution G, which defines the mixture weights, and from parametric priors for 8 and M, which
control the effective support and smoothness in the shape of the Erlang mixture density. The modeling approach is sufficiently
flexible to handle non-standard shapes for important functionals of the time to event distribution, including the survival function
and the hazard function. We discuss prior specification for the model hyperparameters, and design an efficient posterior simulation
method that draws from well-established techniques for DP mixture models. The model is extended to incorporate survival responses
from multiple experimental groups, using a dependent Dirichlet process prior (MacEachern, 2000; Quintana et al., 2022) for the
group-specific distributions that define the mixture weights. The model extension retains the flexibility in the group-specific survival
densities, and it also allows for general relationships between groups that bypass restrictive assumptions, such as proportional
hazards.

Survival analysis is among the earliest application areas of Bayesian nonparametrics. The literature includes modeling and infer-
ence methods based on priors on the space of survival functions, survival densities, cumulative hazard functions, or hazard functions.
Reviews can be found, for instance, in Ibrahim et al. (2001), Phadia (2013), Miiller et al. (2015), and Mitra and Miiller (2015). The
part of this literature that is more closely related to our proposed methodology involves DP mixture models for the survival density.
Such mixture models have been developed using kernels that include the Weibull distribution (e.g., Kottas, 2006), log-normal distri-
bution (e.g., De Iorio et al., 2009), and gamma distribution (e.g., Hanson, 2006; Poynor and Kottas, 2019). The convergence property
for Erlang mixtures is the only mathematical result we are aware of that supports the choice of a particular parametric kernel in
mixture modeling for densities on R*.

Our main objective is to add a new practical tool to the collection of nonparametric Bayesian survival analysis methods. The
DP-based Erlang mixture model may be attractive for its modeling perspective that involves a representation of basis densities, its
parsimonious mixture structure, and efficient posterior simulation algorithms (comparable to the ones for standard DP mixtures).

The rest of the article is organized as follows. Section 2 introduces the methodology, including approaches to prior specification
and posterior simulation (with details for the latter given in the Appendixes). Sections 3 and Section 4 present results from synthetic
and real data examples, respectively. Finally, Section 5 concludes with a summary.

2. Methodology
2.1. The modeling approach

Erlang mixture model We propose a structured mixture model of Erlang densities for the density, f(7), of the time to event distribu-
tion, aiming at more general inference for survival functionals than what specific parametric distributions can provide. Specifically,
let
M
f(t)Ef(llM,H,w)=Zmer(Hm,G), teRT, (e8]
m=1
where o = {w,, : m=1,..., M} denotes the vector of mixture weights, and Er(- | m,0) the density of the Erlang distribution, that is,
the gamma distribution with integer shape parameter m and scale parameter 8, such that the mean is mf and the variance m6?. Given
the number of the Erlang mixture components, M, the kernel densities in (1) are fully specified up to the common scale parameter
0. Hence, compared with standard mixture models, for which the number of unknown parameters increases with M, the model in
(1) offers a parsimonious mixture representation.

A key component of the model specification revolves around the mixture weights. These are defined through increments of a
distribution function G with support on R*, such that w,, = G(m0) — G((m — 1)0), for m=1,...,M — 1, and w,; = 1 — G(M — 1)0).
This formulation for the mixture weights provides appealing theoretical results for the Erlang mixture model in (1). In particular,
as M - o and 6 —» 0, f(t| M,0,w) converges pointwise to the density function of G. The convergence property for the density can
be derived from more general probabilistic results (e.g., Butzer, 1954); a proof of the convergence of the distribution function of
f(t| M,0,0) to G can be found in Lee and Lin (2010). This result highlights that using a prior with wide support for G is crucial to
achieve the generality of the model in (1) required to capture non-standard shapes for the time to event distribution. We provide
details below on the nonparametric prior for G, as well as on the priors for parameters § and M.

The model in (1) also offers a flexible, albeit parsimonious mixture representation for the survival function, S(t | M,6,G), and
the hazard function, A(r | M, 0, G). Note that, having defined the mixture weights @ through distribution G, we use the latter in the
notation for model parameters. Denote by Sg.(- | m,6) and hg.(- | m,0) the survival and hazard function, respectively, of the Erlang
distribution with parameters m and 6. Then, the survival function associated with the model in (1) is given by
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M
S(tIM.0,.G)=Y w, Sg(t|m.6), 2)
m=1
that is, it has the same weighted combination representation as the density, replacing the Erlang basis densities by the corresponding
survival functions. Moreover, the hazard function under the Erlang mixture model can be expressed as

M
h(t| M,0,G) =Y wk(t) hg(t | m,0), 3

m=1

where ) (1) = @, Sg,(t | m,0)/ {Z%ZI @,y Sge(t | m',0)}. The hazard function is a weighted combination of the hazard functions asso-
ciated with the Erlang basis densities, and, importantly, the mixture weights in (3) vary with 7. Such time-dependent weights allow
for local adjustment, and thus A(f | M, 6, G) can achieve general shapes, despite the fact that the basis hazard functions, hg.(t | m, ),
are non-decreasing in 7 (constant for m = 1, and increasing for m > 2).

We note that Erlang mixtures can be viewed as extensions of Bernstein polynomial densities, defined on the unit interval to
R*. The Bernstein polynomial density is given by f*(y | K,q) = 2,1;1 q.Be(y | k,K — k + 1), where Be(- | a,b) is the beta density
with mean a/(a + b). The mixture weights are defined through increments of a distribution function G* on the unit interval, such
that ¢, = G*(k/K) — G*((k — 1)/K), for k=1,...,K, where G* is a probability distribution over the unit interval. Here, as K — o,
f*(y| K,q) converges uniformly to the density of G*. Bernstein polynomials have been explored for density estimation on compact
sets following the work of Petrone (1999a,b). Applications and extensions of the basic model include density estimation on higher
dimensional spaces (Zheng et al., 2010), density estimation with multiscale mixtures of Bernstein polynomials (Canale and Dunson,
2016), density regression (Barrientos et al., 2017), and modeling for bivariate stable distributions (Richardson et al., 2020).

Dirichlet process prior for G As previously discussed, a key model component is distribution G as it defines the mixture weights w,,
through discretization of its distribution function on intervals B,, = (m — 1)0,m6], for m=1,...,M — 1, and By, = (M — 1)0, ). We
place a DP prior on G, i.e., G | a, Gy ~ DP(a, G), where a > 0 is the total mass parameter and G, the centering distribution (Ferguson,
1973). We work with an exponential distribution, Exp({), for G,, with random mean ¢ assigned an inverse-gamma hyperprior,
{ ~inv-Ga(a;, b;). We further assume a gamma hyperprior for the total mass parameter, « ~ Ga(a,, b,). Given M, the DP prior for G
implies a Dirichlet prior distribution for the vector of mixture weights, ® | M, a,{ ~ Dir(aGy(B,), ...,aGy(Byy))-

The nonparametric prior for G is of primary importance. The DP prior allows the corresponding distribution function realizations
to admit general shapes that can concentrate probability mass on different time intervals B,,, thus favoring different Erlang basis
densities through the associated w,,. The key parameter in this respect is a, as it controls the extent of discreteness for realizations
of G and the variability of such realizations around G,. As an illustration, Fig. 1 plots prior realizations for the mixture weights
and the corresponding Erlang mixture density under three values of « (a« = 1,10 or 100), using in all cases M =50, 6 = 0.5, and
G, =Exp(5). The smaller « gets, the smaller the number of effective mixture weights becomes. Also, for larger « the Erlang mixture
density becomes similar to the density of G, which is to be expected from the pointwise convergence result and the fact that larger
« values imply smaller variability of G around G,,.

Priors for  and M Under the model construction for the mixture weights, 6 controls the step size of the increments and thus how
fine the discretization of G is. Moreover, 6 controls the location and dispersion of the Erlang basis densities in (1). With smaller 0,
the Erlang densities are more concentrated around their mean mé, and the discretization of G becomes finer. Hence, as the pointwise
convergence result suggests, smaller § values may be needed to accommodate non-standard density shapes. Also, the last component
in (1) has mean M@ (with variance M#62), and thus the effective support of f(t | M,0,G) is jointly determined by M and 6; with
smaller 0, a greater value of M is needed to achieve the same effective support. Fig. 1 in the Supplementary Material plots prior
realizations of the Erlang mixture density for different combinations of (M, 0) to illustrate how M and 6 jointly affect /(¢ | M, 0, G).

We work with a joint prior for § and M, p(6, M) = p(6)p(M | §). We assume 0 ~ Ga(ay, by), and conditional on 6, assign to M a
discrete uniform distribution, M | 8 ~ Unif([M,/0].,...,[M,/6]), where [a] is the smallest integer that is larger or equal to a. To
specify the hyperparameters ay, by, M, and M,, we use a relatively conservative approach, based on the range of the data. For M,
we choose a value greater than the largest value in the data, and set M, = ¢ M, for a relatively small integer c¢. The motivation for this
choice is to ensure that the effective support of the Erlang mixture model is sufficiently large for the particular data application. To
specify the prior hyperparameters for 6, we notice that M, /6 ~ inv-Ga(a,y, M, /b,), based on which we recommend selecting values
for a, and b, such that IE(M, /0) is between 10 and 50. Also, we use ¢ =3 or 4 that imply [E(M,/0) is between 20 and 150 or between
40 and 200, for the simulation studies in Section 3 and the real data analyses in Section 4. This specification provides an adequate
number of basis densities a priori for sufficient flexibility for the examples.

Posterior simulation The data point for the i subject is recorded as y; = min(#;, ¢;), where ¢, is the survival time and c; the (indepen-
dent) administrative censoring time, for i =1, ...,n. The data set can be represented through D= {(y;,v;) : i =1,...,n}, where the v,
are binary censoring indicators such that v; =1 if ¢; is observed, and v; = 0 otherwise. Then, the likelihood function can be written as

LM.0.G:D)=[[ {701 | M.6.6)}" (S| M.0.G)}' ™", “4)

i=1

where f(-| M,0,G)= f(-| M,0,®) and S(-| M,0,G) are given in (1) and (2), respectively.
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Fig. 1. Prior realizations of the mixture weights ® (top row) and the corresponding densities f(¢ | M, 0, G) given by the red solid lines (bottom row), under « = 1, 10, 100
(left, middle, right columns). In all cases, M =50, 6 =0.5, and G, = Exp(5). The black dotted line in the bottom row panels is the density of G,. (For interpretation of
the colors in the figure(s), the reader is referred to the web version of this article.)

We implement posterior inference via Markov chain Monte Carlo (MCMC) simulation, using standard posterior simulation meth-
ods for DP mixture models (e.g., Escobar and West, 1995; Neal, 2000). The Erlang mixture density in (1) can be expressed as a
DP mixture by exploiting the definition of the weights w,, through distribution G, resulting in the following alternative mixture

representation:

M QM
fIM.0.G) =Y w,Ex(t|m0) = / { Y 1, ($)Ex(|m, 9)} dG(¢).
m=1

0 m=1

Here, 1,(-) is the indicator function for set B, and, as before, B,, = (m — 1)0,m0], for m=1,...,M — 1, and B, = (M — 1)0, ).

For posterior simulation, we augment the likelihood in (4) with subject-specific latent variables, ¢, | G b G, which indicate
the mixture component for the associated observations. In particular, if ¢, falls into interval B,,, the i observation corresponds
to the m™* Erlang basis density. The posterior distribution involves G, M, 0, the set of latent variables ¢ = {¢; : i = 1,...,n}, and
the DP hyperparameters (a, ). We marginalize G over its DP prior and work with the prior full conditionals for the ¢;, implied by
the DP Pélya urn representation (Blackwell and MacQueen, 1973), to sample from the marginal posterior distribution for all model
parameters except G. To this end, we employ the MCMC method in Escobar and West (1995); the details are given in Appendix A.

Although we do not sample the mixture weights @ during the MCMC simulation, it is straightforward to obtain posterior samples
for w, using their definition in terms of distribution G.

The conditional posterior distribution for G, given (a,{) and ¢, is characterized by a DP with updated total mass parameter a* =
a + n, and centering distribution G(’; = a(a+n)"'Exp() + (@ +n)~! Z;;l d4,- Hence, using the DP definition, the conditional posterior
distribution for w, given M, (a,¢), and ¢, is a Dirichlet distribution with parameter vector (a*G(’)‘ (B)), ... ,a*GS‘ (B))-

Two points about the posterior simulation method are worth making. First, note that the model parameters do not explicitly
contain the vector of mixture weights. The mixture weights are estimated through the posterior distribution of G, which plays the
role of the relevant parameter. This is practically important in that the dimension of the parameter space does not change with M,
and we thus do not need to resort to more complex trans-dimensional MCMC algorithms. Second, the DP-based Erlang mixture model
offers an interesting example where full posterior inference can be obtained from a DP mixture model without the need to truncate
or approximate the DP prior. This is a result of the use of a marginal MCMC method, as well as of the fact that distribution G enters
the model only through increments of its distribution function, which define the mixture weights.
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2.2. Model extension for control-treatment studies

A practically relevant scenario in studies where survival responses are collected involves data from multiple experimental groups,
typically associated with different treatments. Evidently, it is of interest in these settings to compare time to event distributions across
different groups. We develop an extension of the Erlang mixture model in this direction, focusing on the case of two groups for, say, a
generic control-treatment study. Our objective is to retain the flexible modeling approach for the time to event distributions, avoiding
restrictions to specific parametric shapes or rigid relationships, such as proportional hazards. We also seek a prior probability model
that allows for dependence, and thus borrowing of information, between the two distributions.

We use the dependent DP (DDP) prior structure (MacEachern, 2000) that extends the DP prior for distribution G to a prior model
for a collection of covariate-dependent distributions, G, where x indexes the distributions in terms of values in the covariate space.
Our context involves a binary covariate x € X = {C,T}, where C and T represent control and treatment groups, respectively. The
DDP prior builds from the DP stick-breaking representation (Sethuraman, 1994) by utilizing covariate-dependent weights and/or
atoms. We work with a common-weights DDP prior model:

G.= Y ps 8y . forxex, 5)
=1 i

with p, =vy, p, =0, Hf;ll (1-v,), for # > 2, where the v, are i.i.d. from a Beta(l, &) distribution, and the atoms (p; = ((pé‘/, (p;f) arise
ii.d. from a bivariate distribution G; moreover, {v,} and {(p;} are independent sequences of random variables. Note that, under
this construction, G, follows marginally a DP(«a, G,) prior, where G, for x € X, are the marginals of G, associated with the control

and treatment groups. For G, we consider a bivariate log-normal distribution, such that ¢ | u, = RS LN,(u,X). We place a bivariate
normal, N,(fz,Z), hyperprior on p, with f and X fixed, an inverse-Wishart, inv-Wishart(r, R), hyperprior on X, with r and R fixed,
and a gamma hyperprior on the total mass parameter a.

Allowing also for group-specific number of Erlang basis densities, M., as well as group-specific Erlang scale parameter, 6,, the
extension of the Erlang mixture model in (1) can be expressed as

M,
[ = f(tIM,.0,.G) =Y o,Frt|mo,), teR", (6)
m=1
where w,,, = G, (m0,) - G (m-1)0,),m=1,...,.M,—1, and ooy, =1 G (M —1)O,). Similar to the model in (1), the group-specific
Erlang basis densities are fully specified given M, and 6,. The prior probability model in (6) induces dependence between the con-
trol and treatment group densities through the dependent distributions G and Gy in (5). These random discrete distributions have
common weights and dependent group-specific atoms. The effect of the common weights (total mass parameter «) and of the depen-
dent atoms (parameters of distribution G)) can be studied, for instance, through the covariance between random probabilities under
the time to event distributions associated with (6). The mathematical derivation of this covariance is given in the Supplementary
Material.
The survival functions, S, (r), and hazard functions, 4, (r), under the extended model have a mixture representation similar to (2)
and (3),

M, M
Sut) = Y @y Seelt Im,0,) and  h () = Y @k, () hg(t | m,0,), 7

m=1 m=1

where @}, (t) = @, Sg,(t | m,0,) /{Zfﬁ: | @ Sgc(t | m',6,)}. Note that both the mixture components and weights are indexed by x.
Again, the time-dependent weights in the hazard mixture form allow for local adjustment, and thus for flexible group-specific hazard
rate shapes. Importantly, the prior model allows for general relationships between the control and treatment group hazard functions.
In particular, inference is not restricted by the proportional hazards assumption, implied by several commonly used parametric or
semiparametric survival regression models.

To complete the full Bayesian model, we place priors on ¢, and M,, using again the role of these parameters (discussed in
Section 2.1). More specifically, for each x, the joint prior, p(0,, M,) = p(6,)p(M, | 6,). We further assume 6, ind Ga(ayg,b,y), and
M, |6, " Unif ([M,/0,1,....[M,,/6.]). We use an approach similar to the one described in Section 2.1 to specify M,; and M,
and the hyperparameters for 6,.

Posterior simulation for the DDP-based Erlang mixture model proceeds with a relatively straightforward extension of the MCMC
simulation method in Section 2.1. The details are provided in Appendix B.

The primary focus of this paper is on the DP-based Erlang mixture model for survival analysis and its extension for the control-
treatment setting. We note however that the DDP-based Erlang mixture model can be further extended to accommodate a general
p-variate covariate vector x. For example, we may consider a linear-DDP structure (De Iorio et al., 2009) to extend G, in (5) to G, =
Z;"zl Dy 5W;(x), where y/; (x) = exp((1,x")B,) with the B, i.i.d. from a baseline distribution. The structured DDP prior for G, yields
covariate-dependent mixture weights, and thus a nonparametric prior model for covariate-dependent survival densities and hazard
functions. A regression model may also be used for M and/or 6. Different from the linear-DDP mixture of log-normal distributions
in De Iorio et al. (2009), the extended model retains the parsimonious Erlang mixture structure.
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Fig. 2. Simulation Example 1. Posterior mean (dashed lines) and 95% interval estimates (shaded regions) for the density function (left panel), survival function
(middle panel) and hazard function (right panel). The red solid line in each panel corresponds to the true underlying function. The black marks on the x-axis in the
left panel show the observed survival times.

3. Simulation study

We use three simulation scenarios to illustrate the models developed in Section 2. For the Erlang mixture model for a single
distribution, we consider simulated data from: a two-component log-normal mixture to demonstrate the model’s capacity to estimate
non-standard density and hazard function shapes (Section 3.1); and a log-normal distribution sampled with different levels of cen-
soring (Section 3.2). The DDP-based extension of the model is illustrated in Section 3.3 with a synthetic data example based on a
log-normal control distribution and a two-component log-normal mixture treatment distribution, specified such that the correspond-
ing hazard functions cross each other.

For all data examples considered here and in Section 4, we used the approach discussed in Section 2 to specify the prior hyperpa-
rameters. Consistent with inference results obtained from DP mixture models, we have observed some sensitivity to the prior choice
for a. The effect on the posterior distribution for « is more noticeable for the small cell lung cancer data of Section 4.2 (involving the
smallest sample size among our data examples). However, posterior inference results for survival functionals are largely unaffected
even under fairly different priors for . When the sample size is relatively small for each group, we recommend applying the DDP-
based Erlang mixture model with a prior for « that supports small to moderate values, such as the Ga(5, 1) prior used in Sections 3.3
and 4.2.

We examined convergence and mixing of the MCMC algorithms using standard diagnostic techniques. In our experiments, we
observed that parameters § and M are highly correlated, and moderate thinning was used to improve efficiency. A general approach
we take is to run the MCMC chain for 100,000 iterations, then discard the first 25% posterior samples and keep every 38th iteration
for posterior inference.

3.1. Example 1: bimodal density

We simulate » =200 survival times from a mixture of two log-normal distributions, 0.4LN(1,0.4) + 0.6LN(2,0.2), which yields a
bimodal density and a non-monotonic hazard function. The true underlying functions f(r), S(¢) and h(r) are plotted with solid lines
in Fig. 2. Regarding prior specification, we used: a ~ Ga(2,1); { ~inv-Ga(3,4); 6 ~ Ga(1,1); and, M | 6 ~ Unif ([M,/6],....[M,/6]),
with M|, =13 and M, =3 X M,.

Posterior inference is summarized in Fig. 2. The complex features of the underlying survival functionals are captured well by the
model. In particular, the inference results for the hazard function demonstrate the effectiveness of the model structure in (3) with
the time-dependent weights allowing for local adjustment and estimation of a non-standard hazard function shape.

The posterior distribution for the common scale parameter 6 is substantially concentrated on smaller values relative to its prior,
in particular, the posterior mean and 95% credible interval estimates for 6 are 0.28 and (0.13,0.39). Recalling the definition of the
mixture weights, this indicates the level of partitioning needed to accommodate the non-standard, bimodal shape of the underlying
density. The posterior mean and 95% credible interval estimates of the number M of mixture components are 101 and (44,223).
However, the number of effective mixture components (i.e., effective basis densities) is considerably smaller than M. As an informal
rule, we identify an effective Erlang basis density through its corresponding mixture weight taking value greater than a threshold of
0.01. Then, the number of effective mixture components is about 4 (on average across posterior samples). For a graphical illustration,
Fig. 3 plots three randomly selected posterior realizations of f(¢ | M,6,G). The associated posterior draws for (6, M) are (0.2,153),
(0.33,78), and (0.25,54), whereas the number of effective Erlang basis densities is only 4, 2, and 5, respectively. The weighted effective
basis densities (i.e., w,, XEr(t | m, 8) for m such that w,, > 0.01) are also plotted in Fig. 3. This example highlights the critical importance
of the nonparametric prior for distribution G that defines the weights for the Erlang mixture model.
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Fig. 3. Simulation Example 1. Plots (a)-(c) show the posterior realization of f(¢ | M,0,G) (red solid line), based on three randomly chosen posterior samples. Each
dashed line represents the Erlang basis density Er(f | m,6) for components with w,, > 0.01, multiplied by its corresponding weight. The black solid line is the true
underlying density.

3.2. Example 2: unimodal density with censoring

For the second synthetic data example, we generate survival times from a log-normal distribution, f, e LN(5,0.6), i =
I,...,n with n =200. The priors for the model parameters are: a ~ Ga(2,1); ¢ ~ inv-Ga(3,1000); 0 ~ Ga(2,25); and M | 6 ~
Unif ([1000/6], ..., [3000/6]).

As shown in Fig. 4(a)-(c), the model estimates well the density, survival and hazard function. The point estimate for the hazard
function is less accurate beyond 7 = 400, which is to be expected given the very few observations that are greater than that time point,
although the interval estimate contains the true function throughout the observation time window.

In addition, we examine the model’s performance for data with censored observations. We simulate censoring times ¢; from an
exponential distribution with mean parameter x, and define the observed times as y; = min(#;, ¢;), with binary censoring indicators
v; = 1(y; < ¢;). We generate the ¢; under two different values of «, resulting in two datasets with different proportions of censored
observations, g = 12% and 33.5%. Fig. 4(d)-(i) plot posterior mean and 95% interval estimates for the density, survival and hazard
functionals. We note that censoring does not substantially affect the quality of the inference results, with the true function contained
in all cases within the posterior interval estimates. The width of the posterior uncertainty bands increases with the larger censoring
proportion. The increase is more noticeable for the hazard function estimates.

3.3. Example 3: a control-treatment synthetic data set

Here, we examine the performance of the DDP-based Erlang mixture model of Section 2.2. We consider a binary covariate, x; =C

or T, with 100 responses in each group, such that n = 200. We generate 7, - LN(5,0.6) for subjects with x; = C, and ¢, - 0.4LN(5,0.4)
+ 0.6LN(6,0.2) for subjects with x; = T. The true density, survival and hazard functions are shown in Fig. 5. The control group density
is unimodal, whereas the treatment group has a bimodal density and a non-standard, non-monotonic hazard function. The truth is
specified such that we have crossing hazard functions for the two groups, a scenario that traditional proportional hazards models
cannot accommodate. )

Regarding the prior hyperparameters, we set: a ~ Ga(2,1); p ~ N,((5,5.5),101L,); £ ~ inv-Wishart(4,31,); 6, e Ga(2,20); and M, |
0, e Unif( [1000/6,1,...,[3000/6,] ) As shown in Fig. 5, the model captures effectively the shape of the survival functionals, despite
the fact that the functions vary greatly across the two groups, and it successfully recovers the non-proportional hazards relationship
between the groups. Again, with respect to hazard estimation, the point estimates are generally less accurate and the interval bands
are wider for larger time points where data is scarce.

For comparison, we apply the linear-DDP (LDDP) model with log-normal kernels in De Iorio et al. (2009). R package DPpackage
(Jara et al., 2011) is used to fit the LDDP model to the dataset. While the LDDP model estimates of f, () are generally reasonable,
they show relatively poor performance, especially for ¢ < 300, where both conditions have a reasonable number of observations. This
misfit may be attributed to the linear-DDP model structure, which assumes shared weights for the conditions and linearity for the
locations. Note that the Erlang-DDP model in (6) has condition-specific weights and does not assume any particular structure on the
locations. More details are provided in Section 3 of the Supplementary Material.

For additional sensitivity analysis, we explore different specifications of the fixed hyperparameters for the priors of u and X and
refit the data. In particular, we change the specification of X, r and R. We observe that these changes had a minimal impact on the
posterior inference. Details are given in Section 4 of the Supplementary Material.
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Fig. 4. Simulation Example 2. Posterior mean (dashed lines) and 95% interval estimates (shaded regions) for the density function (left panel), survival function
(middle panel) and hazard function (right panel). The red solid line in each panel corresponds to the true underlying function, and the black and red rugs in the
left panel show the survival and censoring times, respectively. For the results in the first row, the survival times are fully observed, whereas 12% and 33.5% of the
observations are censored for those in the second and third rows, respectively.

4. Data examples

4.1. Liver metastases data

We consider data on survival times (in months) from 622 patients with liver metastases from a colorectal primary tumor without
other distant metastases, available from the R package “locfit”. The censoring proportion is high, with 259 censored responses. The
data set has been used in earlier work to illustrate classical and Bayesian nonparametric methods for density and hazard estimation;
see, e.g., Antoniadis et al. (1999) and Kottas (2006).

To apply the DP-based Erlang mixture model, we set the priors as follows: a ~ Ga(5,1); ¢ ~ inv-Ga(3,80); 0 ~ Ga(2,2); and,
M | 6 ~ Unif([100/6], ..., [300/0]). Inference results for the density, survival, and hazard function are reported in Fig. 6. The model
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Fig. 5. Simulation Example 3. Panels (a) and (b) plot the estimates for the control and treatment group density, respectively (the rug plots show the corresponding
survival times). Panels (¢) and (d) compare the estimates for the survival and hazard function, respectively. In each panel, the dashed lines denote the posterior mean
estimates, the solid line the true underlying function, and the shaded regions indicate the 95% credible intervals. Red and blue color is used for the control and
treatment group, respectively.
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Fig. 6. Liver metastases data. Panels (a), (b) and (c) plot posterior mean (dashed lines) and 95% interval estimates (shaded regions) for the density, survival and
hazard function, respectively. The rug plot in panel (a) shows observed (black) and censored (red) survival times.

estimates a unimodal survival density (with mode at about 13 months), with a non-standard, skewed right tail. The hazard rate
estimate increases up to about 17 months, stays roughly constant between 17 to 35 months, and then decreases. The width of the
posterior uncertainty bands for the hazard function increases considerably beyond 40 months, which is consistent with the fact that
there are very few responses beyond that time point, and almost all of them are censored. Density and hazard rate estimates with
similar shapes were obtained from the previous analyses in Antoniadis et al. (1999) and Kottas (2006). Overall, this example supports
the findings from the simulation study regarding the Erlang mixture model’s capacity to effectively estimate non-standard density
and hazard function shapes.
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Fig. 7. Small cell lung cancer data. Panels (a) and (b) plot estimates for the Arm A and Arm B density; the rug plots show observed (black) and censored (red) survival
times. Panels (c) and (d) compare the estimates for the survival and hazard function. In each panel, the dashed lines denote the posterior mean estimates, and the
shaded regions indicate the 95% credible intervals. Red and blue color is used for the Arm A and Arm B group, respectively.

4.2. Small cell lung cancer data

To illustrate the DDP-based Erlang mixture model with real data, we consider the data set from Ying et al. (1995) on survival
times (in days) of patients with small cell lung cancer. The data correspond to a study designed to evaluate two treatment regimens
of drugs, etoposide (E) and cisplatin (P), given with a different sequence, with Arm A denoting the regimen where P is followed
by E, and Arm B the regimen where E is followed by P. A total of 121 patients were randomly assigned to one of the treatment
arms, resulting in 62 patients in Arm A, and 59 in Arm B. The survival times of 23 patients (15 in Arm A and 8 in Arm B) are
administratively right censored.

The DDP-based Erlang mixture model is applied with x € X = {A, B}. The priors are set as follows: a ~ Ga(2,1); 6, ind. Ga(50,2);
M, 16, Unif ([2500/0,], ..., [10000/6,1); 4 ~N((6.7,6.3, 101,); and = ~ inv-Wishart(13,301,).

Posterior mean and interval estimates for the density, survival, and hazard function are compared across the two treatments in
Fig. 7. The Arm B density estimate is more peaked, and the mode under Arm B is estimated to be smaller than that under Arm
A. The posterior mean estimates for the survival functions indicate that survival time under Arm B is stochastically smaller than
that under Arm A. However, we note the overlap in the interval estimates for the two treatment survival functions for smaller time
points and, more emphatically, for time points beyond about ¢ = 700 days. Based on the hazard function posterior mean estimates,
the hazard rate under arm B is larger than that under arm A, with the exception of the time interval from about 700 to 1100 days
that corresponds to a crossing of the estimated hazard functions. In this case, there is even more substantial overlap of the interval
estimates, driven by the large posterior uncertainty for the arm B hazard rate estimate. Nonetheless, the estimates strongly suggest
that the proportional hazards assumption is not suitable for this study.

For a more focused comparison of the two treatments, Fig. 8 plots the entire posterior distribution for the difference between the
survival and hazard functions at six specific time points, 7 = 100, 300, 500, 700, 1000, and 1500 days. The lines within each violin
plot indicate the 95% posterior credible interval for Sz(r) — S,4(t) and hg(f) — h4(r), and can thus be contrasted with the horizontal
reference line at 0. Based on the 95% interval estimate, treatment A outperforms treatment B at + = 300, 500 and 700 days with
respect to survival probability, and at r = 300 days according to hazard rate.

10
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Fig. 8. Small cell lung cancer data. Panels (a) and (b) show, through violin plots, the posterior distributions of the difference between the two treatment survival and
hazard functions at six specific time points, r = 100, 300, 500, 700, 1000, and 1500 days. The short black solid lines within each violin plot indicate the 95% posterior
credible interval.

5. Summary

We have developed a parsimonious Erlang mixture model as a general methodological tool for nonparametric Bayesian survival
analysis. The model is built from a basis representation for the survival density, using Erlang basis densities with a common scale
parameter. The weights are defined through increments of a random distribution function, which is flexibly modeled with a Dirichlet
process prior. Utilizing a common-weights dependent Dirichlet process prior, the model has been extended to accommodate a cate-
gorical covariate associated with a generic control-treatment setting. The proposed methodology provides a useful balance between
model flexibility and computational efficiency. The models were illustrated with synthetic and real data examples.

Appendix A. MCMC algorithm for the DP-based Erlang mixture model

In this section, we provide details of posterior simulation for the DP-based Erlang mixture model in Section 2.1. Recall that we
have the augmented model using latent variables ¢,

M
1 1.0. M"Y 1y (x| m.0).
m=1
(@1 ¢0) | @, ¢ ~ Exp(@, m]’[{ —Exp( | O+ —— 26@@)}
¢~ 1nv—Ga(a§,b§),
0 ~ Ga(ag, by),
M |6 ~ Unif([M,/0].....[M,/0)).
a ~ Ga(ag,b,),

where B,, = ((m—1)0,m0] form=1,...,M — 1, and B, = ((M — 1)0, o). Here, Er(z | a, b) denotes the density of the gamma distribution
with shape parameter a and scale parameter b evaluated at 7, and Exp(¢ | a) the density of the exponential distribution with mean
parameter a evaluated at ¢. The likelihood function under the augmented model can be written as

Vi

Lno0.p=[T3 {15, @080, 1m0} {1, @)Su0i 1m0}, ®)

i=1 m=1

11



Y. Li, J. Lee and A. Kottas Computational Statistics and Data Analysis 191 (2024) 107874

where Sg.(y; | m,0) = f Er(u | m,0)du, ¢ = (¢,,....¢,), and D = {(y;,v;),i = 1,...,n}. The joint posterior distribution of the random
parameters, ¢,0, M, ¢, and ais

1-v;
b0 Lo D] ] Z {15, @B, 1m0} {15, @)Sec 1m0} X p( 12, OHOPORM [ 0)p(@).
i=1l m=
We use a Metropolis-within-Gibbs algorithm for posterior simulation if direct sampling is not available. The parameters in the
proposal distributions for Metropolis-Hastings update are automatically tuned by adaptive Metropolis-Hastings algorithms in Roberts
and Rosenthal (2009) for fast convergence and improved mixing. We checked mixing and convergence of the Markov chain and did
not find any evidence indicating those issues. The full conditionals are given below.

1. M and 6
» Sample M from the following categorical distribution,
. L(M =j,0,¢;D) . M M
(M =jpy|-)= [MZ] M ) JM=[71],--.,[72],
T L(M =iy.6.4:D)
=] 5]
where L(j,,0,¢; D) is the likelihood function of the augmented model in (8) evaluated with M = j,, and the current values
of ¢ and 0.

+ The full conditional of 8 is

PO | —) xGa(f | ag. by) L(M, 6, $; D).

We update 6 using a random walk Metropolis-Hasting algorithm.
+ We also jointly update (M, #) via a Metropolis-Hasting algorithm. Given the current values (M1, 9¢-D) at iteration ¢, we first
generate a proposal, 8* of 8; log(6*) ~ N(log(8“~ 1), ¢), where ¢ is an adaptive step size, and generate M* from

P MDY -l M M.
*x _ (-1) gxy_ {Gpy —M )+ 1} . 1 2
qM™ =jp | MT77,607) ] VR el B el B
T (g = MODR 1y
=] |
We then accept (6*, M*) with probability min(1,r*), where
*_ 6*p(0*)p(M* | 6*)L(M*,6*,$; D)g(M "V |99~V M*)
90D p(a-D)p(M =) | §U=D)L(M =D, 60D, ; D)g(M* | §*, M-D)’
2. ¢
Let ¢* = (¢*, ... ,q.'):*) the set of all distinct values in (¢, ...,¢,) and »* the number of elements in ¢*. The full conditional of ¢
is
n*
inv-Ga| a, +n*, b, + )" ¢*
j=1
3.«

We use the augmentation method in (Escobar and West, 1995) to update a. We first introduce an auxiliary variable #, | a,n ~
Be(a + 1,n), and sample « from a mixture of two gamma distributions;

+n* -1
al-~ a7 1 Gala, +n*, (b7 —log(n)™")
n(b7! —log(n) + a, +n* — 1

n(b;' —log(n))
n(b L —log(m) +a, +n* — 1

Ga(a, +n* = 1,(b;" —log(m) ™).

4. ¢
Let ¢/~ = (¢, -,¢) be the set of distinct values in ¢_;, where ¢_; = (¢y,....¢i_1, $iyy,....$,) and n*~ is the number of
elements in ¢~ Let n; be the number of elements in ¢_; that equal qﬁ*‘ The full conditional of ¢; is
aqy ~ " q;
——h(; 17,6, M c>+2 —— Ly ).

bl b iy .80, M ~
21 1 Jql Jj= 1aqO+Zk 1 k‘lk

aqy +
where

M-1
d0="2 {Grp(md | £) = Grp(m = 10| )} (Ex(y; | m.0)}" { S (y; | m.0)}1 ™

m=1

+ {1 = Gy (M = 1)0 | )} {Ex(y, | m,0)}" {Sgr(3; | m.0)}' ™,

12
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M-1
4= 2 Lin-nome)(@; DEXQ; | m 0} (Sgr(y; | m,0)}' ™ + L(ay_1)6,00) (¢ DEX(; | m,0)} (Sgr(y; | m, 0))' 7,

m=1

with Gg,,,(- | {) denoting the exponential distribution function with mean ¢, and

M
hid; 1,0, M,0) = Y Q, T-Exp,,(¢; |0,

m=1

with
Q,, = (Ex(y; | m,0)}" {Sg,(y; | m, )} ™% X (Gpxp(mO | {) — Gpyp((m —1)0 | C))q(;l»m= L....M-1,

Q= {Er(y; | M.0)}" (Sge(y; | M.0))'™ X (1 = Gy (M = 1)8 | O))g

Here, h(¢; | y;,0,M,{) is a mixture of truncated exponential distributions, and T-Exp,,(¢ | ¢) is the density function of the
truncated exponential distribution with mean parameter { with the support ((m — 1)8,mf]. ¢, is equal to ¢;’ with probability

n;q;/ A, where A =aqy + 22:1 nyqy; or it is drawn from h(¢; | 1;,0, M, (). The inverse-cdf sampling method can be used to draw
a sample from h(¢; | 1;,0, M, {).

Appendix B. MCMC algorithm for the DDP mixture model

We present here the posterior simulation details for the model developed in Section 2.2. The augmented model using latent
variables @; = (¢¢;, @r;) is written as

M,
ind. .
1] My Oy 05, ~ D 1p (@ JEXG|m.6,). i=1.....n, and x; € (C.T},
=1

m:

n i-1
1
@19 [~ INy(y | D] ] { N D) —— Z%((M} ’
i=2 j=I1

6. Ga(ay, bg),

M, 10, " Unif([ M, /0,1, ... [M,3/0,]).
« ~ Ga(ay.b,),
1~ Ny, Z),
¥ ~ inv-Wishart(r, R),

where B, ,, =((m— 10, ,m6, 1form=1,....M, — 1, and B, p, = (M, — 1), ,o0). The likelihood function for the augmented model
for observation i is

M, Vi, -y
LM, .0y, 0 i D) =| D 1p (@ DB Im0) | | X Lp (0, )Ssvi I m6,) |
m=1 m=1

where D = {(y;,v;,x;),i = 1,...,n} denotes data. Similar to the algorithm in Appendix A, we use an adaptive Metropolis-within-
Gibbs algorithm in Roberts and Rosenthal (2009) for the Metropolis-Hastings updates. Mixing and convergence of Markov chain are
checked, and no evidence indicating those issues is found. The full conditionals are given below.

1. M =(Mq, My)
Sample M from the following categorical distribution,

. _ LcUm-0c.9:D) .| Mc Mey
PMc=jy 1 =)= —5— oI = b e |
[ oc ] : ¢ ¢
Z My Lc(lMggc»(PQD)

=] et |
where Le(jps,0c.9:D) = Hi:x,:C L;(jar0c, 9cis D). We then draw My in a similar way.
2. 0=(0c,07)
The full conditional of 0 is

n
PO =) xGaOc | acy, be)GaOr | arg,brg) [ [ LiM,,. 05, 0,3 D).

i=1

We use the algorithm in Roberts and Rosenthal (2009) to sample 6. Let 0¢-D = (G(CH), 0?71)) the current values of 6. A proposal
of 0 is generated from

13
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log(6*) ~0.95N(log(8~1),2.382 /2%, + 0.05N(log(6“~1),0.01/21,),

where ¥, is the empirical covariance matrix of log(0) based on the run so far. Then we accept 6* with probability min(1,r*),
where

. 026‘; Ga(Gé lacg, bCQ)Ga(H_; | arg.brg) H,L] LM, 0;_ 2 @x,.i3D)

r’= .
-1 -1 -1 -1 -1
0870 "Ga(0l ™" | acy. beg)Gay ™" | arg. br) TT1; LM, .05 0, ;D)

3. u
Let * = (o7, ... ,qo:*) be the set of distinct values in ¢, where n* is the number of elements in ¢*. The full conditional of u is

Np(uy, %),

where

n*

2= g5+ and = |5 a s Y logef) |.
i=1
4. X
The full conditional of X is

inv-Wishart(r*, R*),

where
o
r*=r+n*and R* =R+ Z(log((p:‘) - w(log(¢}) - w'.
i=1
5. «a
We use the augmentation method in Escobar and West (1995) to update «. We first introduce an auxiliary variable n, | a,n ~
Be(a + 1,n), and sample « from a mixture of two gamma distributions;

a,+n*—1 .o y
= Ga(a, +n*,(b>"' —1o
! n(b7! —log(m) + a, +n* — 1 (@q (b, —log(m)™)
n(b," —log(m)
: e Ga(a, +n* = 1,(b;" —logtm)™).
n(b7! —log(n) + ag +n* — 1

6. ¢
Let @~ = (@] ,...,@).) be the set of distinct values in ¢_; = (@y,....@;_1, @i, .- @,), where n*~ is the number of elements

in @}". Let n; be number of elements in ¢_,; that is equal to q)j’.". The full conditional of ¢; is

n*-

a
[i(l_ — he; |y, u.Z,0,M) + Z —
o114 =1 @do+ X 4

nijj
¢ lo_i,uZ,0,M,D~ Spr= (@),
aqy + /
where, for x; =C,

Me—1
do=" Y, {Er(y; | m00)} {See(y; | m,0c)}

m=1
XA{GinmOc | peyrs Zepr) — (Gin((m = DOc | per, Zepr) }
+{Ex(y; | M, 00} {Sg(0; | M, 00)} ™ {1 = Gin((M¢ — DOc | ey Zepr)}s

Mc—1
4= Lmotyoemoc)(@E ) EX@;Im, 000} {Sge(y;|m, 0}~

m=1
+ ]1((MC_1)9C,00)(</7Z,-_){Er(yilMcvoc)}vi {SEr(yi|Mcaec)}l_v’,
Hepr = #1+ 21/ Zn(er — 1),
2C|T =% - Z12221/222
with Gin( | feprs Zcjr) denoting a lognormal distribution function with mean uc; and variance X7, and

Mc
h(@; |y, u. 2,60, M) =LN(or; | uy,Z11) X 2 Q, T-LN,(@c; | ucyr-Zcir)

m=1

with
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Q,, ={Er(y; | m, Gc)}vi {Sg: (v | m, Gc)}l_v' X {GLN(mec | MC|T’ZC|T) - Gin((m— 1)0C | Mc|T»2c|T)}qals form=1,... M - 1,
Qu = (Ex(; | Mc,00))" (Sgr(v; | M. 00)}' ™ X {1 = Gin((Me = DOc | neyrZeyr) Vg -
Similar to the algorithm of updating ¢, for the DP-based Erlang mixture model, we let ¢, = ¢J’,“ with probability n;q;/ A,

where A =aq, + Z;’; n, q;, or draw a new @; from h(g; | y;, .2, 0, M) with probability agy/A. To draw a sample from h(e; |
Vi, 1. 2,0, M), we first draw @7; from LN(y,%;;) and then, conditional on ¢r;, draw ¢; from a mixture of truncated lognormal
distributions using an inverse-cdf sampling method, where each component, T-LN,, is a lognormal distribution with support of
((m —1)8., mb]. The same method is applied for the observations with x; =T by simply switching C with T.

Appendix C. Supplementary material
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2023.107874.
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