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A B S T R A C T

Various contextual information has been employed by many approaches for visual detection tasks. However,
most of the existing approaches only focus on specific context for specific tasks. In this paper, GMC, a general
framework is proposed for multistage context learning and utilization, with various deep network architectures
for various visual detection tasks. The GMC framework encompasses three stages: preprocessing, training,
and post-processing. In the preprocessing stage, the representation of local context is enhanced by utilizing
commonly used labeling standards. During the training stage, semantic context information is fused with visual
information, leveraging prior knowledge from the training dataset to capture semantic relationships. In the
post-processing stage, general topological relations and semantic masks for stuff are incorporated to enable
spatial context reasoning between objects. The proposed framework provides a comprehensive and adaptable
solution for context learning and utilization in visual detection scenarios. The framework offers flexibility
with user-defined configurations and provide adaptability to diverse network architectures and visual detection
tasks, offering an automated and streamlined solution that minimizes user effort and inference time in context
learning and reasoning. Experimental results on the visual detection tasks, for storefront object detection,
pedestrian detection and COCO object detection, demonstrate that our framework outperforms previous state-
of-the-art detectors and transformer architectures. The experiments also demonstrate that three contextual
learning components can not only be applied individually and in combination, but can also be applied to
various network architectures, and its flexibility and effectiveness in various detection scenarios.
1. Introduction

Contextual information plays a significant role in various computer
ision tasks, encompassing both visual and non-visual data related to
he appearance of a target, be it an object or an event. When objects are
ncountered without proper context, such as in object recognition, the
ask can become challenging. However, leveraging contextual cues can
ffer vital insights for accurate target recognition. In tasks involving
ideos, like action or event recognition, temporal context becomes cru-
ial in predicting future occurrences. For instance, if a person walking
s partially obscured by a car or a telegraph pole in the current frame,
nformation from adjacent frames (previous or next) can aid in locating
nd detecting the occluded person.
In object detection tasks, the presence of other objects within the

cene can influence the identification of a target object. These contex-
ual cues can reveal co-occurrences and object locations. For instance, a
ainting should typically be found on a wall rather than on the ground.
nowing that there is a desktop on a table increases the likelihood
f finding a keyboard and a mouse nearby. Furthermore, additional
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contextual information such as locations, dates, and environments can
further enhance the likelihood of detecting objects or events.

A comprehensive survey on context understanding in computer
vision can be found in our recent survey paper (Wang and Zhu, 2023).
In this paper,we propose a General framework of Multi-stage Context
learning utilization (the GMC framework) for visual detection tasks. The
GMC framework incorporates different forms of contextual information,
works for different visual detection tasks, and can use different network
architectures (Fig. 1). The forms of context information include local
context in the data labeling stage, semantic context in the model
training stage, and spatial context among objects to be detected in the
post-processing stage. This framework aims to offer the generality of
using context in various tasks and with various architectures, in order
to improve performance in various visual detection tasks.

In the domain of visual object detection, bounding boxes are widely
used to represent the spatial location of objects. Crowdsourcing
platforms like Amazon’s Mechanical Turk (AMT) are commonly em-
ployed to annotate large datasets such as MSCOCO (Lin et al., 2014)
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Fig. 1. The overview of GMC, our general framework of multi-stage context learning
and utilization for visual detection tasks. We design a user configuration mechanism
for automating the process for various detection tasks and with different network
models. Each context component is guided by user-defined parameters with minimum
modification of the system when applying to different deep learning models and visual
tasks.

and ImageNet (Deng et al., 2009), heavily relying on human labelers.
ypically, human labelers manually draw tight bounding boxes around
bjects to maintain label consistency. However, when dealing with
mall objects, using tight bounding boxes may not provide sufficient
ocal contextual information for accurate recognition. In some cases,
ven human observers struggle to recognize small objects due to their
mall sizes. Moreover, viewing the entire scene allows for even easier
ecognition by incorporating a more global context, despite the size of
small object in the image.
Previous studies such as Lim et al. (2021), Leng et al. (2021)

have demonstrated the importance of contextual information from the
surrounding areas of small objects in achieving successful detection
results. However, these studies typically utilize deep learning models to
extract and refine features from these small objects, which can increase
computational costs. In fact, one straightforward approach to leverage
local context for small objects is to directly include their surrounding
areas in the images during the labeling process, thereby providing
explicit contextual information.

In this work, we propose an automatic local context representation
hat enhances the original bounding boxes for specific objects. This al-
ows us to incorporate local context prior to the model training step, by
imply using the two most commonly used definitions of small objects
n computer vision tasks. By adopting this approach, we aim to exploit
he benefits of local context while mitigating the potential increase in
omputational complexity associated with deep learning-based feature
xtraction methods.
Semantic context plays a crucial role in successful object detection

y providing valuable information. Even without visual cues, knowing
hat a scene is set in an urban street environment allows us to make
ducated guesses about the presence of pedestrians, bicycles, vehicles,
nd other relevant objects. The labels assigned to objects within a scene
n a training dataset can also provide prior knowledge regarding the co-
ccurrence relationships between different labels. Previous studies such
s Li et al. (2014, 2016b), Lee et al. (2018) have demonstrated the effec-
iveness of using graphs to model label correlations. For instance, Chen
et al. (2019) proposed a framework that leverages graph-based label
dependencies for multi-label image recognition. Wang et al. (2022)
odel the highly correlated storefront objects using the co-occurrence
f the related objects and leverage the context information for better
etection performance.
Inspired by these approaches, we extend the idea we proposed

n Wang et al. (2022) for storefront accessibility detection, and in-
roduce a mechanism that allows easy user configuration to automate
he generation of a contextual graph and the retrieval of word embed-
ings from pre-trained language models. This mechanism enables the
 g

2

daptation of context learning models to various visual detection tasks.
ithin our framework, a Graph Convolutional Network (GCN) (Kipf
nd Welling, 2016) is utilized to learn from the contextual graph. By
ncorporating word embeddings, the GCN builds a semantic space and
rojects visual features extracted by the object detector into this space
or the final classification stage. This integration of semantic context
nhances the accuracy and performance of the object detection system.
Real-world scenes often exhibit spatial relationships between ob-

ects (i.e., spatial context ), where certain objects tend to appear together
r have specific spatial arrangements. For instance, a keyboard and
mouse are commonly found together, with the mouse typically po-
itioned to the right of the keyboard. Yang et al. (2015) proposed a
aceness-Net that leverages spatial relationships between facial parts,
uch as the hair appearing above the eyes and the nose appearing
elow the eyes. Similarly, another work (Yang et al., 2019) intro-
uced a spatial-aware network that models relative locations among
ifferent objects to improve object detection performance. Recent pa-
ers (Wang et al., 2022; Chacra and Zelek, 2022) have also utilized
pecific spatial relationships for tasks like storefront accessibility detec-
ion and scene graph generation. However, these methods often employ
ard-coded spatial relationships tailored to their specific tasks, making
t challenging to generalize them to other tasks without significant
odifications.
To address this limitation and provide a more general approach to
odel spatial relationships, topological relationships can be beneficial
or capturing object relations, as shown in Fig. 1. In this work, we
xtended the idea and propose a more generalized approach to model
patial relationships between objects for visual detection tasks. By
tilizing a user configuration mechanism, we maximize flexibility in
efining object relations without the need for code modifications.
While contextual information has been employed in specific com-

uter vision tasks, such as data augmentation (Dvornik et al., 2018),
emantic reasoning during training (Zhu et al., 2021; Chen et al., 2019;
ang et al., 2022, 2023), and post-processing (Fang et al., 2017; Wang
t al., 2022, 2023), there is a lack of research on a comprehensive
eneral framework that guides context learning across data labeling,
odel training, and post-processing stages in a generalized manner.
n our previous work (Wang et al., 2022), we proposed a context
earning framework for storefront accessibility detection that covered
hese stages. However, the framework was specifically designed with
ontext learning mechanisms tailored to storefront accessibility de-
ection. Therefore, significant code modifications were necessary to
dapt it to different tasks. In a follow-up work (Wang et al., 2023),
e proposed a framework for different visual detection tasks in urban
cenes. However the framework only works with one single network
rchitecture, and the experiment on the second example (the pedestrian
etection) is very limited; There are no available contexts for spatial
ontext reasoning and the result only achieves minor improvement over
he baseline network.
In this work, we present a general context learning and reasoning

ramework with various deep learning models, applicable to various
isual detection tasks, and therefore offering greater flexibility and
daptability without requiring extensive code changes. As an extended
ersion of our previous work (Wang et al., 2022, 2023), this paper
emonstrates the versatility and adaptability of our context compo-
ents by successfully applying them to different deep learning models
ith minimal modification. The pedestrian detection task is greatly
nhanced with more categories of contextual objects and includes all
he three stages of context reasoning. We also tested the framework
n a large detection benchmark—MSCOCO dataset, showing promising
esults.
The proposed context learning and reasoning framework for visual

etection tasks offers several noteworthy aspects. Firstly, it introduces
comprehensive approach consisting of three key components: Local
ontextual Representation (LCR), Semantic Context Fusion (SCF), and

eneral Spatial Context Reasoning (SCR). The LCR component improves
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recognition accuracy for specific objects especially small objects by
incorporating their local context, while the SCF component models se-
mantic relations using a contextual graph, capturing co-occurrence and
contextual dependencies. Additionally, the SCR component leverages
topological relationships and semantic masks to incorporate general
spatial relations between objects. The framework’s flexibility allows
for easy adaptation to different tasks, without requiring extensive code
modifications. Overall, this framework presents a valuable contribu-
tion to the field of visual detection by providing a comprehensive
and adaptable solution that enhances context learning and reasoning
capabilities.

As some highlights, the local context representation and seman-
tic context fusion components are seamlessly integrated into diverse
models, ensuring an automated adaptation process in using ground
truth labels and prior knowledge. This integration is also designed to
empower users with the flexibility to tailor the components according
to their specific requirements through the utilization of user-defined
parameters. Moreover, we have introduced a novel general spatial con-
text reasoning component that combines topological relations between
objects and semantic masks. This combination allows our framework
to easily adapt to various visual detection tasks, providing a powerful
tool for improving detection performance in diverse scenarios with
more accurate results. We provide user flexibility to configure the
spatial relations because the user configuration can offer meaningful
definitions of important spatial relations as the first step, and then
our Spatial Context Reasoning (SCR) component will autonomously
generate relation parameters, such as overlapping thresholds based
on the provided information in the user configuration, by modeling
subject–object ground truth labels. Overall, our approach not only
enhances the effectiveness of context learning and reasoning in visual
detection but also simplifies the integration process, making it readily
applicable to a wide range of deep learning models and tasks.

In summary, the main contributions of this paper are:

• We introduce a general framework for multistage context learning
and utilization, with three context components to leverage local
context, semantic context and spatial context. This combination
of components provides a holistic solution to address context
learning and reasoning in visual detection tasks.

• Our framework proposed in this work is designed to be applicable
to any deep learning models. This versatility makes the frame-
work highly versatile and empowers users to leverage its benefits
across different object detection tasks, regardless of the specific
deep learning model employed.

• Our framework is not limited to a specific visual detection task
but can be applied to various visual detection tasks, including
storefront object detection and pedestrian detection as our ex-
amples. Its flexibility and adaptability enable users to utilize
the framework across a wide range of visual detection tasks,
benefiting from its context learning and reasoning capabilities.

• Our framework has the ability to incorporate different types of
context information at various stages of the detection process.
It provides a unified framework that can effectively integrate
and utilize these contextual cues at the appropriate stages, such
as during data preprocessing, model training, or post-processing.
This capability enhances the overall performance and robust-
ness of the detection system by harnessing diverse sources of
contextual information to improve object understanding and lo-
calization.

The paper is organized as follows. Section 2 discusses related work.
Section 3 proposes our general context learning and reasoning frame-
ork and describes each component in detail. Section 4 discuss how
he general framework work with various deep learning network ar-
hitectures with minimal modification of the code. Section 5 discuss
he use of the general framework for three different tasks, including a
escription of the three datasets (Section 5.1), and the experimental
esults (Section 5.3). Finally, Section 6 provides a few concluding
emarks.
3

. Background and related work

In this section, we will start with a general survey of the literature
n context learning and utilization for computer vision tasks, then
ove on the use of context information in object detection, and finally
ocus on pedestrian detection—a particularly important task that poses
hallenges and opportunities in using context information.

.1. Context learning and utilization

Humans use visual context effortlessly to perceive the real world. An
bject hanging on the wall is probably a painting, not a car. A doorknob
hould be within the frame of a door, not on the ground. Contextual
nformation provides critical information to help us visually find and
ecognize objects faster and more accurately. Not only in human per-
eption, contextual information also plays an important role in many
omputer vision tasks, such as object detection (Du et al., 2012; Fang
t al., 2017; Sun and Jacobs, 2017; Zhu et al., 2016, 2021), video event
ecognition (Wang and Ji, 2015, 2016), video action detection (Yang
t al., 2019; Zhu et al., 2013), scene graph generation (Xu et al., 2017;
ellers et al., 2018), data augmentation (Dvornik et al., 2018), image
lassification (Mac Aodha et al., 2019), and image inpainting (Pathak
t al., 2016). In these tasks, different forms of contextual information
ave been employed. The contextual information used in the literature
ncludes: global context (Zellers et al., 2018), local neighborhood con-
ext (Pathak et al., 2016; Dvornik et al., 2018; Du et al., 2012), prior
emantic knowledge (Wang and Ji, 2015, 2016), geographic informa-
ion (Mac Aodha et al., 2019), spatial relation between objects (Sun and
acobs, 2017; Xu et al., 2017; Zellers et al., 2018; Yang et al., 2019)
nd temporal information (Wang and Ji, 2015, 2016; Yang et al., 2019;
hu et al., 2013).
Context information has been widely used in many computer vision

asks. Dvornik et al. (2018) show that the visual context surrounding
bjects is crucial to predict the presence of objects. A serial work (Wang
nd Ji, 2015, 2016) introduces a hierarchical context model to recog-
nize events in videos. Wang et al. (2022) make use of various contextual
information by applying a unified multi-stage framework in context
learning and utilization from data labeling, model training, to object
detection and result evaluation.

Context has been integrated in different ways in visual detection
tasks. Many visual detection tasks (Yang et al., 2015; Chen et al., 2019;
Pathak et al., 2016; Leng et al., 2021; Li et al., 2016a; Mac Aodha et al.,
019; Yang et al., 2018) implement context information into the back-
one models and aggregate with the features extracted from context-
ree methods. Deep learning methods mainly have four stages: data
re-processing (including labeling), model training, post-processing,
nd result evaluation. Context information has either been aggregated
uring the training stage or used in the post-processing stage. No
eneral pipelines have been proposed on how we can incorporate
ontext through the whole process stages. Although different context
ntegration can be used in a single stage or in multiple stages, a general
ipeline is needed to guide the integration for context. Our proposed
ramework employs different forms of context information through the
ntire deep learning process, and each component is easy to add and
emove from an object detector.

.2. Object detection

Contextual information plays a crucial role in understanding
atural scenes and images for object detection, as it provides rich
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information about the relationships between objects and the overall
scene. However, the evaluation of context models has primarily fo-
cused on improving object detection performance for particular tasks,
overlooking more general applications of contextual information. In
the domain of urban scene object detection, various methods have
been proposed, addressing specific tasks such as text detection and
recognition (Du et al., 2012; Zhu et al., 2016), zebra crossing detec-
tion (Ahmetovic et al., 2015), curb detection (Cheng et al., 2018; Sun
and Jacobs, 2017), and storefront accessibility detection (Wang et al.,
2022).

For example, Du et al. (2012) and Zhu et al. (2016) focused on
text detection in street environments. Cheng et al. (2018) proposed a
ramework for road and sidewalk detection using stereo vision in urban
egions. Sun and Jacobs (2017) aimed to identify missing curb ramps
t street intersections by leveraging the pairwise existence of curb
amps. Our recent work (Wang et al., 2022) introduced a multi-stage
ontext learning framework specifically designed for storefront acces-
ibility detection, utilizing category-specific relations. These examples
emonstrate that context modeling has been applied to various urban
cene object detection tasks beyond traditional object recognition. It
ighlights the potential of exploiting different types of contextual in-
ormation to improve the performance of detection systems in diverse
eal-world scenarios. In this paper we propose a general context learn-
ng and reasoning framework which could be adapted to various visual
etection tasks.
Contextual information, particularly prior knowledge, has played a

rucial role in advancing object detection tasks. Fang et al. (2017) intro-
uced a knowledge-aware object detection framework that incorporates
xternal knowledge, such as knowledge graphs, into object detection
lgorithms. By leveraging a knowledge graph, which represents real-
orld concepts and their interactions, this framework enables the
odeling of semantic consistency. Even concept pairs that are not
irectly connected in the graph can benefit from this approach, leading
o enhanced generalization capabilities.
Similarly, Zhu et al. (2021) explored the integration of semantic

ontext and visual information for the task of few-shot object detection.
heir work focused on explicit relation reasoning and utilized word
mbeddings to represent class labels. By establishing semantic relation
onsistency between base and novel classes, the aim was to bridge
he domain gap between visual and language information. Incorporat-
ng semantic consistency principles, their framework improved object
etection by optimizing for better alignment with prior knowledge.
Building upon these concepts, our general framework embraces

he notion of semantic consistency to quantify and generalize knowl-
dge, resulting in improved object detection performance through a
e-optimization process. In addition, our framework adopts a context-
ware approach to object detection, considering both visual context and
rior knowledge context. By incorporating both types of context, our
ramework provides a more comprehensive and enriched understand-
ng of the scene, leading to more accurate and robust object detection
esults.
Indeed, context can be leveraged not only for detecting objects but

lso for predicting their presence or absence in an image. Sun and
acobs (2017) conducted a unique vision task focused on identifying
he absence of objects in an image, specifically curb ramps. This work
xtensively utilized local and spatial context information to determine
he locations where curb ramps should exist.
Similarly, in our proposed framework, we emphasize the importance

f local context representation surrounding small objects. This local
ontext provides valuable information that can indicate both the loca-
ion and category of the object. By incorporating this local context into
ur general framework, we aim to enhance the detection and prediction
apabilities, enabling more accurate understanding of the scene and

bject presence even in the absence of explicit object instances. f

4

.3. Pedestrian detection

Pedestrian detection in urban scenes presents unique challenges
ue to factors such as heavy occlusion and small-scale pedestrian
mages. Several papers have focused on addressing these challenges
nd improving the performance of pedestrian detection algorithms. For
xample, Cai et al. (2016) proposed a unified framework for pedestrian
detection that incorporates contextual information to handle occlu-
sion. Zhang et al. (2017) introduced the CityPersons dataset specif-
ically for pedestrian detection in urban environments and proposed
a scale-aware network to tackle the problem of detecting small-scale
pedestrians.

Other works have explored different approaches to handle occlusion
in pedestrian detection. Zhou and Yuan (2018) proposed an attention-
based method that focuses on visible parts of partially occluded pedes-
trians, improving the detection accuracy in challenging scenarios. Wu
et al. (2020) introduced a part-based detection framework that lever-
ages feature transformation to handle occlusion and improve detection
performance.

Despite the progress made by CNN-based pedestrian detectors, there
are still limitations in detecting small-scale and heavily occluded pedes-
trians. These challenges require further exploration and innovation in
the design of detection algorithms. For example, the integration of
additional context information beyond a single image, such as global
scene context and temporal context, could potentially improve the
performance of pedestrian detection systems in real-world scenarios.
This is beyond the scope of this paper; more details can be found in
our recent survey paper (Wang and Zhu, 2023).

Pedestrian detection in urban scenes is a challenging task that
has garnered significant attention in the computer vision commu-
nity. Several papers have focused on addressing the unique challenges
associated with detecting pedestrians in such environments. While
approaches like Faster R-CNN have become popular for pedestrian
detection, they often fall short in effectively handling heavily occluded
pedestrians and small-scale pedestrians. Limited progress has been
made in leveraging local context information specifically for these
scenarios, resulting in sub-optimal detection performance.

To address this gap, our proposed novel framework integrates local
context for small-scale and occluded pedestrian detection in urban
scenes. Our approach incorporates general topological relations among
objects to facilitate spatial reasoning. By considering the relation-
ships (including occlusions) between objects, we can reason about
the presence and location of pedestrians, even in challenging situ-
ations. Notably, our framework goes beyond improving pedestrian
detection alone; it also enhances the detection results for other objects
in the scene. By leveraging the synergistic effects of contextual compo-
nents, our approach aims to achieve superior performance compared to
existing methods.

By emphasizing the importance of local context and introducing
general topological reasoning, our framework offers a comprehensive
solution for pedestrian detection in urban scenes. Note that the general
framework is not specially designed for pedestrian detection but the
system can be configured to tackle these two challenges in pedestrian
detection. Through the incorporation of contextual cues and the utiliza-
tion of interplay between different components, we can overcome the
limitations of traditional approaches and improve detection accuracy.
Ultimately, our work contributes to advancing the understanding of
urban scenes and objects, opening up new possibilities for real-world
applications.

3. General framework and context components

Our proposed GMC framework, as detailed in Fig. 2, consists of three
ey context components: local context representation, semantic context

usion, and spatial context reasoning. These components can be applied
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Fig. 2. Details of our GMC framework, the general framework of multi-stage context learning and utilization for visual detection tasks. We design a user configuration mechanism for
automating the process for various detection tasks (e.g., storefront object detection, pedestrian detection), using different base detectors (e.g. a CNN model Faster R-CNN (FRCNN)
and a transformer model DETR. Three context learning and utilization components—(a) Local Context Representation, (b) Semantic Context Fusion, and (c) Spatial Context
Reasoning, guide the deep learning models during data labeling, model training and post-processing stages. Each component can be applied individually and in combination. GT :
round Truth. LC: Local Context. S: Subject. O: Object.
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ndividually or in combination with a given visual detection network
rchitecture to enhance object detection performance.
The local context representation component (Section 3.1) focuses on

apturing local contextual information specific to the objects of interest.
y incorporating local context features in the data labeling stage, this
omponent improves the accurate detection of objects, particularly
mall-scale or occluded ones, by leveraging relevant contextual cues.
he semantic context fusion component (Section 3.2) integrates seman-
ic information with visual context to capture object relationships. By
ombining prior knowledge and/or learning from the training dataset
n the model training stage, this component enhances the detection
etwork’s understanding of the scene and improves its ability to dis-
riminate and classify objects. The spatial context reasoning component
Section 3.3) introduces a general topological relation between object
ategories to optimize detection results. By considering the spatial rela-
ionships between objects in the post-processing stage, such as ‘‘above’’,
‘under’’, or ‘‘within’’, this component refines detection outputs based
n their spatial arrangements. This spatial context reasoning enhances
he detection network’s localization accuracy and object classification
erformance by incorporating topological reasoning into the detection
rocess.
An automated process is implemented for each component with sim-

le user defined parameters. In local context representation component,
e apply an automatic local contextual labeling approach to enhance
he original bounding boxes for small objects in order to employ local
ontext before the model training step, by using the two most used
efinitions of small object in computer vision tasks. In semantic context
usion component, we automate the process for generating a contextual
raph by leveraging label occurrence knowledge from training data,
nd automatically searching the word embeddings from a pretrained
anguage model. In spatial context reasoning component, we adopt user
onfiguration for important spatial relations of objects as guidelines, to
utomatically generate the spatial relation thresholds, which maximize
he flexibility for object relation definition, without code modifications.
In the following sections, we will provide detailed explanations
f each component within our proposed general framework. Through i

5

Fig. 3. An utilized local context representation. The local context calculator is guided
by user-defined parameters and enhance the local context around the ground truth
label of the object. GT : Ground Truth. LC: Local Context. FI : Final Input.

ome user-defined parameters related to a given visual detection task
nd the chosen base detector, the GMC framework can be easily con-
igured to form an end-to-end model for the task.

.1. Local context representation

The concept of local context for objects, particularly small ones,
akes center stage in the Local Contextual Representation (LCR) compo-
ent. In the realm of computer vision, categorizing an object as ‘‘small’’
s not always clear-cut. Factors like shooting angles and environmental
onditions can render an object that is deemed ‘‘small’’, such as a spoon,
ppearing quite ‘‘large’’ within an image. Hence, the notion of smallness
inges on an object’s size relative to the context of the image, as ex-
lained further below. The procedural essence is graphically illustrated
n Fig. 3. A local context calculator is at the heart of this process, guided
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by user-defined parameters specific to LCR. This calculator works to
enrich the local context surrounding the ground truth label of the
targeted object. To initialize this local context calculator, we introduce
two commonly embraced standards for characterizing small objects.
The Local Context Representation (LCR) component operates during
the data preprocessing stage, focusing solely on the labeling standard
and the specified enlargement percentage for small objects ( Table 1).
This component automatically processes the labels before they are fed
into the network, ensuring seamless integration without introducing
additional inference complexity.

Within the COCO dataset (Lin et al., 2014), small objects are defined
as those whose dimensions are 32 × 32 pixels or smaller, within the
confines of an image with a fixed size of 640 × 480 pixels. Another
efinition, as detailed in Chen et al. (2017), relates to situations where
he overlap area between the ground truth bounding box and the image
emains below 0.58%. Given the robustness and widespread adoption
f these definitions in the research community, we employ them as
eference points for automating the labeling process for small objects.
e include the surrounding local context of the bounding box 𝐵 of an
bject 𝑂 in image 𝐼 if the object satisfies with the COCO standard for
small object as:

′
𝑂 =

{

(1 + 𝛼)𝐵𝑂 , if 𝐵𝑂 < 32 × 32
𝐵𝑂 , otherwise

(1)

f the small object satisfies with the second standard—the Small Object
ataset (SOD) Standard (Chen et al., 2017), we include the local
ontext of the bounding box 𝐵 of the object 𝑂 in image 𝐼 by:

′
𝑂 =

{

(1 + 𝛽)𝐵𝑂 , if 𝐵𝑂
𝑅𝐼

< 0.58%

𝐵𝑂 , otherwise
(2)

he above equations introduce notations representing the original and
pdated bounding boxes of the ground truth label for a small object.
hese notations, 𝐵𝑂 and 𝐵′

𝑂 respectively, are utilized in the context
f the user-defined parameters for the Local Context Representation
LCR) component. Firstly, the parameters 𝛼 and 𝛽 hold significance as
xtending factors, expressed in terms of a percentage, from the original
ounding boxes. These factors are related to two distinct standards:
he COCO standard and the SOD standard. The resolution of the input
mage, denoted as 𝑅𝐼 , is automatically determined. This automatically
alculated resolution serves as a crucial component in the calculation
f these factors. Secondly, the framework affords users the liberty to
hoose between the two contextual labeling standards. Should a given
mall object meet the criteria of both definitions, the user can opt
or the standard that best aligns with their requirements. Importantly,
oth the original bounding boxes and the enlarged bounding boxes are
etained for all small objects that conform to the user-selected standard
or both training and testing sets. This dual retention strategy serves the
ual purpose of integrating local contextual information and enhancing
he detection’s robustness. The forthcoming sections will delve into the
pecifics of the experimental settings in Section 5.2, elaborating further
n these parameters and their implications.

.2. Semantic context fusion

Semantic information indeed plays a crucial role in visual detection
asks, providing valuable insights to enhance the detection process.
o ensure a seamless and automatic Semantic Context Fusion (SCF)
nto our framework, we have introduced the SCF user-defined pa-
ameters, namely, the categories of a given visual detection task and
he text embeddings used in the task. For example, for a storefront
bject detection task, they are door, doorknob, stair. For pedestrian
etection, they include pedestrian, vehicle, bicycle (bike), motorcycle,
tc. These parameters act as guiding factors for the model to learn
nd incorporate semantic context using text embeddings. The text
mbeddings, obtained from pre-trained language models, are utilized

o generate semantic spaces that can be effectively fused with the

6

Fig. 4. The visualization of Semantic Context Fusion. We use category information as
the semantic context cues to generate semantic spaces for visual detection tasks.

visual information obtained from the detection process. This integration
of semantic context with text embeddings allows our framework to
automatically leverage valuable semantic information to improve the
overall detection performance, while minimizing the need for extensive
component modification.

In our framework, the fusion of semantic context is depicted in
Fig. 4. When the framework receives category information from the SCF
user configuration, it proceeds to search for word embeddings 𝐻𝑙𝑎𝑏𝑒𝑙𝑠 ∈
𝑛×𝑑 from a pretrained language model (such as GloVe Pennington
t al., 2014). Here, 𝑛 represents the number of label categories, and 𝑑
enotes the dimensionality of the word embeddings. Subsequently, an
utomatic generation of the contextual graph takes place. The Graph
onvolutional Network (GCN) is then employed to learn semantic re-
ations within the contextual graph, effectively constructing a semantic
pace. This semantic space is obtained by transforming the label feature
epresentation, resulting in 𝐻 ′

𝑙𝑎𝑏𝑒𝑙𝑠 ∈ R𝑛×𝐷, where 𝐷 represents the
imensionality of the region features extracted from the object detector.
s illustrated in Fig. 2, the region features 𝑓𝑟𝑒𝑔𝑖𝑜𝑛𝑠 ∈ R𝐷×𝑁 are projected
into the semantic spaces 𝐻 ′

𝑙𝑎𝑏𝑒𝑙𝑠. Ultimately, the final output is derived
from this process:

𝐏𝑟𝑒𝑔𝑖𝑜𝑛𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻 ′
𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑟𝑒𝑔𝑖𝑜𝑛𝑠) (3)

where 𝐏𝑟𝑒𝑔𝑖𝑜𝑛𝑠 represents the classification probability distribution for
each proposed region, and 𝐏𝑟𝑒𝑔𝑖𝑜𝑛𝑠 ∈ R𝑛×𝑁 .

As the category information is provided by a given task, our system
automatically generates a contextual graph between different cate-
gories, leveraging prior label occurrence knowledge extracted automat-
ically from the training data. Additionally, we autonomously search for
pretrained word embeddings from the dictionary (Pennington et al.,
2014) without requiring extra information. The SCF (Semantic Context
Fusion) component, armed with the prebuilt contextual graph and
pretrained word embeddings, ensures minimal additional complexity.
The user-defined parameters for the SCF module are detailed in Table 1.

3.3. Spatial context reasoning

In the proposed general Spatial Context Reasoning (SCR) com-
ponent, we leverage topological relationships to model the spatial
relations between different objects. Topological relationships provide
a general and abstract representation of the relationships between
objects, such as overlap, within, touch, and so on. These relationships
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Table 1
Summary of the provided user-defined parameters for the contextual components.
Parameters Context component Definition

[𝑺𝒖𝒃𝒋𝒆𝒄𝒕, 𝑶𝒃𝒋𝒆𝒄𝒕] LCR\SCR Subject and object pair

𝑳𝒂𝒃𝒆𝒍𝒊𝒏𝒈_𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 LCR The standard for small object label enlargement
𝑬𝒏𝒍𝒂𝒓𝒈𝒆_𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 LCR The enlarging percentage for small object labels

𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒊𝒆𝒔 SCF The object categories
𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏_𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒐𝒓 SCF The contextual graph generation method

𝒑𝒓𝒆𝒅(optional) SCR Directional relationships between subject and object
𝒕 SCR Topological relationships between subject and object
𝑶𝒗𝒆𝒓𝒍𝒂𝒑_𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅(optional) SCR The threshold of overlap percentage between subject and object
𝑺𝒆𝒂𝒓𝒄𝒉𝒉𝒆𝒊𝒈𝒉𝒕(optional) SCR The height of search area for object
𝑺𝒆𝒂𝒓𝒄𝒉𝒘𝒊𝒅𝒕𝒉(optional) SCR The width of search area for object
r
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Fig. 5. The visualization of common used topological relationships from Clementini
et al. (1993) and Egenhofer and Franzosa (1991).

Fig. 6. Bounding box vs. semantic masks for road and sidewalk.

capture the overall spatial configuration and arrangement of objects in
a scene, including next two each other, within, and occlusion. The vi-
sualization of topological relationships is depicted in Fig. 5, illustrating
how different objects can be related in terms of their spatial posi-
tions and co-occurrence. By incorporating topological reasoning, our
framework enables a more comprehensive understanding of the spatial
context, enhancing the object detection performance and facilitating
richer semantic interpretations of the scene.

We utilize a predicate 𝑝𝑟𝑒𝑑, such as above, under, etc., to describe
the directional relation between a subject and object pair [𝑆, 𝑂], along
with the topological relationship 𝑡, such as overlap and within. This
general relation 𝑅 is defined as shown in Eq. (4):

𝑅[𝑆,𝑂] = 𝑝𝑟𝑒𝑑[𝑡(𝑆,𝑂)] (4)

For instance, in urban settings, a common spatial relationship is that a
stair is usually located under a door, even if there might be overlaps or
spatial misalignment between them. The general relationship between
a pedestrian and sidewalk can be described as 𝑅[𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛, 𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘] =
𝑢𝑛𝑑𝑒𝑟[𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛, 𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘)]. It is important to note that the
general spatial relation is inversible, meaning that a pedestrian is on
the sidewalk, and sidewalk can be considered under a pedestrian. To
effectively apply this spatial reasoning, we define a search area around
the detected subject, and if an object is detected within this search
area and satisfies the condition defined by Eq. (4). We propose it as
a detection and send it for evaluation. In cases where multiple objects
7

Fig. 7. The visualization of general Spatial Context Reasoning.

are detected within the search area, we propose the object with the
highest score as the final prediction.

To enhance the applicability of our general framework to diverse vi-
sual detection tasks with more accurate detection, we have introduced
semantic masks in our general spatial context reasoning component
(see Fig. 7). As illustrated in Fig. 6, bounding boxes for entities like
oads and sidewalks may not be suitable for effective spatial reasoning
etween objects. In contrast, semantic masks offer a more precise and
ppropriate means for modeling the relationships between subjects
nd objects. While segmentation poses its challenges, modern state-
f-the-art segmentation models can yield accurate masks for larger
ntities such as roads and sidewalks, rendering them readily usable for
patial reasoning. This addition allows us to segment large stuff such as
idewalks and roads using a pretrained model, which could significantly
mproves spatial reasoning in larger scenes. To measure the overlap
etween subject–object pairs, we use the intersection over subject (IoS)
etric to describe the general spatial relation, as defined as:

𝑜𝑆 =
(𝐴𝑠 ∩ 𝐴𝑜)

(𝐴𝑠)
(5)

where 𝐴𝑠 and 𝐴𝑜 denote the area of the subject and area of the
object. The area can be bounding box or semantic mask based on
the specific scenarios. This formulation enables us to capture the rel-
ative spatial arrangement of objects in a scene, which is valuable for
improving the accuracy of object detection and localization across
various visual detection tasks. We also provide users with the flex-
ibility to configure the general spatial relation for the categories in
their own dataset, allowing them to adapt the framework according
to their specific task requirements. Moreover, the user configuration
can offer meaningful definitions of important spatial relations as guide-
lines, and then our Spatial Context Reasoning (SCR) component will
autonomously generate relation parameters such as overlap thresh-
olds based on the information obtained from the ground truth labels.
Through this adaptation, users can furnish general spatial relations for
specific subject–object pairs. For instance, according to common sense,
a car should be on the road, or a keyboard typically appears under
the monitor. Using the provided relations, we automatically analyze
the training dataset and establish overlap thresholds accordingly. This
approach enables the model to leverage contextual information based
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Fig. 8. Integration of contextual components with different deep learning network architectures: Faster R-CNN (FRCNN) and DETR. GT : Ground Truth; LC: Local Context; S:
Subject; O: Object; R: Region features; I : Image features; E : Encoder; D: Decoder; bbox: bounding boxes; cls: classification.
i

on predefined spatial relationships, enhancing its understanding of the
scene. The user-defined parameters for LCR, SCF and SCR components
are summarized in Table 1.

4. Working with various network architectures

The GMC framework can work with various deep learning network
architectures with minimal modification of the code. In this paper,
we give two examples, both which will be used in the tasks of our
experiments. We employ two popular object detection frameworks,
Faster R-CNN (Ren et al., 2015) and DETR (Carion et al., 2020), as
the underlying detectors for both storefront accessibility detection and
pedestrian detection tasks. These frameworks have demonstrated strong
performance in various object detection scenarios. The integration
pipeline of the three context components with Faster R-CNN and DETR
is shown in Fig. 8. We will detail how the three context components can
be seamlessly integrated with different backbone models, with minimal
code modification.

Prior to the input of the visual detection task dataset into the model,
we incorporate the Local Context Representation (LCR) component to
augment the local context of specific objects. While we begin with two
widely adopted definitions of small objects, as detailed in Section 3.1,
we also empower users to tailor the enhancement of local context
according to their preferences by adjusting the enlarge percentage.
This integration ensures that the LCR component can seamlessly adapt
to diverse models without requiring any modifications to the under-
lying backbone models. This design approach not only increases the
generality of our framework but also facilitates its ease of use and
customization across different applications.

Within our Semantic Context Fusion (SCF) component, we harmo-
nize semantic knowledge with visual features prior to the detection
process. This integration is illustrated in Fig. 8. In the case of Faster
R-CNN, we achieve this by mapping the extracted region features (R)
from the feature extractor backbone into the semantic space, before
subsequently feeding the resulting output into the classification (cls)
head. In contrast, for a comparative scenario of DETR in Fig. 8, we
first project image features (I) into the semantic space and subsequently
input the resulting output into a transformer encoder–decoder (E&D)

for generating predictions. This design allows users to exercise control k

8

over the nature of the pretrained word embeddings in the SCF compo-
nent, with the default setting being GloVe (Pennington et al., 2014).
The SCF component can be seamlessly integrated into each backbone
architecture with minimal adjustments, signifying its adaptability and
ease of incorporation into diverse models. This enables the enriched
representation of contextual information in conjunction with visual
cues, thereby enhancing the overall detection accuracy.

Moreover, the Spatial Context Reasoning (SCR) component can
be seamlessly integrated to fine-tune the detected candidates by syn-
ergizing topological relationships and semantic masks among identi-
fied objects. The SCR component provides a valuable post-processing
feature for both Faster R-CNN and DETR models, requiring minimal
architectural adjustments. This adaptable SCR component can be easily
integrated into the final stage of object classification (cls), offering a
streamlined way to enhance object detection performance. Users retain
the prerogative to exercise control over the component’s parameters
within the configuration file, ensuring adaptability and customization
to distinct detection scenarios. This feature bolsters the accuracy of de-
tection outcomes by leveraging not only the object-specific information
but also the relationships and arrangements among objects within the
scene.

5. Tasks and experiments

The general framework for context learning and utilization is de-
signed not only for working with various visual detectors, but also
for different tasks. In the following, we will showcase three examples:
storefront accessibility detection, pedestrian detection, and COCO ob-
ject detection. We will first introduce the three datasets, describe the
experimental settings, and then detail the experimental results with the
GMC framework.

5.1. Dataset description

Storefront Accessibility Image Dataset. For our experiments,
we utilize the storefront accessibility image (SAI) dataset introduced
in Wang et al. (2022). This dataset focuses on storefront accessibility
n an urban environment and comprises three main categories: doors,
nobs, and stairs. The SAI dataset is collected from Google Street
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Fig. 9. An example of labeled objects. Red: Ground truth bounding box of Door. Cyan:
round truth bounding box of Knob. Green: Ground truth bounding box of Stair. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

Table 2
Statistics of collected storefront accessibility data.
Dataset # of Images Doors Knobs Stairs

Train 992 1885 1614 420
Test 110 233 126 141

Fig. 10. The label example from CityPersons Dataset (Zhang et al., 2017). Red:
Pedestrian. Blue: Rider. Yellow: Sitting person. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

View of New York City using the Google Street View API (Google,
2022). To create the dataset, we employ the methodology described
in Cavallo (2015) to compose panorama images. Each panorama image
captures building facades on both sides of a street in New York City.
Subsequently, we divide each formed panorama image into two halves,
with each half covering one side of the facade. To ensure clear and
easily labelable storefronts, we crop the center of each image, where
contains the necessary visual information for storefront accessibility
labeling.

The SAI dataset consists of a total of 1,102 images, where each
image has been labeled for three main categories of accessibility: Door,
Knob, and Stair. The labeling process was carried out using the Label-
box platform (Sharma et al., 2019). To split the dataset for training and
testing, a random sampling technique was employed, where 10% of
the collected data was reserved for the testing set, while the remaining
90% was used for training. The data statistics are presented in Table 2,
providing an overview of the dataset composition. Additionally, Fig. 9
showcases examples of labeled storefront objects within an image,
providing a visual representation of the annotated data.

CityPersons and CityPersons+ Dataset. The CityPersons dataset
is derived from the Cityscapes dataset (Cordts et al., 2016), focusing
specifically on person annotations. It contains annotations for four
categories: pedestrian, rider, sitting person, and person (other). Table 3
provides an overview of the dataset, including information on the
number of images and annotations for each category. Fig. 10 showcases
9

Fig. 11. The demonstration of riders in CityPersons+ dataset. We extend existing
categories in CityPersons dataset, with context information, by adding the ground truth
label for context things and combined with the existing subject class label.

Table 3
Statistics of CityPersons and CityPersons+ Datasets.
Dataset # of Category # of Training # of Validation

CityPersons (Zhang et al., 2017) 4 2975 500
CityPersons+ 6 2975 500

an example of labeled pedestrians from the dataset, providing a visual
representation of the annotated data.

To incorporate various context information and leverage the gen-
eral topological relations between different categories, we introduce
the CityPersons+ dataset. This dataset expands upon the CityPersons
dataset by incorporating additional object labels from the Cityscapes
dataset, including more specific subcategories. Specifically, we cat-
egorize pedestrians and riders into four subcategories: pedestrian on
road, pedestrian on sidewalk, rider with motorcycle, and rider with bi-
cycle. Therefore CityPersons+ contains annotations for six categories.
The purpose of adding subcategories is to better utilizing context
information. Fig. 11 shows how we include more context information
without changing existing labels. We also relate the six categories in
CityPersons+ dataset to context information that are beyond these six
categories. First, we add the bounding box ground truth labels for
context things, including motorcycles, bicycles and vehicles, which are
related to the existing subject class labels of rider with motorcycle, rider
with bicycle, and pedestrian occluded by vehicle, respectively. Second,
we include the semantic segmentation labels of context stuff, such as
roads and sidewalks, which could provide precise spatial reasoning
between different objects, namely, pedestrian on road, and pedestrian
on sidewalk, in addition to pedestrian occluded by pedestrian. We also
include word embeddings for both context things (motorcycles, bicycles
and vehicles) and context stuff (roads and sidewalks) for Semantic Con-
text Fusion (SCF) component. We use the pretrained model weights for
Faster R-CNN and DETR to detect the context things, and Segformer (Xie
et al., 2021) to segment the semantic masks for context stuff, to facilitate
general topological reasoning within the Spatial Contextual Reasoning
(SCR) component (see Table 4). Table 3 provides an overview of the
statistics for the CityPersons+ dataset, comparing with CityPersons
dataset: we double the class categories for pedestrian and riders (from 2
to 4), add 5 context objects (not shown in the Table), without changing
the existing classes (2). For the 4 basic classes in CityPersons and
6 basic classes in CityPersons+, as shown in Table 3, the pretrained
model weights for Faster R-CNN and DETR are finetuned using the two
datasets, respectively, and the proposed GMC models will be evaluated.

MSCOCO-2017. MSCOCO is a standard benchmark in object detec-
tion and instance segmentation. It includes 80 object categories with
118k images for training and 5k for evaluation. The dataset is known



X. Wang, H. Tang and Z. Zhu Computer Vision and Image Understanding 241 (2024) 103944

w
e
R
a
s
a
t
m
e
a

t
d
a

5

t
t
b
p
s
c
p
i
a

Table 4
Default user parameter settings for Spatial Context Reasoning in our experiments on the three datasets: SAI (Wang et al., 2022), CityPersons+, and COCO. O_T:
Overlap_threshold.
Task [Subject, Object] Occlusion Predicate Topology O_T Search_area_height Search_area_width

SAI [door, knob] – – within – – –
[door, stair] – under overlap 0.2 0.2ℎ𝑒𝑖𝑔ℎ𝑡𝑑𝑜𝑜𝑟 + ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑎𝑖𝑟 𝑤𝑖𝑑𝑡ℎ𝑑𝑜𝑜𝑟 + 𝑤𝑖𝑑𝑡ℎ𝑠𝑡𝑎𝑖𝑟

CityPersons+

[rider, bicycle] Reasonable under overlap 0.48 0.5ℎ𝑒𝑖𝑔ℎ𝑡𝑟𝑖𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ𝑏𝑖𝑐𝑦𝑐𝑙𝑒
[rider, motorcycle] Reasonable under overlap 0.5 0.5ℎ𝑒𝑖𝑔ℎ𝑡𝑟𝑖𝑑𝑒𝑟 𝑤𝑖𝑑𝑡ℎ𝑚𝑜𝑡𝑜𝑐𝑦𝑐𝑙𝑒
[pedestrian, vehicle] Heavy under overlap 0.68 – –
[pedestrian, pedestrian] Heavy – overlap 0.76 – –
[pedestrian, road] Reasonable under overlap 0.2 – –
[pedestrian, sidewalk] Reasonable under overlap 0.13 – –

COCO

[person, person] – – overlap 0.73 – –
[person, surfboard] – under overlap 0.17 0.2ℎ𝑒𝑖𝑔ℎ𝑡𝑝𝑒𝑟𝑠𝑜𝑛 𝑤𝑖𝑑𝑡ℎ𝑠𝑢𝑟𝑓𝑏𝑜𝑎𝑟𝑑
[person, tie] – – within – – –
[person, skateboard] – under overlap 0.1 0.2ℎ𝑒𝑖𝑔ℎ𝑡𝑝𝑒𝑟𝑠𝑜𝑛 𝑤𝑖𝑑𝑡ℎ𝑠𝑘𝑎𝑡𝑒𝑏𝑜𝑎𝑟𝑑
[person, snowboard] – under overlap 0.16 0.2ℎ𝑒𝑖𝑔ℎ𝑡𝑝𝑒𝑟𝑠𝑜𝑛 𝑤𝑖𝑑𝑡ℎ𝑠𝑛𝑜𝑤𝑏𝑜𝑎𝑟𝑑
[zebra, zebra] – – overlap 0.83 – –
[baseball glove, person] – – within – – –
[potted plant, vase] – under overlap 0.45 – –
[frisbee, dog] – – overlap 0.85 – –
t
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for its diversity, containing a wide range of objects and scenes. It
features a maximum of 93 object instances per image, with an average
of 7 objects.

5.2. Experimental settings

Faster R-CNN. In our implementation, we utilize ResNet-50 (He
et al., 2016) as the backbone feature extractor along with the Feature
Pyramid Network (FPN) (Lin et al., 2017), which are both pretrained
on the COCO dataset. For the semantic context fusion, we employ a 2-
layer graph convolutional network (GCN) with LeakyReLU (Maas et al.,
2013) as the activation function. The GCN takes 300-dimensional word
embeddings from GloVe (Pennington et al., 2014) as the input label
feature vector. During training, we employ Stochastic Gradient Descent
(SGD) as the optimizer, with a momentum of 0.95 and a weight decay
of 1e-4. The initial learning rate is set to 0.005 and is reduced by a
factor of 0.25 every 8 epochs. We train the model for a total of 40
epochs for storefront accessibility detection, 60 epochs for pedestrian
detection, and 50 epochs for COCO object detection.

DETR. Following the methodology described in Carion et al. (2020),
e utilize ResNet-50 as the feature extractor and a transformer
ncoder–decoder for our visual detector. The learning rate for both
esNet-50 and the transformer encoder–decoder is set to 0.005, and
weight decay of 1e-4 is applied. To train the model effectively, we
et the maximum number of training epochs to 120 for storefront
ccessibility detection and 200 for pedestrian detection. During the
raining process, we log the results every 5 epochs, allowing for detailed
onitoring of the model’s performance and progress. These settings
nsure a comprehensive and robust training process for achieving
ccurate detection results.
To ensure a fair comparison, we fine-tuned the pretrained parame-

ers on COCO of the two baseline models on both SAI and CityPersons+
atasets. The configurations of the SCR component for the three tasks
re shown in Table 4.

.3. Experimental results

In this section, we present the comparison results for object de-
ection on the SAI dataset (Section 5.3.1) and pedestrian detection on
he CityPersons dataset (Section 5.3.2). We conduct comparisons with
aseline detectors, including Faster R-CNN and DETR, as well as our
revious context learning approaches (Wang et al., 2022, 2023), con-
idering various combinations of our context learning and utilization
omponents. The evaluation focuses on performance metrics such as
recision, recall, and mean average precision (mAP), providing insights
nto the effectiveness of our proposed framework in enhancing object

nd pedestrian detection tasks.

10
To ensure a fair comparison between our proposed framework and
he previously designed MultiCLU particularly for storefront accessibil-
ty detection (Wang et al., 2022), we initially adopt the same settings
s described in Wang et al. (2022). Specifically, we utilize the Small
bject Dataset (SOD) standard to represent the local context for small
bjects in the SAI dataset. For this, we set the enlarge percentage to
5 percent, denoted as 𝛽 = 0.15. Similarly, we employ the same small
bject standard for the CityPersons dataset, with the enlarge percentage
et to 10 percent, denoted as 𝛽 = 0.10. By using these consistent
ettings, we aim to facilitate a direct performance comparison between
ur proposed framework and MultiCLU.

.3.1. Storefront object detection
In order to assess the effectiveness of our proposed general frame-

ork, we conducted a thorough comparison with two baseline detectors—
aster R-CNN (Ren et al., 2015) and DETR (Carion et al., 2020), and
two of our previous context learning approaches (Wang et al., 2022,
2023), using the SAI dataset. Here we use MultiCLU to represent the
specially designed multi-stage context framework with the CNN-based
model Faster R-CNN, as reported in Wang et al. (2022), GMC-C to
represent the GMC framework with the CNN-based model in this paper
and also as reported in Wang et al. (2022), and GMC-T to represent the
MC framework on the DETR-based model. To gauge the effectiveness
f our approach on small objects within the SAI dataset, we adopted the
valuation methodology outlined in Wang et al. (2022). Here, for the
scenarios where the local context representation is employed, we lever-
aged both the original and expanded labels for small objects adhering
to the defined criteria. In cases where both labels were detected for the
same small object, we considered just one to eliminate any possibility
of duplicate detections. The evaluation primarily focused on two key
performance metrics: mean average precision (mAP) and recall. These
metrics were measured at a standard Intersection over Union (IoU)
threshold of 0.5, which is commonly used in object detection tasks.

Performance comparison on Faster R-CNN (Ren et al., 2015). Our
comparative analysis revealed significant performance improvements
when applying our framework to the CNN-based models (represented
in rows 1 to 3 of Table 5). Note for the SAI dataset, the GMC-C results
have been reported in Wang et al. (2023), and the configuration is the
same in this paper. Specifically, our GMC-C model outperformed Faster
R-CNN, achieving substantial increases in both mAP (+13.6%) and
recall (+15.3%). This highlights the effectiveness of our general context
framework in enhancing object detection performance, surpassing the
baseline detector. Furthermore, our GMC-C model exhibited a slightly
higher mAP (+0.3%) compared to the special MultiCLU model, which
employed specialized context mechanisms. However, there was a slight

decrease in recall (−0.5%).
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Table 5
Comparison results on SAI dataset (Wang et al., 2022) with baseline detectors and previous context learning approaches. IT: Inference Time (s).
Model IT Precision ↑ Recall ↑ mAP ↑ Recall ↑

Door Knob Stair Door Knob Stair

Faster R-CNN (Ren et al., 2015) 0.029 75.6 17.7 66.0 87.5 47.6 73.1 53.1 69.4
MultiCLU (Wang et al., 2022) 0.036 78.0 51.2 70.0 92.3 80.4 83.0 66.4 85.2
+LCR 0.029 78.1 41.3 66.8 88.9 77.7 74.5 62.1 80.4
+SCF 0.036 78.0 19.0 68.5 90.1 53.0 79.4 55.2 74.2
+SCR 0.029 77.8 18.6 67.2 88.8 52.4 74.5 54.5 71.9
+LCR+SCF 0.036 78.4 50.0 69.2 90.8 75.0 79.4 65.9 81.7
+SCF+SCR 0.036 78.2 21.2 69.6 90.3 55.8 80.8 56.3 75.6
+LCR+SCR 0.029 79.2 41.2 67.8 89.2 77.8 74.5 62.7 80.5
GMC-C (Wang et al., 2023) & (this paper) 0.036 78.2 52.3 69.6 92.0 79.9 82.3 66.7 84.7

DETR (Carion et al., 2020) 0.040 75.9 23.8 69.2 91.8 58.4 77.8 56.3 76.0
+LCR 0.040 77.0 45.6 68.5 90.5 75.4 79.4 63.7 81.7
+SCF 0.045 77.8 27.6 70.0 91.4 61.5 81.2 58.5 78.0
+SCR 0.040 77.4 25.2 69.6 90.8 60.8 79.0 57.4 76.9
+LCR+SCF 0.045 80.2 55.1 71.2 92.7 81.2 82.3 68.8 85.4
+SCF+SCR 0.045 78.2 29.8 69.2 91.4 62.3 81.5 59.1 78.4
+LCR+SCR 0.040 78.8 50.8 69.2 92.0 77.8 80.4 66.3 83.4
GMC-T (this paper) 0.045 80.6 55.8 71.2 92.7 82.0 82.6 69.2 85.8
The comprehensive comparison outcomes demonstrate the com-
elling performance of our framework when integrated into CNN-based
odels. By incorporating various context learning and utilization com-
onents, our framework successfully enhances both mAP and recall,
urpassing the performance of baseline detectors and previous context
earning approaches. This reaffirms the potential and value of our
eneral context framework in advancing the field of computer vision
nd object detection tasks.
Performance comparison on DETR (Carion et al., 2020). To evalu-

te the flexibility and general applicability of our proposed framework,
e extended its integration to the detection transformer architecture,
epresented by the DETR model (Carion et al., 2020). By incorporat-
ng the context learning components into the detection transformer,
e conducted a comprehensive analysis of its impact on the detec-
ion performance. The evaluation results (rows 4 to 5 in Table 5)
emonstrated significant improvements of our GMC-T model in both
ean average precision (mAP) and recall compared to the baseline
ransformer model (DETR). Specifically, we observed a noteworthy
ncrease of 12.9% in mAP and 9.8% in recall, highlighting the effec-
iveness of our context learning components in enhancing detection
erformance within the transformer framework. These findings further
mphasize the adaptability and efficacy of our proposed framework, as
t consistently improves detection performance across different model
rchitectures. Note here that the transformer-based model already has
ontext information learnt within the model, this is probably why the
mprovement (from DETR to GMC-T) is not as high as that on the CNN-
ased models (from Faster R-CNN to GMC-C). Nevertheless, the GMC-T
odel, which incorporates our context learning components into the
etection transformer, emerged as the top-performing model among
he evaluated configurations. This outcome underscores the versatility
nd effectiveness of our framework in enhancing detection capabilities
cross diverse model architectures, showcasing its potential for various
bject detection tasks.
Our proposed framework demonstrates superior performance on

he SAI dataset, exhibiting significant improvements over the baseline
etectors and delivering competitive results compared to our previ-
us specially-designed context learning model MultiCLU (Wang et al.,
022). These findings support the efficacy of our general context frame-
ork in improving object detection accuracy and recall rates, mean-
hile adapting to different visual detector architectures. By efficiently
everaging contextual information, our framework enhances object de-
ection accuracy and recall rates, demonstrating its flexibility and
ffectiveness in various detection scenarios.
Performance comparison with different context components.
e embarked on a comprehensive performance comparison across var-
ous combinations of our three contextual components. The outcomes,
resented in Table 5, illuminate compelling insights.
11
First we analyze the performance improvements when using various
combinations of contextual components on Faster RCNN. When each
contextual component was applied in isolation, notable enhancements
in recall (from 2.8% to 11%) and mAP (from 1.4% to 9%) over the
baseline were discernible. Furthermore, it is intriguing to observe that
when deploying individual contextual components, the impact of local
contextual labeling was more pronounced than that of the other two
components.

Upon considering combinations of two contextual components, a
noteworthy trend emerged, with each combination outperforming the
baseline detector. The improvements ranged from +3.2% to 12.8% for
mAP and from 6.2% to 12.3% for recall. Strikingly, when the combina-
tions encompassed the Local Context Representation (LCR) component,
they exhibited substantial superiority over other combinations, show-
casing considerable gains in both mAP (+6.4% to 9.6%) and recall
(+4.9% to 6.1%). This outcome underscores the value of incorporat-
ing contextual information around small objects, notably accentuating
the detection efficacy of vital elements like doorknobs. Moreover, in
relation to the single LCR component, both Semantic Context Fusion
(SCF) and Spatial Context Reasoning (SCR) exhibited positive impacts.
These components further improved results over a single LCR compo-
nent, influencing both mAP and recall positively. Intriguingly, when
contrasting the application of both SCF and SCR against their individual
application, the combined utilization marginally enhanced both mAP
and recall compared to using them in isolation.

The apex of our proposed framework’s performance emerged with
the integration of all three components (GMC-C), attaining a notable
13.6% improvement in mAP and an impressive 15.3% enhancement in
recall over the baseline model Faster R-CNN. An interesting observation
lies in the fact that our general framework enhances mAP across all
categories in contrast to MultiCLU (Wang et al., 2022), albeit with
only minimal reductions in recall. This suggests that the specifically
designed MultiCLU might introduce more false positives than accurate
predictions, positioning our framework to offer heightened precision at
the cost of slightly reduced recall.

One notable distinction between the two base models lies in the
impact of the Local Context Representation (LCR) component. Specif-
ically, the improvements achieved by using LCR with DETR are not
as substantial as those observed with Faster R-CNN. When solely ap-
plying the LCR component to Faster R-CNN, there is a remarkable
enhancement in Precision and Recall for the ‘‘knob’’ category, with
improvements of 23.6% and 30.1%, respectively. In contrast, when
the LCR component is applied to DETR alone, the precision and recall
see improvements of 21.8% and 17.0%, respectively, which are com-
paratively less effective than with Faster R-CNN. Moreover, the mAP

and recall for Faster R-CNN see enhancements of 9.0% and 11.0%,
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Table 6
Comparison results on Citypersons dataset (Zhang et al., 2017) with baseline detectors
and previous context learning approaches. IT: Inference Time (s).
Model IT Reasonable ↓ Heavy ↓

Faster R-CNN (Ren et al., 2015) 0.062 13.4 36.9
+LCR 0.062 12.3 35.6
+SCF 0.068 13.3 37.1
+SCR 0.063 13.0 36.5
+LCR+SCF 0.068 12.2 35.2
+SCF+SCR 0.069 13.2 36.5
+LCR+SCR 0.063 12.0 36.0
GMC-C (Wang et al., 2023)& (this paper) 0.069 12.0 35.2

DETR (Carion et al., 2020) 0.059 11.8 40.8
GMC-T (this paper) 0.063 10.5 39.5

whereas DETR experiences improvements of 7.4% and 5.7%, respec-
tively, when the LCR component is added. This discrepancy could be
attributed to the inherent self-attention mechanism of the transformer
architecture, which inherently incorporates context information of local
context especially for small objects, a feature that Faster R-CNN lacks.
Nevertheless, the performance improvements achieved through vari-
ous combinations of contextual components on DETR exhibit similar
trends, indicating the consistent and robust functionality of the GMC
framework across different backbone models.

5.3.2. Pedestrian detection
We conducted further evaluation of our general context learning

and reasoning framework on pedestrian detection task using CityPer-
sons dataset, comparing it with the baseline detectors, Faster R-CNN
(Ren et al., 2015) and DETR (Carion et al., 2020), without any code
modifications. Here again, we use GMC-C to represent the general
framework of context learning with the CNN-based model, and GMC-
T to represent the general framework on DETR-based model, on the
original CityPersons dataset (without considering the subcategories or
additional context for spatial context reasoning). In summary, in the
labeling stage, we employ the small object standard for the CityPersons
dataset to enhance the labeling of small objects with local context label-
ing. We further leverage the fine-grained category rider in CityPersons
dataset to enable the semantic context fusion in the training stage, and
the spatial context reasoning in the postprocessing stage. Note that the
GMC-C model in this paper is the same as that in Wang et al. (2023).

Further, we use GMC-C+ and GMC-T+ to represent the general
ramework with more spatial context reasoning, using the CityPersons+
ataset with subcategories of pedestrians and riders, as well as informa-
ion of vehicle, road and sidewalk. We compared the evaluation results
n the reasonable and heavy subsets of the data using the standard
valuation metric in pedestrian detection, 𝑀𝑅−2 (where lower values
ndicate better performance). Here, the subsets were defined based on
he height (ℎ) and visible ratio (𝑣) of pedestrians: Reasonable subset:
∈ [50,∞], 𝑣 ∈ [0.65, 1]; Heavy subset: ℎ ∈ [50,∞], 𝑣 ∈ [0, 0.65].
Overall comparison with baseline detectors. The comparison

esults presented in Table 6 provide insights into the performance of the
MC framework on different architectures on both the reasonable and
eavy subsets. It is observed that DETR and transformer-based GMC
odel (GMC-T) generally exhibits superior performance on the reason-
ble subset (+1.6% and +2.9%, respectively, compared to the Faster-
CNN base model), indicating its effectiveness in capturing contextual
nformation and enhancing detection accuracy. However, DETR and
MC-T demonstrates lower performance on the heavy subset (−2.6%
nd −3.9% respectively, compared to the Faster-RCNN base model),
hich could be attributed to the absence of design elements such as
he feature pyramid network (FPN) (Lin et al., 2017) employed in
he Faster R-CNN framework. In contrast, the CNN-based model GMC-
may not achieve the same level of performance on the reasonable
ubset as transformer-based model GMC-T, but it often demonstrates
etter performance on the heavy subset (+1.7% compared to the Faster-
CNN base model). This suggests that the CNN-based model are able to
 c

12
ffectively handle challenging scenarios with heavily occluded pedes-
rians, where precise localization and robust feature extraction are
rucial. This evidence supports our rationale of the general context
ramework in working with various backbone models depending on the
ask requirements.
Performance comparison with different context components on

aster-RCNN. Upon applying the Local Context Representation (LCR)
omponent alone on Faster R-CNN, there was a noticeable enhancement
f 1.1% on the reasonable subset and 1.3% on the heavy subset (as
llustrated in Table 6). To further amplify our framework’s capabilities,
e introduced a fine-grained category (rider) into the CityPersons
ataset during training to facilitate the Semantic Context Fusion (SCF)
nd Spatial Context Reasoning (SCR) components. As observed in the
esults analogous to those from the SAI dataset, configurations with the
CR component consistently yielded superior performance compared
o other settings. However, it is worth noting that both SCF and
CR modules had a minor impact on pedestrian detection, possibly
ttributed to the relatively weak correlation between pedestrians and
ther urban objects. In summation, our comprehensive framework,
ncompassing all three components, achieved the most impressive
erformance across both the reasonable subset (1.4% lower) and the
eavy subset (1.7% lower), outperforming the baseline detector and
lternative combinations.
Comparison with DETR. Upon comparing our newly introduced

MC-T model with the baseline Detection Transformer (DETR) model,
ur GMC-T model consistently demonstrated superior performance
cross both the ‘‘reasonable’’ and ‘‘heavy’’ subsets. This was marked
y a substantial enhancement in detection performance, exhibiting an
mpressive 1.3% improvement on both subsets. These results provide
ompelling evidence for the effectiveness of our context learning and
easoning components in bolstering the detection capabilities of diverse
rchitectural frameworks. Moreover, our framework’s adaptability is
vident as it showcases its prowess not only in CNN-based models but
lso in transformer-based models. The ease with which our framework
an be integrated and customized underscores its potential to cater to
range of visual detection tasks beyond just pedestrian detection.
Overall, the comparison results highlight the potential and versa-

ility of our proposed context learning and reasoning components in
mproving object detection performance across different datasets and
asks. The framework offers a flexible and effective solution for incor-
orating context information and enhancing the detection capabilities
f various deep learning models, contributing to advancements in the
ield of computer vision and object detection.
The effectiveness of the general Spatial Context Reasoning

SCR). We also conducted an extensive study to evaluate the effective-
ess of the general spatial context reasoning (SCR) component within
ur framework. In order to achieve a more comprehensive and robust
opological reasoning, we leveraged both bounding boxes for objects
such as bicycles, motorcycles, cars, pedestrians) and semantic masks
or stuff (such as sidewalks and roads) in CityPersons+ dataset. This
llowed us to capture and utilize the spatial relationships between
arious entities in the scene. To assess the impact of the enhanced
eneral SCR component, we evaluated its performance in two enhanced
odels—GMC-C+ and GMC-T+, as well as its use on the two baseline
bject detection models—Faster R-CNN and DETR. Table 7 presents
he comparative results of these models with and without the SCR
omponent.
(1). SCR performance on Faster R-CNN. When we solely applied

he SCR component to the Faster R-CNN model, we observed notable
mprovements in performance for both the reasonable and heavy sub-
ets, achieving an increase of 0.6% and 0.8%, respectively. However, it
s important to note that the Faster R-CNN model, without the inclusion
f the local context and semantic context components, did not achieve
he same level of performance as the GMC-C model. By replacing the
nitial spatial context reasoning component with our enhanced SCR

omponent in the GMC-C model, leading to the GMC-C+ model, we
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Fig. 12. Qualitative results on the three datasets: COCO (columns 1 & 2), SAI (columns 3 & 4) and CityPersons+ (columns 5 & 6). GMC-T*: We only evaluate the SCF and SCR
components on COCO dataset, and the GMC-T was evaluated on the other two datasets.
observed a slight performance improvement of 0.2% on the reasonable
subset and 0.4% on the heavy subset, over the GMC-C model. These
results indicate that the integration of the enhanced SCR component
can enhance the performance of the GMC-C model to some extent.
However, when comparing these results with the performance of the
enhanced SCR component alone (i.e., Faster R-CNN + SCR), it is evident
that the GMC-C+ model with the combined local context, semantic
context, and enhanced SCR component outperformed both subsets,
achieving a significant improvement of 1.0% on the reasonable subset
and 1.3% on the heavy subset. This demonstrates the synergistic effect
of incorporating multiple context sources within the framework. our
evaluation confirms that the integration of the enhanced general SCR
component can effectively improve the performance of object detec-
tion models, particularly when combined with the local context and
semantic context components. Overall, GMC-C+ achieves performance
improvements of 1.6% on the reasonable and 2.1% on the heavy,
compared to the Faster-RCNN base model.

(2). SCR performance on DETR. We also study whether our en-
hanced general SCR component can improve over the DETR model,
which already incorporates a self-attention mechanism to leverage con-
text information. Not surprisingly, even with the existing self-attention
mechanism, the application of the enhanced SCR component to the
DETR model led to performance improvements. Specifically, we ob-
served an increase of 0.6% on the reasonable subset and 1.0% on
the heavy subset, indicating that the SCR component can effectively
enhance the context utilization capabilities of the DETR model. Further-
more, when we combined the general SCR component with the other
two contextual components (local context and semantic context), our
GMC-T+ model achieved additional performance improvements over
the DETR model and the GMC-T model on both evaluation subsets. The
results showed a significant improvement of 1.6% on the reasonable
subset and 2.2% on the heavy subset, compared to the DETR base
model, and a visible improvement of 0.3% on the reasonable subset
and 0.9% on the heavy subset, compared to the GMC-T model. This
highlights the complementary nature of the contextual components and
their ability to further enhance the detection performance of the DETR
model.

Our evaluation on pedestrian detection task confirms that the inte-
gration of the more general SCR component can effectively improve the
performance of the detection models, particularly when combined with
13
Table 7
Comparison results on general spatial context reasoning (SCR)
component with baseline detectors and previous designed component.
Model Reasonable ↓ Heavy ↓

Faster R-CNN (Ren et al., 2015) 13.4 36.9
Faster R-CNN + SCR 12.8 36.1
GMC-C (Wang et al., 2023) &(this paper) 12.0 35.2
GMC-C+ (this paper) 11.8 34.8
DETR (Carion et al., 2020) 11.8 40.8
DETR + SCR 11.2 39.8
GMC-T (this paper) 10.5 39.5
GMC-T+ (this paper) 10.2 38.6

the local context and semantic context components. Our three contex-
tual components, when integrated with the DETR model, demonstrated
the best performance on the reasonable subset. On the other hand,
the three contextual components combined with the CNN-based model
Faster R-CNN exhibited better performance on the heavy subset. These
findings indicate that the choice of model architectures, in combination
with the specific context components, can have an impact on the
overall detection performance, with different configurations achieving
better results on different evaluation subsets. This also highlights the
importance of leveraging multiple context sources and considering the
spatial relationships between objects for achieving more accurate and
robust detection.

5.4. COCO object detection

In order to check the scalability of our proposed general frame-
work, we evaluate our framework on a large detection benchmark
COCO dataset. We conducted comparison with two baseline detectors—
Faster (Ren et al., 2015) and DETR (Carion et al., 2020). We focus on
two performance metrics: average precision (AP) and average precision
for small objects (𝐴𝑃𝑆 ). The comparison results are shown in Table 8.

Performance comparison on Faster R-CNN (Ren et al., 2015).
Our comprehensive comparison results underscore the efficacy of our
proposed GMC-C model, revealing significant improvements in key
metrics. The average precision (AP) metric, a crucial indicator of
overall detection performance, exhibited a notable enhancement of

+0.7% when employing our framework compared to the baseline Faster
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Table 8
Comparison results on COCO dataset (Lin et al., 2014) with baseline
detectors. IT: Inference Time (s).
Model IT AP ↑ AP𝑆 ↑

Faster R-CNN (Ren et al., 2015) 0.028 37.4 21.2
+LCR 0.028 37.6 21.5
+SCF 0.040 37.6 21.3
+SCR 0.030 37.5 21.2
+LCR+SCF 0.030 37.9 21.6
+SCF+SCR 0.040 37.8 21.4
+LCR+SCR 0.028 37.7 21.6
GMC-C 0.040 38.1 21.7

DETR (Carion et al., 2020) 0.036 42.0 21.0
+SCF 0.042 42.3 21.4
+SCR 0.037 42.2 21.2
+SCF+SCR 0.042 42.7 21.5

R-CNN. Moreover, our model demonstrated a noteworthy advance-
ment in AP for small objects, registering an improvement of +0.5%.
his targeted improvement underscore the effectiveness of our pro-
osed framework, particularly in addressing the detection challenges
ssociated with smaller objects within the visual scene. The results
ubstantiate the adaptability and enhanced performance of our GMC-C
odel, positioning it as a valuable asset in scenarios demanding precise
nd comprehensive object detection.
The application of the Local Context Representation (LCR) com-

onent in isolation on the Faster R-CNN model resulted in a modest
mprovement, with a 0.2% increase in average precision (AP) and a
.3% enhancement in AP𝑆 (as detailed in Table 8). Remarkably, when
he LCR component was synergistically combined with the Seman-
ic Context Fusion (SCF) component, this pairing exhibited the most
ubstantial improvement compared to other combinations. The joint
pplication yielded a 0.5% boost in AP and a 0.4% increase in AP𝑆 . It is
oteworthy that the individual application of the SCF and Spatial Con-
ext Reasoning (SCR) modules had a comparatively minor impact on
he COCO dataset. In summary, our holistic framework, encompassing
ll three components, demonstrated the most remarkable performance
mprovement across both AP (+0.7%) and AP𝑆 (+0.5%), surpassing the
baseline detector and alternative component combinations.

Performance comparison on DETR (Carion et al., 2020). In our
evaluation using DETR, the impact of our context components becomes
apparent when applied individually. Since we have to fine-tune the
large DETR model for LCR, we only tested performance improvements
for the other two components (SCF and SCR) as the DETR can be
frozen when training SCF and no re-training is needed for SCR. The
Semantic Context Fusion (SCF) component, when introduced on its
own, yields notable enhancements with a relative increase of +0.3% on
AP and +0.4% on 𝐴𝑃𝑆 . This signifies that incorporating semantic rela-
tionships between objects contributes positively to the overall detection
performance.

Conversely, the Spatial Context Reasoning (SCR) component, when
applied independently, demonstrates a more modest impact, with only
a +0.2% improvement on both AP and 𝐴𝑃𝑆 . This result is suggestive of
the challenges associated with defining meaningful relations between
objects in the COCO dataset, where the provided relations are limited.

Interestingly, the synergy between SCF and SCR components be-
comes evident when they are combined. Their complementary nature
enhances each other’s contributions, resulting in a more substantial
improvement. The joint application of SCF and SCR leads to a further
increase in performance, with a +0.7% improvement on AP and +0.5%
on 𝐴𝑃𝑆 . This collaborative effect underscores the value of integrating
both semantic and spatial context reasoning for more effective object
detection within the DETR framework.

5.5. Performance discussions for different tasks/datasets

With more in-depth examinations, we sought to delineate the spe-

cific object categories that exhibit significant influence from the Spatial

14
Table 9
Impacted categories for all datasets in SCR component.
Datasets Impacted categories Percentage

SAI 3/3 100
Citypersons+ 6/8 75
COCO 11/80 13.75

Context Reasoning (SCR) component across the diverse datasets we
scrutinized. As shown in Table 9, within the SAI dataset, the SCR
component dynamically integrates contextual relationships for all three
categories—door, knob, and stair. Transitioning to the CityPersons+
dataset, the SCR component extends its reach across the entire spectrum
of object categories. Notably, contextual elements like road and side-
walk draw upon insights from a state-of-the-art segmentation model,
leading to a pronounced impact on 75% of the dataset’s categories.
In the case of the COCO dataset, the SCR component centers its focus
on the person category, given its preeminence as the most abundant
class in the dataset. While other categories also experience influence,
the overall impact encompasses approximately 13.75% of all object
categories within the COCO dataset.

We further conducted evaluations to assess how our components
perform on the most impacted categories across all datasets, and the
summarized results are presented in Table 10. In the SAI dataset, the
substantial improvement of +21.8% in AP for the ‘‘knob’’ category,
achieved by applying the Local Context Representation (LCR) compo-
nent with DETR, underscores the pivotal role of contextual information
in detecting and delineating small objects. This result suggests that
leveraging local context in tandem with transformer-based models
significantly benefits the identification of intricate details in specific
categories. Moving to the CityPersons+ dataset, where the ‘‘pedestrian’’
category exhibited the most notable enhancement of +1.1% on the
reasonable set and +1.3% on the heavy set with the LCR component
on Faster R-CNN, we observe the importance of local context in urban
scenes. The improved detection performance for pedestrians, a crucial
element in urban scenarios, emphasizes the significance of considering
context for specific object classes. This insight becomes especially valu-
able in the domain of object detection, where capturing fine-grained
details is essential.

In the COCO dataset, the ‘‘person’’ category’s substantial improve-
ment of 3.6% in AP with the Spatial Context Reasoning (SCR) compo-
nent applied to the DETR model suggests that accounting for spatial
relationships is particularly beneficial in datasets characterized by a
larger scale and diverse object categories. Spatial reasoning plays a
crucial role in refining the predictions, especially in scenarios where
objects interact in complex spatial configurations. Although Semantic
Context Fusion (SCF) did not exhibit standout improvements compared
to the other two components, its role in contributing to enhanced
performance, especially when combined with LCR and SCR compo-
nents, underscores its potential in capturing contextual semantics. This
holistic approach, leveraging different forms of context throughout
the entire deep learning process, demonstrates promising results and
sets the stage for further exploration in context-aware computer vision
tasks.

Furthermore, we conducted a thorough comparison of the inference
times (expressed in seconds) across our results( Tables 5, 6 and 8).
The findings revealed that our framework incurs only a marginal
increase in time complexity. Furthermore, the qualitative results visu-
alized in Fig. 12 provide a compelling illustration of how the proposed
method enhances performance across all three datasets (COCO, SAI,
and CityPersons+), offering a comprehensive validation of its efficacy.

6. Conclusions and discussion

In summary, we have proposed a general framework of multistage
context learning and utilization for visual detection tasks. Our pro-
posed framework consists three context components to utilize local
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Table 10
Component performance on most impacted categories on all dataset. D:DETR. F:Faster R-CNN.
Dataset Category Model AP ↑ Reasonable↓ Heavy↓

SAI knob D+LCR 23.8 → 45.6 – –
CityPersons+ pedestrian F+LCR – 13.4 → 12.3 36.9 → 35.6
COCO person D+SCR 47.3 → 50.9 – –
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context, semantic context and spatial context information. The three
context components have the flexibility and adaptability to utilize the
framework across various visual detection tasks, with different visual
detectors. The proposed framework are evaluated and verified on com-
plex street scenes for a storefront object detection task and a pedestrian
detection task. Compared to the state of the art methods, the evaluation
demonstrates that our framework can efficiently leveraging contextual
information at various stages such as data preprocessing, model train-
ing and post-processing. Our comparison results also show that the
proposed contextual components can effectively improve the perfor-
mance over different baseline models, with the support of different
context information.

However, there is still space for improvements over the proposed
framework. In this work, we only explore local, global and seman-
tic context, mostly in the spatial domain. Other context types need
more attention, and new architectures particularly designed for context
learning and utilization as summarized in Wang and Zhu (2023) have
ot been considered.
Despite our attempt in conducting experiments on the extensive
SCOCO dataset to show promising results, defining general spatial
elations of all object categories becomes a challenge, especially when
ealing with a dataset that encompasses numerous categories. The task
f establishing meaningful and universally applicable spatial relations
ecomes intricate due to the diversity of object categories present in
he dataset. Addressing this challenge requires a thoughtful approach
o derive spatial relations that can effectively generalize across a wide
ange of object types. Further exploration and research may be needed
o develop a robust and adaptable method for defining spatial relations
hat accommodates the inherent diversity of categories within the
ataset.
Furthermore, there are many works focus on the real world detec-

ion scenarios, where the standard evaluation metrics may not work
ell. A contextual evaluation based on the requirements of real-world
pplications is needed not only for object detection task, but may also
enefit other computer vision tasks.
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