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ARTICLE INFO ABSTRACT

Communicated by Shiliang Zhang Various contextual information has been employed by many approaches for visual detection tasks. However,
most of the existing approaches only focus on specific context for specific tasks. In this paper, GMC, a general
framework is proposed for multistage context learning and utilization, with various deep network architectures
for various visual detection tasks. The GMC framework encompasses three stages: preprocessing, training,
and post-processing. In the preprocessing stage, the representation of local context is enhanced by utilizing
commonly used labeling standards. During the training stage, semantic context information is fused with visual
information, leveraging prior knowledge from the training dataset to capture semantic relationships. In the
post-processing stage, general topological relations and semantic masks for stuff are incorporated to enable
spatial context reasoning between objects. The proposed framework provides a comprehensive and adaptable
solution for context learning and utilization in visual detection scenarios. The framework offers flexibility
with user-defined configurations and provide adaptability to diverse network architectures and visual detection
tasks, offering an automated and streamlined solution that minimizes user effort and inference time in context
learning and reasoning. Experimental results on the visual detection tasks, for storefront object detection,
pedestrian detection and COCO object detection, demonstrate that our framework outperforms previous state-
of-the-art detectors and transformer architectures. The experiments also demonstrate that three contextual
learning components can not only be applied individually and in combination, but can also be applied to
various network architectures, and its flexibility and effectiveness in various detection scenarios.
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. contextual information such as locations, dates, and environments can
1. Introduction S . .
further enhance the likelihood of detecting objects or events.

. . . . . A comprehensive survey on context understanding in computer
Contextual information plays a significant role in various computer

vision tasks, encompassing both visual and non-visual data related to
the appearance of a target, be it an object or an event. When objects are

vision can be found in our recent survey paper (Wang and Zhu, 2023).
In this paper,we propose a General framework of Multi-stage Context

encountered without proper context, such as in object recognition, the
task can become challenging. However, leveraging contextual cues can
offer vital insights for accurate target recognition. In tasks involving
videos, like action or event recognition, temporal context becomes cru-
cial in predicting future occurrences. For instance, if a person walking
is partially obscured by a car or a telegraph pole in the current frame,
information from adjacent frames (previous or next) can aid in locating
and detecting the occluded person.

In object detection tasks, the presence of other objects within the
scene can influence the identification of a target object. These contex-
tual cues can reveal co-occurrences and object locations. For instance, a
painting should typically be found on a wall rather than on the ground.
Knowing that there is a desktop on a table increases the likelihood
of finding a keyboard and a mouse nearby. Furthermore, additional
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learning utilization (the GMC framework) for visual detection tasks. The
GMC framework incorporates different forms of contextual information,
works for different visual detection tasks, and can use different network
architectures (Fig. 1). The forms of context information include local
context in the data labeling stage, semantic context in the model
training stage, and spatial context among objects to be detected in the
post-processing stage. This framework aims to offer the generality of
using context in various tasks and with various architectures, in order
to improve performance in various visual detection tasks.

In the domain of visual object detection, bounding boxes are widely
used to represent the spatial location of objects. Crowdsourcing
platforms like Amazon’s Mechanical Turk (AMT) are commonly em-
ployed to annotate large datasets such as MSCOCO (Lin et al., 2014)
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Fig. 1. The overview of GMC, our general framework of multi-stage context learning
and utilization for visual detection tasks. We design a user configuration mechanism
for automating the process for various detection tasks and with different network
models. Each context component is guided by user-defined parameters with minimum
modification of the system when applying to different deep learning models and visual
tasks.

(a) Local Context Representation ‘I:>

and ImageNet (Deng et al., 2009), heavily relying on human labelers.
Typically, human labelers manually draw tight bounding boxes around
objects to maintain label consistency. However, when dealing with
small objects, using tight bounding boxes may not provide sufficient
local contextual information for accurate recognition. In some cases,
even human observers struggle to recognize small objects due to their
small sizes. Moreover, viewing the entire scene allows for even easier
recognition by incorporating a more global context, despite the size of
a small object in the image.

Previous studies such as Lim et al. (2021), Leng et al. (2021)
have demonstrated the importance of contextual information from the
surrounding areas of small objects in achieving successful detection
results. However, these studies typically utilize deep learning models to
extract and refine features from these small objects, which can increase
computational costs. In fact, one straightforward approach to leverage
local context for small objects is to directly include their surrounding
areas in the images during the labeling process, thereby providing
explicit contextual information.

In this work, we propose an automatic local context representation
that enhances the original bounding boxes for specific objects. This al-
lows us to incorporate local context prior to the model training step, by
simply using the two most commonly used definitions of small objects
in computer vision tasks. By adopting this approach, we aim to exploit
the benefits of local context while mitigating the potential increase in
computational complexity associated with deep learning-based feature
extraction methods.

Semantic context plays a crucial role in successful object detection
by providing valuable information. Even without visual cues, knowing
that a scene is set in an urban street environment allows us to make
educated guesses about the presence of pedestrians, bicycles, vehicles,
and other relevant objects. The labels assigned to objects within a scene
in a training dataset can also provide prior knowledge regarding the co-
occurrence relationships between different labels. Previous studies such
as Li et al. (2014, 2016b), Lee et al. (2018) have demonstrated the effec-
tiveness of using graphs to model label correlations. For instance, Chen
et al. (2019) proposed a framework that leverages graph-based label
dependencies for multi-label image recognition. Wang et al. (2022)
model the highly correlated storefront objects using the co-occurrence
of the related objects and leverage the context information for better
detection performance.

Inspired by these approaches, we extend the idea we proposed
in Wang et al. (2022) for storefront accessibility detection, and in-
troduce a mechanism that allows easy user configuration to automate
the generation of a contextual graph and the retrieval of word embed-
dings from pre-trained language models. This mechanism enables the
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adaptation of context learning models to various visual detection tasks.
Within our framework, a Graph Convolutional Network (GCN) (Kipf
and Welling, 2016) is utilized to learn from the contextual graph. By
incorporating word embeddings, the GCN builds a semantic space and
projects visual features extracted by the object detector into this space
for the final classification stage. This integration of semantic context
enhances the accuracy and performance of the object detection system.

Real-world scenes often exhibit spatial relationships between ob-
jects (i.e., spatial context), where certain objects tend to appear together
or have specific spatial arrangements. For instance, a keyboard and
a mouse are commonly found together, with the mouse typically po-
sitioned to the right of the keyboard. Yang et al. (2015) proposed a
Faceness-Net that leverages spatial relationships between facial parts,
such as the hair appearing above the eyes and the nose appearing
below the eyes. Similarly, another work (Yang et al.,, 2019) intro-
duced a spatial-aware network that models relative locations among
different objects to improve object detection performance. Recent pa-
pers (Wang et al., 2022; Chacra and Zelek, 2022) have also utilized
specific spatial relationships for tasks like storefront accessibility detec-
tion and scene graph generation. However, these methods often employ
hard-coded spatial relationships tailored to their specific tasks, making
it challenging to generalize them to other tasks without significant
modifications.

To address this limitation and provide a more general approach to
model spatial relationships, topological relationships can be beneficial
for capturing object relations, as shown in Fig. 1. In this work, we
extended the idea and propose a more generalized approach to model
spatial relationships between objects for visual detection tasks. By
utilizing a user configuration mechanism, we maximize flexibility in
defining object relations without the need for code modifications.

While contextual information has been employed in specific com-
puter vision tasks, such as data augmentation (Dvornik et al., 2018),
semantic reasoning during training (Zhu et al., 2021; Chen et al., 2019;
Wang et al., 2022, 2023), and post-processing (Fang et al., 2017; Wang
et al.,, 2022, 2023), there is a lack of research on a comprehensive
general framework that guides context learning across data labeling,
model training, and post-processing stages in a generalized manner.
In our previous work (Wang et al., 2022), we proposed a context
learning framework for storefront accessibility detection that covered
these stages. However, the framework was specifically designed with
context learning mechanisms tailored to storefront accessibility de-
tection. Therefore, significant code modifications were necessary to
adapt it to different tasks. In a follow-up work (Wang et al., 2023),
we proposed a framework for different visual detection tasks in urban
scenes. However the framework only works with one single network
architecture, and the experiment on the second example (the pedestrian
detection) is very limited; There are no available contexts for spatial
context reasoning and the result only achieves minor improvement over
the baseline network.

In this work, we present a general context learning and reasoning
framework with various deep learning models, applicable to various
visual detection tasks, and therefore offering greater flexibility and
adaptability without requiring extensive code changes. As an extended
version of our previous work (Wang et al., 2022, 2023), this paper
demonstrates the versatility and adaptability of our context compo-
nents by successfully applying them to different deep learning models
with minimal modification. The pedestrian detection task is greatly
enhanced with more categories of contextual objects and includes all
the three stages of context reasoning. We also tested the framework
on a large detection benchmark—MSCOCO dataset, showing promising
results.

The proposed context learning and reasoning framework for visual
detection tasks offers several noteworthy aspects. Firstly, it introduces
a comprehensive approach consisting of three key components: Local
Contextual Representation (LCR), Semantic Context Fusion (SCF), and
general Spatial Context Reasoning (SCR). The LCR component improves
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recognition accuracy for specific objects especially small objects by
incorporating their local context, while the SCF component models se-
mantic relations using a contextual graph, capturing co-occurrence and
contextual dependencies. Additionally, the SCR component leverages
topological relationships and semantic masks to incorporate general
spatial relations between objects. The framework’s flexibility allows
for easy adaptation to different tasks, without requiring extensive code
modifications. Overall, this framework presents a valuable contribu-
tion to the field of visual detection by providing a comprehensive
and adaptable solution that enhances context learning and reasoning
capabilities.

As some highlights, the local context representation and seman-
tic context fusion components are seamlessly integrated into diverse
models, ensuring an automated adaptation process in using ground
truth labels and prior knowledge. This integration is also designed to
empower users with the flexibility to tailor the components according
to their specific requirements through the utilization of user-defined
parameters. Moreover, we have introduced a novel general spatial con-
text reasoning component that combines topological relations between
objects and semantic masks. This combination allows our framework
to easily adapt to various visual detection tasks, providing a powerful
tool for improving detection performance in diverse scenarios with
more accurate results. We provide user flexibility to configure the
spatial relations because the user configuration can offer meaningful
definitions of important spatial relations as the first step, and then
our Spatial Context Reasoning (SCR) component will autonomously
generate relation parameters, such as overlapping thresholds based
on the provided information in the user configuration, by modeling
subject-object ground truth labels. Overall, our approach not only
enhances the effectiveness of context learning and reasoning in visual
detection but also simplifies the integration process, making it readily
applicable to a wide range of deep learning models and tasks.

In summary, the main contributions of this paper are:

» We introduce a general framework for multistage context learning
and utilization, with three context components to leverage local
context, semantic context and spatial context. This combination
of components provides a holistic solution to address context
learning and reasoning in visual detection tasks.

Our framework proposed in this work is designed to be applicable
to any deep learning models. This versatility makes the frame-
work highly versatile and empowers users to leverage its benefits
across different object detection tasks, regardless of the specific
deep learning model employed.

Our framework is not limited to a specific visual detection task
but can be applied to various visual detection tasks, including
storefront object detection and pedestrian detection as our ex-
amples. Its flexibility and adaptability enable users to utilize
the framework across a wide range of visual detection tasks,
benefiting from its context learning and reasoning capabilities.
Our framework has the ability to incorporate different types of
context information at various stages of the detection process.
It provides a unified framework that can effectively integrate
and utilize these contextual cues at the appropriate stages, such
as during data preprocessing, model training, or post-processing.
This capability enhances the overall performance and robust-
ness of the detection system by harnessing diverse sources of
contextual information to improve object understanding and lo-
calization.

The paper is organized as follows. Section 2 discusses related work.
Section 3 proposes our general context learning and reasoning frame-
work and describes each component in detail. Section 4 discuss how
the general framework work with various deep learning network ar-
chitectures with minimal modification of the code. Section 5 discuss
the use of the general framework for three different tasks, including a
description of the three datasets (Section 5.1), and the experimental
results (Section 5.3). Finally, Section 6 provides a few concluding
remarks.
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2. Background and related work

In this section, we will start with a general survey of the literature
in context learning and utilization for computer vision tasks, then
move on the use of context information in object detection, and finally
focus on pedestrian detection—a particularly important task that poses
challenges and opportunities in using context information.

2.1. Context learning and utilization

Humans use visual context effortlessly to perceive the real world. An
object hanging on the wall is probably a painting, not a car. A doorknob
should be within the frame of a door, not on the ground. Contextual
information provides critical information to help us visually find and
recognize objects faster and more accurately. Not only in human per-
ception, contextual information also plays an important role in many
computer vision tasks, such as object detection (Du et al., 2012; Fang
et al., 2017; Sun and Jacobs, 2017; Zhu et al., 2016, 2021), video event
recognition (Wang and Ji, 2015, 2016), video action detection (Yang
et al., 2019; Zhu et al., 2013), scene graph generation (Xu et al., 2017;
Zellers et al., 2018), data augmentation (Dvornik et al., 2018), image
classification (Mac Aodha et al., 2019), and image inpainting (Pathak
et al., 2016). In these tasks, different forms of contextual information
have been employed. The contextual information used in the literature
includes: global context (Zellers et al., 2018), local neighborhood con-
text (Pathak et al., 2016; Dvornik et al., 2018; Du et al., 2012), prior
semantic knowledge (Wang and Ji, 2015, 2016), geographic informa-
tion (Mac Aodha et al., 2019), spatial relation between objects (Sun and
Jacobs, 2017; Xu et al., 2017; Zellers et al., 2018; Yang et al., 2019)
and temporal information (Wang and Ji, 2015, 2016; Yang et al., 2019;
Zhu et al., 2013).

Context information has been widely used in many computer vision
tasks. Dvornik et al. (2018) show that the visual context surrounding
objects is crucial to predict the presence of objects. A serial work (Wang
and Ji, 2015, 2016) introduces a hierarchical context model to recog-
nize events in videos. Wang et al. (2022) make use of various contextual
information by applying a unified multi-stage framework in context
learning and utilization from data labeling, model training, to object
detection and result evaluation.

Context has been integrated in different ways in visual detection
tasks. Many visual detection tasks (Yang et al., 2015; Chen et al., 2019;
Pathak et al., 2016; Leng et al., 2021; Li et al., 2016a; Mac Aodha et al.,
2019; Yang et al., 2018) implement context information into the back-
bone models and aggregate with the features extracted from context-
free methods. Deep learning methods mainly have four stages: data
pre-processing (including labeling), model training, post-processing,
and result evaluation. Context information has either been aggregated
during the training stage or used in the post-processing stage. No
general pipelines have been proposed on how we can incorporate
context through the whole process stages. Although different context
integration can be used in a single stage or in multiple stages, a general
pipeline is needed to guide the integration for context. Our proposed
framework employs different forms of context information through the
entire deep learning process, and each component is easy to add and
remove from an object detector.

2.2. Object detection

Contextual information plays a crucial role in understanding
natural scenes and images for object detection, as it provides rich
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information about the relationships between objects and the overall
scene. However, the evaluation of context models has primarily fo-
cused on improving object detection performance for particular tasks,
overlooking more general applications of contextual information. In
the domain of urban scene object detection, various methods have
been proposed, addressing specific tasks such as text detection and
recognition (Du et al., 2012; Zhu et al., 2016), zebra crossing detec-
tion (Ahmetovic et al., 2015), curb detection (Cheng et al., 2018; Sun
and Jacobs, 2017), and storefront accessibility detection (Wang et al.,
2022).

For example, Du et al. (2012) and Zhu et al. (2016) focused on
text detection in street environments. Cheng et al. (2018) proposed a
framework for road and sidewalk detection using stereo vision in urban
regions. Sun and Jacobs (2017) aimed to identify missing curb ramps
at street intersections by leveraging the pairwise existence of curb
ramps. Our recent work (Wang et al., 2022) introduced a multi-stage
context learning framework specifically designed for storefront acces-
sibility detection, utilizing category-specific relations. These examples
demonstrate that context modeling has been applied to various urban
scene object detection tasks beyond traditional object recognition. It
highlights the potential of exploiting different types of contextual in-
formation to improve the performance of detection systems in diverse
real-world scenarios. In this paper we propose a general context learn-
ing and reasoning framework which could be adapted to various visual
detection tasks.

Contextual information, particularly prior knowledge, has played a
crucial role in advancing object detection tasks. Fang et al. (2017) intro-
duced a knowledge-aware object detection framework that incorporates
external knowledge, such as knowledge graphs, into object detection
algorithms. By leveraging a knowledge graph, which represents real-
world concepts and their interactions, this framework enables the
modeling of semantic consistency. Even concept pairs that are not
directly connected in the graph can benefit from this approach, leading
to enhanced generalization capabilities.

Similarly, Zhu et al. (2021) explored the integration of semantic
context and visual information for the task of few-shot object detection.
Their work focused on explicit relation reasoning and utilized word
embeddings to represent class labels. By establishing semantic relation
consistency between base and novel classes, the aim was to bridge
the domain gap between visual and language information. Incorporat-
ing semantic consistency principles, their framework improved object
detection by optimizing for better alignment with prior knowledge.

Building upon these concepts, our general framework embraces
the notion of semantic consistency to quantify and generalize knowl-
edge, resulting in improved object detection performance through a
re-optimization process. In addition, our framework adopts a context-
aware approach to object detection, considering both visual context and
prior knowledge context. By incorporating both types of context, our
framework provides a more comprehensive and enriched understand-
ing of the scene, leading to more accurate and robust object detection
results.

Indeed, context can be leveraged not only for detecting objects but
also for predicting their presence or absence in an image. Sun and
Jacobs (2017) conducted a unique vision task focused on identifying
the absence of objects in an image, specifically curb ramps. This work
extensively utilized local and spatial context information to determine
the locations where curb ramps should exist.

Similarly, in our proposed framework, we emphasize the importance
of local context representation surrounding small objects. This local
context provides valuable information that can indicate both the loca-
tion and category of the object. By incorporating this local context into
our general framework, we aim to enhance the detection and prediction
capabilities, enabling more accurate understanding of the scene and
object presence even in the absence of explicit object instances.
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2.3. Pedestrian detection

Pedestrian detection in urban scenes presents unique challenges
due to factors such as heavy occlusion and small-scale pedestrian
images. Several papers have focused on addressing these challenges
and improving the performance of pedestrian detection algorithms. For
example, Cai et al. (2016) proposed a unified framework for pedestrian
detection that incorporates contextual information to handle occlu-
sion. Zhang et al. (2017) introduced the CityPersons dataset specif-
ically for pedestrian detection in urban environments and proposed
a scale-aware network to tackle the problem of detecting small-scale
pedestrians.

Other works have explored different approaches to handle occlusion
in pedestrian detection. Zhou and Yuan (2018) proposed an attention-
based method that focuses on visible parts of partially occluded pedes-
trians, improving the detection accuracy in challenging scenarios. Wu
et al. (2020) introduced a part-based detection framework that lever-
ages feature transformation to handle occlusion and improve detection
performance.

Despite the progress made by CNN-based pedestrian detectors, there
are still limitations in detecting small-scale and heavily occluded pedes-
trians. These challenges require further exploration and innovation in
the design of detection algorithms. For example, the integration of
additional context information beyond a single image, such as global
scene context and temporal context, could potentially improve the
performance of pedestrian detection systems in real-world scenarios.
This is beyond the scope of this paper; more details can be found in
our recent survey paper (Wang and Zhu, 2023).

Pedestrian detection in urban scenes is a challenging task that
has garnered significant attention in the computer vision commu-
nity. Several papers have focused on addressing the unique challenges
associated with detecting pedestrians in such environments. While
approaches like Faster R-CNN have become popular for pedestrian
detection, they often fall short in effectively handling heavily occluded
pedestrians and small-scale pedestrians. Limited progress has been
made in leveraging local context information specifically for these
scenarios, resulting in sub-optimal detection performance.

To address this gap, our proposed novel framework integrates local
context for small-scale and occluded pedestrian detection in urban
scenes. Our approach incorporates general topological relations among
objects to facilitate spatial reasoning. By considering the relation-
ships (including occlusions) between objects, we can reason about
the presence and location of pedestrians, even in challenging situ-
ations. Notably, our framework goes beyond improving pedestrian
detection alone; it also enhances the detection results for other objects
in the scene. By leveraging the synergistic effects of contextual compo-
nents, our approach aims to achieve superior performance compared to
existing methods.

By emphasizing the importance of local context and introducing
general topological reasoning, our framework offers a comprehensive
solution for pedestrian detection in urban scenes. Note that the general
framework is not specially designed for pedestrian detection but the
system can be configured to tackle these two challenges in pedestrian
detection. Through the incorporation of contextual cues and the utiliza-
tion of interplay between different components, we can overcome the
limitations of traditional approaches and improve detection accuracy.
Ultimately, our work contributes to advancing the understanding of
urban scenes and objects, opening up new possibilities for real-world
applications.

3. General framework and context components
Our proposed GMC framework, as detailed in Fig. 2, consists of three

key context components: local context representation, semantic context
fusion, and spatial context reasoning. These components can be applied
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Fig. 2. Details of our GMC framework, the general framework of multi-stage context learning and utilization for visual detection tasks. We design a user configuration mechanism for
automating the process for various detection tasks (e.g., storefront object detection, pedestrian detection), using different base detectors (e.g. a CNN model Faster R-CNN (FRCNN)
and a transformer model DETR. Three context learning and utilization components—(a) Local Context Representation, (b) Semantic Context Fusion, and (c) Spatial Context
Reasoning, guide the deep learning models during data labeling, model training and post-processing stages. Each component can be applied individually and in combination. GT:

Ground Truth. LC: Local Context. S: Subject. O: Object.

individually or in combination with a given visual detection network
architecture to enhance object detection performance.

The local context representation component (Section 3.1) focuses on
capturing local contextual information specific to the objects of interest.
By incorporating local context features in the data labeling stage, this
component improves the accurate detection of objects, particularly
small-scale or occluded ones, by leveraging relevant contextual cues.
The semantic context fusion component (Section 3.2) integrates seman-
tic information with visual context to capture object relationships. By
combining prior knowledge and/or learning from the training dataset
in the model training stage, this component enhances the detection
network’s understanding of the scene and improves its ability to dis-
criminate and classify objects. The spatial context reasoning component
(Section 3.3) introduces a general topological relation between object
categories to optimize detection results. By considering the spatial rela-
tionships between objects in the post-processing stage, such as “above”,
“under”, or “within”, this component refines detection outputs based
on their spatial arrangements. This spatial context reasoning enhances
the detection network’s localization accuracy and object classification
performance by incorporating topological reasoning into the detection
process.

An automated process is implemented for each component with sim-
ple user defined parameters. In local context representation component,
we apply an automatic local contextual labeling approach to enhance
the original bounding boxes for small objects in order to employ local
context before the model training step, by using the two most used
definitions of small object in computer vision tasks. In semantic context
fusion component, we automate the process for generating a contextual
graph by leveraging label occurrence knowledge from training data,
and automatically searching the word embeddings from a pretrained
language model. In spatial context reasoning component, we adopt user
configuration for important spatial relations of objects as guidelines, to
automatically generate the spatial relation thresholds, which maximize
the flexibility for object relation definition, without code modifications.

In the following sections, we will provide detailed explanations
of each component within our proposed general framework. Through

GT

User-defined
Parameters

O

Local Context
Calculator

FlI

Fig. 3. An utilized local context representation. The local context calculator is guided
by user-defined parameters and enhance the local context around the ground truth
label of the object. GT: Ground Truth. LC: Local Context. FI: Final Input.

some user-defined parameters related to a given visual detection task
and the chosen base detector, the GMC framework can be easily con-
figured to form an end-to-end model for the task.

3.1. Local context representation

The concept of local context for objects, particularly small ones,
takes center stage in the Local Contextual Representation (LCR) compo-
nent. In the realm of computer vision, categorizing an object as “small”
is not always clear-cut. Factors like shooting angles and environmental
conditions can render an object that is deemed “small”, such as a spoon,
appearing quite “large” within an image. Hence, the notion of smallness
hinges on an object’s size relative to the context of the image, as ex-
plained further below. The procedural essence is graphically illustrated
in Fig. 3. A local context calculator is at the heart of this process, guided
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by user-defined parameters specific to LCR. This calculator works to
enrich the local context surrounding the ground truth label of the
targeted object. To initialize this local context calculator, we introduce
two commonly embraced standards for characterizing small objects.
The Local Context Representation (LCR) component operates during
the data preprocessing stage, focusing solely on the labeling standard
and the specified enlargement percentage for small objects ( Table 1).
This component automatically processes the labels before they are fed
into the network, ensuring seamless integration without introducing
additional inference complexity.

Within the COCO dataset (Lin et al., 2014), small objects are defined
as those whose dimensions are 32 x 32 pixels or smaller, within the
confines of an image with a fixed size of 640 x 480 pixels. Another
definition, as detailed in Chen et al. (2017), relates to situations where
the overlap area between the ground truth bounding box and the image
remains below 0.58%. Given the robustness and widespread adoption
of these definitions in the research community, we employ them as
reference points for automating the labeling process for small objects.
We include the surrounding local context of the bounding box B of an
object O in image I if the object satisfies with the COCO standard for
a small object as:

/o
B, =

@

(1+a)By, if By <32x32
By, otherwise

If the small object satisfies with the second standard—the Small Object
Dataset (SOD) Standard (Chen et al., 2017), we include the local
context of the bounding box B of the object O in image I by:

1+ BB, if 22 <0.58%
B’={( PBo. it 3 @

0 By, otherwise

The above equations introduce notations representing the original and
updated bounding boxes of the ground truth label for a small object.
These notations, B, and By, respectively, are utilized in the context
of the user-defined parameters for the Local Context Representation
(LCR) component. Firstly, the parameters « and g hold significance as
extending factors, expressed in terms of a percentage, from the original
bounding boxes. These factors are related to two distinct standards:
the COCO standard and the SOD standard. The resolution of the input
image, denoted as R, is automatically determined. This automatically
calculated resolution serves as a crucial component in the calculation
of these factors. Secondly, the framework affords users the liberty to
choose between the two contextual labeling standards. Should a given
small object meet the criteria of both definitions, the user can opt
for the standard that best aligns with their requirements. Importantly,
both the original bounding boxes and the enlarged bounding boxes are
retained for all small objects that conform to the user-selected standard
for both training and testing sets. This dual retention strategy serves the
dual purpose of integrating local contextual information and enhancing
the detection’s robustness. The forthcoming sections will delve into the
specifics of the experimental settings in Section 5.2, elaborating further
on these parameters and their implications.

3.2. Semantic context fusion

Semantic information indeed plays a crucial role in visual detection
tasks, providing valuable insights to enhance the detection process.
To ensure a seamless and automatic Semantic Context Fusion (SCF)
into our framework, we have introduced the SCF user-defined pa-
rameters, namely, the categories of a given visual detection task and
the text embeddings used in the task. For example, for a storefront
object detection task, they are door, doorknob, stair. For pedestrian
detection, they include pedestrian, vehicle, bicycle (bike), motorcycle,
etc. These parameters act as guiding factors for the model to learn
and incorporate semantic context using text embeddings. The text
embeddings, obtained from pre-trained language models, are utilized
to generate semantic spaces that can be effectively fused with the
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Fig. 4. The visualization of Semantic Context Fusion. We use category information as
the semantic context cues to generate semantic spaces for visual detection tasks.

visual information obtained from the detection process. This integration
of semantic context with text embeddings allows our framework to
automatically leverage valuable semantic information to improve the
overall detection performance, while minimizing the need for extensive
component modification.

In our framework, the fusion of semantic context is depicted in
Fig. 4. When the framework receives category information from the SCF
user configuration, it proceeds to search for word embeddings H,;.;, €
R™4 from a pretrained language model (such as GloVe Pennington
et al., 2014). Here, n represents the number of label categories, and d
denotes the dimensionality of the word embeddings. Subsequently, an
automatic generation of the contextual graph takes place. The Graph
Convolutional Network (GCN) is then employed to learn semantic re-
lations within the contextual graph, effectively constructing a semantic
space. This semantic space is obtained by transforming the label feature
representation, resulting in H';,,,, € R™P, where D represents the
dimensionality of the region features extracted from the object detector.
As illustrated in Fig. 2, the region features f,.,4,,, € RP*V are projected
into the semantic spaces H',,,,,. Ultimately, the final output is derived
from this process:

!
Pregions = softmax(H labe[xfregions) (3)

where P,,;,,, represents the classification probability distribution for
each proposed region, and P,,,,; € R™V.

As the category information is provided by a given task, our system
automatically generates a contextual graph between different cate-
gories, leveraging prior label occurrence knowledge extracted automat-
ically from the training data. Additionally, we autonomously search for
pretrained word embeddings from the dictionary (Pennington et al.,
2014) without requiring extra information. The SCF (Semantic Context
Fusion) component, armed with the prebuilt contextual graph and
pretrained word embeddings, ensures minimal additional complexity.
The user-defined parameters for the SCF module are detailed in Table 1.

3.3. Spatial context reasoning

In the proposed general Spatial Context Reasoning (SCR) com-
ponent, we leverage topological relationships to model the spatial
relations between different objects. Topological relationships provide
a general and abstract representation of the relationships between
objects, such as overlap, within, touch, and so on. These relationships
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Table 1
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Summary of the provided user-defined parameters for the contextual components.

Parameters Context component

Definition

[Subject,Object] LCR\SCR Subject and object pair
Labeling_standard LCR The standard for small object label enlargement
Enlarge_percentage LCR The enlarging percentage for small object labels
Categories SCF The object categories
Relation_descriptor SCF The contextual graph generation method
pred(optional) SCR Directional relationships between subject and object
t SCR Topological relationships between subject and object
Overlap_threshold(optional) SCR The threshold of overlap percentage between subject and object
Searchy,;,,, (optional) SCR The height of search area for object
Search,,,,, (optional) SCR The width of search area for object
{ Object Detector ]
a b a b
User-defined
Parameters
Disjoint(a, b) Touch(a, b)
& o)
Mask Generator ]
Overlap(a, b) Within(a, b) Fig. 7. The visualization of general Spatial Context Reasoning.

Fig. 5. The visualization of common used topological relationships from Clementini
et al. (1993) and Egenhofer and Franzosa (1991).

Fig. 6. Bounding box vs. semantic masks for road and sidewalk.

capture the overall spatial configuration and arrangement of objects in
a scene, including next two each other, within, and occlusion. The vi-
sualization of topological relationships is depicted in Fig. 5, illustrating
how different objects can be related in terms of their spatial posi-
tions and co-occurrence. By incorporating topological reasoning, our
framework enables a more comprehensive understanding of the spatial
context, enhancing the object detection performance and facilitating
richer semantic interpretations of the scene.

We utilize a predicate pred, such as above, under, etc., to describe
the directional relation between a subject and object pair [.S, O], along
with the topological relationship #, such as overlap and within. This
general relation R is defined as shown in Eq. (4):

R[S, O] = pred[t(S, O)] 4

For instance, in urban settings, a common spatial relationship is that a
stair is usually located under a door, even if there might be overlaps or
spatial misalignment between them. The general relationship between
a pedestrian and sidewalk can be described as R[pedestrian, sidewalk] =
under[overlap(pedestrian, sidewalk)]. It is important to note that the
general spatial relation is inversible, meaning that a pedestrian is on
the sidewalk, and sidewalk can be considered under a pedestrian. To
effectively apply this spatial reasoning, we define a search area around
the detected subject, and if an object is detected within this search
area and satisfies the condition defined by Eq. (4). We propose it as
a detection and send it for evaluation. In cases where multiple objects

are detected within the search area, we propose the object with the
highest score as the final prediction.

To enhance the applicability of our general framework to diverse vi-
sual detection tasks with more accurate detection, we have introduced
semantic masks in our general spatial context reasoning component
(see Fig. 7). As illustrated in Fig. 6, bounding boxes for entities like
roads and sidewalks may not be suitable for effective spatial reasoning
between objects. In contrast, semantic masks offer a more precise and
appropriate means for modeling the relationships between subjects
and objects. While segmentation poses its challenges, modern state-
of-the-art segmentation models can yield accurate masks for larger
entities such as roads and sidewalks, rendering them readily usable for
spatial reasoning. This addition allows us to segment large stuff such as
sidewalks and roads using a pretrained model, which could significantly
improves spatial reasoning in larger scenes. To measure the overlap
between subject—object pairs, we use the intersection over subject (IoS)
metric to describe the general spatial relation, as defined as:

IoS = —(AS n4,)
(4,)

where A; and A, denote the area of the subject and area of the
object. The area can be bounding box or semantic mask based on
the specific scenarios. This formulation enables us to capture the rel-
ative spatial arrangement of objects in a scene, which is valuable for
improving the accuracy of object detection and localization across
various visual detection tasks. We also provide users with the flex-
ibility to configure the general spatial relation for the categories in
their own dataset, allowing them to adapt the framework according
to their specific task requirements. Moreover, the user configuration
can offer meaningful definitions of important spatial relations as guide-
lines, and then our Spatial Context Reasoning (SCR) component will
autonomously generate relation parameters such as overlap thresh-
olds based on the information obtained from the ground truth labels.
Through this adaptation, users can furnish general spatial relations for
specific subject—object pairs. For instance, according to common sense,
a car should be on the road, or a keyboard typically appears under
the monitor. Using the provided relations, we automatically analyze
the training dataset and establish overlap thresholds accordingly. This
approach enables the model to leverage contextual information based

)
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Fig. 8. Integration of contextual components with different deep learning network architectures: Faster R-CNN (FRCNN) and DETR. GT: Ground Truth; LC: Local Context; S:
Subject; O: Object; R: Region features; I: Image features; E: Encoder; D: Decoder; bbox: bounding boxes; cls: classification.

on predefined spatial relationships, enhancing its understanding of the
scene. The user-defined parameters for LCR, SCF and SCR components
are summarized in Table 1.

4. Working with various network architectures

The GMC framework can work with various deep learning network
architectures with minimal modification of the code. In this paper,
we give two examples, both which will be used in the tasks of our
experiments. We employ two popular object detection frameworks,
Faster R-CNN (Ren et al., 2015) and DETR (Carion et al., 2020), as
the underlying detectors for both storefront accessibility detection and
pedestrian detection tasks. These frameworks have demonstrated strong
performance in various object detection scenarios. The integration
pipeline of the three context components with Faster R-CNN and DETR
is shown in Fig. 8. We will detail how the three context components can
be seamlessly integrated with different backbone models, with minimal
code modification.

Prior to the input of the visual detection task dataset into the model,
we incorporate the Local Context Representation (LCR) component to
augment the local context of specific objects. While we begin with two
widely adopted definitions of small objects, as detailed in Section 3.1,
we also empower users to tailor the enhancement of local context
according to their preferences by adjusting the enlarge percentage.
This integration ensures that the LCR component can seamlessly adapt
to diverse models without requiring any modifications to the under-
lying backbone models. This design approach not only increases the
generality of our framework but also facilitates its ease of use and
customization across different applications.

Within our Semantic Context Fusion (SCF) component, we harmo-
nize semantic knowledge with visual features prior to the detection
process. This integration is illustrated in Fig. 8. In the case of Faster
R-CNN, we achieve this by mapping the extracted region features (R)
from the feature extractor backbone into the semantic space, before
subsequently feeding the resulting output into the classification (cls)
head. In contrast, for a comparative scenario of DETR in Fig. 8, we
first project image features (I) into the semantic space and subsequently
input the resulting output into a transformer encoder-decoder (E&D)
for generating predictions. This design allows users to exercise control

over the nature of the pretrained word embeddings in the SCF compo-
nent, with the default setting being GloVe (Pennington et al., 2014).
The SCF component can be seamlessly integrated into each backbone
architecture with minimal adjustments, signifying its adaptability and
ease of incorporation into diverse models. This enables the enriched
representation of contextual information in conjunction with visual
cues, thereby enhancing the overall detection accuracy.

Moreover, the Spatial Context Reasoning (SCR) component can
be seamlessly integrated to fine-tune the detected candidates by syn-
ergizing topological relationships and semantic masks among identi-
fied objects. The SCR component provides a valuable post-processing
feature for both Faster R-CNN and DETR models, requiring minimal
architectural adjustments. This adaptable SCR component can be easily
integrated into the final stage of object classification (cls), offering a
streamlined way to enhance object detection performance. Users retain
the prerogative to exercise control over the component’s parameters
within the configuration file, ensuring adaptability and customization
to distinct detection scenarios. This feature bolsters the accuracy of de-
tection outcomes by leveraging not only the object-specific information
but also the relationships and arrangements among objects within the
scene.

5. Tasks and experiments

The general framework for context learning and utilization is de-
signed not only for working with various visual detectors, but also
for different tasks. In the following, we will showcase three examples:
storefront accessibility detection, pedestrian detection, and COCO ob-
ject detection. We will first introduce the three datasets, describe the
experimental settings, and then detail the experimental results with the
GMC framework.

5.1. Dataset description

Storefront Accessibility Image Dataset. For our experiments,
we utilize the storefront accessibility image (SAI) dataset introduced
in Wang et al. (2022). This dataset focuses on storefront accessibility
in an urban environment and comprises three main categories: doors,
knobs, and stairs. The SAI dataset is collected from Google Street
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Fig. 9. An example of labeled objects. Red: Ground truth bounding box of Door. Cyan:
Ground truth bounding box of Knob. Green: Ground truth bounding box of Stair. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 2

Statistics of collected storefront accessibility data.
Dataset # of Images Doors Knobs Stairs
Train 992 1885 1614 420
Test 110 233 126 141

o
%fﬁull

Fig. 10. The label example from CityPersons Dataset (Zhang et al., 2017). Red:
Pedestrian. Blue: Rider. Yellow: Sitting person. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

View of New York City using the Google Street View API (Google,
2022). To create the dataset, we employ the methodology described
in Cavallo (2015) to compose panorama images. Each panorama image
captures building facades on both sides of a street in New York City.
Subsequently, we divide each formed panorama image into two halves,
with each half covering one side of the facade. To ensure clear and
easily labelable storefronts, we crop the center of each image, where
contains the necessary visual information for storefront accessibility
labeling.

The SAI dataset consists of a total of 1,102 images, where each
image has been labeled for three main categories of accessibility: Door,
Knob, and Stair. The labeling process was carried out using the Label-
box platform (Sharma et al., 2019). To split the dataset for training and
testing, a random sampling technique was employed, where 10% of
the collected data was reserved for the testing set, while the remaining
90% was used for training. The data statistics are presented in Table 2,
providing an overview of the dataset composition. Additionally, Fig. 9
showcases examples of labeled storefront objects within an image,
providing a visual representation of the annotated data.

CityPersons and CityPersons+ Dataset. The CityPersons dataset
is derived from the Cityscapes dataset (Cordts et al., 2016), focusing
specifically on person annotations. It contains annotations for four
categories: pedestrian, rider, sitting person, and person (other). Table 3
provides an overview of the dataset, including information on the
number of images and annotations for each category. Fig. 10 showcases
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Fig. 11. The demonstration of riders in CityPersons+ dataset. We extend existing
categories in CityPersons dataset, with context information, by adding the ground truth
label for context things and combined with the existing subject class label.

Table 3
Statistics of CityPersons and CityPersons+ Datasets.

Dataset # of Category # of Training # of Validation
CityPersons (Zhang et al., 2017) 4 2975 500
CityPersons+ 6 2975 500

an example of labeled pedestrians from the dataset, providing a visual
representation of the annotated data.

To incorporate various context information and leverage the gen-
eral topological relations between different categories, we introduce
the CityPersons+ dataset. This dataset expands upon the CityPersons
dataset by incorporating additional object labels from the Cityscapes
dataset, including more specific subcategories. Specifically, we cat-
egorize pedestrians and riders into four subcategories: pedestrian on
road, pedestrian on sidewalk, rider with motorcycle, and rider with bi-
cycle. Therefore CityPersons+ contains annotations for six categories.
The purpose of adding subcategories is to better utilizing context
information. Fig. 11 shows how we include more context information
without changing existing labels. We also relate the six categories in
CityPersons+ dataset to context information that are beyond these six
categories. First, we add the bounding box ground truth labels for
context things, including motorcycles, bicycles and vehicles, which are
related to the existing subject class labels of rider with motorcycle, rider
with bicycle, and pedestrian occluded by vehicle, respectively. Second,
we include the semantic segmentation labels of context stuff, such as
roads and sidewalks, which could provide precise spatial reasoning
between different objects, namely, pedestrian on road, and pedestrian
on sidewalk, in addition to pedestrian occluded by pedestrian. We also
include word embeddings for both context things (motorcycles, bicycles
and vehicles) and context stuff (roads and sidewalks) for Semantic Con-
text Fusion (SCF) component. We use the pretrained model weights for
Faster R-CNN and DETR to detect the context things, and Segformer (Xie
et al., 2021) to segment the semantic masks for context stuff, to facilitate
general topological reasoning within the Spatial Contextual Reasoning
(SCR) component (see Table 4). Table 3 provides an overview of the
statistics for the CityPersons+ dataset, comparing with CityPersons
dataset: we double the class categories for pedestrian and riders (from 2
to 4), add 5 context objects (not shown in the Table), without changing
the existing classes (2). For the 4 basic classes in CityPersons and
6 basic classes in CityPersons+, as shown in Table 3, the pretrained
model weights for Faster R-CNN and DETR are finetuned using the two
datasets, respectively, and the proposed GMC models will be evaluated.

MSCOCO0-2017. MSCOCO is a standard benchmark in object detec-
tion and instance segmentation. It includes 80 object categories with
118k images for training and 5k for evaluation. The dataset is known
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Table 4

Default user parameter settings for Spatial Context Reasoning in our experiments on the three datasets: SAI (Wang et al., 2022), CityPersons+, and COCO. O_T:

Overlap_threshold.
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Task [Subject, Object] Occlusion Predicate Topology OT Search_area_height Search_area_width
SAI [door, knob] - - within - - -
[door, stair] - under overlap 0.2 0.2height,,,, + height,, widthy,,, + widthg,,
[rider, bicycle] Reasonable under overlap 0.48 0.5height,,q,, widthy;ey,
[rider, motorcycle] Reasonable under overlap 0.5 0.5height,;;,, (117 T——
. [pedestrian, vehicle] Heavy under overlap 0.68 - -
P, +
CityPersons [pedestrian, pedestrian] Heavy - overlap 0.76 - -
[pedestrian, road] Reasonable under overlap 0.2 - -
[pedestrian, sidewalk] Reasonable under overlap 0.13 - -
[person, person] - - overlap 0.73 - -
[person, surfboard] - under overlap 0.17 0.2height o, widthg, rhoara
[person, tie] - - within - - -
[person, skateboard] - under overlap 0.1 0.2height ., Width gy epoard
COCO [person, snowboard] - under overlap 0.16 0.2height s, width g,poara
[zebra, zebra] - - overlap 0.83 - -
[baseball glove, person] - - within - - -
[potted plant, vase] - under overlap 0.45 - -
[frisbee, dog] - - overlap 0.85 - -

for its diversity, containing a wide range of objects and scenes. It
features a maximum of 93 object instances per image, with an average
of 7 objects.

5.2. Experimental settings

Faster R-CNN. In our implementation, we utilize ResNet-50 (He
et al., 2016) as the backbone feature extractor along with the Feature
Pyramid Network (FPN) (Lin et al., 2017), which are both pretrained
on the COCO dataset. For the semantic context fusion, we employ a 2-
layer graph convolutional network (GCN) with LeakyReLU (Maas et al.,
2013) as the activation function. The GCN takes 300-dimensional word
embeddings from GloVe (Pennington et al., 2014) as the input label
feature vector. During training, we employ Stochastic Gradient Descent
(SGD) as the optimizer, with a momentum of 0.95 and a weight decay
of le-4. The initial learning rate is set to 0.005 and is reduced by a
factor of 0.25 every 8 epochs. We train the model for a total of 40
epochs for storefront accessibility detection, 60 epochs for pedestrian
detection, and 50 epochs for COCO object detection.

DETR. Following the methodology described in Carion et al. (2020),
we utilize ResNet-50 as the feature extractor and a transformer
encoder-decoder for our visual detector. The learning rate for both
ResNet-50 and the transformer encoder—decoder is set to 0.005, and
a weight decay of 1e-4 is applied. To train the model effectively, we
set the maximum number of training epochs to 120 for storefront
accessibility detection and 200 for pedestrian detection. During the
training process, we log the results every 5 epochs, allowing for detailed
monitoring of the model’s performance and progress. These settings
ensure a comprehensive and robust training process for achieving
accurate detection results.

To ensure a fair comparison, we fine-tuned the pretrained parame-
ters on COCO of the two baseline models on both SAI and CityPersons+
datasets. The configurations of the SCR component for the three tasks
are shown in Table 4.

5.3. Experimental results

In this section, we present the comparison results for object de-
tection on the SAI dataset (Section 5.3.1) and pedestrian detection on
the CityPersons dataset (Section 5.3.2). We conduct comparisons with
baseline detectors, including Faster R-CNN and DETR, as well as our
previous context learning approaches (Wang et al., 2022, 2023), con-
sidering various combinations of our context learning and utilization
components. The evaluation focuses on performance metrics such as
precision, recall, and mean average precision (mAP), providing insights
into the effectiveness of our proposed framework in enhancing object
and pedestrian detection tasks.
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To ensure a fair comparison between our proposed framework and
the previously designed MultiCLU particularly for storefront accessibil-
ity detection (Wang et al., 2022), we initially adopt the same settings
as described in Wang et al. (2022). Specifically, we utilize the Small
Object Dataset (SOD) standard to represent the local context for small
objects in the SAI dataset. For this, we set the enlarge percentage to
15 percent, denoted as f = 0.15. Similarly, we employ the same small
object standard for the CityPersons dataset, with the enlarge percentage
set to 10 percent, denoted as f = 0.10. By using these consistent
settings, we aim to facilitate a direct performance comparison between
our proposed framework and MultiCLU.

5.3.1. Storefront object detection

In order to assess the effectiveness of our proposed general frame-
work, we conducted a thorough comparison with two baseline detectors—
Faster R-CNN (Ren et al., 2015) and DETR (Carion et al., 2020), and
two of our previous context learning approaches (Wang et al., 2022,
2023), using the SAI dataset. Here we use MultiCLU to represent the
specially designed multi-stage context framework with the CNN-based
model Faster R-CNN, as reported in Wang et al. (2022), GMC-C to
represent the GMC framework with the CNN-based model in this paper
and also as reported in Wang et al. (2022), and GMC-T to represent the
GMC framework on the DETR-based model. To gauge the effectiveness
of our approach on small objects within the SAI dataset, we adopted the
evaluation methodology outlined in Wang et al. (2022). Here, for the
scenarios where the local context representation is employed, we lever-
aged both the original and expanded labels for small objects adhering
to the defined criteria. In cases where both labels were detected for the
same small object, we considered just one to eliminate any possibility
of duplicate detections. The evaluation primarily focused on two key
performance metrics: mean average precision (mAP) and recall. These
metrics were measured at a standard Intersection over Union (IoU)
threshold of 0.5, which is commonly used in object detection tasks.

Performance comparison on Faster R-CNN (Ren et al., 2015). Our
comparative analysis revealed significant performance improvements
when applying our framework to the CNN-based models (represented
in rows 1 to 3 of Table 5). Note for the SAI dataset, the GMC-C results
have been reported in Wang et al. (2023), and the configuration is the
same in this paper. Specifically, our GMC-C model outperformed Faster
R-CNN, achieving substantial increases in both mAP (+13.6%) and
recall (+15.3%). This highlights the effectiveness of our general context
framework in enhancing object detection performance, surpassing the
baseline detector. Furthermore, our GMC-C model exhibited a slightly
higher mAP (+0.3%) compared to the special MultiCLU model, which
employed specialized context mechanisms. However, there was a slight
decrease in recall (-0.5%).
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Table 5

Comparison results on SAI dataset (Wang et al., 2022) with baseline detectors and previous context
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learning approaches. IT: Inference Time (s).

Model IT Precision 1 Recall 1 mAP 1 Recall 1
Door Knob Stair Door Knob Stair
Faster R-CNN (Ren et al., 2015) 0.029 75.6 17.7 66.0 87.5 47.6 73.1 53.1 69.4
MultiCLU (Wang et al., 2022) 0.036 78.0 51.2 70.0 92.3 80.4 83.0 66.4 85.2
+LCR 0.029 78.1 41.3 66.8 88.9 77.7 74.5 62.1 80.4
+SCF 0.036 78.0 19.0 68.5 90.1 53.0 79.4 55.2 74.2
+SCR 0.029 77.8 18.6 67.2 88.8 52.4 74.5 54.5 71.9
+LCR+SCF 0.036 78.4 50.0 69.2 90.8 75.0 79.4 65.9 81.7
+SCF+SCR 0.036 78.2 21.2 69.6 90.3 55.8 80.8 56.3 75.6
+LCR+SCR 0.029 79.2 41.2 67.8 89.2 77.8 74.5 62.7 80.5
GMC-C (Wang et al., 2023) & (this paper) 0.036 78.2 52.3 69.6 92.0 79.9 82.3 66.7 84.7
DETR (Carion et al., 2020) 0.040 75.9 23.8 69.2 91.8 58.4 77.8 56.3 76.0
+LCR 0.040 77.0 45.6 68.5 90.5 75.4 79.4 63.7 81.7
+SCF 0.045 77.8 27.6 70.0 91.4 61.5 81.2 58.5 78.0
+SCR 0.040 77.4 25.2 69.6 90.8 60.8 79.0 57.4 76.9
+LCR+SCF 0.045 80.2 55.1 71.2 92.7 81.2 82.3 68.8 85.4
+SCF+SCR 0.045 78.2 29.8 69.2 91.4 62.3 81.5 59.1 78.4
+LCR+SCR 0.040 78.8 50.8 69.2 92.0 77.8 80.4 66.3 83.4
GMC-T (this paper) 0.045 80.6 55.8 71.2 92.7 82.0 82.6 69.2 85.8

The comprehensive comparison outcomes demonstrate the com-
pelling performance of our framework when integrated into CNN-based
models. By incorporating various context learning and utilization com-
ponents, our framework successfully enhances both mAP and recall,
surpassing the performance of baseline detectors and previous context
learning approaches. This reaffirms the potential and value of our
general context framework in advancing the field of computer vision
and object detection tasks.

Performance comparison on DETR (Carion et al., 2020). To evalu-
ate the flexibility and general applicability of our proposed framework,
we extended its integration to the detection transformer architecture,
represented by the DETR model (Carion et al., 2020). By incorporat-
ing the context learning components into the detection transformer,
we conducted a comprehensive analysis of its impact on the detec-
tion performance. The evaluation results (rows 4 to 5 in Table 5)
demonstrated significant improvements of our GMC-T model in both
mean average precision (mAP) and recall compared to the baseline
transformer model (DETR). Specifically, we observed a noteworthy
increase of 12.9% in mAP and 9.8% in recall, highlighting the effec-
tiveness of our context learning components in enhancing detection
performance within the transformer framework. These findings further
emphasize the adaptability and efficacy of our proposed framework, as
it consistently improves detection performance across different model
architectures. Note here that the transformer-based model already has
context information learnt within the model, this is probably why the
improvement (from DETR to GMC-T) is not as high as that on the CNN-
based models (from Faster R-CNN to GMC-C). Nevertheless, the GMC-T
model, which incorporates our context learning components into the
detection transformer, emerged as the top-performing model among
the evaluated configurations. This outcome underscores the versatility
and effectiveness of our framework in enhancing detection capabilities
across diverse model architectures, showcasing its potential for various
object detection tasks.

Our proposed framework demonstrates superior performance on
the SAI dataset, exhibiting significant improvements over the baseline
detectors and delivering competitive results compared to our previ-
ous specially-designed context learning model MultiCLU (Wang et al.,
2022). These findings support the efficacy of our general context frame-
work in improving object detection accuracy and recall rates, mean-
while adapting to different visual detector architectures. By efficiently
leveraging contextual information, our framework enhances object de-
tection accuracy and recall rates, demonstrating its flexibility and
effectiveness in various detection scenarios.

Performance comparison with different context components.
We embarked on a comprehensive performance comparison across var-
ious combinations of our three contextual components. The outcomes,
presented in Table 5, illuminate compelling insights.
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First we analyze the performance improvements when using various
combinations of contextual components on Faster RCNN. When each
contextual component was applied in isolation, notable enhancements
in recall (from 2.8% to 11%) and mAP (from 1.4% to 9%) over the
baseline were discernible. Furthermore, it is intriguing to observe that
when deploying individual contextual components, the impact of local
contextual labeling was more pronounced than that of the other two
components.

Upon considering combinations of two contextual components, a
noteworthy trend emerged, with each combination outperforming the
baseline detector. The improvements ranged from +3.2% to 12.8% for
mAP and from 6.2% to 12.3% for recall. Strikingly, when the combina-
tions encompassed the Local Context Representation (LCR) component,
they exhibited substantial superiority over other combinations, show-
casing considerable gains in both mAP (+6.4% to 9.6%) and recall
(+4.9% to 6.1%). This outcome underscores the value of incorporat-
ing contextual information around small objects, notably accentuating
the detection efficacy of vital elements like doorknobs. Moreover, in
relation to the single LCR component, both Semantic Context Fusion
(SCF) and Spatial Context Reasoning (SCR) exhibited positive impacts.
These components further improved results over a single LCR compo-
nent, influencing both mAP and recall positively. Intriguingly, when
contrasting the application of both SCF and SCR against their individual
application, the combined utilization marginally enhanced both mAP
and recall compared to using them in isolation.

The apex of our proposed framework’s performance emerged with
the integration of all three components (GMC-C), attaining a notable
13.6% improvement in mAP and an impressive 15.3% enhancement in
recall over the baseline model Faster R-CNN. An interesting observation
lies in the fact that our general framework enhances mAP across all
categories in contrast to MultiCLU (Wang et al., 2022), albeit with
only minimal reductions in recall. This suggests that the specifically
designed MultiCLU might introduce more false positives than accurate
predictions, positioning our framework to offer heightened precision at
the cost of slightly reduced recall.

One notable distinction between the two base models lies in the
impact of the Local Context Representation (LCR) component. Specif-
ically, the improvements achieved by using LCR with DETR are not
as substantial as those observed with Faster R-CNN. When solely ap-
plying the LCR component to Faster R-CNN, there is a remarkable
enhancement in Precision and Recall for the “knob” category, with
improvements of 23.6% and 30.1%, respectively. In contrast, when
the LCR component is applied to DETR alone, the precision and recall
see improvements of 21.8% and 17.0%, respectively, which are com-
paratively less effective than with Faster R-CNN. Moreover, the mAP
and recall for Faster R-CNN see enhancements of 9.0% and 11.0%,
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Table 6
Comparison results on Citypersons dataset (Zhang et al., 2017) with baseline detectors
and previous context learning approaches. IT: Inference Time (s).

Model 1T Reasonable | Heavy |
Faster R-CNN (Ren et al., 2015) 0.062 13.4 36.9
+LCR 0.062 12.3 35.6
+SCF 0.068 13.3 37.1
+SCR 0.063 13.0 36.5
+LCR+SCF 0.068 12.2 35.2
+SCF+SCR 0.069 13.2 36.5
+LCR+SCR 0.063 12.0 36.0
GMC-C (Wang et al., 2023)& (this paper) 0.069 12.0 35.2
DETR (Carion et al., 2020) 0.059 11.8 40.8
GMC-T (this paper) 0.063 10.5 39.5

whereas DETR experiences improvements of 7.4% and 5.7%, respec-
tively, when the LCR component is added. This discrepancy could be
attributed to the inherent self-attention mechanism of the transformer
architecture, which inherently incorporates context information of local
context especially for small objects, a feature that Faster R-CNN lacks.
Nevertheless, the performance improvements achieved through vari-
ous combinations of contextual components on DETR exhibit similar
trends, indicating the consistent and robust functionality of the GMC
framework across different backbone models.

5.3.2. Pedestrian detection

We conducted further evaluation of our general context learning
and reasoning framework on pedestrian detection task using CityPer-
sons dataset, comparing it with the baseline detectors, Faster R-CNN
(Ren et al., 2015) and DETR (Carion et al., 2020), without any code
modifications. Here again, we use GMC-C to represent the general
framework of context learning with the CNN-based model, and GMC-
T to represent the general framework on DETR-based model, on the
original CityPersons dataset (without considering the subcategories or
additional context for spatial context reasoning). In summary, in the
labeling stage, we employ the small object standard for the CityPersons
dataset to enhance the labeling of small objects with local context label-
ing. We further leverage the fine-grained category rider in CityPersons
dataset to enable the semantic context fusion in the training stage, and
the spatial context reasoning in the postprocessing stage. Note that the
GMC-C model in this paper is the same as that in Wang et al. (2023).

Further, we use GMC-C+ and GMC-T+ to represent the general
framework with more spatial context reasoning, using the CityPersons+
dataset with subcategories of pedestrians and riders, as well as informa-
tion of vehicle, road and sidewalk. We compared the evaluation results
on the reasonable and heavy subsets of the data using the standard
evaluation metric in pedestrian detection, M R~2 (where lower values
indicate better performance). Here, the subsets were defined based on
the height (4) and visible ratio (v) of pedestrians: Reasonable subset:
h € [50, 0], v € [0.65, 1]; Heavy subset: h € [50, o], v € [0,0.65].

Overall comparison with baseline detectors. The comparison
results presented in Table 6 provide insights into the performance of the
GMC framework on different architectures on both the reasonable and
heavy subsets. It is observed that DETR and transformer-based GMC
model (GMC-T) generally exhibits superior performance on the reason-
able subset (+1.6% and +2.9%, respectively, compared to the Faster-
RCNN base model), indicating its effectiveness in capturing contextual
information and enhancing detection accuracy. However, DETR and
GMC-T demonstrates lower performance on the heavy subset (—2.6%
and —3.9% respectively, compared to the Faster-RCNN base model),
which could be attributed to the absence of design elements such as
the feature pyramid network (FPN) (Lin et al.,, 2017) employed in
the Faster R-CNN framework. In contrast, the CNN-based model GMC-
C may not achieve the same level of performance on the reasonable
subset as transformer-based model GMC-T, but it often demonstrates
better performance on the heavy subset (+1.7% compared to the Faster-
RCNN base model). This suggests that the CNN-based model are able to
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effectively handle challenging scenarios with heavily occluded pedes-
trians, where precise localization and robust feature extraction are
crucial. This evidence supports our rationale of the general context
framework in working with various backbone models depending on the
task requirements.

Performance comparison with different context components on
Faster-RCNN. Upon applying the Local Context Representation (LCR)
component alone on Faster R-CNN, there was a noticeable enhancement
of 1.1% on the reasonable subset and 1.3% on the heavy subset (as
illustrated in Table 6). To further amplify our framework’s capabilities,
we introduced a fine-grained category (rider) into the CityPersons
dataset during training to facilitate the Semantic Context Fusion (SCF)
and Spatial Context Reasoning (SCR) components. As observed in the
results analogous to those from the SAI dataset, configurations with the
LCR component consistently yielded superior performance compared
to other settings. However, it is worth noting that both SCF and
SCR modules had a minor impact on pedestrian detection, possibly
attributed to the relatively weak correlation between pedestrians and
other urban objects. In summation, our comprehensive framework,
encompassing all three components, achieved the most impressive
performance across both the reasonable subset (1.4% lower) and the
heavy subset (1.7% lower), outperforming the baseline detector and
alternative combinations.

Comparison with DETR. Upon comparing our newly introduced
GMC-T model with the baseline Detection Transformer (DETR) model,
our GMC-T model consistently demonstrated superior performance
across both the “reasonable” and “heavy” subsets. This was marked
by a substantial enhancement in detection performance, exhibiting an
impressive 1.3% improvement on both subsets. These results provide
compelling evidence for the effectiveness of our context learning and
reasoning components in bolstering the detection capabilities of diverse
architectural frameworks. Moreover, our framework’s adaptability is
evident as it showcases its prowess not only in CNN-based models but
also in transformer-based models. The ease with which our framework
can be integrated and customized underscores its potential to cater to
a range of visual detection tasks beyond just pedestrian detection.

Overall, the comparison results highlight the potential and versa-
tility of our proposed context learning and reasoning components in
improving object detection performance across different datasets and
tasks. The framework offers a flexible and effective solution for incor-
porating context information and enhancing the detection capabilities
of various deep learning models, contributing to advancements in the
field of computer vision and object detection.

The effectiveness of the general Spatial Context Reasoning
(SCR). We also conducted an extensive study to evaluate the effective-
ness of the general spatial context reasoning (SCR) component within
our framework. In order to achieve a more comprehensive and robust
topological reasoning, we leveraged both bounding boxes for objects
(such as bicycles, motorcycles, cars, pedestrians) and semantic masks
for stuff (such as sidewalks and roads) in CityPersons+ dataset. This
allowed us to capture and utilize the spatial relationships between
various entities in the scene. To assess the impact of the enhanced
general SCR component, we evaluated its performance in two enhanced
models—GMC-C+ and GMC-T+, as well as its use on the two baseline
object detection models—Faster R-CNN and DETR. Table 7 presents
the comparative results of these models with and without the SCR
component.

(1). SCR performance on Faster R-CNN. When we solely applied
the SCR component to the Faster R-CNN model, we observed notable
improvements in performance for both the reasonable and heavy sub-
sets, achieving an increase of 0.6% and 0.8%, respectively. However, it
is important to note that the Faster R-CNN model, without the inclusion
of the local context and semantic context components, did not achieve
the same level of performance as the GMC-C model. By replacing the
initial spatial context reasoning component with our enhanced SCR
component in the GMC-C model, leading to the GMC-C+ model, we
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Fig. 12. Qualitative results on the three datasets: COCO (columns 1 & 2), SAI (columns 3 & 4) and CityPersons+ (columns 5 & 6). GMC-T*: We only evaluate the SCF and SCR

components on COCO dataset, and the GMC-T was evaluated on the other two datasets.

observed a slight performance improvement of 0.2% on the reasonable
subset and 0.4% on the heavy subset, over the GMC-C model. These
results indicate that the integration of the enhanced SCR component
can enhance the performance of the GMC-C model to some extent.
However, when comparing these results with the performance of the
enhanced SCR component alone (i.e., Faster R-CNN + SCR), it is evident
that the GMC-C+ model with the combined local context, semantic
context, and enhanced SCR component outperformed both subsets,
achieving a significant improvement of 1.0% on the reasonable subset
and 1.3% on the heavy subset. This demonstrates the synergistic effect
of incorporating multiple context sources within the framework. our
evaluation confirms that the integration of the enhanced general SCR
component can effectively improve the performance of object detec-
tion models, particularly when combined with the local context and
semantic context components. Overall, GMC-C+ achieves performance
improvements of 1.6% on the reasonable and 2.1% on the heavy,
compared to the Faster-RCNN base model.

(2). SCR performance on DETR. We also study whether our en-
hanced general SCR component can improve over the DETR model,
which already incorporates a self-attention mechanism to leverage con-
text information. Not surprisingly, even with the existing self-attention
mechanism, the application of the enhanced SCR component to the
DETR model led to performance improvements. Specifically, we ob-
served an increase of 0.6% on the reasonable subset and 1.0% on
the heavy subset, indicating that the SCR component can effectively
enhance the context utilization capabilities of the DETR model. Further-
more, when we combined the general SCR component with the other
two contextual components (local context and semantic context), our
GMC-T+ model achieved additional performance improvements over
the DETR model and the GMC-T model on both evaluation subsets. The
results showed a significant improvement of 1.6% on the reasonable
subset and 2.2% on the heavy subset, compared to the DETR base
model, and a visible improvement of 0.3% on the reasonable subset
and 0.9% on the heavy subset, compared to the GMC-T model. This
highlights the complementary nature of the contextual components and
their ability to further enhance the detection performance of the DETR
model.

Our evaluation on pedestrian detection task confirms that the inte-
gration of the more general SCR component can effectively improve the
performance of the detection models, particularly when combined with
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Table 7
Comparison results on general spatial context reasoning (SCR)
component with baseline detectors and previous designed component.

Model Reasonable | Heavy |
Faster R-CNN (Ren et al., 2015) 13.4 36.9
Faster R-CNN + SCR 12.8 36.1
GMC-C (Wang et al., 2023) &(this paper) 12.0 35.2
GMC-C+ (this paper) 11.8 34.8
DETR (Carion et al., 2020) 11.8 40.8
DETR + SCR 11.2 39.8
GMC-T (this paper) 10.5 39.5
GMC-T+ (this paper) 10.2 38.6

the local context and semantic context components. Our three contex-
tual components, when integrated with the DETR model, demonstrated
the best performance on the reasonable subset. On the other hand,
the three contextual components combined with the CNN-based model
Faster R-CNN exhibited better performance on the heavy subset. These
findings indicate that the choice of model architectures, in combination
with the specific context components, can have an impact on the
overall detection performance, with different configurations achieving
better results on different evaluation subsets. This also highlights the
importance of leveraging multiple context sources and considering the
spatial relationships between objects for achieving more accurate and
robust detection.

5.4. COCO object detection

In order to check the scalability of our proposed general frame-
work, we evaluate our framework on a large detection benchmark
COCO dataset. We conducted comparison with two baseline detectors—
Faster (Ren et al., 2015) and DETR (Carion et al., 2020). We focus on
two performance metrics: average precision (AP) and average precision
for small objects (APg). The comparison results are shown in Table 8.

Performance comparison on Faster R-CNN (Ren et al., 2015).
Our comprehensive comparison results underscore the efficacy of our
proposed GMC-C model, revealing significant improvements in key
metrics. The average precision (AP) metric, a crucial indicator of
overall detection performance, exhibited a notable enhancement of
+0.7% when employing our framework compared to the baseline Faster
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Table 8
Comparison results on COCO dataset (Lin et al., 2014) with baseline
detectors. IT: Inference Time (s).

Model IT AP 1 AP, 1
Faster R-CNN (Ren et al., 2015) 0.028 37.4 21.2
+LCR 0.028 37.6 21.5
+SCF 0.040 37.6 21.3
+SCR 0.030 37.5 21.2
+LCR+SCF 0.030 37.9 21.6
+SCF+SCR 0.040 37.8 21.4
+LCR+SCR 0.028 37.7 21.6
GMC-C 0.040 38.1 21.7
DETR (Carion et al., 2020) 0.036 42.0 21.0
+SCF 0.042 42.3 21.4
+SCR 0.037 42.2 21.2
+SCF+SCR 0.042 42.7 21.5

R-CNN. Moreover, our model demonstrated a noteworthy advance-
ment in AP for small objects, registering an improvement of +0.5%.
This targeted improvement underscore the effectiveness of our pro-
posed framework, particularly in addressing the detection challenges
associated with smaller objects within the visual scene. The results
substantiate the adaptability and enhanced performance of our GMC-C
model, positioning it as a valuable asset in scenarios demanding precise
and comprehensive object detection.

The application of the Local Context Representation (LCR) com-
ponent in isolation on the Faster R-CNN model resulted in a modest
improvement, with a 0.2% increase in average precision (AP) and a
0.3% enhancement in AP (as detailed in Table 8). Remarkably, when
the LCR component was synergistically combined with the Seman-
tic Context Fusion (SCF) component, this pairing exhibited the most
substantial improvement compared to other combinations. The joint
application yielded a 0.5% boost in AP and a 0.4% increase in AP . It is
noteworthy that the individual application of the SCF and Spatial Con-
text Reasoning (SCR) modules had a comparatively minor impact on
the COCO dataset. In summary, our holistic framework, encompassing
all three components, demonstrated the most remarkable performance
improvement across both AP (+0.7%) and AP (+0.5%), surpassing the
baseline detector and alternative component combinations.

Performance comparison on DETR (Carion et al., 2020). In our
evaluation using DETR, the impact of our context components becomes
apparent when applied individually. Since we have to fine-tune the
large DETR model for LCR, we only tested performance improvements
for the other two components (SCF and SCR) as the DETR can be
frozen when training SCF and no re-training is needed for SCR. The
Semantic Context Fusion (SCF) component, when introduced on its
own, yields notable enhancements with a relative increase of +0.3% on
AP and +0.4% on APg. This signifies that incorporating semantic rela-
tionships between objects contributes positively to the overall detection
performance.

Conversely, the Spatial Context Reasoning (SCR) component, when
applied independently, demonstrates a more modest impact, with only
a +0.2% improvement on both AP and A P. This result is suggestive of
the challenges associated with defining meaningful relations between
objects in the COCO dataset, where the provided relations are limited.

Interestingly, the synergy between SCF and SCR components be-
comes evident when they are combined. Their complementary nature
enhances each other’s contributions, resulting in a more substantial
improvement. The joint application of SCF and SCR leads to a further
increase in performance, with a +0.7% improvement on AP and +0.5%
on APg. This collaborative effect underscores the value of integrating
both semantic and spatial context reasoning for more effective object
detection within the DETR framework.

5.5. Performance discussions for different tasks/datasets

With more in-depth examinations, we sought to delineate the spe-
cific object categories that exhibit significant influence from the Spatial
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Table 9
Impacted categories for all datasets in SCR component.

Datasets Impacted categories Percentage
SAI 3/3 100
Citypersons+ 6/8 75

Ccoco 11/80 13.75

Context Reasoning (SCR) component across the diverse datasets we
scrutinized. As shown in Table 9, within the SAI dataset, the SCR
component dynamically integrates contextual relationships for all three
categories—door, knob, and stair. Transitioning to the CityPersons+
dataset, the SCR component extends its reach across the entire spectrum
of object categories. Notably, contextual elements like road and side-
walk draw upon insights from a state-of-the-art segmentation model,
leading to a pronounced impact on 75% of the dataset’s categories.
In the case of the COCO dataset, the SCR component centers its focus
on the person category, given its preeminence as the most abundant
class in the dataset. While other categories also experience influence,
the overall impact encompasses approximately 13.75% of all object
categories within the COCO dataset.

We further conducted evaluations to assess how our components
perform on the most impacted categories across all datasets, and the
summarized results are presented in Table 10. In the SAI dataset, the
substantial improvement of +21.8% in AP for the “knob” category,
achieved by applying the Local Context Representation (LCR) compo-
nent with DETR, underscores the pivotal role of contextual information
in detecting and delineating small objects. This result suggests that
leveraging local context in tandem with transformer-based models
significantly benefits the identification of intricate details in specific
categories. Moving to the CityPersons+ dataset, where the “pedestrian”
category exhibited the most notable enhancement of +1.1% on the
reasonable set and +1.3% on the heavy set with the LCR component
on Faster R-CNN, we observe the importance of local context in urban
scenes. The improved detection performance for pedestrians, a crucial
element in urban scenarios, emphasizes the significance of considering
context for specific object classes. This insight becomes especially valu-
able in the domain of object detection, where capturing fine-grained
details is essential.

In the COCO dataset, the “person” category’s substantial improve-
ment of 3.6% in AP with the Spatial Context Reasoning (SCR) compo-
nent applied to the DETR model suggests that accounting for spatial
relationships is particularly beneficial in datasets characterized by a
larger scale and diverse object categories. Spatial reasoning plays a
crucial role in refining the predictions, especially in scenarios where
objects interact in complex spatial configurations. Although Semantic
Context Fusion (SCF) did not exhibit standout improvements compared
to the other two components, its role in contributing to enhanced
performance, especially when combined with LCR and SCR compo-
nents, underscores its potential in capturing contextual semantics. This
holistic approach, leveraging different forms of context throughout
the entire deep learning process, demonstrates promising results and
sets the stage for further exploration in context-aware computer vision
tasks.

Furthermore, we conducted a thorough comparison of the inference
times (expressed in seconds) across our results( Tables 5, 6 and 8).
The findings revealed that our framework incurs only a marginal
increase in time complexity. Furthermore, the qualitative results visu-
alized in Fig. 12 provide a compelling illustration of how the proposed
method enhances performance across all three datasets (COCO, SAI,
and CityPersons+), offering a comprehensive validation of its efficacy.

6. Conclusions and discussion
In summary, we have proposed a general framework of multistage

context learning and utilization for visual detection tasks. Our pro-
posed framework consists three context components to utilize local
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Table 10
Component performance on most impacted categories on all dataset. D:DETR. F:Faster R-CNN.
Dataset Category Model AP 1 Reasonable| Heavy|
SAI knob D+LCR 23.8 - 45.6 - -
CityPersons+ pedestrian F+LCR - 13.4 - 123 36.9 - 35.6
COCOo person D+SCR 47.3 - 50.9 - -

context, semantic context and spatial context information. The three References

context components have the flexibility and adaptability to utilize the
framework across various visual detection tasks, with different visual
detectors. The proposed framework are evaluated and verified on com-
plex street scenes for a storefront object detection task and a pedestrian
detection task. Compared to the state of the art methods, the evaluation
demonstrates that our framework can efficiently leveraging contextual
information at various stages such as data preprocessing, model train-
ing and post-processing. Our comparison results also show that the
proposed contextual components can effectively improve the perfor-
mance over different baseline models, with the support of different
context information.

However, there is still space for improvements over the proposed
framework. In this work, we only explore local, global and seman-
tic context, mostly in the spatial domain. Other context types need
more attention, and new architectures particularly designed for context
learning and utilization as summarized in Wang and Zhu (2023) have
not been considered.

Despite our attempt in conducting experiments on the extensive
MSCOCO dataset to show promising results, defining general spatial
relations of all object categories becomes a challenge, especially when
dealing with a dataset that encompasses numerous categories. The task
of establishing meaningful and universally applicable spatial relations
becomes intricate due to the diversity of object categories present in
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to derive spatial relations that can effectively generalize across a wide
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Furthermore, there are many works focus on the real world detec-
tion scenarios, where the standard evaluation metrics may not work
well. A contextual evaluation based on the requirements of real-world
applications is needed not only for object detection task, but may also
benefit other computer vision tasks.
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