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Abstract

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spati-
otemporal structure of waves can indicate the information they encode and the physiological processes that sustain them.
Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of
visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and
adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is
described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally
stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the
relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and
continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the
experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized

by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.
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1 Introduction

Coherent neural activity patterns respond to and even predict
sensory stimuli (Ermentrout and Kleinfeld, 2001). The spa-
tiotemporal dynamics that emerge in the context of sensory
processing can be substantially complex but nevertheless
reproducible, implying internal features of neural popula-
tions organize activity responses in repeatable ways (Wu
et al., 2008a). Along these lines, the careful characterization
of these evoked dynamics across trials can provide insight
into network structure and its role (Xu et al., 2007). Moreo-
ver, repeatedly evoked coherent patterns of activity can
reverberate even in the spontaneous dynamics that follow
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stimulus trials (Han et al., 2008). These results suggest that
the coherent spatiotemporal activity dynamics that emerge in
sensory cortices following stimulus presentations subserve
computations determining animals’ future expectations and
behavior Zanos et al. (2015).

Visual cortical waves are a well studied example of coher-
ent cortical dynamics, which are generated both by electri-
cal and visual stimulation (Wu et al., 2008a). The visual
system continually converts ongoing and complex input into
abstract but appropriately detailed representations (Tenen-
baum et al., 2011). These computations serve to not only
represent position, motion, and shape of objects (Born and
Bradley, 2005), but also to resolve ambiguities including
anticipated changes (Knill and Pouget, 2004). As this pro-
cess unfolds over time, new observations are merged with
previous estimates, potentially inferring object features via
the spatiotemporal neural activity of corresponding cortical
networks (Cichy et al., 2014; Bill et al., 2022). Moreover,
propagating neural activity waves resulting from complex
visual stimuli, even those arising in visual cortex, appear to
subserve the onset and specifics of motor outputs, like sac-
cades (Zanos et al., 2015).

Object motion tracking and prediction are important
visual functions for animals behaving in their natural
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environments (Eckert and Zeil, 2001). Flying predators must
accurately track and predict the movement of prey animals
along the ground to plan their pursuits and strikes (Kane and
Zamani, 2014), while flocking and herding animals antici-
pate and rapidly respond to the movements of their neigh-
bors to avoid collisions and stay together (Nagy et al., 2010;
Torney et al., 2018). Often, conspecifics or objects are only
intermittently seen by animals, requiring their velocity and
position estimates to be made during the occlusion peri-
ods (O’Reilly et al., 2008). Such abilities suggest a nor-
mative account of the apparent motion illusion in which
successive stationary flashes at different locations are per-
ceived as a single moving object hidden from view between
flashes (Ramachandran and Anstis, 1986). Voltage sensi-
tive dye recordings from awake fixating monkeys observing
such stimuli reveal an interaction of neural activity waves
with external inputs suggesting early visual cortical activ-
ity helps represent perception of a moving object and its
velocity (Chemla et al., 2019). This study also proposed a
detailed computational model in which a suppressive wave
of activity is generated by the second of two flashes, either
explaining away the ambiguity of the first flash as possibly
another object or representing the two flashes as a single
moving object.

Here, we analyze a neural field description of the appar-
ent motion illusion that relies on the entrainment of traveling
activity wave solutions to a sequence of transient and localized
stimulations. Neural fields model neuronal networks as a con-
tinuous and spatially-extended excitable medium described by
nonlinear integrodifferential equations allowing for direct anal-
ysis using methods adapted from nonlinear partial differential
equations, such as reaction diffusion models (Bressloff, 2011).
Such a framework is ideal as it affords analytical treatments
of the local network mechanisms underlying emergent spa-
tiotemporal patterned activity (Huang et al., 2004; Goulet &
Ermentrout, 2011) and stimulus-behavior relationships com-
monly recorded in cognitive tasks (Bressloff & Webber, 2012;
Kilpatrick, 2018; Erlhagen & Schoner, 2002). Traveling wave
solutions can be identified explicitly in many instances (Pinto
& Ermentrout, 2001; Coombes, 2005), as can their response
to non-trivial stimuli (Folias & Bressloff, 2005; Ermentrout
et al., 2010; Si, 1977). Our model incorporates a physiologi-
cally realistic form of negative feedback as short term synaptic
depression, leading to an attenuation at the back of waves, pro-
ducing traveling pulses (Kilpatrick & Bressloff, 2010c). We
will solve for traveling waves and identify their response to
flashing stimuli, interpreting the resulting dynamics as a stimu-
lus motion percept. Such an approach allows for explicit and
dynamical characterization of the conditions required to pro-
mote the apparent motion illusion across a range of potential
stimulus types.

Our perturbative approach to studying how traveling waves
respond to transient or weak stimuli specifically estimates how
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a wave’s position changes in response to inputs. Linear asymp-
totics and even weakly nonlinear analysis have been used previ-
ously to understand how perturbations in synaptic connectivity,
input, or model parameters shape waves and patterns in neu-
ral field equations (Bressloff et al., 2003; Venkov et al., 2007;
Bressloff, 2001; Coombes, 2005; Amari, 1977). Perturbative
theories describing how waves transform inputs and synap-
tic weight heterogeneities into changes in position and speed
have been used as a model of idiothetic position (i.e., where an
animal is or what direction they are heading) (Zhang, 1996;
Xie et al., 2002; Burak & Fiete, 2009). Weak inputs alter the
dynamics enough to displace wave positions without substan-
tially disrupting their shape, allowing for an accurate linear
input-response theory (Kilpatrick & Ermentrout, 2012). Since
our model incorporates nonlinear negative feedback, care must
be taken in performing the asymptotic calculations to character-
ize the response to inputs (Kilpatrick & Bressloff, 2010d). In
addition, we can study the differential effects of inputs to the
synaptic depression variable, which recovers more slowly, as
opposed to the neural activity variable.

The response of traveling waves to transient inputs can
be accurately captured by our perturbation theory, providing
closed form expressions for the distance traveling waves are
shifted by perturbations. Realizing wave position as a model
of inferred object motion, we conclude that these posi-
tion shifts encode the history of encountered inputs. Flash
sequences that hop to new locations according to effective
speeds that are sufficiently close to the intrinsic speed of
a traveling wave can entrain it. Our framework precisely
characterizes the width of this band of entrainable speeds
as a function of the amplitude and frequency of the input,
providing testable predictions concerning the psychophysics
of apparent motion.

2 Neural field model with synaptic
depression

Prior models of local negative feedback in neural fields often
employ heuristics like linear adaptation (Pinto & Ermen-
trout, 2001), not based directly on physiology. Continual
activation of neurons can transiently reduce the efficacy of
synapses originating from them, often due to vesicle deple-
tion (Fortune & Rose, 2001). Activity-based models of neural
activity, like neural fields, typically incorporate such short-
term depression according to the Tsodyks-Markram model,
derived by temporally smoothing the dynamically evolving
efficacy of resource-dependent synapses (Tsodyks et al., 1998;
Bart et al., 2005). Dynamic reductions in the strength of syn-
aptic weights originating from recently active neural popula-
tions curtails spatiotemporal activity and can produce propa-
gating waves and patterns in continuum neural fields (York &
van Rossum, 2009; Kilpatrick & Bressloff, 2010b; Bressloff
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& Webber, 2012). We will move beyond these prior studies
to consider the effects of transient and persistent inputs upon
waves in networks subject to synaptic depression, and con-
sider how such a model can represent visual motion encoding.
Specifically, we consider the following integro-differential
equation system:

%u(x, 1) = —u+w* (gf[ul) + €l (x, 1), (1a)
Tq%q(x, 1) =1-q—pqflulx, )] + el (x,1). (1b)

Here, u(x, t) and g(x, t) denote the average normal-
ized voltage and synaptic efficacy, respectively, at loca-
tion x and time ¢, and f(u) represents the output firing rate
(Ermentrout, 1998). The synaptic timescale 7, is gener-
ally chosen to be longer than the non-dimensionalized
time units (7, > 1) representing the timescale of neural
activity (Tsodyks et al., 1998). Both u and ¢ are normal-
ized so that typical activity (in the absence of stimuli,
and with suitable initial conditions) places each variable
in the interval [0, 1] for any particular point in space-
time. The weight kernel w(x,y) = w(|]x —y|) is purely
distance-dependent and gives the density of synaptic con-
nections from pre-synaptic neurons at location y to post-
synaptic neurons at location x, as is common (Wilson &
Cowan, 1973; Amari, 1977; Pinto & Ermentrout, 2001)
(See Bressloff, 2001; Kilpatrick et al., 2008 for examples
of the effects of breaking this translation symmetry). The
non-local spatial operator takes the form of a convolution
w % (qf[u]) = fRn w(x — y)g(y, H)f [u(y, t)]dy, where our analy-
sis mostly focuses on one-dimensional (n = 1) networks, but
we discuss extensions to planar (n = 2) networks towards
the end. We will take the weight kernel to be a decaying
exponential w(x) = %e""' for explicit calculations.

The firing-rate function f is non-linear, monotonic,
and is often normalized so it is lower bounded to O for
small values and saturates to 1 for large values. Common
choices are sigmoidal or Heaviside functions. Throughout
this paper, we will choose f(u) = H(u — ) where H is the
Heaviside function, and € is a threshold parameter describ-
ing the input activity needed to generate output activity
from a local population. The binary output of the Heavi-
side function approximates firing rates to simply be low
or high but allows us to, for any given time ¢, partition the
spatial domain into an active region {x € R | f(u(x, 1)) = 1},
inactive region {x € R | f(u(x, 7)) = 0} and a set of thresh-
old crossings {x € R | u(x, ) = 8} (Coombes et al., 2012).
Spatiotemporal inputs /,(x, ) and 1 (x, t) representing the
impact of visual stimuli are assumed to be weak (¢ < 1)

compared to ongoing activity and may arise in either the
neural activity or synaptic efficacy variables.

The strength of synaptic depression is parameterized by
the rate § > 0 (Tsodyks et al., 1998; Bart et al., 2005).
Notice that in regions where u > 6, we have f[u] = 1, and
then Eq. (1b) can be written yz,q, =y — q + yel,, where
y = :lﬂ € (0, 1]. Under this formulation, 7, is the timescale
of synaptic replenishment, y 7, is the timescale of synaptic
depletion, and y is the ratio between them. For y = 1
(0 < p < 1), the timescales of replenishment and depression
are similar, and when f is not small, the depression timescale
is shorter and thus depression happens at a faster rate. Inclu-
sion of synaptic depression dynamically reduces synaptic
efficacy (¢ < 1), attenuating the active regions within waves.
In the next section, we characterize front and pulse solutions
more precisely through explicit construction.

3 Traveling wave solutions

The neural field model with synaptic depression supports a
variety of traveling wave solutions that are qualitatively dif-
ferent than the corresponding scalar model (Kilpatrick and
Bressloff, 2010b) without synaptic depression. In a purely
excitatory scalar neural field model,

%u(x, 1) =—u+w*flul, 2)
a sufficiently large, initially active region will spread indefi-
nitely as counterpropagating traveling fronts in the long time
limit Faye and Kilpatrick (2018). Traveling front solutions,
which take the form of heteroclinics connecting the active
(u = 1) to the inactive (u = 0) state in traveling wave coor-
dinates £ = x — ct can be constructed explicitly in the case
of step nonlinearities f(«) = H(u — 8) (Pinto and Ermen-
trout, 2001) and using a homotopy argument in the case
of smooth nonlinearities (Ermentrout and McLeod, 1993).
That is, for u = U(£), we have a solution that satisfies
lim;_,_, U(¢) = 1 and lim,_,, , U($) = 0. Our analysis of
traveling waves in the model with synaptic depression hinges
upon the manipulation of the left limit.

The different form of traveling waves in the model with
synaptic depression emerges due to attenuation of the activ-
ity level within the active region. To demonstrate this, we
examine the fixed points of the analogous space-clamped
equations of Eq. (1) in the absence of inputs (/, = I, = 0)
obtained by assuming u(x,?) = u(t) and g(x,1) = q(¢), so
W' (t) = —u+qgflul and 7,4'(t) =1-q— Pgflul, where
we have assumed the normalization fR w(x)dx = 1. For
flul = H(u — 0), we always have the quiescent fixed point
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(,g) = (0, 1) and if y > 8 we will also have (i1, g) = (v, 7).
As we will show, if y > 6, traveling front solutions of Eq. (1)
for I, = I, = 0 can be supported with an attenuated active
state, butif y < 0, traveling pulse solutions with a finite active
region can emerge.

Previously, in Kilpatrick and Bressloff (2010b), trave-
ling front and pulse solutions were characterised for
a generalization to the model Eq. (1) that incorporated
spike rate adaptation. Here we rederive and extend some
of these results (See Figs. 1 and 2) in anticipation of our
later derivations. Analyzing the model without spike fre-
quency adaptation allows us to more clearly character-
ize the impact of synaptic depression. We also identify a
previously overlooked traveling wave solution, the stable
retreating front, which co-exists with the stable advancing
front and emerges due to the negative feedback.

3.1 Fronts
Changing variables to wave coordinates & = x — ¢t in Eq. (1)

and assuming ¥ = U(&) and g = Q(&), we find that such solu-
tions must satisfy

—cU' (&) = -U©®) + / w(& =M (UY))dy,
R
—cr,0'(§) = 1 = Q&) - PREFU©)).

Traveling fronts in an excitatory neural field (with
w(x) > 0) with a step nonlinearity f(u«) = H(u — 0) can
be shifted such that the single threshold crossing point
occurs at £ = 0, so that U(0) = 6. The active region is thus
{EeR|UE) > 0} = (—,0). Note, that the function U(€)
is not necessarily monotone decreasing in £ as it is in the
scalar system due to the negative feedback resulting from
synaptic depression. Thus, we must impose an additional
inequality U(&) > 6 for &€ < 0, which should be checked for
self-consistency:

0

w(§ = y)Q(y)dy, (3a)

—cU'(§) = —U(§)+/

—00

—c7,0'(§) = 1 = Q&) = PO(OH(=E). (3b)

Equation (3b) is now piecewise linear, decoupled from
Eq. (3a), and can be solved piecewise along with enforcing

B

R A R AP AE AR

1.0 1 r ——
c=3.64 ! c=0.02 I c=-0.50 P
/7
Stable III QL) Unstable i Q) Stable / Q(¢)
0.5 :
|
|
I
0.0 1

I
§=0
Fig.1 Traveling fronts in a neural field with synaptic depression.
A Speeds of stable (solid) and unstable (dashed) traveling fronts as a
function of the y = ﬁ (synaptic depletion/replenishment timescale
ratio). For y < @, self-consistency is broken, and traveling pulses
emerge (see Section 3.2), and for 6 < y < 20, retreating front solu-
tions emerge (red), with speed and profile independent of 7,. Stable
speed ¢ curves coalesce as y — 1 as effects of synaptic depression
vanish. B Speeds as a function of synaptic timescale z,, clearly show-
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ing that the speed of retreating fronts is independent of 7,. Black line
indicates saddle node bifurcation where the stable and unstable
advancing front speeds meet. C, D, E Example profiles of fast stable
advancing (blue), slow unstable advancing (green), and retreating
(red) fronts. Note the &-dependent region of Q(&) trades places
between advancing and retreating cases. For all panels 6 = 0.1; for the
profile panels y = 0.15 and 7, = 20
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Fronts

£=0 11

Fig.2 Traveling pulses in a neural field with synaptic depression. A,
D Stable and unstable pulse profiles for parameters 7, = 20, y = é
(or equivalently f =5), and 8 =0.2. B, E The pulse speed ¢ and
width A are plotted as a function of the synaptic timescale 7, with
color indicating y, solid lines indicating stable branches and dot-
ted lines indicating unstable branches. C, F The pulse speed ¢ and
width A as a function of y with color indicating 7, solid lines indi-

continuity and appropriate boundary conditions depending on
the direction (sign(c)) of travel. Before analyzing the case of
moving fronts (¢ # 0), we examine the degenerate case of a
standing wave solution with speed ¢ = 0. In this case, Eq. (3b)
reduces to a stationary equation, we have & = x, and the profile
of synaptic efficacy is given by

0 1, x>0,
X) = 1 _
m:)/, x<0.

Substituting into Eq. (3a), we see

0
Ux)=v / w(x = y)dy,
so for a normalized ( /R w(x)dx = 1) and even (w(—x) = w(x))
weight function, we have 8 = U(0) = %, implying standing
fronts only arise for a specific choice of the depression rate
p= % — 1 which perfectly balances the tendency of the
active region to invade inactive regions with the rate of
activity decay (Ermentrout and McLeod, 1993).

For forward moving fronts (¢ > 0), we solve Eq. (3b)
with the boundary conditions lim,_, Q() =1 and
lim,_,_, O(§) = v, yielding

1 >0,

Q©) = y+(1—y)exp<%), £ <0.

Tq 19 0.13 702

cating stable branches and dotted lines indicating unstable branches.
We see that as the synaptic efficacy time-scale becomes shorter (z,,
small), depression is more rapid and both the width and speed of the
pulse shrink. Similarly increasing the strength of depression (f large)
or equivalently shortening the effective timescale of synaptic depres-
sion (y small) will also reduce the width and speed

Substituting this into Eq. (3a) and solving the £ > 0 case
with integrating factors gives

y+ore, ot Yy +cery,
e s
2(1+ o)1 +cyr,) 2(1+ o)1 +cyz,)

wa=¥”05—

which we bound as & — oo by requiring the coefficient on
€°/° to be zero. Recalling that U(0) = 8 we then have

Yy tcyy,
- 2(1 +o)(1 + CJ/Tq) 4)
0 =(20y7,)c* + (20 + 2077, — y7,)c + (20 — 1),

whose solutions c are roots of a quadratic:

C.

77, = 2001+ 77,) £ [402(1 — 7, P — 4y7,(1 +7(r, = 2) + 772
=7 40y, ’

plotted in Fig. 1A, B. This formula makes it clear that a
bifurcation occurs when the discriminant is zero, repre-
sented by the curve in Fig. 1A. As 7, increases, this occurs at
increasingly smaller values of y, eventually below the other
front-killing bifurcation arising due to the violation of the
self-consistency condition y > 6 which we discuss below.

We can also solve the & < 0 case, which automatically sat-
isfies our boundedness condition, and completes the profile
for advancing fronts
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0e~¢, &>0,
v = » ,
Y+ K0 4 Kyef + (0 -y — K, —K,)efle, £ <0,
err,  (A=per’s, 1 (1 =y)ere,
Yl-yr, 1=(yg, 2’ 27 2(1-0) 1-cyz, ’

The self-consistency inequality ensuring the active region
remains superthreshold then requires élim Ué)=y>80or

1/(1 + ) > 6 implying g < (1 — 8)/6. Decreasing y below
0 truncates the wave speed branches due to a global bifurca-
tion resulting from the inability of the active region to self-
sustain. Profiles are plotted in Fig. 1C, D.

On the other hand, if we assume ¢ < 0 (retreating fronts),
we can similarly find solutions for which the quiescent
region invades the active region. We again solve Eq. (3b),
with the same boundary conditions, but now having ¢ < 0
implies

[ 1+ =D g0,
Q(rf)—{y’ s <0,

Again we substitute into Eq. (3a), enforce boundedness
and the threshold condition U(0) = 6. After integrating, we
find a condition determining the speed of the front

- y — 260
T2y =20’

and a formula for the activity variable of form

[ 6e, £>0,
U@%—{y+w—yy€§<0. )

Speeds are plotted in Fig. 1A, B and example pro-
file in Fig. 1E. Such fronts exist for sufficiently strong
depression as bounded by the standing front condi-
tion f > (1 —26)/(20) or y <20, but not too strong
(< (1 =80)/0ory > 0). The speed formula above, corre-
sponding to the red curve in Fig. 1A, shows that as y — 6%
the front speed ¢ - —oo, resulting in an infinitely rapidly
retreating front corresponding to a quiescent state U = 0.
Retreating fronts can thus be annihilated by excessively
strong synaptic depression. On the other hand, as y — 2607,
the speed c of retreat of the front decreases to zero, leading
the stable branch of regressive fronts to join the unstable
branch of advancing fronts in a saddle-node bifurcation.

The analysis presented in Fig. 1 builds on that of Kilpat-
rick and Bressloff (2010b) by examining the covariation of
frontspeeds and bifurcations with the strength and timescale
of adaptation, especially identifying the important role of
regressive fronts in the bifurcation picture. Since spike rate
adaptation is not included the model presented here, we have
opted to more granularly demonstrate the variation of solu-
tion curves as they depend on y and 7. The use of the derived

parameter y = ﬁ, corresponding to the steady state of syn-
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aptic depression, rather than the strength g, allows us to more
clearly shows the global bifurcation from fronts to pulses at
y = 6. We also now show the bistable region occurring for
portions or all of the interval 6 < y < 26, due to the emer-
gence of regressive fronts. The branch of regressive fronts
(with speed ¢ < 0) emerges at y = 26 in a saddle-node bifur-
cation with the branch of slow unstable advancing fronts
(with speed ¢ > 0). At a lower value of y, the branch of these
slow advancing fronts annihilates a branch of fast advancing
fronts. For 20 < y only a stable fast front is possible.

The speeds of stable progressing traveling waves decrease
with the amplitude g of synaptic depression (increasing with
y = 1/(1 + p), the ratio of synaptic depletion and replenish-
ment timescales, Fig.1A). Explicit results on linear stability
could be obtained by extending the weak methods developed
for piecewise smooth pseudolinear operators developed in
Kilpatrick and Bressloff (2010d), but we found reliably that
numerical simulations verified stability (instability) of fast
(slow) traveling waves across a wide range of parameters.
Complementarily, wavespeeds increase with the synaptic
depression timescale 7, (Fig. 1B). Retreating fronts (Fig. 1E)
are not simply reflections of advancing fronts (Fig. 1C, D).
Rather, an advancing (retreating) front evolves as the active
(inactive) region invades the inactive (active) region, so
the synaptic depression is constant in the inactive (active)
region. These solutions were verified numerically to be
stable. In contrast, traveling pulses are always advancing,
so that a finite length active region moves into an inactive
region, but can be reflected to produce a solution that moves
in the opposite direction.

3.2 Pulses

Sufficiently strong synaptic depression produces traveling
pulses as negative feedback brings the average voltage u

below threshold @ to create a pulse back (if 8 > y = ll—ﬂ).

These solutions are characterized by both a speed ¢ and
width A which are determined by the model parameters.

Changing variables to traveling wave coordinates and
considering step nonlinearity f(u) = H(u — ), we define
an active region {£ € R | U(&) > 6} = (—A, 0) so the pulse
crosses threshold twice at @ = U(0) = U(—A). In the absence
of stimulus, the system Eq. (1) then becomes

0

—cU'(§) = -U©®) + / w(§ — y)Q()dy, (6a)

—-A

—c7,0'(&) = 1-0(8) — POOIHE + A) —H(©)].  (6b)

Without loss of generality, we take ¢ > 0, since backward
moving pulses are simply reflections of forward moving
pulses. The synaptic efficacy equation is now a decoupled
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piecewise linear equation. Enforcing the boundary condi-
tions élim Q(&) = 1, we obtain the solution
—+00

1, 0<¢,
y+(1— 7,)eﬁ/(c‘yn,)’ —A<E<O,
1 —[1 = Q(=A)]eET8/ ) & <« —A,

o) =

Substituting back into Eq. (6b), we find

U E) = — o/ R N
cU'(§)=-U¢) + T+ 7 /_A(l + B TP \W(E — y)dy,

which can be solved piecewise up to free constants that
can be identified by enforcing continuity, boundedness,
and boundary conditions. Notice in the limit A — oo, we
recover the equation for U(£) in the front case. For the
exponential weight function, and the threshold conditions
U(—A) = U(0) = 0 we can then obtain the following equa-
tions for the wavespeed ¢ and pulsewidth:

oy,

— q _ —A —-A/(crt,)
0 2(c+ D(eyr, + 1) (1= re® 1 ), (72)

=(2C+1)]/(] —e’A/”)+ y 1+c(1—7)rq (e’A—e’A/")
2(c+1) 2(c=-1) cytT, — 1
ol = )z,e ) P —y)r (T - b))

T e+ Dy, + D (@222 = Dz, — 1)

(7b)

Numerical root-finding techniques can subsequently be
used to identify the speed ¢ and width A of traveling pulse
solutions given implicitly by Eq. (7). For sufficiently weak
synaptic depression (corresponding to small § and large y),
there are coexisting branches of (stable) wide and (unstable)
narrow traveling pulse solutions (Fig. 2). Increasing either
y or 7, increases the speed and width of the stable trave-
ling pulses. Again, here we have determined wave branch
stability by full numerical simulation. With the traveling
pulse solutions in hand, and noting they are generally suf-
ficiently wide so interactions between the front and back are
weak (0 < e™® < 1), we now proceed with performing an
asymptotic analysis determining how weak forcing modeling
sensory input guides the position of a pulse over time.

4 Wave response function

Prior studies of the impact of external inputs on spatiotem-
poral patterns in neural fields have both considered cases
in which direct construction is possible as well as pertur-
bative studies in which the impact of forcing is taken to

be weak. Special cases which allow for the calculation
of explicit solutions, have revealed the onset of complex
dynamics using linear stability or even weakly nonlinear
analysis yielding descriptions of breathers (Folias & Bress-
loff, 2004, 2005; Folias, 2011) or even oscillations remi-
niscent of perceptual rivalry (Loxley & Robinson, 2009;
Kilpatrick & Bressloff, 2010a; Bressloff & Webber, 2012).
Numerical studies have also been used to identify the
emergence of topological defects in patterns based on tran-
sient and localized inputs (Hutt et al., 2003). However, in
cases of weak forcing, it is possible to follow the asymp-
totic approach of Amari (1977), assuming waves or bumps
approximately retain their shape but are shifted in space due
to the projection of the input along the pattern’s marginally
stable direction (Zhang, 1996; Ben-Yishai et al., 1997; Wu
et al., 2008b; Burak & Fiete, 2009; Ermentrout et al., 2010;
Itskov et al., 2011). Effects of a weak but otherwise arbi-
trary spatiotemporal input can be approximated by deriv-
ing a pattern’s corresponding spatiotemporal filter deter-
mined by the adjoint of the linearization about the pattern
(Ermentrout et al., 2010; Kilpatrick & Ermentrout, 2012).
Such an approach bears resemblance to theory describing
how perturbations phase shift nonlinear oscillators, which
defines a phase response function (Ermentrout, 1996; Brown
et al., 2004), so we refer to our formulation as the wave
response function. We consider the impact of a nonlinear
auxiliary variable in the neural field (synaptic depression)
on such input-response relationships, defining an entrain-
ment problem for a set of periodic spatiotemporal inputs, as
a means of framing visual motion processing. Ultimately,
this allows us to describe potential neural mechanisms to
account for behaviorally reported visual phenomena like the
apparent motion illusion.

4.1 General framework

As shown above, in the absence of inputs (1,(.1) = 1,(x.1 =0),
Eq. (1) can support traveling wave solutions (U(&), Q(&))
that can be determined explicitly for step nonlinearities
f() = H(u — ) and weight kernels with defined integrals. The
speed ¢ (and for pulses, the width A) can be specified implic-
itly and thus calculated with root finding. Weak stimulation
perturbatively shapes both the profile and position (within the
original traveling coordinate frame) of these waves. However,
importantly, waves are linearly stable to shape-changing per-
turbations but marginally stable to those that shift their posi-
tion within the wave coordinate frame (Amari, 1977; Pinto
& Ermentrout, 2001; Coombes & Owen, 2004). Since we
treat wave positions as an internal model of the represention
of visual object location, we are concerned with wave posi-
tion shifts as they determine entrainment to moving stimuli
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of different speeds. To derive an approximate equation for the
time-dependent evolution of the wave position £{ (¢) relative to
the coordinate frame £ = x — cf, we begin by changing vari-
ables in Eq. (1) from (x, 7) to (&, ). As aresult, we have an evo-
lution equation for u(&, ¢) and g(&, f) defined

—cug +u, = —u+w * (qf[ul) + el (&, 1), (8a)

—ct,q: + 7,9, = 1 — q— Baflul + el (&, 0), (8b)

where Eq. (8) generalizes solutions in the traveling frame
to allow them to be time-dependent. Effects of external per-
turbations representing sensory stimuli are then accounted
by considering the perturbation expansion

u@, ) =UE —C(0) +edp(§ —eC(0), 1) + -, (9a)

q(&.1) = Q& - e0(1) + ew(§ —C(D). 1) + -, (9b)

where (U(€), Q(&)) is an unperturbed wave solution and £{(f)

is a small time-dependent function determining position
shifts in the traveling coordinates generated by the inputs.
The terms ¢(&) and y (&) weakly modify the wave shape.
Plugging the expansion Eq. (9) into Eq. (8), we find the O(¢)
terms satisfy the inhomogeneous linear system

¢ ¢\ _ o U 1E+eC.0)
+L =¢® + ,
< L > < v > < %Q'© ) ( li€+et.n > (10

where L is the linear operator

f(#) e (% )+ (8) + (g wre)
% TWe v BOf' (U + Bf (Uy

A bounded solution of Eq. (10) exists if its right hand
side is orthogonal to all elements of the null space of the
adjoint operator £* (Keener 2000a, b; Bressloff 2001).
Defining the L? inner product (f,v) = [, g"(&)f(&)dE,
we can then identify the adjoint operator by requiring
(Lu,v) = (u, L*v). Integrating by parts and rearranging
integrals in this equation, we obtain the definition

D.(¢> =C< ¢ >+(¢>+ <—Qf’(U)-W*¢+ﬁQf’(U)w>
v W 1% =) -wxo+pf(Uy )’
(In

so the one-dimensional null space (v,p)’ defined
L, p)T = (0,0)7 satisfies the system

v, ==v+f ()2 wxv—BOf (Up, (12a)

ctpe =—p+fU)-w=v—Bf(Up. (12b)
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Note that the terms f’(U) will generate delta distribu-
tions in the case where f(U) = H(U — 0). As we will show,
the calculation of this derivative must be done with care,
but the ensuing system of differential equations can still be
solved explicitly by performing integration piecewise and
respecting the resulting jump condition. To derive a non-
linear differential equation for the evolution of the wave
shift £(¢), we apply the boundedness condition for Eq. (10),
requiring that (v, p)7 is orthogonal to the right hand side of
the equation, which can be rearranged to yield

A Ja POLE+ L0+ p@I,E + eC.n]dE
dt Ja UV + 7,0 (O)p(&)dé

,  (13)

revealing that the leading order description of wave pertur-
bation arises through how the null vector filters inputs to the
traveling wave.

Our asymptotic approximation is thus determined
implicitly as a solution to the nonlinear and non-auton-
omous differential equation, Eq. (13). In the rest of this
section, we analyze the predictions of this approximation
and compare them to numerical simulations in response to
transient inputs. In the first case, we will study the impact
of an abrupt and spatially homogeneous input upon the
relative location of a propagating traveling front, showing
the effects of synaptic depression. Second, we examine the
effects of spatially localized inputs. Transient and abrupt
inputs are assumed to shift in the relative position of the
wave €{(t) at a single localized moment in time, which
has the effect of making the terms (¢ + ¢, 1), 1, (€ + €{, 1)
independent of {. Solving Eq. (13) is then trivial as {(¥)
does not appear in the right hand side. In Section 5 where
we consider localized moving stimuli nu does not disappear
from the right hand side of Eq. (13) and finding solutions
is thus non-trivial.

4.2 Front wave response to a global flash

Here we consider the leading edge position of a traveling
front as encoding a position, which is then perturbed by
a spatially homogeneous and instantaneous in time input
(Fig. 3A). This basic case allows for explicit calculations
which will guide our subsequent analysis of moving input
tracking. We assume Eq. (13) supports a traveling front
solution and is stimulated only through the neural activ-
ity variable, (1,(£,1),1,(¢, 1) = (6(t — 1y),0), arising via
feed-forward input from upstream sensory areas. This
could model a weak but broad visual light flash covering
the receptive fields of a visual cortical region of interest.



Journal of Computational Neuroscience (2024) 52:145-164

153

A I(x,t)=0.09(t — 1)
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Fig.3 Traveling front advanced by global flash stimulus. A Spa-
tiotemporal evolution of a traveling front perturbed by a spatially
homogeneous, temporally pulsatile stimulus €/,,(x, t) = €6(t — ;) with
€ = 0.09. We compare the prediction (green dashed line) of our linear
theory Eq. (15) to the leading edge computed directly from simula-

Recall that the perturbative scaling € does not appear in
Eq. (13) as these are all factors themselves multiplied by €.

We first explicitly calculate the nullspace profile
(&), p(&))T in the case of a traveling front solution whose
adjoint linearization is Eq. (12) with a Heaviside nonlin-
earity and so satisfying

000
CE +v(§) =6(8) U]

dp
crqE +p(&) = H(=¢) /R W(E = V()dy = PH(=E)p(&).

000
U0

w)v(y)dy — p6(S) p(0),
R

The Heaviside and delta distributions arise from the
nonlinearity f(U(§)) = HU(E) — 0) = H(=¢) and its lin-
earization f'(U(&)) = H'(U(&) — 0) = 6(£)/|U'(0)| which
can be determined by noting
=H'(UE) - 0)U'(&).

—6(5) = —H( &= —H(U(é’) 0)

dé dé

Note the form of the v(&) equation, cv' (&) + v(&) = AS(E),
suggests a bounded solution of the form v(&) = H(&)e /¢,
whose step magnitude we are free to pick to be unity. No mat-
ter what scaling we pick for this term, it will be canceled in the
fraction of Eq. (13) since the terms of the null vector each
appear once in the numerator and denominator. Turning then
to the p(.f) equation, we see that for £ > 0, it takes the form

d’; = ——p and p(&) = Be~/€%). On the other half of the

domain, § < 0, we substitute the form of v(£) and compute the
integral for an exponential weight function, finding

B Front response to global stimulus

8 1 o
—— Theory

® Simulation °

0.08

0.00
€

tion (blue line). B Wave response function v, predicted by the the-
ory Eq. (15) (black line) and compared to simulations (green dots).
Weight function is exponential, firing rate nonlinearity is Heaviside,
and model parameters are = 0.1, y = 0.2, and T, = 20

a’p | L
o, T 2, a5

which can also be solved with a boundedness requirement
as & — —oo to yield a particular solution of form p(&) = Ce®
whose coefficient can be determined by plugging into
Eq.(14). Piecing together the solutions on each half-line
using a continuity condition, we find

oy [¢f + (78w —

P) = 2(c + 1)(CJ/Tq +1)

E)H(®)|.

Finally, we recall ({,(¢,1),1,(&,1) = (6(t —1,),0) in
Eq. (13) for this particular scenario and integrate with
respect to time to find

2(c + D(eyr, + 1)?

(0= 26(cyz, + 1> — (1 - 1)y,

H(t - 1y). (15)

We demonstrate this prediction and compare to numerical
simulations in Fig. 3B. Note, we generally underestimate the
degree to which the front is advanced because this is a global
stimulus and so higher order nonlinear effects further speed
along the front while it remains away from equilibrium.
However for sufficiently small €, the linear approximation is
reasonably close. Using a second-order centered finite differ-
ence approximation, we find that %é’m (&)| =0 agrees with the
scaling Eq. (15) with a relative error of 0.17% (attributed to
errors in the simulation and finite difference approximation).
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This analysis would be easy to repeat for a retreating front.
Based on our observations here, we expect that global stimuli
would cause the front to push outward, so positive stimuli
delay rather than advance the position of the front relative to
the wave coordinate frame.

Taking the limit of no synaptic depressiony — 17, we see
we recover

lim £ = 1) = —>3

which was derived previously in Kilpatrick and Ermentrout
(2012). Note well that because we are not considering per-
sistent stimuli here, the dependence upon v on the right-
hand-side of Eq. (13) does not come into effect and so it
is straightforward to solve the equation by integration. As
noted, spatially global stimuli perturb waves in ways that are
not always well captured by linear theory, but more spatially
localized stimuli have a more modest effect on wave posi-
tion, which can also be captured well by our linear theory
as we now show.

4.3 Pulse wave response

Traveling front solutions are unaffected by activity (/,) per-
turbations behind their leading edge (¢ < 0) as demonstrated
above. On the other hand, traveling pulses have both a front
and back which can be perturbed by weak inputs. Moreover,
spatially localized inputs that may model the position of a
visual object interact with wave position in ways that depend
on their width as well as strength. To better understand the
dynamics of such interactions as a means of building a theory
of visual object tracking, we begin by deriving the nullspace
of the adjoint operator in the case of a traveling pulse. Taking
a Heaviside nonlinearity in Eq. (12) we find

By =ste) g,(((z)))l : [ /R WOy - ﬁp(O)]
+6(E+4) |§,((__AA))| : [ /R W(y + Av()dy — ﬁp(—A)],
(16a)
d,
crqﬁ +p=[HE+8) —HEI- [ / W(& — yV()dy — ﬂp(cf)] :
R

(16b)
where again the right-hand-side of Eq. (16a) is singu-
larized due to the derivative of the step nonlinearities
fUE) —0) =H( + A) — H(E) such that

6E+A8)-06(8) = %[H(é +4) - H(®)]

=—H(U(§) 0)=H'(U) - OU'(©).

dé
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Eq. (16a) has the form ¢v'(¢) + v(¢) = As(¢) + Bs(£ + A) suggesting the

following ansatz v(&) = L[4 H(E)e ¥/ + A_yH(E + A)e~€+/ whose coef-
ficients satisfy the linear system
0
ey = 2 [4,G0) +A_yG(-A) — fpO)],  (17a)
U (0)]
0(-4)
CA_p = ——— - |A)G(A) + A_,G(0) — fcp(-4)|,
s~ orcay M : |
(17b)

where we have defined the integral function

GQ) = / " (e 0-eay,

Z

To solve this linear system, we need to determine p(£) to
constrain its values at & = 0, —A. Of course, recall (v, p)T is
a vector eigensolution and so can be freely scaled. As such,
we should expect the two equations in Eq. (17) are linearly
dependent, so we need only solve one.

We thus next examine Eq. (16b) in pieces. First,
along £ < —A, we find a simple homogeneous equa-
tion crqp’ (&) = —p(&) whose solution must be bounded as
& — —00, 50 p(&) = 0 on this portion of the domain implying

p(—A) = 0. Then on —A < & < 0, we can rewrite the equa-
tion as

D Lpe = —[A G(-)+A_,G(-A-8)]. (3
d§ crr, 0 -A (18)
which we can integrate with the boundary condition
p(—A) =0to find

e—s/(crzy)
P& = —— - [AJ (.0 +A_JE -D)], (19)

q
where we have defined
¢
JE2) = / Gz~ e "™ dy.
-A
Evaluating Eq. (19) at £ = 0 to find the remaining term in
the self-consistency Eq. (17),
A, A_,
p0) = —J(O 0)+ —J(O —A).
Ty %y

Substituting into the consistency conditions Eq. (17), we
have that A, and A_, satisfy the singular linear system

U (0)] B B _
o0) +—J(0 0) — G(O)]AO [ J(0,-A) — G(— A)] =0
|U' (- A)I
—G(A)A - .
G(A)A, + [ o D ¢ G(O)] =0
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Fig.4 Response of traveling pulse to localized pulsatile square stimu-
lus. Stimuli eli(x,1) = 37_/6(1)P(x, Xp»A) (j=u,q) are centered in
space P(x,xy,A,) = H(x — xy + Ax/2) — H(x — x, — A, /2) at x, with
width Ax = 1 and presented at time ¢ = O either to A the neural activ-

ity variable: 7, = 1 and 1, =0; or B the synaptic efficacy variable:

u

Ignoring the trivial solution A; = A_, = 0 and fixing the
first entry A, = 1, we may solve this singular equation by
satisfying the second equation to find

A = G(4) - 0(=4)
AT U (=) - GO0) - 0(-A)

(20)

so by defining A_, as in Eq. (20) and A, = 1, we find the
one-dimensional nullspace of £* is spanned by (v(£), p(€))T
where

V(&) = HE)e ™/ + A_\H(E + A)e™ A<, (21a)
e~¢/terz)
P& =——" [J(£,0) +A_,J (&, -D)]. 1b)

q

To study the impact of spatially locaized and temporally
pulsatile stimuli on traveling pulses, we again use Eq. (13) to
formulate an approximation to the phase advance of the pulse
from an abrupt input at a single point in time,

S @ + 1, p©))de

) Jp UV + 7,0/ (O)p(&)dé

(22)

¢ =- H(t — ).

Integrating against both perturbations of the neural activ-
ity of amplitude I, and synaptic efficacy of amplitude / o vari-
ables, we adjust the position x of the stimulus relative to the
pulse and see the approximation agrees well with numerical
simulations (Fig. 4). Note that the effect of inputs is stronger
(See axis scaling on Fig. 4A vs B) when applied to the neural

Square pulse: ¢,

0.006 A

0.004 A

0.002 - - P

® Simulation

—— Theory

0.000 . . .

-5 0 5 10

Zo

I,=1and I, = 0. Asymptotic theory (black line) approximates the
results from numerical simulation (green dots) very well. Note that
the spatially square pulse input shifts and widens the core null space
function (blue curve), which describes how the wave filters forcing.
Other parameters are 0 = 0.2,y = 1/6, 7, = 20, and € = 0.05

activity variable (I, > 0 and I, , = 0). Taking the width of the
stimulus to zero Ax — 0% and its amplitude arbitrarily strong
(I, > oo or Tq — 00), the input approaches a delta distribu-
tion in space and the integral in Eq. (22) is proportional to the
nullspace as a function of x;. Generally, we find contributions
to the phase advance of the wave are quite weak when origi-
nating at the back (threshold crossing) of the pulse (A_, = 0)
as can be seen by evaluating Eq. (20) across a wide range of
parameters. Thus, pulses are only substantially perturbed by
inputs at their front.

Our experiments for simple stimuli (spatially homogene-
ous inputs to fronts, Fig. 3; and square wave pulses to trave-
ling pulses, Fig. 4) result in trivial differential equations we
can solve by integrating due to the stimulus being localized
to a single point in time. When stimuli varying non-trivially
in space and time, we must heed the nonlinear nature of the
asymptotic approximation of the wave phase given by the dif-
ferential Eq. (13). In the next section, we demonstrate that the
recurrence represented in this nonlinear equation allows us
to better approximate the effects of persistent as well as peri-
odic stimuli providing a simplified theory for predicting the
entrainment of traveling waves to localized moving stimuli.

5 Entrainment to moving and apparently
moving stimuli

We now describe an asymptotic theory of the encoding of mov-

ing objects by the position of perturbed traveling waves. In the
absence of stimulation, Eq. (1) supports traveling wave solutions
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that move at a fixed natural wavespeed. A wave’s leading edge
is interpreted as the visually encoded position of a moving
object. When objects move at speeds other than the natural
wavespeed, external stimulation must be able to shift the phase
and/or increase the speed of the wave to appropriately encode
the position. Sensory input is modeled as a spatially localized
but moving stimulus /, with a different speed. We will say such
a stimulus enfrains a wave if the wave’s speed is altered so as to
match that of the stimulus (Alamia and VanRullen 2023).

Our wave response approximation Eq. (13) can be used
to predict conditions for the entrainment of traveling pulses
to both persistent and moving stimuli as well as intermittent
flashing stimuli meant to mimic the forcing common to the
apparent motion illusion. As opposed to the theory devel-
oped previously for the tracking of persistent and moving
stimuli (Folias & Bressloff, 2005; Wu et al., 2008b), flash-
ing stimuli that hop require a periodic map-based theory
to determine conditions on speed and input amplitude for
perceived motion. We begin by examining a perturbative
theory of tracking persistent and moving stimuli first.

5.1 Front entrainment

For simplicity, and to demonstrate the techniques we will use
to determine entrainment, we first consider a moving step
stimulus defined

el (x,1) = eH|[(c + At — x]. (23)

applied to a traveling front solution to Eq. (1). For the pur-
poses of this calculation, we consider the propagation of
the step at x = (¢ + At as the location of this stimulus.
Note, we will take the difference of the input speed ¢ + A,
and natural wavespeed c to be positive A, > 0 so the wave
must catch up to the input. We are concerned with deriving
conditions on the strength € and speed offset A, of the input
that allow for the perturbed wave’s speed to match that of the
input (entrainment). When the input leads the wave, it will
speed the wave up beyond its natural speed, and if the stimu-
lus is sufficiently strong and slow, the perturbed wavespeed
will catch up to that of the input, so the front lags the stimu-
lus at a distance that remains bounded in time. Stimuli that
are too fast and/or weak, however, will outrun the wave, so
the distance between them grows in time (and entrainment
fails). Analyzing Eq. (13), we will determine the relation
between input parameters and boundaries of entrainment as
well as the distance entrained fronts lag inputs.

For inputs that drive only the neural activity variable of
traveling fronts, we find the associated component of the
nullspace filtering the input is V(&) = H(&)e */¢. Note, the
wave will only be affected by inputs ahead of the front. Moreo-
ver, upon defining the scaling factor
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K=(U"v)+7,40.p)

that appears in the denominator of Eq. (13), we can sim-
plify the expression for ¢’(¢). Now, upon assuming the input
is initially ahead of the front, and recalling £ = x — ct, so
H(ct —x+ A ) = H(=& + A1), we have

ag

K— =

a = ). v(O1,(& +e0)dE

/ " H(—(& + €€ — Ap))e™/edé
0

C(l _ e(EC—AJ)/C)

Applying the change of variables y(¢) = {(¢) — Az, we
can define y(f) < 0 as the time-dependent lag of the front
behind the stimulus, and we find

y’+Ac:
E

K

c-(1- e/ ),
(24
dy ec e
L oA+ (1 =
dt ¢ K (1-e)
Since this is now an autonomous differential equation and
assuming the stimulus is ahead of the front (y < 0), we can
derive a corresponding fixed point y, < 0 under the condition
A< % The equilibrium is specified by the equation

Acz%(l—eyw/c) > yw=clog<1— eE

AK
- ) (25)

When A, > %, the solution defined in Eq. (25) does not
exist, and the stimulus speed (¢ + A,) is too fast for the wave
to entrain. Eq. (24) can also be solved directly, yielding

ec—AK

y(1) = clog P vy z] .

ec+ ((ec — A K)e /¢ — gc) - exp [— —

where y(0) = y,. In the limit as t = oo, we find y(f) — y,,
as expected.

5.2 Localized stimulation of fronts and pulses

Our theory describes visual object inputs as localized in
space, which can for instance be associated with square
waves with some finite width A, and speed displacement A,
beyond the natural wavespeed. Specifically, we define our
stimulus by

el (&0 =¢e[H(—(—AD)—H(-(E+A,—-AD)]. (26)

Taking A, — oo, we can recover the traveling front stimu-
lus as in the previous section.
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Consider the effect the input has upon the front at dif-
ferent displacements. When the front of the stimulus is
ahead of the front’s leading edge, but the active region of
Eq. (26) still contains the front (At € [0,A,]), only the
part of the stimulus ahead of the front will be filtered by
the adjoint nullspace, the same as before. Thus, only the
portion of the stimulus ahead of or containing the leading
edge of the front has any effect on the location of the lead-
ing edge of the pulse. Either a fixed point is reached, or the
lag becomes larger than the width of the square stimulus
and the impact of the stimulus on the front weakens fur-
ther. We expect the front will then lose the opportunity to
entrain to the stimulus at this point, implying entrainment
generally must occur before the entire stimulus slips ahead
of the leading edge. When solving for the corresponding
fixed point of Eq. (24), this generates the stricter entrain-
ment condition

Cc —A /¢
A, < 5%(1 ) (27)

Stability of the fixed point described by Eq. (25) can be
determined in the same way as before showing it is stable.

Boundaries on entrainment for traveling pulses are
determined similarly, except that the activity nullspace
term has the form v(&) = H(E)e /¢ + A_ H(& + A)e~C+A/e,
However, the slow timescale 7, > 1 of the synaptic efficacy
results in [A_,| < 1 across a wide range of parameters.
This again gives us an entrainment threshold described by
Eq. (27) and a corresponding lag described by Eq. (25),
where the pulse speed ¢ and factor K are now determined
by the roots of Eq. (7) and the appropriate inner product,
respectively. As expected, in simulations, a stimulus with
speed close enough to the natural speed of the pulse will
entrain it (Fig. 5A), but if the stimulus speed is too far
from the natural speed of the pulse, the pulse slips behind
the stimulus indefinitely (Fig. 5B). For weak stimuli, we
find that the theory developed here accurately predicts the
boundary between entrainment failure and success accu-
rately for corresponding simulations (Fig. 5C).

5.3 Pulse entrainment to apparent motion

Apparent motion is modeled here by flashing stimuli whose
positions move between but not during flashes (i.e., on peri-
ods of the stimulus). In this case, the driven solution does
not converge to a proper traveling wave, but a solution that is
periodic under a fixed spatial shift given by the movement of
the flashing stimuli. Dividing the time domain into segments
of length T, the period of the forcing stimulus, we define the
length of the on phase of length 7, < T, during which there
is a square pulse input, and off phase of length 7 =T — T,
during which there is no input. The stimulus is advanced by
(c + AT between on phases, and we thus call A, the speed

offset of the input. Such a stimulus can be expressed using
indicator functions by

1000 = ey (7 - [%J (c+ AC)T)

t
Tora(t=|7]7)

where we have defined the indicator function Z,(x) of a sub-
domain A with argument x as

1, ifx €A,
Ly = { 0, else.

Changing variables (x, t) to (£, t) and using our simplify-
ing approximation A_, = 0 and substituting into Eq. (13) and
making the change of variables y = ev + ct, we can approxi-
mate the movement of the leading edge y of the front when it
is inside the stimulus,
dy

=~ =c+ (1

-A,Jc y/c
— e /¥,
dt K )

which can be solved assuming y(0) = y, is the location of
the wave front at time ¢ = 0, to find

y(#) = —clog

/ey (e—Yo/C £

—Ax/c) —(1<+g)1/1<] = F(r:
X+el e (#:y0),

[L
K+e
so the function F(t;y,) describes how the input maps y for-
ward from y, after a time ¢. During the off phase, y will
simply advance according to the natural wavespeed, so the
approximate solution in the first period T is

F(t,y), 0<t<T,
y(t)={ (o)

F(T,,y0) + (t = Ty)e, Ty, <t < T. (28)

Subtracting off (c + A.)T, we can determine where the
wave front y will be at time ¢ = T relative to the newly flashed
stimulus

1= F(Ton’y()) - CTon - ALT

Thus, we can inductively define a map describing how the
next relative location of the wave front y, ; depends on the
current location y, as

Ynt1 = F(Ton’ yn) - CTon - ACT' (29)

We shall consider wave front entrainment to the peri-
odic, moving, and flashing stimulus possible when the map
Eq. (29) has a stable fixed point described by the condition

y* = F(Tonv y*) - CTon - ACT’

which can be solved to find
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Fig.5 Entrainment of traveling pulses to propagating square pulses.
A Spatiotemporal location of the leading edge of a traveling pulse
(solid blue) perturbed by a moving square input (magenta) is ahead
of that of the unperturbed pulse (dashed blue). Stimulus has magni-
tude € = 0.1 and speed ¢ + A, = 3.3 (compare to natural wavespeed
¢ =~ 1.051). Pulse remains entrained indefinitely. B When stimulus
speed ¢ + A, = 3.5 is too large, the stimulus eventually slips off the

(30)

£ eTon —_ e_ETon/K
K + & e‘AcT/C — e_ET(\n/K ’

y* :Ax—clog[

The denominator of the argument in the logarithm above
is positive, and the solution is defined if A, < 5%% Line-
arizing the map Eq. (29) and plugging in the solution
Eq. (30), we find its stability is determined by the single
AT _ e, ] s04 € (0, 1)ifA, < e,

on

c K |
which implies that the fixed point defining periodic entrain-
ment is stable whenever it exists.

Our theory is consistent with the result of numerical
simulations of the response of traveling waves to periodic,
moving, and flashing stimuli. Flashing stimuli that are suf-
ficiently strong and that travel at a speed that is not too much
faster than the natural wavespeed will entrain the traveling
wave (Fig. 6A). Tracking the leading edges of these flash-
forced traveling pulses reveals that the stimulus speeds up
the wave while it is on, and the pulse speed relaxes to its nat-
ural value between flashes. Over time, the average speed of
the forced solution matches that of the average speed ¢ + A,
of the forcing stimulus. On the other hand, if (a) the distance
traveled with each hop between flashes is too large or (b) the
stimulus is too weak or short, then the pulse will not be sped
up enough during the on phase of the period. As a result,
the pulse will eventually lag further and further behind the
forcing stimulus as time goes on (Fig. 6B). The combined
necessity of having a forcing stimulus whose speed differ-
ence is not too large (A.), whose magnitude is not too weak
(¢), or whose on phase is not too short () is all contained
in the entrainment boundary inequality A, < s% % Indeed,

eigenvalue A = exp [

@ Springer

pulse, which relaxes to its original speed. C Numerical simulations
reveal a (white) region of failed entrainment when the stimulus speed
is too large for a given magnitude . Otherwise the colored region
indicates the lag y_ of entrained pulses whose stimulus speeds are not
too large. Our first order approximation of the entrainment boundary
(Eq. (27), black line) matches well. Neural field model parameters are
0=02,y=1/6, T, = 20 and stimulus width A, = 10

we see that this boundary well approximates the boundary
we can determine from numerical simulations (Fig. 6C).
Thus we find that the entrainment of neural activity waves
in a model of sensory cortex can be described by a rela-
tively accessible theory. Akin to results from past work on
phase response theory, we find that stimuli whose speed is
close enough to the natural speed can indeed entrain waves.
This applied not only to persistent traveling stimuli but also
flashing stimuli, suggesting a neuromechanistic theory for
the generation of apparent motion illusions in visual cortex.

5.4 Extensions to planar models

Our analysis so far has focused on one-dimensional networks
for simplicity and because effective stimulus speed strongly
determines the emerges of apparent motion perception (Gep-
shtein and Kubovy, 2007). However, curvature and other
geometric features of a stimulus’ trajectory could also affect
such percepts, so it is reasonable to extend our models to
two-dimensional domains, to more completely characterize
the possible motion of inputs from the visual field. Neural
field models can produce traveling spots in two-dimensions
when some form of negative feedback is incorporated into
a network with lateral inhibition (Lu et al., 2011; Coombes
et al., 2012). Activity bumps that would be marginally sta-
ble in the absence of negative feedback destabilize, and can
travel in any radial direction depending on initial conditions.
The centroid of the traveling spot may then be considered as
a position-encoder, as with the leading edge of the front or
pulse in one-dimension.
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Fig. 6 Wave entrainment to apparently moving stimuli. A The leading
edge (blue line) of a traveling pulse becomes entrained to an inter-
mittent, moving, and flashing stimulus (magenta indicates regions
where stimulus is non-zero). The difference between the baseline
wavespeed (c ~ 1.051) and the effective speed of the forcing stimu-
lus is A, = 0.5; its magnitude is € = 0.2; its width and starting posi-
tion are A, = 1 and x* = 0; on and off phases are T, = T+ = 0.5 for
a total stimulus period of 7 = 1. B Weakening the stimulus magnitude
to € = (.12, the traveling pulse fails to entrain, and slips ever further

The planar version of Eq. (1) involves convolving the
integral over R?, requiring radially symmetric weights
w(x —y) = w(r) now where r = ||x — y|| (Folias and Bress-
loff, 2004). In particular, we consider the following wizard
hat lateral inhibitory weight kernel w(r) = 2¢"(1 — r), and
the sigmoid nonlinearity f(u) = (1+ e‘”(”‘a))_l. Rather
than taking the high-gain limit (7 — o0), we consider a
smooth nonlinearity (# < o) allowing for accurate simula-
tion results with coarser grids. Fig. 7 demonstrates two cases
of stimulus-perturbed traveling spot, showing how a stimu-
lus that is too weak or at a sharp angle will not entrain the
spot. A traveling spot begins (Fig. 7A) propagating rightward
until reaching an intersection point with a Gaussian stimu-
lus €I (x, 1) = ee~""F"/2 (where now x and v are vectors)
traveling at an oblique angle (Fig. 7B). Parameters have been
tuned so that the bump |c| &~ 0.07 and stimulus |v| ~ 0.08
speed. The traveling bump entrains to the stronger (¢ = 0.3,
Fig. 7C) but not the weaker (e = 0.2, Fig. 7D) stimulus.
Moving stimuli thus can entrain traveling bumps in planar
domains, depending on the stimulus strength and trajectory.

6 Discussion

In this paper, we have developed and analyzed a neuronal
network model describing the stimulus-response relation-
ships of traveling activity waves to moving inputs. Our

behind the stimulus. C. Asymptotic approximation to the entrain-
ment boundary (dashed line) A, = £-2 < is well matched to results
of numerical simulations (solid) separating the domain of entrain-
ment (lower right) from entrainment failure (upper left). Increas-
ing the ratio T,,/T,; enlarges the domain of entrainment. Blue:
T,./Toyy =0.1/05=0.2; Green: T, /T,y=05/0.5=1; Black:
T,,/Tox =0.5/0.1 = 5. Stimulus width is A, = 10; all other model
parameters are same. Throughout, neural field model parameters are
6 =02,y =1/6,and 7, = 20

model incorporates negative feedback in the form of short-
term synaptic depression, which attenuates activity at the
back of the waves, generating traveling pulses when it is
strong enough. The nonlinear model of synaptic depres-
sion can be derived directly from spiking models (Tso-
dyks et al., 1998), and is more physiologically motivated
than heuristic linear negative feedback models (Pinto and
Ermentrout, 2001). In the absence of inputs, we can explic-
itly derive conditions for the emergence of traveling fronts
and pulses, along with their speed and width. Building on
past work (Kilpatrick and Bressloff, 2010b), we have identi-
fied conditions for the coexistence of stable progressing and
receding fronts. Using asymptotic theory, we have derived a
general formula describing how traveling fronts and pulses
respond to generalized external input. Our formula can con-
sider inputs either to the neural activity or synaptic efficacy
variables. This framework was then used to perturbatively
quantify the effect of different moving stimuli on the phase
of traveling waves. The nonlinear differential equation
accounts for how past perturbations have shifted the wave
when considering the effect of future inputs.

Weak external stimuli shift the position of traveling waves
relative to their natural position, which changes linearly in
time as they propagate. Extending prior work (Kilpatrick and
Ermentrout, 2012), we have demonstrated how the impact
of inputs both on the leading and trailing edge of a trave-
ling pulse impacts the wave phase, though in general the
effect of the trailing edge is weak compared to the leading

@ Springer
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Fig.7 Entrainment success vs. failure in a 2D model. Simula-
tions of Eq. (1) in two-dimensions (n =2) with a lateral inhibi-
tory kernel w(r) =2e™"(1 —r), and sigmoidal firing rate function
fu) = (1 + e‘”(”“)))_l. A We initialize a spot that propagates right-
ward (along the black dashed line) and apply an obliquely mov-

edge due to the exponential dependence on distance. The
key predictions we have made using this theory focus on
entrainment phenomena, whether a traveling wave will lock
to an external moving stimulus traveling at a different speed.
The natural speed of the wave in addition to the strength
and relative speed of the input, rather than the width of
the stimulus, are most important for making these predic-
tions when inputs are persistent. Indeed propagating neural
activity patterns in medial temporal (MT) cortex have been
shown to encode object motion direction and speed, sug-
gesting these waves play an important role in neural infor-
mation processing (Townsend et al., 2017). However, given
that neural activity waves can propagate spontaneously or
can persist after an initial stimulus has been removed (Xu
et al., 2007), such persistent activity could represent illu-
sory sensory stimuli in the absence of inputs. Our theory
demonstrates that propagating waves can be perturbed to
match their speed to intermittent stimuli that jump locations
between flashes, providing a simple quantitative measure to
determine whether such entrainment is expected based on
the strength and temporal properties of the input.

Our reduced equations describe the movement of a trave-
ling wave’s leading edge relative to the location of a stimulus,
allowing us to identify both the fixed points and the transient
dynamics of the edge in the coordinate frame of the moving

@ Springer

ing Gaussian stimulus I,(x,7) = ee-"=1"/2 (star moving along
dashed green line). B Stimulus meets spot. C Sufficiently strong
(e = 0.3) stimulus entrains spot, changing its course. D Weak stimu-
lus (¢ = 0.2) fails to entrain. Other parameters are n = 20, 6§ = 0.2,
7,=20,andy =0.5

input. For persistent and moving inputs, this corresponds to
the solution of a nonlinear differential equation, which we can
obtain explicitly. For intermittent flashing stimuli, we frame
the entrainment problem as a fixed point analysis of a map,
describing the updated location of the edge after each temporal
period of the stimulus. Intermittent stimuli must be stronger
than corresponding persistent stimuli to entrain wave motion,
consistent with observations that real motion is encoded more
readily than apparent motion (Merchant et al., 2003). Our
asymptotic techniques allow us to derive a simple formula
for the entrainment boundary, which intuitively quantifies the
increasing relative speeds that can be entrained as the on phase
of the flash grows longer.

Extensions to planar cases where the input follows more
complex trajectories (e.g., reversing the direction of the
bump) would be interesting to consider. Adaptive effects of
synaptic depression would suppress activity in the wake of
the traveling spot, potentially extinguishing traveling spots
that cross back over previously visited paths. It would be
interesting to study how these predictions align with psy-
chophysical responses from experiments in future studies.

The response of traveling waves to external stimuli has
been measured in vivo and in vitro (Wu et al. 2008a), dem-
onstrating inputs speed up (Richardson et al., 2005), dis-
place or annihilate (Gao et al., 2012), or even switch the
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direction (Pang et al., 2020) of waves. These response prop-
erties reflect a highly dynamic and spatiotemporal form of
input processing in sensory cortices (Ermentrout & Klein-
feld, 2001; Muller et al., 2018). Disentangling the role of
synaptic network architecture in spatiotemporal processing
thus requires the analysis of dynamic and mechanistic neural
network models that capture cortical complexity while still
being amenable to reductions that identify key system input-
output relationships. Our analysis has developed a power-
ful and reduced understanding of how a spatially struc-
tured network can encode apparent motion, a phenomenon
originally reported in non-invasive behavioral experiments
(Anstis, 1980; Ramachandran & Anstis, 1986) and more
recently shown to correspond to elevations of activity in
visual cortex in corresponding regions of perceived motion
(Muckli et al., 2005; Blom et al., 2020). Activation of visual
stimulus-encoding neurons in the absence of a stimulus may
suggest the anticipation a temporarily occluded and moving
object’s reappearance as in the phenomenon of visual pre-
play (Ekman et al., 2017; Aitken et al., 2020). Our results
could guide future behavioral and neurophysiological
experiments linking psychophysical thresholds for apparent
motion to the coordination of visual cortical activity and
external inputs.

Our model builds on prior abstract and Bayesian models
accounting for classic psychophysical and quantitative obser-
vations of apparent motion. Spatial and temporal intervals
between object presentations strongly determine the strength
of apparent motion (Korte, 1915; Burt & Sperling, 1981).
When individuals report a strong motion percept from suc-
cessively flashed stimuli for a certain pair of intervals, chang-
ing the interval of one feature (space or time) reduces report
strength unless the other feature is changes (increased or
decreased) similarly (Koffka, 2013; Kolers, 2013). While
the details of this relationship continue to be debated (Gep-
shtein and Kubovy, 2007), and people have a bias towards
reporting the slowest consistent motion speed (Ullman, 1979;
Wallach, 1935), there is relative consensus that subjects infer
speed sequentially (Hiirlimann et al., 2002; Stocker & Simon-
celli, 2006). Such strategies can be described by inferential
models that use Bayesian sequential analysis to predict prob-
abilistic estimates humans make of illusory motion (Weiss
et al., 2002). However, these theories neglect a mechanistic
understanding of such inference. Recent efforts like (Chemla
et al., 2019) have shown such possibilities in a limited con-
text, though the models are not tractable enough to make
psychophysical predictions. Our model demonstrates the
dynamic process by which an input suggestive of apparent
motion drives activity in a neural circuit to relax to a rep-
resentation consistent with an apparent motion report. The
model also quantitatively predicts specific thresholds on the
difference (A,) between an ideal apparent motion speed (c)

and the speed of the flashing stimulus. The range of possi-
ble speeds increases with the fraction of time the stimulus is
flashed (T,,,/T) and its brightness (g). These concrete predic-
tions could be validated and even fit to data extracting psy-
chophysical thresholds from motion lattice experiments as in
(Gepshtein and Kubovy, 2007).

Our model could be extended to provide mechanisms for
extinguishing traveling waves encoding irrelevant stimulus
locations. For sufficiently strong inputs representing flashing
stimuli, counterpropagating traveling pulses can be nucle-
ated (Kilpatrick and Bressloff, 2010b), one of which would
annihilate the errant lagging pulse. Another interesting pos-
sibility would be to consider tuning the model slightly beyond
the saddle-node bifurcation of traveling pulses, so that the
wave was no longer self-sustaining and would eventually die
if far enough from the external input. Dynamics of this ghost
of a traveling pulse (Dahlem, 2013) could still be characterized
using a normal form analysis (Kilpatrick and Faye, 2014) by
perturbing about the saddle-node bifurcation to jointly charac-
terize the postion and amplitude of the wave. In addition, we
could extend the model to include mechanisms whereby inputs
would slow the wave in addition to speeding it up, allowing
persistent or flashing stimuli traveling at speeds less than the
intrinsic wave speed to entrain waves. Waves in neural fields
with lateral inhibitory weight kernels have wave response func-
tions with both positive and negative parts (Kilpatrick and
Ermentrout, 2012), supporting wave synchronization in uncou-
pled networks receiving common inputs (Kilpatrick, 2015). As
with neural oscillators (Abouzeid and Ermentrout, 2009), we
expect response functions with parts of both sign are better for
synchrony and entrainment across a diversity of inputs. Even in
our current network waves can be slowed by presenting nega-
tive inputs, so an auxiliary feedback system that would tune
effective sensory input polarity to errors in stimulus location
prediction could also allow our model to support entrainment
to input speeds slower than the natural wave speed.

A number of modeling assumptions could be relaxed, only
costing the explicit tractability of the model, but without sac-
rificing the core mechanisms of the model. Waves, their lin-
earizations, and eigenfunctions can all be calculated using
alternative numerical methods such as shooting (Ermentrout
et al., 2010) or Fourier methods in approximating partial dif-
ferential equation models (Coombes et al., 2007) in order to
carry out a similar analysis for smooth firing rate functions,
more sophisticated weight functions, or compact domains.
We also note that the existence of retreating fronts suggests
there may be parameter regimes where we could exploit the
slow timescale of depression and invoke singular perturba-
tion theory (Pinto and Ermentrout, 2001), constructing a
traveling pulse from advancing and retreating fronts of the
same speed. Distinct excitatory/inhibitory populations could
be considered or additionally short term facilitation to more
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fully capture the diversity of static and dynamic models of
synaptic transmission and understand how these contribute
to the filtering properties of traveling waves. Similar analyses
could also be applied to planar neural field models, building
on past work which has developed perturbative theory based
on a spectral analysis of linearized problems to understand-
ing how the closed boundary of a stationary or moving bump
responds to external inputs (Coombes et al., 2012).
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