
Vol.:(0123456789)

Journal of Computational Neuroscience (2024) 52:145–164 

https://doi.org/10.1007/s10827-024-00869-z

RESEARCH

Representing stimulus motion with waves in adaptive neural fields

Sage Shaw1 · Zachary P Kilpatrick1,2

Received: 11 December 2023 / Revised: 29 February 2024 / Accepted: 7 March 2024 / Published online: 12 April 2024 

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spati-

otemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. 

Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of 

visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and 

adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is 

described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally 

stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the 

relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and 

continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the 

experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized 

by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.

Keywords Visual object motion · Neural field · Traveling waves · Synaptic depression

1 Introduction

Coherent neural activity patterns respond to and even predict 

sensory stimuli (Ermentrout and Kleinfeld, 2001). The spa-

tiotemporal dynamics that emerge in the context of sensory 

processing can be substantially complex but nevertheless 

reproducible, implying internal features of neural popula-

tions organize activity responses in repeatable ways (Wu 

et al., 2008a). Along these lines, the careful characterization 

of these evoked dynamics across trials can provide insight 

into network structure and its role (Xu et al., 2007). Moreo-

ver, repeatedly evoked coherent patterns of activity can 

reverberate even in the spontaneous dynamics that follow 

stimulus trials (Han et al., 2008). These results suggest that 

the coherent spatiotemporal activity dynamics that emerge in 

sensory cortices following stimulus presentations subserve 

computations determining animals’ future expectations and 

behavior Zanos et al. (2015).

Visual cortical waves are a well studied example of coher-

ent cortical dynamics, which are generated both by electri-

cal and visual stimulation (Wu et al., 2008a). The visual 

system continually converts ongoing and complex input into 

abstract but appropriately detailed representations (Tenen-

baum et al., 2011). These computations serve to not only 

represent position, motion, and shape of objects (Born and 

Bradley, 2005), but also to resolve ambiguities including 

anticipated changes (Knill and Pouget, 2004). As this pro-

cess unfolds over time, new observations are merged with 

previous estimates, potentially inferring object features via 

the spatiotemporal neural activity of corresponding cortical 

networks (Cichy et al., 2014; Bill et al., 2022). Moreover, 

propagating neural activity waves resulting from complex 

visual stimuli, even those arising in visual cortex, appear to 

subserve the onset and specifics of motor outputs, like sac-

cades (Zanos et al., 2015).

Object motion tracking and prediction are important 

visual functions for animals behaving in their natural 
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environments (Eckert and Zeil, 2001). Flying predators must 

accurately track and predict the movement of prey animals 

along the ground to plan their pursuits and strikes (Kane and 

Zamani, 2014), while flocking and herding animals antici-

pate and rapidly respond to the movements of their neigh-

bors to avoid collisions and stay together (Nagy et al., 2010; 

Torney et al., 2018). Often, conspecifics or objects are only 

intermittently seen by animals, requiring their velocity and 

position estimates to be made during the occlusion peri-

ods (O’Reilly et al., 2008). Such abilities suggest a nor-

mative account of the apparent motion illusion in which 

successive stationary flashes at different locations are per-

ceived as a single moving object hidden from view between 

flashes (Ramachandran and Anstis, 1986). Voltage sensi-

tive dye recordings from awake fixating monkeys observing 

such stimuli reveal an interaction of neural activity waves 

with external inputs suggesting early visual cortical activ-

ity helps represent perception of a moving object and its 

velocity (Chemla et al., 2019). This study also proposed a 

detailed computational model in which a suppressive wave 

of activity is generated by the second of two flashes, either 

explaining away the ambiguity of the first flash as possibly 

another object or representing the two flashes as a single 

moving object.

Here, we analyze a neural field description of the appar-

ent motion illusion that relies on the entrainment of traveling 

activity wave solutions to a sequence of transient and localized 

stimulations. Neural fields model neuronal networks as a con-

tinuous and spatially-extended excitable medium described by 

nonlinear integrodifferential equations allowing for direct anal-

ysis using methods adapted from nonlinear partial differential 

equations, such as reaction diffusion models (Bressloff, 2011). 

Such a framework is ideal as it affords analytical treatments 

of the local network mechanisms underlying emergent spa-

tiotemporal patterned activity (Huang et al., 2004; Goulet & 

Ermentrout, 2011) and stimulus-behavior relationships com-

monly recorded in cognitive tasks (Bressloff & Webber, 2012; 

Kilpatrick, 2018; Erlhagen & Schöner, 2002). Traveling wave 

solutions can be identified explicitly in many instances (Pinto 

& Ermentrout, 2001; Coombes, 2005), as can their response 

to non-trivial stimuli (Folias & Bressloff, 2005; Ermentrout 

et al., 2010; Si, 1977). Our model incorporates a physiologi-

cally realistic form of negative feedback as short term synaptic 

depression, leading to an attenuation at the back of waves, pro-

ducing traveling pulses (Kilpatrick & Bressloff, 2010c). We 

will solve for traveling waves and identify their response to 

flashing stimuli, interpreting the resulting dynamics as a stimu-

lus motion percept. Such an approach allows for explicit and 

dynamical characterization of the conditions required to pro-

mote the apparent motion illusion across a range of potential 

stimulus types.

Our perturbative approach to studying how traveling waves 

respond to transient or weak stimuli specifically estimates how 

a wave’s position changes in response to inputs. Linear asymp-

totics and even weakly nonlinear analysis have been used previ-

ously to understand how perturbations in synaptic connectivity, 

input, or model parameters shape waves and patterns in neu-

ral field equations (Bressloff et al., 2003; Venkov et al., 2007; 

Bressloff, 2001; Coombes, 2005; Amari, 1977). Perturbative 

theories describing how waves transform inputs and synap-

tic weight heterogeneities into changes in position and speed 

have been used as a model of idiothetic position (i.e., where an 

animal is or what direction they are heading) (Zhang, 1996; 

Xie et al., 2002; Burak & Fiete, 2009). Weak inputs alter the 

dynamics enough to displace wave positions without substan-

tially disrupting their shape, allowing for an accurate linear 

input-response theory (Kilpatrick & Ermentrout, 2012). Since 

our model incorporates nonlinear negative feedback, care must 

be taken in performing the asymptotic calculations to character-

ize the response to inputs (Kilpatrick & Bressloff, 2010d). In 

addition, we can study the differential effects of inputs to the 

synaptic depression variable, which recovers more slowly, as 

opposed to the neural activity variable.

The response of traveling waves to transient inputs can 

be accurately captured by our perturbation theory, providing 

closed form expressions for the distance traveling waves are 

shifted by perturbations. Realizing wave position as a model 

of inferred object motion, we conclude that these posi-

tion shifts encode the history of encountered inputs. Flash 

sequences that hop to new locations according to effective 

speeds that are sufficiently close to the intrinsic speed of 

a traveling wave can entrain it. Our framework precisely 

characterizes the width of this band of entrainable speeds 

as a function of the amplitude and frequency of the input, 

providing testable predictions concerning the psychophysics 

of apparent motion.

2  Neural �eld model with synaptic 
depression

Prior models of local negative feedback in neural fields often 

employ heuristics like linear adaptation (Pinto & Ermen-

trout, 2001), not based directly on physiology. Continual 

activation of neurons can transiently reduce the efficacy of 

synapses originating from them, often due to vesicle deple-

tion (Fortune & Rose, 2001). Activity-based models of neural 

activity, like neural fields, typically incorporate such short-

term depression according to the Tsodyks-Markram model, 

derived by temporally smoothing the dynamically evolving 

efficacy of resource-dependent synapses (Tsodyks et al., 1998; 

Bart et al., 2005). Dynamic reductions in the strength of syn-

aptic weights originating from recently active neural popula-

tions curtails spatiotemporal activity and can produce propa-

gating waves and patterns in continuum neural fields (York & 

van Rossum, 2009; Kilpatrick & Bressloff, 2010b; Bressloff 
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& Webber, 2012). We will move beyond these prior studies 

to consider the effects of transient and persistent inputs upon 

waves in networks subject to synaptic depression, and con-

sider how such a model can represent visual motion encoding. 

Specifically, we consider the following integro-differential 

equation system: 

 

Here, u(x,  t) and q(x,  t) denote the average normal-

ized voltage and synaptic efficacy, respectively, at loca-

tion x and time t, and f(u) represents the output firing rate 

(Ermentrout, 1998). The synaptic timescale �
q
 is gener-

ally chosen to be longer than the non-dimensionalized 

time units ( �
q
> 1 ) representing the timescale of neural 

activity (Tsodyks et al., 1998). Both u and q are normal-

ized so that typical activity (in the absence of stimuli, 

and with suitable initial conditions) places each variable 

in the interval [0,  1] for any particular point in space-

time. The weight kernel w(x, y) ≡ w(|x − y|) is purely 

distance-dependent and gives the density of synaptic con-

nections from pre-synaptic neurons at location y to post-

synaptic neurons at location x, as is common (Wilson & 

Cowan, 1973; Amari, 1977; Pinto & Ermentrout, 2001) 

(See Bressloff, 2001; Kilpatrick et al., 2008 for examples 

of the effects of breaking this translation symmetry). The 

non-local spatial operator takes the form of a convolution 

w ∗ (qf [u]) = ∫
ℝn w(x − y)q(y, t)f [u(y, t)]dy , where our analy-

sis mostly focuses on one-dimensional ( n = 1 ) networks, but 

we discuss extensions to planar ( n = 2 ) networks towards 

the end. We will take the weight kernel to be a decaying 

exponential w(x) =
1

2
e
−|x| for explicit calculations.

The firing-rate function f is non-linear, monotonic, 

and is often normalized so it is lower bounded to 0 for 

small values and saturates to 1 for large values. Common 

choices are sigmoidal or Heaviside functions. Throughout 

this paper, we will choose f (u) = H(u − �) where H is the 

Heaviside function, and � is a threshold parameter describ-

ing the input activity needed to generate output activity 

from a local population. The binary output of the Heavi-

side function approximates firing rates to simply be low 

or high but allows us to, for any given time t, partition the 

spatial domain into an active region {x ∈ ℝ ∣ f (u(x, t)) = 1} , 

inactive region {x ∈ ℝ ∣ f (u(x, t)) = 0} and a set of thresh-

old crossings {x ∈ ℝ ∣ u(x, t) = �} (Coombes et al., 2012). 

Spatiotemporal inputs I
u
(x, t) and Iq(x, t) representing the 

impact of visual stimuli are assumed to be weak ( � ≪ 1 ) 

(1a)
�

�t
u(x, t) = −u + w ∗ (qf [u]) + �Iu(x, t),

(1b)�q

�

�t
q(x, t) = 1 − q − �qf [u(x, t)] + �Iq(x, t).

compared to ongoing activity and may arise in either the 

neural activity or synaptic efficacy variables.

The strength of synaptic depression is parameterized by 

the rate � > 0  (Tsodyks et  al., 1998; Bart et  al., 2005). 

Notice that in regions where u > � , we have f [u] = 1 , and 

then Eq. (1b) can be written ��qqt = � − q + ��Iq , where 

� =
1

1+�
∈ (0, 1] . Under this formulation, �

q
 is the timescale 

of synaptic replenishment, ��
q
 is the timescale of synaptic 

depletion, and � is the ratio between them. For � ≈ 1 

( 0 < � ≪ 1 ), the timescales of replenishment and depression 

are similar, and when � is not small, the depression timescale 

is shorter and thus depression happens at a faster rate. Inclu-

sion of synaptic depression dynamically reduces synaptic 

efficacy ( q < 1 ), attenuating the active regions within waves. 

In the next section, we characterize front and pulse solutions 

more precisely through explicit construction.

3  Traveling wave solutions

The neural field model with synaptic depression supports a 

variety of traveling wave solutions that are qualitatively dif-

ferent than the corresponding scalar model (Kilpatrick and 

Bressloff, 2010b) without synaptic depression. In a purely 

excitatory scalar neural field model,

a sufficiently large, initially active region will spread indefi-

nitely as counterpropagating traveling fronts in the long time 

limit Faye and Kilpatrick (2018). Traveling front solutions, 

which take the form of heteroclinics connecting the active 

( u = 1 ) to the inactive ( u = 0 ) state in traveling wave coor-

dinates � = x − ct can be constructed explicitly in the case 

of step nonlinearities f (u) = H(u − �) (Pinto and Ermen-

trout, 2001) and using a homotopy argument in the case 

of smooth nonlinearities (Ermentrout and McLeod, 1993). 

That is, for u ≡ U(�) , we have a solution that satisfies 

lim�→−∞ U(�) = 1 and lim�→+∞ U(�) = 0 . Our analysis of 

traveling waves in the model with synaptic depression hinges 

upon the manipulation of the left limit.

The different form of traveling waves in the model with 

synaptic depression emerges due to attenuation of the activ-

ity level within the active region. To demonstrate this, we 

examine the fixed points of the analogous space-clamped 

equations of Eq. (1) in the absence of inputs ( Iu ≡ Iq ≡ 0 ) 

obtained by assuming u(x, t) ≡ u(t) and q(x, t) ≡ q(t) , so 

u�(t) = −u + qf [u] and �qq�(t) = 1 − q − �qf [u] , where 

we have assumed the normalization ∫
ℝ

w(x)dx = 1 . For 

f [u] = H(u − �) , we always have the quiescent fixed point 

(2)
�

�t
u(x, t) = −u + w ∗ f [u],
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(ū, q̄) = (0, 1) and if � > � we will also have (ū, q̄) = (� , �) . 

As we will show, if � > � , traveling front solutions of Eq. (1) 
for Iu ≡ Iq ≡ 0 can be supported with an attenuated active 
state, but if � < � , traveling pulse solutions with a finite active 
region can emerge.

Previously, in Kilpatrick and Bressloff (2010b), trave-
ling front and pulse solutions were characterised for 
a generalization to the model Eq. (1) that incorporated 
spike rate adaptation. Here we rederive and extend some 
of these results (See Figs. 1 and 2) in anticipation of our 
later derivations. Analyzing the model without spike fre-
quency adaptation allows us to more clearly character-
ize the impact of synaptic depression. We also identify a 
previously overlooked traveling wave solution, the stable 
retreating front, which co-exists with the stable advancing 
front and emerges due to the negative feedback.

3.1  Fronts

Changing variables to wave coordinates � = x − ct in Eq. (1) 
and assuming u ≡ U(�) and q ≡ Q(�) , we find that such solu-
tions must satisfy

Traveling fronts in an excitatory neural field (with 
w(x) > 0 ) with a step nonlinearity f (u) = H(u − �) can 
be shifted such that the single threshold crossing point 
occurs at � = 0 , so that U(0) = � . The active region is thus 
{� ∈ ℝ | U(�) > �} = (−∞, 0) . Note, that the function U(�) 
is not necessarily monotone decreasing in � as it is in the 
scalar system due to the negative feedback resulting from 
synaptic depression. Thus, we must impose an additional 
inequality U(�) > � for � < 0 , which should be checked for 
self-consistency: 

Equation (3b) is now piecewise linear, decoupled from 
Eq. (3a), and can be solved piecewise along with enforcing 

−cU�(�) = −U(�) + ∫
ℝ

w(� − y)Q(y)f (U(y))dy,

−c�qQ�(�) = 1 − Q(�) − �Q(�)f (U(�)).

(3a)−cU�(�) = −U(�) + ∫
0

−∞

w(� − y)Q(y)dy,

(3b)−c�qQ�(�) = 1 − Q(�) − �Q(�)H(−�).

Fig. 1  Traveling fronts in a neural field with synaptic depression. 
A Speeds of stable (solid) and unstable (dashed) traveling fronts as a 
function of the � =

1

1+�
 (synaptic depletion/replenishment timescale 

ratio). For � < � , self-consistency is broken, and traveling pulses 
emerge (see Section  3.2), and for � < � < 2� , retreating front solu-
tions emerge (red), with speed and profile independent of �

q
 . Stable 

speed c curves coalesce as � → 1 as effects of synaptic depression 
vanish. B Speeds as a function of synaptic timescale �

q
 , clearly show-

ing that the speed of retreating fronts is independent of �
q
 . Black line 

indicates saddle node bifurcation where the stable and unstable 
advancing front speeds meet. C, D, E Example profiles of fast stable 
advancing (blue), slow unstable advancing (green), and retreating 
(red) fronts. Note the �-dependent region of Q(�) trades places 
between advancing and retreating cases. For all panels � = 0.1 ; for the 
profile panels � = 0.15 and �

q
= 20  
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continuity and appropriate boundary conditions depending on 
the direction ( sign(c) ) of travel. Before analyzing the case of 
moving fronts ( c ≠ 0 ), we examine the degenerate case of a 
standing wave solution with speed c = 0 . In this case, Eq. (3b) 
reduces to a stationary equation, we have � ≡ x , and the profile 
of synaptic efficacy is given by

Substituting into Eq. (3a), we see

so for a normalized ( ∫
ℝ

w(x)dx = 1 ) and even ( w(−x) = w(x) ) 
weight function, we have � = U(0) =

�

2
 , implying standing 

fronts only arise for a specific choice of the depression rate 
� =

1

2�
− 1 which perfectly balances the tendency of the 

active region to invade inactive regions with the rate of 
activity decay (Ermentrout and McLeod, 1993).

For forward moving fronts ( c > 0 ), we solve Eq.  (3b) 
with the boundary conditions lim�→∞ Q(�) = 1 and 
lim�→−∞ Q(�) = � , yielding

Q(x) =

{

1, x > 0,
1

1+�
≡ � , x < 0.

U(x) = � ∫
0

−∞

w(x − y)dy,

Q(�) =

{

1, � > 0,

� + (1 − �) exp
(

�

c��q

)

, � < 0.

Substituting this into Eq. (3a) and solving the � > 0 case 
with integrating factors gives

which we bound as � → ∞ by requiring the coefficient on 
e
�∕c to be zero. Recalling that U(0) = � we then have

whose solutions c are roots of a quadratic:

plotted in Fig. 1A, B. This formula makes it clear that a 
bifurcation occurs when the discriminant is zero, repre-
sented by the curve in Fig. 1A. As �

q
 increases, this occurs at 

increasingly smaller values of � , eventually below the other 
front-killing bifurcation arising due to the violation of the 
self-consistency condition � ≥ � which we discuss below.

We can also solve the � < 0 case, which automatically sat-
isfies our boundedness condition, and completes the profile 
for advancing fronts

U(�) = e�∕c

(

U0 −
� + c��q

2(1 + c)(1 + c��q)

)

+ e−�
� + c��q

2(1 + c)(1 + c��q)
,

(4)
� =

� + c��
q

2(1 + c)(1 + c��
q
)

0 =(2���
q
)c2 + (2� + 2���

q
− ��

q
)c + (2� − �),

c± =

��
q
− 2�(1 + ��

q
) ±

√

4�2(1 − ��
q
)2 − 4���

q
(1 + �(�

q
− 2)) + �2�2

q

4���
q

,

Fig. 2  Traveling pulses in a neural field with synaptic depression. A, 
D  Stable and unstable pulse profiles for parameters �

q
= 20 , � =

1

6
 , 

(or equivalently � = 5 ), and � = 0.2 . B,  E  The pulse speed c and 
width Δ are plotted as a function of the synaptic timescale �

q
 with 

color indicating � , solid lines indicating stable branches and dot-
ted lines indicating unstable branches. C, F  The pulse speed c and 
width Δ as a function of � with color indicating �

q
 , solid lines indi-

cating stable branches and dotted lines indicating unstable branches. 
We see that as the synaptic efficacy time-scale becomes shorter ( �

q
 

small), depression is more rapid and both the width and speed of the 
pulse shrink. Similarly increasing the strength of depression ( � large) 
or equivalently shortening the effective timescale of synaptic depres-
sion ( � small) will also reduce the width and speed
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The self-consistency inequality ensuring the active region 
remains superthreshold then requires lim

�→−∞
U(�) = � > � or 

1∕(1 + �) > � implying � < (1 − �)∕� . Decreasing � below 
� truncates the wave speed branches due to a global bifurca-
tion resulting from the inability of the active region to self-
sustain. Profiles are plotted in Fig. 1C, D.

On the other hand, if we assume c < 0 (retreating fronts), 
we can similarly find solutions for which the quiescent 
region invades the active region. We again solve Eq. (3b), 
with the same boundary conditions, but now having c < 0 
implies

Again we substitute into Eq. (3a), enforce boundedness 
and the threshold condition U(0) = � . After integrating, we 
find a condition determining the speed of the front

and a formula for the activity variable of form

Speeds are plotted in Fig.  1A, B and example pro-
file in Fig. 1E. Such fronts exist for sufficiently strong 
depression as bounded by the standing front condi-
tion � > (1 − 2�)∕(2�) or � < 2� , but not too strong 
( � < (1 − �)∕� or � > � ). The speed formula above, corre-
sponding to the red curve in Fig. 1A, shows that as � → �+ 
the front speed c → −∞ , resulting in an infinitely rapidly 
retreating front corresponding to a quiescent state U ≡ 0 . 
Retreating fronts can thus be annihilated by excessively 
strong synaptic depression. On the other hand, as � → 2�− , 
the speed c of retreat of the front decreases to zero, leading 
the stable branch of regressive fronts to join the unstable 
branch of advancing fronts in a saddle-node bifurcation.

The analysis presented in Fig. 1 builds on that of Kilpat-
rick and Bressloff (2010b) by examining the covariation of 
frontspeeds and bifurcations with the strength and timescale 
of adaptation, especially identifying the important role of 
regressive fronts in the bifurcation picture. Since spike rate 
adaptation is not included the model presented here, we have 
opted to more granularly demonstrate the variation of solu-
tion curves as they depend on � and �

q
 . The use of the derived 

parameter � =
1

1+�
 , corresponding to the steady state of syn-

U(�) =

{

�e−� , � > 0,

� + K1e�∕(c��q) + K2e� +
(

� − � − K1 − K2

)

e�∕c, � < 0,

K1 =
c��q

1 − ��q

⋅

(1 − �)c�2�2

q

1 − (c��q)
2

, K2 = −
1

2(1 − c)
⋅

(

(1 − �)c��q

1 − c��q

− �

)

.

Q(�) =

{

1 + (� − 1)e�∕(c�q), � > 0,

� , � < 0.

c =

� − 2�

2� − 2�
,

(5)U(�) =

{

�e
−� , � > 0,

� + (� − �)e� , � < 0.

aptic depression, rather than the strength � , allows us to more 
clearly shows the global bifurcation from fronts to pulses at 
� = � . We also now show the bistable region occurring for 
portions or all of the interval � < � < 2� , due to the emer-
gence of regressive fronts. The branch of regressive fronts 
(with speed c < 0 ) emerges at � = 2� in a saddle-node bifur-
cation with the branch of slow unstable advancing fronts 
(with speed c > 0 ). At a lower value of � , the branch of these 
slow advancing fronts annihilates a branch of fast advancing 
fronts. For 2� < � only a stable fast front is possible.

The speeds of stable progressing traveling waves decrease 
with the amplitude � of synaptic depression (increasing with 
� = 1∕(1 + �) , the ratio of synaptic depletion and replenish-
ment timescales, Fig.1A). Explicit results on linear stability 
could be obtained by extending the weak methods developed 
for piecewise smooth pseudolinear operators developed in 
Kilpatrick and Bressloff (2010d), but we found reliably that 
numerical simulations verified stability (instability) of fast 
(slow) traveling waves across a wide range of parameters. 
Complementarily, wavespeeds increase with the synaptic 
depression timescale �

q
 (Fig. 1B). Retreating fronts (Fig. 1E) 

are not simply reflections of advancing fronts (Fig. 1C, D). 
Rather, an advancing (retreating) front evolves as the active 
(inactive) region invades the inactive (active) region, so 
the synaptic depression is constant in the inactive (active) 
region. These solutions were verified numerically to be 
stable. In contrast, traveling pulses are always advancing, 
so that a finite length active region moves into an inactive 
region, but can be reflected to produce a solution that moves 
in the opposite direction.

3.2  Pulses

Sufficiently strong synaptic depression produces traveling 
pulses as negative feedback brings the average voltage u 
below threshold � to create a pulse back (if � > � =

1

1+�
 ). 

These solutions are characterized by both a speed c and 
width Δ which are determined by the model parameters.

Changing variables to traveling wave coordinates and 
considering step nonlinearity f (u) = H(u − �) , we define 
an active region {� ∈ ℝ | U(�) > �} = (−Δ, 0) so the pulse 
crosses threshold twice at � = U(0) = U(−Δ) . In the absence 
of stimulus, the system Eq. (1) then becomes 

Without loss of generality, we take c > 0 , since backward 
moving pulses are simply reflections of forward moving 
pulses. The synaptic efficacy equation is now a decoupled 

(6a)−cU�(�) = −U(�) + ∫
0

−Δ

w(� − y)Q(y)dy,

(6b)−c�qQ�(�) = 1 − Q(�) − �Q(�)[H(� + Δ) − H(�)].
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piecewise linear equation. Enforcing the boundary condi-
tions lim

�→±∞
Q(�) = 1 , we obtain the solution

Substituting back into Eq. (6b), we find

which can be solved piecewise up to free constants that 
can be identified by enforcing continuity, boundedness, 
and boundary conditions. Notice in the limit Δ → ∞ , we 
recover the equation for U(�) in the front case. For the 
exponential weight function, and the threshold conditions 
U(−Δ) = U(0) = � we can then obtain the following equa-
tions for the wavespeed c and pulsewidth: 

Numerical root-finding techniques can subsequently be 
used to identify the speed c and width Δ of traveling pulse 
solutions given implicitly by Eq. (7). For sufficiently weak 
synaptic depression (corresponding to small � and large � ), 
there are coexisting branches of (stable) wide and (unstable) 
narrow traveling pulse solutions (Fig. 2). Increasing either 
� or �

q
 increases the speed and width of the stable trave-

ling pulses. Again, here we have determined wave branch 
stability by full numerical simulation. With the traveling 
pulse solutions in hand, and noting they are generally suf-
ficiently wide so interactions between the front and back are 
weak ( 0 < e

−Δ
≪ 1 ), we now proceed with performing an 

asymptotic analysis determining how weak forcing modeling 
sensory input guides the position of a pulse over time.

4  Wave response function

Prior studies of the impact of external inputs on spatiotem-
poral patterns in neural fields have both considered cases 
in which direct construction is possible as well as pertur-
bative studies in which the impact of forcing is taken to 

Q(�) =

⎧
⎪
⎨
⎪
⎩

1, 0 ≤ �,

� + (1 − �)e�∕(c��q), − Δ ≤ � < 0,

1 − [1 − Q(−Δ)]e(�+Δ)∕(c�q), � < −Δ.

−cU�(�) = −U(�) +
1

1 + � ∫
0

−Δ

(1 + �e(1+�)y∕(c�q))w(� − y)dy,

(7a)� =
c��

q

2(c + 1)(c��
q
+ 1)

[

1 − �e
−Δ

[

1 + e
−Δ∕(c��

q
)
]]

,

(7b)

� =
(2c + 1)�

2(c + 1)

(

1 − e
−Δ∕c

)

+
�

2(c − 1)

[

1 +
c(1 − �)�

q

c��
q
− 1

]

(

e
−Δ − e

−Δ∕c
)

−
c(1 − �)�

q
e
−Δ∕(c��

q
)

2(c + 1)(c��
q
+ 1)

+
c

2�3(1 − �)�3

q
(e−Δ∕(c��q

) − e
−Δ∕c)

(c2�2�2

q
− 1)(��

q
− 1)

.

be weak. Special cases which allow for the calculation 
of explicit solutions, have revealed the onset of complex 
dynamics using linear stability or even weakly nonlinear 
analysis yielding descriptions of breathers (Folias & Bress-
loff, 2004, 2005; Folias, 2011) or even oscillations remi-
niscent of perceptual rivalry (Loxley & Robinson, 2009; 
Kilpatrick & Bressloff, 2010a; Bressloff & Webber, 2012). 
Numerical studies have also been used to identify the 
emergence of topological defects in patterns based on tran-
sient and localized inputs (Hutt et al., 2003). However, in 
cases of weak forcing, it is possible to follow the asymp-
totic approach of Amari (1977), assuming waves or bumps 
approximately retain their shape but are shifted in space due 
to the projection of the input along the pattern’s marginally 
stable direction (Zhang, 1996; Ben-Yishai et al., 1997; Wu 
et al., 2008b; Burak & Fiete, 2009; Ermentrout et al., 2010; 
Itskov et al., 2011). Effects of a weak but otherwise arbi-
trary spatiotemporal input can be approximated by deriv-
ing a pattern’s corresponding spatiotemporal filter deter-
mined by the adjoint of the linearization about the pattern 
(Ermentrout et al., 2010; Kilpatrick & Ermentrout, 2012). 
Such an approach bears resemblance to theory describing 
how perturbations phase shift nonlinear oscillators, which 
defines a phase response function (Ermentrout, 1996; Brown 
et al., 2004), so we refer to our formulation as the wave 

response function. We consider the impact of a nonlinear 
auxiliary variable in the neural field (synaptic depression) 
on such input-response relationships, defining an entrain-
ment problem for a set of periodic spatiotemporal inputs, as 
a means of framing visual motion processing. Ultimately, 
this allows us to describe potential neural mechanisms to 
account for behaviorally reported visual phenomena like the 
apparent motion illusion.

4.1  General framework

As shown above, in the absence of inputs ( Iu(x, t) ≡ Iq(x, t) ≡ 0 ), 
Eq.  (1) can support traveling wave solutions (U(�), Q(�)) 
that can be determined explicitly for step nonlinearities 
f (u) = H(u − �) and weight kernels with defined integrals. The 
speed c (and for pulses, the width Δ ) can be specified implic-
itly and thus calculated with root finding. Weak stimulation 
perturbatively shapes both the profile and position (within the 
original traveling coordinate frame) of these waves. However, 
importantly, waves are linearly stable to shape-changing per-
turbations but marginally stable to those that shift their posi-
tion within the wave coordinate frame (Amari, 1977; Pinto 
& Ermentrout, 2001; Coombes & Owen, 2004). Since we 
treat wave positions as an internal model of the represention 
of visual object location, we are concerned with wave posi-
tion shifts as they determine entrainment to moving stimuli 
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of different speeds. To derive an approximate equation for the 
time-dependent evolution of the wave position �� (t) relative to 
the coordinate frame � = x − ct , we begin by changing vari-
ables in Eq. (1) from (x, t) to (�, t) . As a result, we have an evo-
lution equation for u(�, t) and q(�, t) defined 

 where Eq. (8) generalizes solutions in the traveling frame 
to allow them to be time-dependent. Effects of external per-
turbations representing sensory stimuli are then accounted 
by considering the perturbation expansion 

 where (U(�), Q(�)) is an unperturbed wave solution and �� (t) 
is a small time-dependent function determining position 
shifts in the traveling coordinates generated by the inputs. 
The terms �(�) and �(�) weakly modify the wave shape. 
Plugging the expansion Eq. (9) into Eq. (8), we find the O(�) 
terms satisfy the inhomogeneous linear system

where L is the linear operator

A bounded solution of Eq. (10) exists if its right hand 
side is orthogonal to all elements of the null space of the 
adjoint operator L∗  (Keener 2000a, b; Bressloff 2001). 
Defining the L

2 inner product ⟨f, v⟩ = ∫
ℝ

gT (�)f(�)d� , 
we can then identify the adjoint operator by requiring 
⟨Lu, v⟩ = ⟨u, L

∗

v⟩ . Integrating by parts and rearranging 
integrals in this equation, we obtain the definition

so the one-dimensional null space (v, p)T  defined 
L
∗(v, p)T = (0, 0)T satisfies the system 

 

(8a)−cu� + ut = −u + w ∗ (qf [u]) + �Iu(�, t),

(8b)−c�qq� + �qqt = 1 − q − �qf [u] + �Iq(�, t),

(9a)u(�, t) = U(� − �� (t)) + ��(� − �� (t), t) +⋯ ,

(9b)q(�, t) = Q(� − �� (t)) + ��(� − �� (t), t) +⋯ ,

(10)

(

�t

�q�t

)

+ L

(

�

�

)

= � �(t)

(

U�(�)

�qQ�(�)

)

+

(

Iu(� + �� , t)

Iq(� + �� , t)

)

,

L

(

�

�

)

= −c

(

��

�q��

)

+

(

�

�

)

+

(

−w ∗
[

Qf �(U)� + � f (U)
]

�Qf �(U)� + �f (U)�

)

.

(11)

L
∗

(

�

�

)

= c

(

��

�q��

)

+

(

�

�

)

+

(

−Qf �(U) ⋅ w ∗ � + �Qf �(U)�

−f (U) ⋅ w ∗ � + �f (U)�

)

,

(12a)cv� = −v + f �(U)Q ⋅ w ∗ v − �Qf �(U)p,

(12b)c�qp� = −p + f (U) ⋅ w ∗ v − �f (U)p.

Note that the terms f �(U) will generate delta distribu-
tions in the case where f (U) = H(U − �) . As we will show, 
the calculation of this derivative must be done with care, 
but the ensuing system of differential equations can still be 
solved explicitly by performing integration piecewise and 
respecting the resulting jump condition. To derive a non-
linear differential equation for the evolution of the wave 
shift �(t) , we apply the boundedness condition for Eq. (10), 
requiring that (v, p)T is orthogonal to the right hand side of 
the equation, which can be rearranged to yield

revealing that the leading order description of wave pertur-
bation arises through how the null vector filters inputs to the 
traveling wave.

Our asymptotic approximation is thus determined 
implicitly as a solution to the nonlinear and non-auton-
omous differential equation, Eq. (13). In the rest of this 
section, we analyze the predictions of this approximation 
and compare them to numerical simulations in response to 
transient inputs. In the first case, we will study the impact 
of an abrupt and spatially homogeneous input upon the 
relative location of a propagating traveling front, showing 
the effects of synaptic depression. Second, we examine the 
effects of spatially localized inputs. Transient and abrupt 
inputs are assumed to shift in the relative position of the 
wave �� (t) at a single localized moment in time, which 
has the effect of making the terms I

u
(� + �� , t), I

u
(� + �� , t) 

independent of � . Solving Eq. (13) is then trivial as �(t) 
does not appear in the right hand side. In Section 5 where 
we consider localized moving stimuli nu does not disappear 
from the right hand side of Eq. (13) and finding solutions 
is thus non-trivial.

4.2  Front wave response to a global flash

Here we consider the leading edge position of a traveling 
front as encoding a position, which is then perturbed by 
a spatially homogeneous and instantaneous in time input 
(Fig. 3A). This basic case allows for explicit calculations 
which will guide our subsequent analysis of moving input 
tracking. We assume Eq. (13) supports a traveling front 
solution and is stimulated only through the neural activ-
ity variable, (Iu(�, t), Iq(�, t)) = (�(t − t0), 0) , arising via 
feed-forward input from upstream sensory areas. This 
could model a weak but broad visual light flash covering 
the receptive fields of a visual cortical region of interest. 

(13)
d�

dt
= −

∫
ℝ

[

v(�)Iu(� + �� , t) + p(�)Iq(� + �� , t)
]

d�

∫
ℝ

U�(�)v(�) + �qQ�(�)p(�)d�
,
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Recall that the perturbative scaling � does not appear in 
Eq. (13) as these are all factors themselves multiplied by �.

We first explicitly calculate the nullspace profile 
(v(�), p(�))T in the case of a traveling front solution whose 
adjoint linearization is Eq. (12) with a Heaviside nonlin-
earity and so satisfying

The Heaviside and delta distributions arise from the 
nonlinearity f (U(�)) = H(U(�) − �) = H(−�) and its lin-
earization f �(U(�)) = H�(U(�) − �) = �(�)∕|U�(0)| which 
can be determined by noting

Note the form of the v(�) equation, cv
�(�) + v(�) = A�(�) , 

suggests a bounded solution of the form v(�) = H(�)e−�∕c , 
whose step magnitude we are free to pick to be unity. No mat-
ter what scaling we pick for this term, it will be canceled in the 
fraction of Eq. (13) since the terms of the null vector each 
appear once in the numerator and denominator. Turning then 
to the p(�) equation, we see that for � > 0 , it takes the form 
dp

d�
= −

1

c�q

p and p(�) = Be−�∕(c�q) . On the other half of the 

domain, � < 0 , we substitute the form of v(�) and compute the 
integral for an exponential weight function, finding

c
dv

d�
+ v(�) = �(�)

Q(0)

|U�(0)| ∫ℝ

w(y)v(y)dy − ��(�)
Q(0)

|U�(0)|
p(0),

c�q

dp

d�
+ p(�) = H(−�)∫

ℝ

w(� − y)v(y)dy − �H(−�)p(�).

−�(�) =
d

d�
H(−�) =

d

d�
H(U(�) − �) = H

�(U(�) − �)U�(�).

which can also be solved with a boundedness requirement 
as � → −∞ to yield a particular solution of form p(�) = Ce� 
whose coefficient can be determined by plugging into 
Eq.(14). Piecing together the solutions on each half-line 
using a continuity condition, we find

Finally, we recall (Iu(�, t), Iq(�, t)) = (�(t − t0), 0) in 
Eq.  (13) for this particular scenario and integrate with 
respect to time to find

We demonstrate this prediction and compare to numerical 
simulations in Fig. 3B. Note, we generally underestimate the 
degree to which the front is advanced because this is a global 
stimulus and so higher order nonlinear effects further speed 
along the front while it remains away from equilibrium. 
However for sufficiently small � , the linear approximation is 
reasonably close. Using a second-order centered finite differ-
ence approximation, we find that d

d�
�∞(�)|�=0

 agrees with the 
scaling Eq. (15) with a relative error of 0.17% (attributed to 
errors in the simulation and finite difference approximation).

(14)
dp

d�
+

1

c��q

p =
1

2(c + 1)�q

e� ,

p(�) =
c�

2(c + 1)(c��q + 1)

[

e� +
(

e−�∕(c�q) − e�
)

H(�)
]

.

(15)�(t) =
2(c + 1)(c��q + 1)2

2�(c��q + 1)2 − (1 − �)��q

H(t − t
0
).

Fig. 3  Traveling front advanced by global flash stimulus. A  Spa-
tiotemporal evolution of a traveling front perturbed by a spatially 
homogeneous, temporally pulsatile stimulus �I

u
(x, t) = ��(t − t0) with 

� = 0.09 . We compare the prediction (green dashed line) of our linear 
theory Eq.  (15) to the leading edge computed directly from simula-

tion (blue line). B Wave response function �
∞

 predicted by the the-
ory Eq.  (15) (black line) and compared to simulations (green dots). 
Weight function is exponential, firing rate nonlinearity is Heaviside, 
and model parameters are � = 0.1 , � = 0.2 , and �

q
= 20  
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This analysis would be easy to repeat for a retreating front. 
Based on our observations here, we expect that global stimuli 
would cause the front to push outward, so positive stimuli 
delay rather than advance the position of the front relative to 
the wave coordinate frame.

Taking the limit of no synaptic depression � → 1
− , we see 

we recover

which was derived previously in Kilpatrick and Ermentrout 
(2012). Note well that because we are not considering per-
sistent stimuli here, the dependence upon � on the right-
hand-side of Eq. (13) does not come into effect and so it 
is straightforward to solve the equation by integration. As 
noted, spatially global stimuli perturb waves in ways that are 
not always well captured by linear theory, but more spatially 
localized stimuli have a more modest effect on wave posi-
tion, which can also be captured well by our linear theory 
as we now show.

4.3  Pulse wave response

Traveling front solutions are unaffected by activity ( I
u
 ) per-

turbations behind their leading edge ( � < 0 ) as demonstrated 
above. On the other hand, traveling pulses have both a front 
and back which can be perturbed by weak inputs. Moreover, 
spatially localized inputs that may model the position of a 
visual object interact with wave position in ways that depend 
on their width as well as strength. To better understand the 
dynamics of such interactions as a means of building a theory 
of visual object tracking, we begin by deriving the nullspace 
of the adjoint operator in the case of a traveling pulse. Taking 
a Heaviside nonlinearity in Eq. (12) we find 

 where again the right-hand-side of Eq.  (16a) is singu-
larized due to the derivative of the step nonlinearities 
f (U(�) − �) = H(� + Δ) − H(�) such that

lim
�→1−

�(t) =
c + 1

�
H(t − t0) =

H(t − t0)

2�2
,

(16a)

c
dv

d�
+ v =�(�)

Q(0)

|U�(0)|
⋅

[

∫
ℝ

w(y)v(y)dy − �p(0)

]

+ �(� + Δ)
Q(−Δ)

|U�(−Δ)|
⋅

[

∫
ℝ

w(y + Δ)v(y)dy − �p(−Δ)

]
,

(16b)

c�q

dp

d�
+ p = [H(� + Δ) − H(�)] ⋅

[

∫
ℝ

w(� − y)v(y)dy − �p(�)

]

,

�(� + Δ) − �(�) =
d

d�
[H(� + Δ) − H(�)]

=
d

d�
H(U(�) − �) = H

�(U(�) − �)U�(�).

Eq. (16a) has the form cv
�(�) + v(�) = A�(�) + B�(� + Δ) suggesting the 

following ansatz v(�) = 1

c
[A

0
H(�)e−�∕c + A−ΔH(� + Δ)e−(�+Δ)∕c . whose coef-

ficients satisfy the linear system 

 where we have defined the integral function

To solve this linear system, we need to determine p(�) to 
constrain its values at � = 0,−Δ . Of course, recall (v, p)T is 
a vector eigensolution and so can be freely scaled. As such, 
we should expect the two equations in Eq. (17) are linearly 
dependent, so we need only solve one.

We thus next examine Eq.  (16b) in pieces. First, 
along � < −Δ , we find a simple homogeneous equa-
tion c�

q
p
�(�) = −p(�) whose solution must be bounded as 

� → −∞ , so p(�) = 0 on this portion of the domain implying 
p(−Δ) = 0 . Then on −Δ < � < 0 , we can rewrite the equa-
tion as

which we can integrate with the boundary condition 
p(−Δ) = 0 to find

where we have defined

Evaluating Eq. (19) at � = 0 to find the remaining term in 
the self-consistency Eq. (17),

Substituting into the consistency conditions Eq. (17), we 
have that A

0
 and A

−Δ
 satisfy the singular linear system

(17a)cA0 =
Q(0)

|U�(0)|
⋅

[
A0G(0) + A−ΔG(−Δ) − �cp(0)

]
,

(17b)

cA−Δ =
Q(−Δ)

|U�(−Δ)|
⋅

[
A0G(Δ) + A−ΔG(0) − �cp(−Δ)

]
,

G(z) = ∫
∞

z

w(y)e−(y−z)∕cdy.

(18)
dp

d�
+

1

c��q

p(�) =
1

c2�q

[

A0G(−�) + A−ΔG(−Δ − �)
]

,

(19)p(�) =
e−�∕(c��q)

c2�q

⋅

[

A0J(�, 0) + A−ΔJ(�,−Δ)
]

,

J(�, z) = ∫
�

−Δ

G(z − y)ey∕(c��q)dy.

p(0) =
A0

c2
�q

J(0, 0) +
A−Δ

c2
�q

J(0,−Δ).

[
|U�(0)|
Q(0)

c +
�

c�q

J(0, 0) − G(0)

]
A0 +

[
�

c�q

J(0,−Δ) − G(−Δ)

]
A−Δ = 0

−G(Δ)A0 +

[
|U�(−Δ)|
Q(−Δ)

c − G(0)

]
⋅ A−Δ = 0.



155Journal of Computational Neuroscience (2024) 52:145–164 

Ignoring the trivial solution A
0
= A

−Δ
= 0 and fixing the 

first entry A
0
= 1 , we may solve this singular equation by 

satisfying the second equation to find

so by defining A
−Δ

 as in Eq. (20) and A
0
= 1 , we find the 

one-dimensional nullspace of L∗ is spanned by (v(�), p(�))T 
where 

To study the impact of spatially locaized and temporally 
pulsatile stimuli on traveling pulses, we again use Eq. (13) to 
formulate an approximation to the phase advance of the pulse 
from an abrupt input at a single point in time,

Integrating against both perturbations of the neural activ-
ity of amplitude Ī

u
 and synaptic efficacy of amplitude Īq vari-

ables, we adjust the position x
0
 of the stimulus relative to the 

pulse and see the approximation agrees well with numerical 
simulations (Fig. 4). Note that the effect of inputs is stronger 
(See axis scaling on Fig. 4A vs B) when applied to the neural 

(20)A−Δ =
G(Δ) ⋅ Q(−Δ)

c|U�(−Δ)| − G(0) ⋅ Q(−Δ)
,

(21a)v(�) = H(�)e−�∕c + A−ΔH(� + Δ)e−(�+Δ)∕c
,

(21b)p(�) =
e−�∕(c��q)

c2�q

⋅

[

J(�, 0) + A−ΔJ(�,−Δ)
]

.

(22)�(t) = −�
∫ x

0
+Δx∕2

x
0
−Δx∕2

[

Īu ⋅ v(�) + Īq ⋅ p(�)
]

d�

∫
ℝ

U�(�)v(�) + �qQ�(�)p(�)d�
H(t − t

0
).

activity variable ( ̄I
u
> 0 and Īq ≡ 0 ). Taking the width of the 

stimulus to zero Δx → 0
+ and its amplitude arbitrarily strong 

( ̄I
u
→ ∞ or Īq → ∞ ), the input approaches a delta distribu-

tion in space and the integral in Eq. (22) is proportional to the 
nullspace as a function of x

0
 . Generally, we find contributions 

to the phase advance of the wave are quite weak when origi-
nating at the back (threshold crossing) of the pulse ( A

−Δ
≈ 0 ) 

as can be seen by evaluating Eq. (20) across a wide range of 
parameters. Thus, pulses are only substantially perturbed by 
inputs at their front.

Our experiments for simple stimuli (spatially homogene-
ous inputs to fronts, Fig. 3; and square wave pulses to trave-
ling pulses, Fig. 4) result in trivial differential equations we 
can solve by integrating due to the stimulus being localized 
to a single point in time. When stimuli varying non-trivially 
in space and time, we must heed the nonlinear nature of the 
asymptotic approximation of the wave phase given by the dif-
ferential Eq. (13). In the next section, we demonstrate that the 
recurrence represented in this nonlinear equation allows us 
to better approximate the effects of persistent as well as peri-
odic stimuli providing a simplified theory for predicting the 
entrainment of traveling waves to localized moving stimuli.

5  Entrainment to moving and apparently 
moving stimuli

We now describe an asymptotic theory of the encoding of mov-
ing objects by the position of perturbed traveling waves. In the 
absence of stimulation, Eq. (1) supports traveling wave solutions 

Fig. 4  Response of traveling pulse to localized pulsatile square stimu-
lus. Stimuli �Ij(x, t) = �Īj�(t)P(x, x0,Δx) ( j = u, q ) are centered in 
space P(x, x0,Δ

x
) = H(x − x0 + Δx∕2) − H(x − x0 − Δ

x
∕2) at x

0
 with 

width Δx = 1 and presented at time t = 0 either to A the neural activ-
ity variable: Ī

u
= 1 and Iq ≡ 0 ; or B  the synaptic efficacy variable: 

Īq = 1 and Ī
u
= 0 . Asymptotic theory (black line) approximates the 

results from numerical simulation (green dots) very well. Note that 
the spatially square pulse input shifts and widens the core null space 
function (blue curve), which describes how the wave filters forcing. 
Other parameters are � = 0.2 , � = 1∕6 , �

q
= 20 , and � = 0.05  
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that move at a fixed natural wavespeed. A wave’s leading edge 
is interpreted as the visually encoded position of a moving 
object. When objects move at speeds other than the natural 
wavespeed, external stimulation must be able to shift the phase 
and/or increase the speed of the wave to appropriately encode 
the position. Sensory input is modeled as a spatially localized 
but moving stimulus I

u
 with a different speed. We will say such 

a stimulus entrains a wave if the wave’s speed is altered so as to 
match that of the stimulus (Alamia and VanRullen 2023).

Our wave response approximation Eq. (13) can be used 
to predict conditions for the entrainment of traveling pulses 
to both persistent and moving stimuli as well as intermittent 
flashing stimuli meant to mimic the forcing common to the 
apparent motion illusion. As opposed to the theory devel-
oped previously for the tracking of persistent and moving 
stimuli (Folias & Bressloff, 2005; Wu et al., 2008b), flash-
ing stimuli that hop require a periodic map-based theory 
to determine conditions on speed and input amplitude for 
perceived motion. We begin by examining a perturbative 
theory of tracking persistent and moving stimuli first.

5.1  Front entrainment

For simplicity, and to demonstrate the techniques we will use 
to determine entrainment, we first consider a moving step 
stimulus defined

applied to a traveling front solution to Eq. (1). For the pur-
poses of this calculation, we consider the propagation of 
the step at x = (c + Δ

c
)t as the location of this stimulus. 

Note, we will take the difference of the input speed c + Δ
c
 

and natural wavespeed c to be positive Δ
c
> 0 so the wave 

must catch up to the input. We are concerned with deriving 
conditions on the strength � and speed offset Δ

c
 of the input 

that allow for the perturbed wave’s speed to match that of the 
input (entrainment). When the input leads the wave, it will 
speed the wave up beyond its natural speed, and if the stimu-
lus is sufficiently strong and slow, the perturbed wavespeed 
will catch up to that of the input, so the front lags the stimu-
lus at a distance that remains bounded in time. Stimuli that 
are too fast and/or weak, however, will outrun the wave, so 
the distance between them grows in time (and entrainment 
fails). Analyzing Eq. (13), we will determine the relation 
between input parameters and boundaries of entrainment as 
well as the distance entrained fronts lag inputs.

For inputs that drive only the neural activity variable of 
traveling fronts, we find the associated component of the 
nullspace filtering the input is v(�) = H(�)e−�∕c . Note, the 
wave will only be affected by inputs ahead of the front. Moreo-
ver, upon defining the scaling factor

(23)�I
u
(x, t) = �H

[

(c + Δ
c
)t − x

]

.

that appears in the denominator of Eq. (13), we can sim-
plify the expression for � �(t) . Now, upon assuming the input 
is initially ahead of the front, and recalling � = x − ct , so 
H(ct − x + Δ

c
t) = H(−� + Δ

c
t) , we have

Applying the change of variables y(t) = ��(t) − Δct , we 
can define y(t) < 0 as the time-dependent lag of the front 
behind the stimulus, and we find

Since this is now an autonomous differential equation and 
assuming the stimulus is ahead of the front ( y < 0 ), we can 
derive a corresponding fixed point y

∞
< 0 under the condition 

Δ
c
<

�c

K
 . The equilibrium is specified by the equation

When Δ
c
≥

�c

K
 , the solution defined in Eq. (25) does not 

exist, and the stimulus speed ( c + Δ
c
 ) is too fast for the wave 

to entrain. Eq. (24) can also be solved directly, yielding

where y(0) = y
0
 . In the limit as t → ∞ , we find y(t) → y∞ 

as expected.

5.2  Localized stimulation of fronts and pulses

Our theory describes visual object inputs as localized in 
space, which can for instance be associated with square 
waves with some finite width Δ

x
 and speed displacement Δ

c
 

beyond the natural wavespeed. Specifically, we define our 
stimulus by

Taking Δ
x
→ ∞ , we can recover the traveling front stimu-

lus as in the previous section.

K ≡ ⟨U�
, v⟩ + �q⟨Q

�
, p⟩

K
d�

dt
= ∫

ℝ

v(�)I
u
(� + �� )d�

= ∫
∞

0

H(−(� + �� − Δ
c
t))e−�∕c

d�

= c
(

1 − e
(��−Δ

c
t)∕c

)

(24)
K

y� + Δc

�

= c ⋅
(

1 − ey∕c
)

,

dy

dt
= −Δc +

�c

K
⋅

(

1 − ey∕c
)

(25)Δc =
�c

K

(

1 − ey∞∕c
)

⇒ y∞ = c log

(

1 −
ΔcK

�c

)

.

y(t) = c log
�c − ΔcK

�c +
(

(�c − ΔcK)e−y0∕c − �c
)

⋅ exp
[

−
�c−ΔcK

cK
⋅ t

] ,

(26)�I
u
(�, t) = �

[

H
(

−(� − Δ
c
t)
)

− H
(

−(� + Δ
x
− Δ

c
t)
)]

.
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Consider the effect the input has upon the front at dif-
ferent displacements. When the front of the stimulus is 
ahead of the front’s leading edge, but the active region of 
Eq. (26) still contains the front ( Δ

c
t ∈ [0,Δ

x
] ), only the 

part of the stimulus ahead of the front will be filtered by 
the adjoint nullspace, the same as before. Thus, only the 
portion of the stimulus ahead of or containing the leading 
edge of the front has any effect on the location of the lead-
ing edge of the pulse. Either a fixed point is reached, or the 
lag becomes larger than the width of the square stimulus 
and the impact of the stimulus on the front weakens fur-
ther. We expect the front will then lose the opportunity to 
entrain to the stimulus at this point, implying entrainment 
generally must occur before the entire stimulus slips ahead 
of the leading edge. When solving for the corresponding 
fixed point of Eq. (24), this generates the stricter entrain-
ment condition

Stability of the fixed point described by Eq. (25) can be 
determined in the same way as before showing it is stable.

Boundaries on entrainment for traveling pulses are 
determined similarly, except that the activity nullspace 
term has the form v(�) = H(�)e−�∕c + A−ΔH(� + Δ)e−(�+Δ)∕c

. 
However, the slow timescale �

q
≫ 1 of the synaptic efficacy 

results in |A
−Δ

| ≪ 1 across a wide range of parameters. 
This again gives us an entrainment threshold described by 
Eq. (27) and a corresponding lag described by Eq. (25), 
where the pulse speed c and factor K are now determined 
by the roots of Eq. (7) and the appropriate inner product, 
respectively. As expected, in simulations, a stimulus with 
speed close enough to the natural speed of the pulse will 
entrain it (Fig. 5A), but if the stimulus speed is too far 
from the natural speed of the pulse, the pulse slips behind 
the stimulus indefinitely (Fig. 5B). For weak stimuli, we 
find that the theory developed here accurately predicts the 
boundary between entrainment failure and success accu-
rately for corresponding simulations (Fig. 5C).

5.3  Pulse entrainment to apparent motion

Apparent motion is modeled here by flashing stimuli whose 
positions move between but not during flashes (i.e., on peri-
ods of the stimulus). In this case, the driven solution does 
not converge to a proper traveling wave, but a solution that is 
periodic under a fixed spatial shift given by the movement of 
the flashing stimuli. Dividing the time domain into segments 
of length T, the period of the forcing stimulus, we define the 
length of the on phase of length T

on
< T , during which there 

is a square pulse input, and off phase of length T
off

= T − T
on

 , 
during which there is no input. The stimulus is advanced by 
(c + Δ

c
)T between on phases, and we thus call Δ

c
 the speed 

(27)Δ
c
< �

c

K
(1 − e

−Δ
x
∕c).

offset of the input. Such a stimulus can be expressed using 
indicator functions by

where we have defined the indicator function I
A
(x) of a sub-

domain A with argument x as

Changing variables (x, t) to (�, t) and using our simplify-
ing approximation A

−Δ
≈ 0 and substituting into Eq. (13) and 

making the change of variables y = �� + ct , we can approxi-
mate the movement of the leading edge y of the front when it 
is inside the stimulus,

which can be solved assuming y(0) = y
0
 is the location of 

the wave front at time t = 0 , to find

so the function F(t;y0) describes how the input maps y for-
ward from y

0
 after a time t. During the off phase, y will 

simply advance according to the natural wavespeed, so the 
approximate solution in the first period T is

Subtracting off (c + Δ
c
)T  , we can determine where the 

wave front y will be at time t = T relative to the newly flashed 
stimulus

Thus, we can inductively define a map describing how the 
next relative location of the wave front y

n+1
 depends on the 

current location y
n
 as

We shall consider wave front entrainment to the peri-
odic, moving, and flashing stimulus possible when the map 
Eq. (29) has a stable fixed point described by the condition

which can be solved to find

�I
u
(x, t) = �I(x∗−Δ

x
,x∗)

(

x −

⌊

t

T

⌋

(c + Δ
c
)T

)

⋅ I(0,Ton)

(

t −

⌊

t

T

⌋

T

)

,

I
A
(x) =

{

1, if x ∈ A,

0, else.

dy

dt
= c +

�c

K

(

1 − e−Δx∕cey∕c
)

,

y(t) = −c log
[

�

K + �

e−Δx∕c +
(

e−y0∕c −
�

K + �

e−Δx∕c
)

e−(K+�)t∕K
]

≡ F(t;y0),

(28)y(t) =

{

F(t, y0), 0 ≤ t ≤ Ton

F(Ton, y0) + (t − Ton)c, Ton ≤ t ≤ T .

y1 = F(Ton, y0) − cTon − ΔcT .

(29)yn+1 = F(Ton, yn) − cTon − ΔcT .

y∗ = F(T
on

, y∗) − cT
on
− ΔcT ,
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The denominator of the argument in the logarithm above 
is positive, and the solution is defined if Δ

c
< �

T
on

T

c

K
 . Line-

arizing the map Eq.  (29) and plugging in the solution 
Eq. (30), we find its stability is determined by the single 
eigenvalue � = exp

[

Δ
c
T

c
−

�T
on

K

]

 , so � ∈ (0, 1) if Δ
c
< �

T
on

T

c

K
 , 

which implies that the fixed point defining periodic entrain-
ment is stable whenever it exists.

Our theory is consistent with the result of numerical 
simulations of the response of traveling waves to periodic, 
moving, and flashing stimuli. Flashing stimuli that are suf-
ficiently strong and that travel at a speed that is not too much 
faster than the natural wavespeed will entrain the traveling 
wave (Fig. 6A). Tracking the leading edges of these flash-
forced traveling pulses reveals that the stimulus speeds up 
the wave while it is on, and the pulse speed relaxes to its nat-
ural value between flashes. Over time, the average speed of 
the forced solution matches that of the average speed c + Δ

c
 

of the forcing stimulus. On the other hand, if (a) the distance 
traveled with each hop between flashes is too large or (b) the 
stimulus is too weak or short, then the pulse will not be sped 
up enough during the on phase of the period. As a result, 
the pulse will eventually lag further and further behind the 
forcing stimulus as time goes on (Fig. 6B). The combined 
necessity of having a forcing stimulus whose speed differ-
ence is not too large ( Δ

c
 ), whose magnitude is not too weak 

( � ), or whose on phase is not too short ( T
on

 ) is all contained 
in the entrainment boundary inequality Δ

c
< �

T
on

T

c

K
 . Indeed, 

(30)y∗ = Δx − c log

[

�

K + �

⋅

eTon − e−�Ton∕K

e−ΔcT∕c − e−�Ton∕K

]

.
we see that this boundary well approximates the boundary 
we can determine from numerical simulations (Fig. 6C).

Thus we find that the entrainment of neural activity waves 
in a model of sensory cortex can be described by a rela-
tively accessible theory. Akin to results from past work on 
phase response theory, we find that stimuli whose speed is 
close enough to the natural speed can indeed entrain waves. 
This applied not only to persistent traveling stimuli but also 
flashing stimuli, suggesting a neuromechanistic theory for 
the generation of apparent motion illusions in visual cortex.

5.4  Extensions to planar models

Our analysis so far has focused on one-dimensional networks 
for simplicity and because effective stimulus speed strongly 
determines the emerges of apparent motion perception (Gep-
shtein and Kubovy, 2007). However, curvature and other 
geometric features of a stimulus’ trajectory could also affect 
such percepts, so it is reasonable to extend our models to 
two-dimensional domains, to more completely characterize 
the possible motion of inputs from the visual field. Neural 
field models can produce traveling spots in two-dimensions 
when some form of negative feedback is incorporated into 
a network with lateral inhibition (Lu et al., 2011; Coombes 
et al., 2012). Activity bumps that would be marginally sta-
ble in the absence of negative feedback destabilize, and can 
travel in any radial direction depending on initial conditions. 
The centroid of the traveling spot may then be considered as 
a position-encoder, as with the leading edge of the front or 
pulse in one-dimension.

Fig. 5  Entrainment of traveling pulses to propagating square pulses. 
A  Spatiotemporal location of the leading edge of a traveling pulse 
(solid blue) perturbed by a moving square input (magenta) is ahead 
of that of the unperturbed pulse (dashed blue). Stimulus has magni-
tude � = 0.1 and speed c + Δ

c
= 3.3 (compare to natural wavespeed 

c ≈ 1.051 ). Pulse remains entrained indefinitely. B  When stimulus 
speed c + Δ

c
= 3.5 is too large, the stimulus eventually slips off the 

pulse, which relaxes to its original speed. C  Numerical simulations 
reveal a (white) region of failed entrainment when the stimulus speed 
is too large for a given magnitude � . Otherwise the colored region 
indicates the lag y

∞
 of entrained pulses whose stimulus speeds are not 

too large. Our first order approximation of the entrainment boundary 
(Eq. (27), black line) matches well. Neural field model parameters are 
� = 0.2 , � = 1∕6 , �

q
= 20 and stimulus width Δ

x
= 10  
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The planar version of Eq. (1) involves convolving the 
integral over ℝ2 , requiring radially symmetric weights 
w(x − y) = w(r) now where r = ‖x − y‖ (Folias and Bress-
loff, 2004). In particular, we consider the following wizard 
hat lateral inhibitory weight kernel w(r) = 2e

−r(1 − r) , and 
the sigmoid nonlinearity f (u) =

(

1 + e−�(u−�)
)−1

 . Rather 
than taking the high-gain limit ( � → ∞ ), we consider a 
smooth nonlinearity ( � < ∞ ) allowing for accurate simula-
tion results with coarser grids. Fig. 7 demonstrates two cases 
of stimulus-perturbed traveling spot, showing how a stimu-
lus that is too weak or at a sharp angle will not entrain the 
spot. A traveling spot begins (Fig. 7A) propagating rightward 
until reaching an intersection point with a Gaussian stimu-
lus �I

u
(x, t) = �e

−|x−vt|2∕2 (where now x and v are vectors) 
traveling at an oblique angle (Fig. 7B). Parameters have been 
tuned so that the bump |c| ≈ 0.07 and stimulus |v| ≈ 0.08 
speed. The traveling bump entrains to the stronger ( � = 0.3 , 
Fig. 7C) but not the weaker ( � = 0.2 , Fig. 7D) stimulus. 
Moving stimuli thus can entrain traveling bumps in planar 
domains, depending on the stimulus strength and trajectory.

6  Discussion

In this paper, we have developed and analyzed a neuronal 
network model describing the stimulus-response relation-
ships of traveling activity waves to moving inputs. Our 

model incorporates negative feedback in the form of short-
term synaptic depression, which attenuates activity at the 
back of the waves, generating traveling pulses when it is 
strong enough. The nonlinear model of synaptic depres-
sion can be derived directly from spiking models  (Tso-
dyks et al., 1998), and is more physiologically motivated 
than heuristic linear negative feedback models (Pinto and 
Ermentrout, 2001). In the absence of inputs, we can explic-
itly derive conditions for the emergence of traveling fronts 
and pulses, along with their speed and width. Building on 
past work (Kilpatrick and Bressloff, 2010b), we have identi-
fied conditions for the coexistence of stable progressing and 
receding fronts. Using asymptotic theory, we have derived a 
general formula describing how traveling fronts and pulses 
respond to generalized external input. Our formula can con-
sider inputs either to the neural activity or synaptic efficacy 
variables. This framework was then used to perturbatively 
quantify the effect of different moving stimuli on the phase 
of traveling waves. The nonlinear differential equation 
accounts for how past perturbations have shifted the wave 
when considering the effect of future inputs.

Weak external stimuli shift the position of traveling waves 
relative to their natural position, which changes linearly in 
time as they propagate. Extending prior work (Kilpatrick and 
Ermentrout, 2012), we have demonstrated how the impact 
of inputs both on the leading and trailing edge of a trave-
ling pulse impacts the wave phase, though in general the 
effect of the trailing edge is weak compared to the leading 

Fig. 6  Wave entrainment to apparently moving stimuli. A The leading 
edge (blue line) of a traveling pulse becomes entrained to an inter-
mittent, moving, and flashing stimulus (magenta indicates regions 
where stimulus is non-zero). The difference between the baseline 
wavespeed ( c ≈ 1.051 ) and the effective speed of the forcing stimu-
lus is Δ

c
= 0.5 ; its magnitude is � = 0.2 ; its width and starting posi-

tion are Δ
x
= 1 and x∗ = 0 ; on and off phases are T

on
= T

off
= 0.5 for 

a total stimulus period of T = 1 . B Weakening the stimulus magnitude 
to � = 0.12 , the traveling pulse fails to entrain, and slips ever further 

behind the stimulus. C. Asymptotic approximation to the entrain-
ment boundary (dashed line) Δ

c
= �

T
on

T

c

K
 is well matched to results 

of numerical simulations (solid) separating the domain of entrain-
ment (lower right) from entrainment failure (upper left). Increas-
ing the ratio T

on
∕T

off
 enlarges the domain of entrainment. Blue: 

T
on
∕T

off
= 0.1∕0.5 = 0.2 ; Green: T

on
∕T

off
= 0.5∕0.5 = 1 ; Black: 

T
on
∕T

off
= 0.5∕0.1 = 5 . Stimulus width is Δ

x
= 10 ; all other model 

parameters are same. Throughout, neural field model parameters are 
� = 0.2 , � = 1∕6 , and �

q
= 20  
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edge due to the exponential dependence on distance. The 
key predictions we have made using this theory focus on 
entrainment phenomena, whether a traveling wave will lock 
to an external moving stimulus traveling at a different speed. 
The natural speed of the wave in addition to the strength 
and relative speed of the input, rather than the width of 
the stimulus, are most important for making these predic-
tions when inputs are persistent. Indeed propagating neural 
activity patterns in medial temporal (MT) cortex have been 
shown to encode object motion direction and speed, sug-
gesting these waves play an important role in neural infor-
mation processing (Townsend et al., 2017). However, given 
that neural activity waves can propagate spontaneously or 
can persist after an initial stimulus has been removed (Xu 
et al., 2007), such persistent activity could represent illu-
sory sensory stimuli in the absence of inputs. Our theory 
demonstrates that propagating waves can be perturbed to 
match their speed to intermittent stimuli that jump locations 
between flashes, providing a simple quantitative measure to 
determine whether such entrainment is expected based on 
the strength and temporal properties of the input.

Our reduced equations describe the movement of a trave-
ling wave’s leading edge relative to the location of a stimulus, 
allowing us to identify both the fixed points and the transient 
dynamics of the edge in the coordinate frame of the moving 

input. For persistent and moving inputs, this corresponds to 
the solution of a nonlinear differential equation, which we can 
obtain explicitly. For intermittent flashing stimuli, we frame 
the entrainment problem as a fixed point analysis of a map, 
describing the updated location of the edge after each temporal 
period of the stimulus. Intermittent stimuli must be stronger 
than corresponding persistent stimuli to entrain wave motion, 
consistent with observations that real motion is encoded more 
readily than apparent motion (Merchant et al., 2003). Our 
asymptotic techniques allow us to derive a simple formula 
for the entrainment boundary, which intuitively quantifies the 
increasing relative speeds that can be entrained as the on phase 
of the flash grows longer.

Extensions to planar cases where the input follows more 
complex trajectories (e.g., reversing the direction of the 
bump) would be interesting to consider. Adaptive effects of 
synaptic depression would suppress activity in the wake of 
the traveling spot, potentially extinguishing traveling spots 
that cross back over previously visited paths. It would be 
interesting to study how these predictions align with psy-
chophysical responses from experiments in future studies.

The response of traveling waves to external stimuli has 
been measured in vivo and in vitro (Wu et al. 2008a), dem-
onstrating inputs speed up (Richardson et al., 2005), dis-
place or annihilate (Gao et al., 2012), or even switch the 

Fig. 7  Entrainment success vs. failure in a 2D model. Simula-
tions of Eq.  (1) in two-dimensions ( n = 2 ) with a lateral inhibi-
tory kernel w(r) = 2e

−r(1 − r) , and sigmoidal firing rate function 
f (u) =

(

1 + e−�(u−�)
)−1

 . A We initialize a spot that propagates right-
ward (along the black dashed line) and apply an obliquely mov-

ing Gaussian stimulus �I
u
(x, t) = �e

−‖x−vt‖2∕2 (star moving along 
dashed green line). B  Stimulus meets spot. C  Sufficiently strong 
( � = 0.3 ) stimulus entrains spot, changing its course. D Weak stimu-
lus ( � = 0.2 ) fails to entrain. Other parameters are � = 20 , � = 0.2 , 
�

q
= 20 , and � = 0.5  
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direction (Pang et al., 2020) of waves. These response prop-
erties reflect a highly dynamic and spatiotemporal form of 
input processing in sensory cortices (Ermentrout & Klein-
feld, 2001; Muller et al., 2018). Disentangling the role of 
synaptic network architecture in spatiotemporal processing 
thus requires the analysis of dynamic and mechanistic neural 
network models that capture cortical complexity while still 
being amenable to reductions that identify key system input-
output relationships. Our analysis has developed a power-
ful and reduced understanding of how a spatially struc-
tured network can encode apparent motion, a phenomenon 
originally reported in non-invasive behavioral experiments 
(Anstis, 1980; Ramachandran & Anstis, 1986) and more 
recently shown to correspond to elevations of activity in 
visual cortex in corresponding regions of perceived motion 
(Muckli et al., 2005; Blom et al., 2020). Activation of visual 
stimulus-encoding neurons in the absence of a stimulus may 
suggest the anticipation a temporarily occluded and moving 
object’s reappearance as in the phenomenon of visual pre-
play (Ekman et al., 2017; Aitken et al., 2020). Our results 
could guide future behavioral and neurophysiological 
experiments linking psychophysical thresholds for apparent 
motion to the coordination of visual cortical activity and 
external inputs.

Our model builds on prior abstract and Bayesian models 
accounting for classic psychophysical and quantitative obser-
vations of apparent motion. Spatial and temporal intervals 
between object presentations strongly determine the strength 
of apparent motion (Korte, 1915; Burt & Sperling, 1981). 
When individuals report a strong motion percept from suc-
cessively flashed stimuli for a certain pair of intervals, chang-
ing the interval of one feature (space or time) reduces report 
strength unless the other feature is changes (increased or 
decreased) similarly (Koffka, 2013; Kolers, 2013). While 
the details of this relationship continue to be debated (Gep-
shtein and Kubovy, 2007), and people have a bias towards 
reporting the slowest consistent motion speed (Ullman, 1979; 
Wallach, 1935), there is relative consensus that subjects infer 
speed sequentially (Hürlimann et al., 2002; Stocker & Simon-
celli, 2006). Such strategies can be described by inferential 
models that use Bayesian sequential analysis to predict prob-
abilistic estimates humans make of illusory motion (Weiss 
et al., 2002). However, these theories neglect a mechanistic 
understanding of such inference. Recent efforts like (Chemla 
et al., 2019) have shown such possibilities in a limited con-
text, though the models are not tractable enough to make 
psychophysical predictions. Our model demonstrates the 
dynamic process by which an input suggestive of apparent 
motion drives activity in a neural circuit to relax to a rep-
resentation consistent with an apparent motion report. The 
model also quantitatively predicts specific thresholds on the 
difference ( Δ

c
 ) between an ideal apparent motion speed (c) 

and the speed of the flashing stimulus. The range of possi-
ble speeds increases with the fraction of time the stimulus is 
flashed ( T

on
∕T ) and its brightness ( � ). These concrete predic-

tions could be validated and even fit to data extracting psy-
chophysical thresholds from motion lattice experiments as in 
(Gepshtein and Kubovy, 2007).

Our model could be extended to provide mechanisms for 
extinguishing traveling waves encoding irrelevant stimulus 
locations. For sufficiently strong inputs representing flashing 
stimuli, counterpropagating traveling pulses can be nucle-
ated (Kilpatrick and Bressloff, 2010b), one of which would 
annihilate the errant lagging pulse. Another interesting pos-
sibility would be to consider tuning the model slightly beyond 
the saddle-node bifurcation of traveling pulses, so that the 
wave was no longer self-sustaining and would eventually die 
if far enough from the external input. Dynamics of this ghost 
of a traveling pulse (Dahlem, 2013) could still be characterized 
using a normal form analysis (Kilpatrick and Faye, 2014) by 
perturbing about the saddle-node bifurcation to jointly charac-
terize the postion and amplitude of the wave. In addition, we 
could extend the model to include mechanisms whereby inputs 
would slow the wave in addition to speeding it up, allowing 
persistent or flashing stimuli traveling at speeds less than the 
intrinsic wave speed to entrain waves. Waves in neural fields 
with lateral inhibitory weight kernels have wave response func-
tions with both positive and negative parts (Kilpatrick and 
Ermentrout, 2012), supporting wave synchronization in uncou-
pled networks receiving common inputs (Kilpatrick, 2015). As 
with neural oscillators (Abouzeid and Ermentrout, 2009), we 
expect response functions with parts of both sign are better for 
synchrony and entrainment across a diversity of inputs. Even in 
our current network waves can be slowed by presenting nega-
tive inputs, so an auxiliary feedback system that would tune 
effective sensory input polarity to errors in stimulus location 
prediction could also allow our model to support entrainment 
to input speeds slower than the natural wave speed.

A number of modeling assumptions could be relaxed, only 
costing the explicit tractability of the model, but without sac-
rificing the core mechanisms of the model. Waves, their lin-
earizations, and eigenfunctions can all be calculated using 
alternative numerical methods such as shooting (Ermentrout 
et al., 2010) or Fourier methods in approximating partial dif-
ferential equation models (Coombes et al., 2007) in order to 
carry out a similar analysis for smooth firing rate functions, 
more sophisticated weight functions, or compact domains. 
We also note that the existence of retreating fronts suggests 
there may be parameter regimes where we could exploit the 
slow timescale of depression and invoke singular perturba-
tion theory (Pinto and Ermentrout, 2001), constructing a 
traveling pulse from advancing and retreating fronts of the 
same speed. Distinct excitatory/inhibitory populations could 
be considered or additionally short term facilitation to more 
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fully capture the diversity of static and dynamic models of 
synaptic transmission and understand how these contribute 
to the filtering properties of traveling waves. Similar analyses 
could also be applied to planar neural field models, building 
on past work which has developed perturbative theory based 
on a spectral analysis of linearized problems to understand-
ing how the closed boundary of a stationary or moving bump 
responds to external inputs (Coombes et al., 2012).
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