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Abstract
As the global energy sector transitions towards a cleaner and more sustainable future,
observational evidence suggests that many new energy technologies share a close relationship with
well-established technologies. Yet, the topic of how closely technologies are related has not been
addressed rigorously, rather it has been the purview of practitioner know-how and informal expert
opinion. In this study, we propose a quantitative method to supplement practitioners’ subjective
understanding of the relatedness between technology domains. The method uses patents to
represent the position of a technology in knowledge space and calculates the Hausdorff distance
between patent domains to proxy the relatedness between technologies. We apply this method to
investigate the relatedness of offshore wind energy technology to two more mature domains:
onshore wind energy technology and offshore oil and gas technology. We examine the
technological relatedness of individual offshore wind components to these two technologies, and
represent the changes in relatedness through time. The results confirm that offshore wind
components such as foundations, installation, and maintenance are more related to the offshore oil
and gas industry; while other components, such as rotors and nacelles, are more related to onshore
wind energy. The results also suggest that many offshore wind energy components are becoming
less related through time to both of these domains, possibly indicating increasing innovation. This
method can provide quantitative parameters to improve the modeling of technological change and
guide practitioners in strategic decision-making regarding the positioning of industries and firms
within those industries.

1. Introduction

Advances in technologies will critically influence cli-
mate mitigation costs (Popp 2005, Rao et al 2006, Sue
Wing 2006, Weyant 2017). Understanding the innov-
ation path of an emerging technology is a significant
input to models and decision making. Yet, modeling
innovation paths is rife with uncertainties, including
assumptions about technology novelty. Ferioli et al
(2009) showed that technological forecasts derived
from cost observations are sensitive to assumptions
about which components are more or less mature,
such that the same historical data can produce very
different cost forecasts depending on assumptions
that are used. Technology novelty is especially hard

to define for emerging technologies with components
that are strongly related to more mature ones; yet this
is a common occurrence, especially during the energy
transition, where many emerging energy technolo-
gies exhibit a close relationship with well-established
ones. For example, offshore wind clearly has simil-
arities with onshore wind; electric vehicles use sim-
ilar mechanical technologies as used by internal com-
bustion vehicles; carbon capture and storage and
hydrogen production both share common technolo-
gies with oil and gas for gas processing and refinery.
However, this relatedness is often ignored when
modeling; and discussions tend to rely on practi-
tioner know-how and informal expert opinion. For
example, offshore wind clearly has similarities to
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onshore wind, yet it is often considered a novel
technology (van der Zwaan et al 2012, Haas et al
2022).

A few previous patent analyses have discussed
relatedness when studying the innovation path of
technology. Joo and Kim (2010) measured and visu-
alized relatedness among broad technological fields,
such as ‘agriculture’ and ‘semiconductors’, but did
not get down to the individual technology level.
Other studies measured the relatedness of a tech-
nology to a knowledge base of a given region
(Tanner 2016, Li et al 2020, Moreno and Ocampo-
Corrales 2022). For example, Tanner (2016) com-
pared the relatedness of fuel cell technology to 12
broad technological fields with European samples.
Some studies measured relatedness between firms
and institutions to identify renewable energy adop-
tion opportunities enabled by spillovers (Breschi
et al 2003, Punt et al 2022). Nakamura et al (2015)
measures the relatedness between industries, such
as automobile and aircraft, to identify future and
past technological breakthroughs. Our study differs
in that we measure the relatedness between indi-
vidual technologies. We focus on technologies that
are observationally considered related; and invest-
igate how the relatedness to forebears have evolved
through time, which can be important inform-
ation for projecting the trajectory of emerging
technologies.

We present amethod that calculates technological
relatedness using patent data, specifically classifica-
tion codes, to quantitatively measure relatedness of
technologies by the similarity of their patents. There
are several advantages of using patent data for under-
standing emerging and complex technologies. Patent
data can capture the technical characteristics as pat-
ents represent state-of-the-art inventions as author-
ized documents for intelligence protection. Patents
are widely used as an indicator for invention activities
(Braun et al 2010, Popp et al 2013, Yu 2017). Patents
are required to be specific and descriptive and to be
examined by experts. Analyzing technologies by pat-
ent data adds a dimension of analysis that goes bey-
ond individual expertise about a technical domain.
Patents are public data available worldwide; thus the
same analysis can be done in different regions and
across time. Patent data can enhance the modeling of
emerging technologies that have insufficient installa-
tion or cost data.

In previous studies, patent similarity has been
measured using backward citations, text, or classific-
ation codes (Rodriguez et al 2015, Aharonson et al
2016, Verhoeven et al 2016, Yan and Luo 2017, Arts
et al 2018). We use classification codes to measure

relatedness of patents in this study because we are
interested in the technological relatedness of patents
revealed by the classification system as a technology-
based hierarchical taxonomy (Jaffe 1986). Backward
citations work at a higher level, relating the linkage
with pre-existing full patents. For example, Rodriguez
et al (2015) built a citation network in which each
node represents a patent and each link represents dir-
ect citations. Text similarity can potentially capture
more technical details; however, the accuracy of text
similarity depends on researcher-identified spelling
variants, synonyms and abbreviations of specialized
terms (Yoon and Kim 2012, Arts et al 2018). As a res-
ult, full text similarity requires expertise in a narrow
field and is not usually deployed across multiple tech-
nology domains (Aharonson et al 2016).

We apply a novelmeasure, theHausdorff distance,
to patent analysis. Hausdorff distance is a metric for
measuring the distance between two sets. We use it to
measure the distance between technology domains.
The Hausdorff distance is a max-min definition: it
is defined as the longest of the distances between
each point in one set to its closest partner in the
other set. Hausdorff distance has not been applied
to measure the relatedness or similarity of patents.
It has been applied to compare the similarity of
graphs in patents, but this application is more about
image processing, rather than focusing on the specif-
ics of patents and technological change (Mogharrebi
et al 2013).

Offshore wind is of particular interest as it has
a high potential to contribute to mitigation efforts
(Cranmer and Baker 2020, Kanyako and Baker 2021);
and a clear relationship to more mature technology.
The offshore wind industry was originally developed
with experience from onshore wind energy as well as
the offshore oil and gas industry, in particular work
on platforms in this industry. The historical relation-
ship between offshore wind, onshore wind and off-
shore oil and gas are noted in the literature. However,
the specific relationships are implied and qualitat-
ive, rather than formal and quantitative. Moreover,
from informal discussions with experts, there is some
uncertainty about the relative relatedness of offshore
wind with onshore wind and offshore oil and gas. We
aim to go beyond the sense of relatedness, by apply-
ing a quantitative method to test the degree to which
this sense holds. In this study, we use a data-driven
method to quantify the relatedness between offshore
wind and the other two industries to investigate the
observations around this relation.We then extend the
discussion to a more detailed level and explored the
relatedness of offshore wind components to the other
industries.
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2. Methods

Our method uses patent data to estimate a tech-
nology’s position in knowledge space and proxy its
relatedness to other technologies by their position
similarity. The steps in the methodology are: (1)
define patent domains for each technology by a
keyword-code-combined query approach; (2) define
the position of a patent family by creating position
vectors based on classification codes for each pat-
ent family; (3) calculate pairwise distances between
patent families; (4) calculate the Hausdorff related-
ness between sets of patent families. We compare
relatedness using classification codes of patent fam-
ilies, rather than individual patents. A patent fam-
ily is a group of patent applications for an identical
invention that has been filed in different countries or
regions. Using patent families avoids duplicates when
analyzing the relatedness between inventions or tech-
nologies. It also reduces missingness if patents from
some patent offices do not have CPC information dis-
closed. In addition, considering the full patent family,
rather than just the priority application, allows us to
include inventions in different languages.

The knowledge space has been used in patent
analyses (Rigby 2015, Whittle 2020) to represent a
conceptual framework where knowledge associated
with all technologies, concepts, and skills is assumed
to have a position that represents its technological
composition or ontology. The distance in knowledge
space symbolizes the cognitive proximity between
two different pieces of knowledge. Knowledge in the
same domain is considered to be closer together, with
a higher proximity, while knowledge from distinct
domains are further apart with lower proximity.

We define a vector space to represent this con-
ceptual knowledge space. Our vector space is defined
such that each patent family is represented by a vec-
tor, and each element in the vector is related to a clas-
sification code. Specifically, each element represents
the fraction of the classification codes for that pat-
ent family that falls into the specific subgroup. The
distance between patent families is the Euclidean dis-
tance between vectors, normalized to the scale of 0–1.
Two patent families with the exact same vectors have
a distance of 0. A patent family with all codes under
one code subgroup has a distance of 1 with another
patent family that has all codes under a different
subgroup.

We use the Hausdorff distance as it captures the
characteristics of domain-to-domain relatedness that
conventional methods may not. Unlike methods that
average pairwise distance to estimate domain related-
ness, a Hausdorff distance of X (implying related-
ness of 1-X) implies that any patent family in one
set can find at least one patent family in the other

set with a distance not greater than X. From another
perspective, each patent family in the first set has at
least one patent family in the other set with a related-
ness greater than or equal to 1-X. We note that the
Hausdorff distance between two patent domains will
not necessarily change with the addition of new pat-
ents to either set; thus a change in the Hausdorff dis-
tance may be a signal of significant and transformat-
ive changes. To our knowledge, theHausdorffmethod
has never been applied to patent analysis.

We focus on the relatedness of individual off-
shore wind components with the entire domains of
onshore wind and offshore oil and gas platforms,
rather than using component subdomains in the
comparison industries, for two reasons. First, the pro-
cess of identifying similar components in a second
domain introduces errors. It is ambiguous to a pri-
ori determine exactly what the similar component
is in another domain for every component we want
to assess. Second, there may be technical relatedness
between two patent families even though they are
directly related to different components. To invest-
igate the impact of this methodological choice, we
repeated the analysis using component subdomains
in onshore wind and offshore oil and gas platforms,
using four components as an example. The subdo-
main is retrieved by the same definitions as used to
define the offshore wind component. The results are
very close (appendix G).

Patent data for this study is sourced from
PATSTAT Global, a downloadable database of pat-
ent applications sourced from dozens of patenting
authorities worldwide. PATSTAT contains the title,
abstract, assignee(s), classifications, and other key
attributes of over 100 million patent records.

2.1. Define patent domains
A preliminary search of the Espacenet online data-
base yields 657 981 patent applications with ‘wind’
in the title or abstract, and 119 998 applications clas-
sified under ‘F03D wind motors’; and 137 467 pat-
ent applications with ‘offshore oil’ or ‘offshore gas’ in
text fields, and 45 827 patent applications with ‘off-
shore oil platform’ or ‘offshore gas platform’ in text
fields. However, Fung et al (2023) showed that simple
searches using keywords alone or codes alone are not
sufficient for defining clear technology domains. In
this section we build on Fung et al (2023), using an
iterative method to define technology domains that
have better coverage and are more precise than the
domains resulting from simple searches.

We start with the wind energy domain defined
by Fung et al (2023). This paper presented an iterat-
ive method for defining technology domains, using
combinations of classification codes, keywords, and
expert review. The paper expanded the domain for

3
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Figure 1. A conceptual illustration of the relationship between patent domains. This is a Venn diagram, with ovals representing
sets of patent families.

wind energy patents by 7.5%, providing a 6% increase
in recall, and only a 1% decrease in precision.

Here, we define partially overlapping domains for
offshore wind energy, onshore wind energy, and off-
shore oil and gas platforms, and then go on to define
sub-domains for a selection of components in the off-
shore wind energy domain. Based on discussions with
experts in the fields of onshore and offshore wind,
as well as the visual similarity, we started with the
anecdotal opinions that the ‘above the water’ por-
tions of the technology, such as nacelle, tower, and
rotors are highly related to the same components
used for onshore wind energy; while the ‘below the
water’ components are related to the platforms used
for offshore oil and gas; and finally technology elec-
trical apparatus, maintenance, installation, monitor-
ing and control techniques might plausibly be related
to both. We therefore consider onshore wind energy
and offshore oil and gas platforms as the two key
mature technology forbears in the innovation path of
offshore wind energy.

Figure 1 uses a Venn-diagram to conceptually
illustrate the relationship between the three industry-
level patent domains as well as a potential position-
ing of the sub-domains for components. In figure 1,
each large colored oval represents an industry-level
technology patent domain, where a domain is a set
of patent families. The smaller ovals represent sub-
domains for illustrative components within the off-
shore wind energy patent domain. An overlap indic-
ates that there may be patent families that belong to
both domains. For example, there may be particular

patent families for nacelles can be applied to both
onshore and offshore wind. There may also be partic-
ular patent families for nacelles that can be applicable
to towers and rotors.

Within the expanded wind energy patent domain
defined in Fung et al (2023), we define patent sub-
domains for offshore and onshore wind using a
keyword-code-combined query approach. We distin-
guish offshore-only and onshore-only wind domains
using keywords and classification codes specific to
each industry. The remaining patent families in the
wind energy patent domain are patent families that
can be applied to both. Tsai et al (2016) also identi-
fies offshore-only wind energy patents, but used only
keywords. We start by using a set of keywords and
codes specific to offshore wind, such as ‘offshore’,
‘ocean,’ and the code ‘Y02E 10/727’, which refers to
offshore wind turbines. We use these to identify pat-
ent families that are related to offshore wind only, but
not to onshore wind. For onshore wind energy we
use keywords such as ‘onshore’, ‘land’ and the code
‘Y02E 10/728’, which refers to onshore wind turbines.
This categorization was validated by expert reviews
(table B1). The complete sets of keywords and codes
used to distinguish offshore and onshore wind pat-
ent families are listed in table 1. Detailed queries are
provided in table A1.

For offshore oil and gas, we focus on innovations
related to offshore oil and gas platforms, in order to
reduce computational complexity, since this domain
is observationally the closest technology to offshore
wind energy. This simplification will not impact the

4
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Table 1. Keywords and classification codes for identifying
offshore-only and onshore-only wind energy patents out of the
general wind energy patent domain; and for retrieving offshore oil
and gas platform
patents.

Codes Keywords

Offshore-only
wind energy

B63H, B63B,
E02B 17/027,
E02D 15/06,
E02D 27/52,
E02D 29/06, E21B
7/12, F03D 13/25,
F05B2240/95,
Y02E 10/727

Offshore, ocean,
lake, marine,
aquatic anchor,
float, undersea, at
sea

Onshore-only
wind energy

F03D 9/48, Y02E
10/728

Onshore, tree,
mountain, road,
land

Offshore oil
and gas
platforms

B63B 35/00, B63B
35/003, B63B
35/44, B63B
35/4413, B63B 77,
E02B 17,
E02B2017, E21B

Offshore,
platform

relatedness analysis because we are using a one-sided
Hausdorff distance measure, which finds the closest
distance from items in offshore wind to items in oil
and gas, thus excluding the less-relevant patent fam-
ilies will not change the distance measure. The patent
domain for offshore oil and gas platforms is defined in
a similar manner to the above, using a keyword-code-
combined query approach. Relevant keywords and
codes, as listed in table 1, are selected through pat-
ent searching and literature review. Detailed queries
are provided in table A1. We did not perform expert
validation for offshore oil and gas platform patents.

Next, we identify the patent sub-domains for
offshore wind energy components within the off-
shore wind patent domain. Component domains are
subsets of the patent domain of a technology. We
combine keywords and classification codes that are
exclusive to a component to define a component
domain. Patent families related to a component can
be retrieved by a code specific to the component.
For example, ‘F03 7/00’ is a code defined as ‘con-
trolling wind motors’. We use it to retrieve patent
families related to control techniques within the off-
shore wind patent domain. If no such code exists
for a component, we find the most relevant codes
and use exclusive keywords to refine the search res-
ults. For example, ‘F03D 13/10’ and ‘F03D 13/20’
are codes for ‘arrangements for erecting, mounting,
or supporting wind motors, including towers’; and
‘E04H 12/00’ refers to towers of all kinds. In addition
to these codes, we add the keyword ‘tower’ to refine
the results from these three codes as our component
domain for towers. In table 2, we list the combinations
of codes and keywords we use for each component.

The table is formatted such that codes and keywords
that are in the same column are combined with an
‘AND’ Boolean operator; whereas codes in the same
row are combined with an ‘OR’ Boolean operator. As
illustrated by figure 1, component domains will have
overlaps when a patent family involves innovation on
more than one component. We will then measure the
distance from individual offshore components to the
entire domains of onshore wind and offshore oil and
gas platforms.

2.2. Defining the position of a patent family
The position of patent families in the patent domain
can be defined by classification codes. Classification
codes are identifiers assigned to patents that reflect
the technological fields that the patent is related to
(Tanner 2016). Classification systems are hierarch-
ical schemes of classification codes that have descrip-
tions of technological fields with different levels of
details. cooperative patent classification (CPC) and
international patent classification (IPC) are two of
the most widely adopted hierarchical classification
systems. CPC is based on IPC and provides additional
details. We use both CPC and IPC for the retrieval
process to reduce missingness. We use only CPC for
defining the position of a patent family for consist-
ency. Using classification codes to calculate patent
similarity is highly relevant to discussions of innov-
ation path, as it implies how a patent relates to the
basis of ‘prior art’ (Jaffe 1986). Patent classifications
have been used previously in this way, as coordinates
identifying a patent’s position in a technological land-
scape, in order to measure the relative distance/sim-
ilarity between patents (Jaffe 1989, Aharonson et al
2016).

We categorize the classification codes of patent
families at the subgroup level, specifically the sub-
group representing the eighth level in the CPC hier-
archy. By using CPC classification, our intention is
to measure the relatedness between domains under
an established technical framework. The subgroup
levels of CPC hierarchy are meticulously defined with
detailed technical information.

We define a position vector for each patent fam-
ily that represents the proportion of classification
codes at this subgroup level. As a first step, we map
all codes to this eighth level, using CPC scheme
obtained as bulk data in XML format from the ver-
sion of February 20233. The elements in the posi-
tion vector represent the count of classification codes
within each subgroup; the vector is normalized so that
the sum of all vector elements is one. Equation (1)
shows a typical position vector, Pi, for patent fam-
ily i. Each element cik in the vector represents how

3 https://www.cooperativepatentclassification.org/
cpcSchemeAndDefinitions/bulk.
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Table 2. Keywords and classification codes for retrieving offshore wind energy components.

Components
Combinations of codes
and keywords Description

Nacelle F03D 15/00 or F03D 80/70 or H02K
7/183

Mechanical transmission; bearing; lubricating
arrangements.

Rotor F05B2240/21 or F03D 3/06 or F03D
1/06

Rotors for wind turbines

Rotor or blade or pitch
Tower F03D 13/10 or F03D 13/20 or E04H

12/00
Arrangements for erecting, mounting, or
supporting wind motors that are like a tower.

Tower
Electrical apparatus H02J 3/386 or F03D 9/25 or Y02E

10/76
Power transfer, power conversion, electrical
generators for wind energy.

Control F03 7/00 Controlling wind motors
Maintenance F03D 80/50 Maintenance or repair of wind motors
Installation

F03D 13/40
F03D 13/00 Assembly, mounting, commissioning, or

transporting of wind motors.Install or lift or
transport or assemble or
logistics or handle

Monitor F03D 17/00 Monitoring or testing of wind motors
Foundation E02B 17/00 or E02D 27/00 or E02D

29/00
Artificial islands on piles or like supports;
foundations or underwater substructures

Mooring B63B 21/00 Anchoring or mooring

frequently subgroup k is found in the patent fam-
ily i. For example, patent families that have classific-
ation codes in only a single subgroup will have a 1
for that subgroup and zeros elsewhere. We exclude
subgroups under class ‘Y02E 10/70’, which stands for
wind energy, to reduce bias. An example of calculat-
ing a position vector is presented in table C1 in the
appendix,

Pi = (ci1, ci2, . . . , cik, . . . , ciK) (1)

where cik is the frequency of the subgroup-lel code
k in patent family i; K is the total number of
unique subgroup-level codes among all the patent
families considered. This is calculated as shown in
equation (2),

cik =
nik∑K
k=1 nik

(2)

where nik is the number of CPC codes assigned to pat-
ent family i that belong to subgroup-level code k, and∑K

k=1 nik. is the total number of CPC codes assigned
to this patent family.

2.3. Calculate pairwise distance between patent
families
We use the Euclidean distance to measure the dis-
tance between two vectors. There are many potential
methods that can be applied to calculate the pairwise
distance. For example, the pairwise distance can be
the cosine distance between position vectors of pat-
ent families; or it can be calculated from the Jaccard
Index based on full-text similarity, which is the size

of the intersection of classification codes divided by
the size of the union. Any of these methods could be
used for the Hausdorff Measure described in the next
section. We use Euclidean distance for its simplicity
and ease of understanding.

The distance between two patent families x and y,
d
(
Px,Py

)
, is calculated using Euclidean Distance and

normalized as shown in equation (3). We normalized
the standard Euclidean distance to be between 0 and
1. The distance is zero between two patent families
if they have the exact same frequencies of each CPC
subgroup. The maximum distance between two pat-
ent families is achieved when each family has all CPC
codes in a single subgroup, and the two subgroups are
different. We use this distance to define the distance
between two sets in the next section,

d
(
Px,Py

)
=

√∑K
k=1

(
cxk − cyk

)2
√
2

. (3)

2.4. Calculate relatedness by Hausdorff distance
We define the relatedness of two technologies to be
the opposite of the Hausdorff distance. Hausdoff dis-
tance is a metric for measuring distance between two
sets. The original Hausdorff distance between set A
and B is defined as the maximal distance between
any point in set A to its closest point in set B, and
between any point in set B to its closest point in
set A. Instead of considering a bilateral distance as
the original definition does, we calculate a one-way
Hausdorff distance, the maximal distance between
any point in the technology of interest (e.g. offshore

6
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Figure 2.Hausdorff distance from set A to set B.

wind energy) to the related mature technology (e.g.
onshore wind energy). Figure 2 shows an example
of Hausdorff distance between two sets, where the
dashed lines represent the shortest distance between
pairs and the solid line represents the longest dis-
tance among all the shortest distances. It can be
observed that for any sets with overlaps, the ele-
ments in the overlap have themselves as the nearest
pair. Their shortest distance to the other set is
zero.

In this analysis, we consider patent domains as the
sets, and each patent family as a point in one or more
of the sets. We then define the distance from a pat-
ent family to a patent domain as in equation (4). This
finds the distance between an individual point Px in
patent domain X and its closest neighbor in patent
domain Y,

dY (Px) = min
Py∈Y

d
(
Px,Py

)
. (4)

The original Hausdorff distance measures the
maximal shortest distances between partners, as
illustrated in equation (5). In our analysis, we
define a modified Hausdorff distance, D̃X (Y) , as
the mean of the top 1 percentile of all dY (Px).
Using the entire top 1 percentile rather than the
maximum provides a measure that is more robust
to the addition of new patents and to retrieval
errors. The modified Hausdorff distance is defined
by equation (6). The numerator of equation (6)
sums up the dY (Px) of patent families that rank
the highest 1% among all patent families in patent
domain X,

DX (Y) =max
Px∈X

dY (Px) (5)

D̃X (Y) =

∑
Px∈X, rx⩽T dY (Px)

T
(6)

T=
NX

100
(7)

where X, Y are patent domains, which are ss of pat-
ent families; Px,Py are the position vectors of pat-
ent families within patent domain X, Y, defined by
equation (1); D̃X (Y). is the modified Hausdorff dis-
tance from patent domain X to Y; nX is the num-
ber of points in patent domain X; rx. is the rank of
dY (Px) when ranked from the largest distance to Y
down; the rx are integers between 1 and NX; T is the
largest integer that is smaller than NX

100 , which gives the
1 percentile.

Note that our modified Hausdorff distance fro-
patent domain X to Y may be different than the dis-
tance from Y to X. We use the one-y distance because
this ignores patent families in the other domainY that
have no relationship to X. Finally, we define related-
ness as 1− D̃X (Y), since the maximum distance
is 1,

RX (Y) = 1− D̃X (Y) . (8)

We modified the Hausdorff distance definition
so that it calculates the mean of the top 1 percent-
ile instead of the maximum for two reasons. First,
this modified Hausdorff distance reflects the mag-
nitude of overlap between domains. For any pat-
ent family shared by two domains (which ‘locate’
in the overlap if visualized by a Venn diagram), the
closest neighbor in the other domain is itself, which
has a distance dY (Px) as defined by equation (4)
of zero. All else being equal, the more overlap two
domains have, the more patent families will have zero
dY (Px), thus decreasing the modified Hausdorff dis-
tance. For example, imagine that new patent famil-
ies all fall in the overlap between two domains. This
means more zeros are added to the end of the dY (Px)
series. The top 1 percentile will get closer and closer
as this happens. However, the magnitude of over-
lap is not the decisive factor of the Hausdorff dis-
tance; this is how it differs from the Jaccard Similarity
index between two sets. Two pairs of patent domains
may have different levels of modified Hausdorff dis-
tance even though they have the same magnitude of
overlap, depending on the patent families that have
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the furthest closest neighbors in the other domain.
Second, the modified Hausdorff distance is less sens-
itive to retrieval errors. The top 1 percentile is more
representative of the space as a whole, as opposed to
driving the results by the single most differentiated
pair. By definition, the modified Hausdorff distance
should be slightly smaller than or equal to the ori-
ginal Hausdorff distance that is defined by the max-
imum. In appendixD, we repeat the analysis using the
maximum and present the difference between two
methods.

2.5. Change rate of relatedness
In order to investigate the dynamics of innovation,
we create subsets based on the earliest filing year of
each patent family. We consider subsets with an end
year of 1980, 1990, 2000, 2010, and 2020 from each
component domain and from onshore wind and off-
shore oil and gas platform technology domains. For
example, the subset with the end year of 1980 contains

all patent families in the domain with an earliest filing
year no later than 1980; thus each later subset contains
the earlier subsets.

We calculate the average annual change rate in
relatedness from subsets by the following steps. First,
we calculate the relatedness between each component
domain and a technology domain for each subset. The
relatedness of domain X to domain Y at the time step
of year n is denoted as RX (Yn). Second, we calculate
the change rate of relatedness between two consecut-
ive timesteps, as in the numerator of equation (9).
Third, we divide the change rate from the last step
by number of years, as defined by ACRn−m in
equation (9):

ACRn−m =

RX(Yn)
RX(Ym)

− 1
n−m

× 100% . (9)

Then, we average this ACR across the four 10 year
timesteps:

AverageAnuualChangeRate=
ACR1980−1990+ACR1990−2000+ACR2000−2010+ACR2010−2020

4
. (10)

A negative average annual change of relatedness
indicates a decreasing relatedness through time, while
a positive change indicates the component evolves to
be more related to the given technology.

3. Results

3.1. Domain definitions
We retrieved 46 745 patent families of offshore wind,
47 752 patent families of onshore wind and 4011 pat-
ent families of offshore oil and gas platforms. We
excluded patents that have no classification code fields
assigned in PATSTAT, which resulted in a decrease of
18%, 16% and 22% in data size, respectively. This
shows a limitation of our method if the data miss-
ingness in classification codes is high. This results in
38 194 patent families of offshore wind, 40 053 pat-
ent families of onshore wind, and 3148 patent famil-
ies of offshore oil and gas platforms. We find a large
overlap between offshore and onshore wind energy,
with 82% of the patent families in this intersection
(figure 3). There are 3098 patent families that are
exclusive to offshore wind (8% of all offshore wind
patent families), and 4957 patent families exclusive
to onshore wind (12% of all onshore wind patent
families).

We can compare this to Tsai et al (2016), the
only paper in the literature that has attempted to

define an offshore-only wind energy domain. That
paper used keywords only and manually reviewed
each patent. They found 381 granted patents in
the offshore-only domain from the European Patent
Office (EPO) or United States Patent and Trademark
Office (USPTO) with publication dates between
January 1, 1976, and June 30, 2015. Over this same
period, our offshore-only domain has 2,610 pat-
ent families worldwide, including 669 patent famil-
ies with applications either under EPO or USPTO.
Our offshore-only domain is larger than that in Tsai
et al., due to our usage of both classification codes
and keywords for definitions. On the other hand,
our results were not manually examined one by one,
thus, we will have some false positives, as reported in
table B1.

We focus on technology components that have
significant impacts on the total costs of wind energy
according to component-level levelized cost of elec-
tricity (LCOE) contribution for wind energy pro-
jects (Gonzalez-Rodriguez 2017, Stehly and Duffy
2021). We identified three ‘above the water’ com-
ponents believed to be closely related to onshore
wind energy (nacelle, tower, rotor), two ‘below the
water’ components closely related to offshore oil
and gas platforms (foundation, mooring) and a
few important cost components of offshore wind
energy whose relations to the two technologies

8
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Figure 3. Size of offshore wind, onshore wind, and offshore oil and gas platform patent domains and overlaps.

Table 3. Patent family count of offshore wind component domain.

Nacelle Rotor Tower
Electrical
Apparatus Control Maintenance Installation Monitor Foundation Mooring

Patent family
count

2711 3775 469 6546 4507 561 1089 1059 580 174

are less clear a priori (electrical apparatus, install-
ation, control, monitor, maintenance). The res-
ults for each component are listed in table 3. We
identify 15 648 patent families in the union of the
components we consider after dropping duplicates,
which makes up 41% of all offshore wind patent
families.

3.2. Relatedness
Figure 4 shows the relatedness calculated for the
ten offshore wind energy technology components
with onshore wind energy and offshore oil and gas.
The horizontal axis to the left represents relatedness
of offshore wind components to onshore wind; the
horizontal axis to the right represents relatedness of
offshore wind components to offshore oil and gas
platforms. The longer the bars, the more related the
offshore wind component is to the other technology
domain.

We calculate our Hausdorff relatedness for each
timestep and compute the average annual change in
relatedness as defined by equation (10). In figure 5,
the horizontal axis shows the relatedness calculated
for the ten offshore wind energy technology com-
ponents with onshore wind energy (to the right) and
offshore oil and gas platforms (to the left). A pat-
ent family is more related to onshore wind or off-
shore oil and gas platforms if it is located farther to

the right (for onshore wind) or left (for offshore oil
and gas platforms). The vertical axis shows the results
of Average Annual Change Rate since 1980 calculated
by equation (10). Components above the horizontal
axis have shown increasing relatedness, those below
decreasing relatedness.

4. Discussion

Figure 4 shows that rotors and nacelles are highly
related to onshore wind, as expected, with a low
relatedness to offshore oil and gas among ‘above the
water’ components. Towers, however, are relatively
less related to onshore wind. This difference may be
explained by the large size and weight of offshore
towers and the importance of the marine environ-
ment. In addition, erecting andmounting such towers
in the offshore environment may require extra know-
ledge from offshore oil and gas platform technology;
we see that towers are slightly more related to off-
shore oil and gas. As for ‘below the water’ compon-
ents, we find foundations and mooring are the com-
ponents least related to onshore wind energy and
most related to offshore oil and gas. This is in accord-
ance with the observational similarity between the
offshore oil and gas platforms and fixed, submers-
ible and floating platforms for offshorewind turbines.
Maintenance and installation are the next two most
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Figure 4. Relatedness of offshore wind components to onshore wind and offshore oil and gas platforms.

Figure 5. Relatedness to onshore wind and offshore oil and gas platforms and the average annual change rate of offshore wind
components.
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related to offshore oil and gas; these also have relat-
ively high relatedness with onshore wind energy. This
implies that these techniques and technologies are
where the knowledge from both technologies com-
bine: the onshore wind industry provides knowledge
specific to wind turbines while the offshore oil and
gas industry provides knowledge relevant to the off-
shore environment. Of interest are electrical appar-
atus, control, and monitoring techniques, as there
was a less clear prior opinion for these components.
These show high relatedness to onshore wind energy
and low relatedness with the offshore oil and gas,
which indicates the innovation in these fields for off-
shore wind turbines are very similar for onshore
wind.

As shown by figure 5, nearly all offshore wind
components have negative or very small average
annual change of relatedness with both onshore wind
energy and offshore oil and gas platforms. This indic-
ates that most offshore wind energy components are
innovating away from the two more mature tech-
nologies. Five of the components (those located in
the top right of figure 5) have small positive annual
changes in relatedness to onshore wind, including five
of the top six of those most related to onshore wind.
These components would be amenable to spillovers,
and therefore benefit from overall growth in wind
energy; but are less likely to see large cost reduc-
tions as offshore wind grows. Conversely, the four
components least related to onshore wind, moor-
ing, tower, foundation, and installation techniques,
have been evolving even further away. These compon-
ents are more promising for offshore-specific innov-
ation, and more likely to reduce in cost as the off-
shore wind energy industry grows. These implica-
tions come from the model presented in Hernandez-
Negron et al (2023). The idea is that the cost of a
technology drops at a fairly constant rate with every
doubling of cumulative capacity. If a component has
a high relatedness to a more mature technology, it
is building on a larger initial cumulative capacity,
thus increases in capacity in the emerging industry
will have a relatively small impact on overall cumu-
lative capacity, and thus a smaller impact on cost
reductions.

We are seeing that offshore wind is evolving away
from offshore oil and gas. In particular, the com-
ponents that started more related to offshore oil
and gas, such as mooring, maintenance, towers, and
monitoring, are trending away from this domain.
It suggests that while these offshore wind compon-
ents started out relatively related to offshore oil and
gas techniques, innovation is moving in a different
direction.

There are at least four applications for this
method and its results. First, for modelers, our
method can help improve models of technological
change through time. For example, technological
forecasting models, such as learning curve models,
usually ignore the relatedness of offshore wind energy
to these more mature industries and consider it as a
purely novel technology (van der Zwaan et al 2012,
Haas et al 2022). Our method produces a quant-
itative value for relatedness that can be used in
learning curves as in the framework introduced in
(Hernandez-Negron et al 2023). Second, this ana-
lysis can inform future patent analyses aimed at
understanding technological change and its impacts
through time. One question in patent analysis is
how to define the boundaries between technolo-
gies. When technologies are related, such as the
case for onshore and offshore wind, the a priori
boundaries may be misleading. Our method helps
to clarify when technology domains are significantly
related, thus requiring more nuanced domain defin-
itions. As mentioned in Sun et al (2021), a nar-
row technology domain definition may miss poten-
tial breakthrough patents and evidence for future
innovation trends. Our method can help model-
ers identify technology domains with high related-
ness to the focal technology so that are necessary
to be included in the analyses. Third, understand-
ing relatedness is relevant to decisions around R&D
investments, whether for government policy-makers
or individual firms. It helps us understand how and
where related technologies are diverging, thus high-
lightingwhereR&D investmentswill bemore impact-
ful in an emerging industry. Finally, for practition-
ers, the understanding of component-level techno-
logical relatedness can be informative to strategic
firm positioning. For example, firms that work in
fields that are highly related across two techno-
logy domains can position themselves to support
both domains, whereas firms that work on com-
ponents that are differentiated or diverging, can
position themselves as focused on the emerging
technology.

5. Conclusions

We have illustrated a method for understanding the
relatedness of technology domains through the use
of patent data. We propose a method that builds
on the Hausdorff distance to calculate relatedness
between technology domains. We use offshore wind
energy as an example and look into how offshore
wind energy components are related to onshore wind
energy and offshore oil and gas. The results are
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fairly consistent with experts’ opinions that ‘above
the water’ components such as the rotors and nacelles
are highly related to onshore wind; while ‘below the
water’ components such as mooring and founda-
tions are more related to offshore oil and gas. The
results also shed light on components for which
there was less prior opinion, indicating that tech-
niques related to electrical apparatus, monitoring,
and control techniques are highly related to onshore
wind energy, even more than nacelles and rotors.
Moreover, these components do not show move-
ment away from onshore wind. This implies that
these components are less likely to see significant
cost reductions with the growth of offshore wind. In
addition, maintenance and installation show signific-
ant relatedness to both onshore wind and offshore
oil and gas. Considering the dynamics, the ‘below
the water’ components are evolving away from both
mature technologies, implying accelerating innova-
tion in these areas. This may promise more signific-
ant potential for cost reductions in these components
with the growth of the offshore wind industry, com-
pared to those that are becoming more similar to the
mature technologies. Moreover, this information can
be useful for guiding and fostering R&D investment
and firm positioning in the field of offshore wind
energy.

Measuring relatedness by patent data has limit-
ations. First, patents may not represent all innov-
ation in a field, particularly in areas that tend to
be unpatented (Popp 2005). Second, it is possible
the innovation has not been fully transferred to
patents in this area due to filing and examina-
tion delays. However, our methodology using pat-
ent data may be particularly helpful for under-
standing an emerging and complex technology
that includes components highly related to other
technologies.

These results contribute to a topic of emer-
ging interest around defining ontologies or hier-
archies of distinction among technologies. In mak-
ing use of the rich data available in patent data-
sets, we harness knowledge that can be combined
with expert judgment and data science to improve
the understanding of technologies and their innov-
ation trajectories. This is particularly import-
ant and timely to support technological change
in the energy transition, where many promising
newer technologies have evolved from more mature
technologies.

Data availability statement

All data that support the findings of this study are
included within the article (and any supplementary
files).

Appendix

A. Technology domain definitions

Table A1. Retrieval queries for offshore-only wind, onshore-only
wind, and offshore oil and gas platforms.

Retrieval query

Offshore-only
wind

Within the wind energy domain defined
by Fung et al: Any(B63H, B63B, E02B
17/027, E02D 15/06, E02D 27/52, E02D
29/06, E21B 7/12, F03D 13/25,
F05B2240/95)@(CPC, IPC)
OR
Y02E 10/727@CPC
OR
Any(offshore, ocean, lake, marine,
aquatic anchor, float, undersea,
at_sea)@(title, abstract)

Onshore-only
wind

Within WEDD defined by Fung et al.
F03D 9/48@(CPC,IPC)
OR
Y02E 10/728@CPC
OR
Any(onshore, tree, mountain, road,
land))@(title, abstract)

Offshore oil
and gas
platforms

B63B 35/4413@CPC OR
Any(E02B 17, E02B2017, B63B 35/003,
B63B 77)@CPC AND Any(oil,
gas))@(title, abstract)
OR
Any(E02B 17, B63B 35/00, B63B 35/44,
B63B 77)@IPC AND Any(oil,
gas))@(title, abstract)
OR
Any(E21B)@(CPC,IPC) AND
All(offshore, platform)@(title, abstract)

B. Expert validation of offshore and onshore wind
patent retrieval
We used expert judgment to validate our patent sets.
We recruited three wind energy experts to validate
our results. Experts were given 91 patents chosen ran-
domly from the wind energy patent domain. They
were asked to mark patents as ‘applicable only to off-
shore wind energy’, ‘applicable only to onshore wind
energy’ or not. The validation results are summar-
ized in a 2 × 2 table called the confusion matrix for
each patent domain. The two dimensions of a con-
fusion matrix are predictions and actual values as
shown in figure B1, both having true and false rows or
columns. Take the confusion matrix for the offshore
patent domain as an example. A patent is actually
true if it is marked by experts as ‘applicable only to
offshore wind energy’; and vice versa. It is predicted
true if it is found in our offshore wind energy pat-
ent domain; and vice versa. Furthermore, a patent is
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Figure B1. Confusion matrix definitions.

Table B1. Confusion matrix of offshore and onshore wind patents.

Offshore Predicted true Predicted false

Actual true 9 1
Actual false 3 78

Onshore Predicted true Predicted false

Actual true 8 3
Actual false 3 77

‘true’ if it is actually true and ‘false’ if it is not. It is
‘positive’ if it is predicted true and ‘negative’ if it is
not. From the confusion matrix, we calculate the pre-
cision and recall of our patent retrieval for both off-
shore and onshore domains. Precision refers to the
percentage of true positives over the sum of all pos-
itives. Recall refers to the percentage of true positives
over the sum of all trues. Both offshore and onshore
patent domains have good precisions and recalls of at
least 0.7.

Precisionoffshore =
9
12

= 0.75, Recalloffshore =
9
10

= 0.9

Precisiononshore =
8
11

= 0.72, Recallonshore =
8
11

= 0.72

C. An example of defining patent position vectors
by CPC code frequency
Table C1 shows an example of a set of three patent
families, under the assumption that there are a total of
7 relevant subgroups. The position vectors for patent
family 1, 2 and 3 are:

P1 = (0.67,0,0.33,0,0,0,0)

P2 = (0,0.2,0,0.2,0.2,0.4)

P3 = (1,0,0,0,0,0,0).

The elements in the vector are the frequency ck of
codes B63B 21/50, B63B 21/56, B63B2035/44, B64D
17/02, B63G 8/42, and B63H 9/04, respectively.

D. Comparing results from the modified and the
original Hausdorff method
We will hereafter refer to these two methods as
‘TOP1’ and ‘MAX’. The numerical results are listed in
table D1. In figure D1, we plot the relatedness meas-
ured byTOP1on theX axis and byMAXon theY axis.
Data points closer to the diagonal of the figure indic-
ate the relatedness from the two methods are more
similar.

As the figure shows, the TOP1 and MAX related-
ness are very close. For offshore wind and offshore

Table C1. An example of calculating position vectors for three
patent families.

Patent
family

CPC classification
codes

CPC codes
at subgroup
level

Frequency
of codes

1 B63B 21/50, B63B
21/505
B63B2035/446
Y02E 10/727
(excluded)

B63B 21/50
B63B2035/44

0.67
0.33

2 B63B 21/66 B64D
17/025 B63G 8/42
B63H 9/069,
B63H 9/10

B63B 21/56
B64D 17/02
B63G 8/42
B63H 9/04

0.2
0.2
0.2
0.4

3 B63B 21/50 B63B 21/50 1

oil and gas platform, the difference is extremely
small. Components with lower relatedness can be
better differentiated by the TOP1 relatedness. As
for offshore wind and onshore wind, the difference
between the MAX and TOP1 relatedness is small
for most components, but components with higher
TOP1 relatedness are better differentiated by the
MAX relatedness. We added the best linear fit line to
the onshore wind datapoints to show the deviation
from the diagonal. The difference is greater for elec-
trical apparatus (0.23) and rotors (0.22). The reason
might be their large domain sizes, such that the top 1
percentile and themaximum are very different.While
we see some differences in the results, they do not
strongly qualitatively or ordinally change things, and
we continue to believe that using the top 1 percent-
ile is more representative of the space as a whole, as
opposed to driving the results by on the single most
differentiated pair.

E. Average annual change rate with varying
timesteps
In order to check our results we repeat the pro-
cess used to create figure 5, but use timesteps with
approximately equal patent families. Specifically we
created subsets with an end year of 1985, 2000, 2010,
2015, 2020. The years were chosen in a way that each
timestep has fairly same number of patent families.
We have this consideration because wind patents star-
ted to increase rapidly starting in 2000.

As shown by figure E1, the results are similar to
figure 5. There are four components that have a pos-
itive average annual change rate with both onshore
wind and offshore oil and gas: control, rotors, elec-
trical apparatus, and nacelle. The remaining six com-
ponents have negative average annual change rates
with the two domains.

F. Descriptive analysis of CPC-based position
vectors
We conduct descriptive analysis on the position vec-
tors of patent families and subgroups across domain.
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Table D1. TOP1 and MAX relatedness with onshore wind and offshore oil and gas platform of components.

Nacelle Rotor Tower
Electrical
apparatus Control Maintenance Installation Monitor Foundation Mooring

Onshore
Wind

TOP1 0.71 0.72 0.53 0.73 0.72 0.69 0.61 0.72 0.47 0.38
MAX 0.59 0.50 0.42 0.50 0.62 0.66 0.59 0.58 0.33 0.38

Offshore
Oilgas
Platform

TOP1 0.30 0.28 0.33 0.28 0.28 0.38 0.37 0.31 0.56 0.53
MAX 0.28 0.28 0.28 0.28 0.28 0.38 0.37 0.31 0.56 0.53

Figure D1. X–Y plot of TOP1 and MAX relatedness with onshore wind and offshore oil and gas platform.

Figure E1. Relatedness to onshore wind and offshore oil and gas platforms and the average annual change rate of offshore wind
components (using varying timesteps).
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Tables below show thatmore than 60%of patent fam-
ilies in each technology domain have unique position
vectors, indicating they are located at unique posi-
tions in the vector space of that domain. We notice

there exist some patent families sharing the same pos-
ition vector, but even the largest group only accounts
for less than 5% of patent families in all technology
domains.

Offshore Onshore Offshore oil & gas platform

% of Patent families with unique position vectors 65.5% 65.2% 62.3%
Largest share of patents families sharing the same position vector 3.5% 4.5% 2.9%
Number of subgroups 5904 5886 1393
Longest length of position vectors (excluding zeros) 44 44 31
Average length of position vectors (excluding zeros) 4 4 4

We also look at different offshore wind com-
ponents, using rotors, platforms and nacelles as an
example. It can also be concluded that most patent

families are ‘spread-out’ in its domain according to
the percentage of patent families with unique position
vectors.

Offshore rotor Offshore platform Offshore nacelle

% of Patent families with unique position vectors 67.3% 85.7% 91.7%
Largest share of patents families sharing the same position vector 3.3% 5.0% 0.4%
Number of subgroups 1317 399 1424
Longest length of position vectors (excluding zeros) 37 31 28
Average length of position vectors (excluding zeros) 5 6 7

G. Relatedness if comparing to a subdomain and to
the entire domain
Below figure G1 shows the comparison between
two methods: comparing an offshore wind com-
ponent domain to a similar subdomain, or to
the entire domain. We found the results are very
close. The reason might be the similar component
in the other domain is largely the closest neigh-
bor. Indeed, comparing to the entire domain may
include some unrelated patent families. However,
the Hausdorff method can reduce the impacts

of less related patents by finding the closest
neighbors.

The subdomain in onshore wind and offshore oil
and gas platforms are retrieved using the same defini-
tions for corresponding offshore wind components.
However it is possible the definitions for offshore
wind are not the most accurate for the onshore wind
and offshore oil and gas platforms. A more precise
definition can only affect the results by introducing
more related patents, which is also the outcome of
comparing to the entire domain.
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Figure G1. Relatedness for four offshore components comparing to a subdomain and to the entire domain.
Note: ‘x’ indicates there are no patent results for ‘offshore oil and gas “rotors”’.
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