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CONTEXT & SCALE

Low-carbon energy R&D

investment is complex, involving a

wide range of stakeholders with

conflicting beliefs and priorities,

making it difficult to arrive at a

single best solution. We propose

an integrated approach beyond

typical model intercomparison

studies, synthesizing information

from different cost-benefit models

and expert beliefs on technology

costs to identify low-carbon

energy portfolios robust to both

models and expert beliefs. For

instance, we found common

ground for high investments in

solar and bioelectricity across all
SUMMARY

Crafting energy policy in the face of climate change is daunting due
to disagreement over technological uncertainty and societal conse-
quences of climate change. We present an approach accounting for
structural and parameter uncertainty. We provide proof of concept
for designing energy R&D portfolios, accounting for uncertainty and
disagreement around technological change and climate impact. We
synthesize conflicting beliefs by combining expert elicitation studies
on technological change and climate impact models into one deci-
sion framework. We identify plausible R&D portfolios that are
robust to expert studies and climate impact models using the best
available information. In this proof of concept, the method success-
fully narrows portfolios and identifies common ground on some
technologies, allowing policymakers to negotiate over qualitative
issues. We illustrate how this method can identify where the
disagreement is most important. In this case, the different damage
models resulted in starkly different investments in nuclear energy
R&D.
models and experts under a $125/

tCO2 tax on emissions. However,

there is disagreement about

nuclear, biofuels, and CCS

investments. Furthermore,

stringent climate policies lead to

more consensus among the

models and experts in contrast to

less stringent policies. Our

approach can provide valuable

insights into robust investment

decisions and identify areas of

consensus and disagreement

between models and experts.
INTRODUCTION

Strategic research and development (R&D) investment in low-carbon energy tech-

nology is a critical path to decarbonizing the energy sector.1,2 Allocating investment

across portfolios of low-carbon energy technologies to reach climate targets in a

cost-effective way is a tough task that requires handling enormous uncertainty.

These uncertainties are related to the evolution of technologies and climate change,

the economic and societal consequences of long-term investments in the context of

this change, policy uncertainty,2 and the modeling tools used to analyze technology

interaction and climate impact. Analyzing investment in low-carbon energy technol-

ogies under these uncertainties is a growing research area.2 Most work in this area

has focused on analyzing portfolios of investment under ‘‘parametric uncertainty.’’2,3

We present a methodological contribution with an illustrative exercise as a proof of

concept with an integrated analytical approach that simultaneously addresses para-

metric and model (structural) uncertainty. Parametric uncertainty refers to uncer-

tainty over the values of key model parameters; for example, the evolution of the

costs and efficiency of energy technologies in response to investment in R&D.4

Structural uncertainty refers to uncertainty about causal chains,5 implicit assump-

tions, and worldview and is reflected by the wide range of models seen in the liter-

ature.6 Going beyond sensitivity analysis and qualitative comparisons, we synthesize

multiple expert elicitations and multiple models into a single decision framework to

derive outcomes that are robust to both expert elicitation and model uncertainty.

These robust outcomes can enable decision makers to find common ground on in-

vestments in different energy technologies that are not only resilient to variations in
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key model parameters and implicit assumptions but also account for diverse beliefs

of the decision-makers and expert opinions.

Some of the techniques that have been employed to investigate parametric uncer-

tainty in climate and energy technologies include sensitivity analysis,7 uncertainty

analysis,8 and sophisticated models of decision making under uncertainty.9 Sensi-

tivity analysis, for instance, takes energy R&D investment as a given and examines

the potential consequences of a range of technology assumptions. Uncertainty anal-

ysis goes a step further, employing Monte Carlo or other similar methods to explore

probability distributions over integrated assessment model (IAM) outputs of inter-

est.8 Finally, a number of papers have used stochastic dynamic programming to

identify optimal R&D portfolios under a wide range of assumptions or models.2,10,11

For climate change policy, however, deriving probability distributions around the

uncertain parameters can be difficult due to the significant disagreement among ex-

perts and forecasting methods over these distributions.12 This disagreement is of

particular importance because there is no single decision maker poised to solve

climate change but rather a wide range of stakeholders with oft-conflicting criteria.

Approaches to address such disagreement have included robust optimization,13

ambiguity aversion,9,14 and bottom-up exploratory methods, such as robust deci-

sion making.15

On the other hand, structural uncertainty, which we will use interchangeably with

model uncertainty, has been addressed qualitatively through multi-model intercom-

parison studies.7,16 These studies compare results side by side and provide qualita-

tive analysis of what drives the differences in the model outputs. For example, Bo-

setti et al.7 used distributions over technological costs in three global IAMs to

investigate the impact that technology assumptions have on environmental and eco-

nomic metrics across the models. Similarly, Gillingham et al.16 combined parametric

and structural uncertainty in their analysis. They performed uncertainty analysis using

probability distributions overpopulation, total factor productivity, and climate sensi-

tivity and compared these results across multiple IAMs. They found that for most

model outputs, parametric uncertainty was more important than model uncertainty

in the sense that the outputs varied more within models than between them.4 A

recent study by Xexakis et al.17 underscores the necessity of incorporating citizens’

perspectives in energy transition scenarios, emphasizing that energy transition sce-

narios should not solely rely onmodel-based scenarios but also incorporate the vary-

ing citizens’ beliefs that may not always be aligned with the model-based scenarios.

In this article, we introduce a method that combines multiple expert beliefs and mul-

tiple models while respecting the full range of information. A key criticism of

both traditional methods18 and non-expected utility or robust optimization

methods13,19,20 is that they do not reflect the full range of beliefs. These previous

methods mathematically resolve conflict (through averaging or eliminating informa-

tion) and result in a fully ordered set, masking disagreement and limiting decision-

maker flexibility. The approach illustrated here provides a way of accounting for mul-

tiple contrasting beliefs and models in a concise framework to provide a set of

plausible alternatives. These alternatives can initiate a discussion among agents

and policymakers without having to choose a priori a specific decision rule, model,

or beliefs, thus avoiding challenges before the analysis begins.

Objectives and overall approach

We use a multi-model framework to combine multiple cost-benefit IAMs’ climate

damage modules and multiple expert elicitation studies on the future cost of
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Table 1. Annual R&D expenditures cost of each project, in millions of dollars, assumed constant

over a 20-year period

Investment level Nuclear Solar PV Bioelectricity Bioliquids CCS

Low 6.2 1.7 1.4 1.4 5.3

Mid 19.2 4.0 3.0 3.7 17.1

High 178.3 33.0 16.9 20.3 168.1

See Baker et al.4 for more details about Table 1.
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low-carbon energy technologies. We implement robust portfolio decision analysis

(RPDA) and belief dominance,21 expanding this decision framework to account for

model uncertainty. In our proof of concept, we derive specific insights into portfolios

of low-carbon energy R&D investment that are robust to both parametric and

climate damage uncertainty. Belief dominance is a dominance concept (similar to

Pareto and stochastic dominance) that exists in the literature under a range of

names.22–25 Under belief dominance, one alternative dominates another if it per-

forms better under all plausible ‘‘beliefs’’ about the state of the world, where we

allow beliefs to include models, as well as probability distributions over parameters.

We use belief dominance to identify non-dominated portfolios of investments in en-

ergy technology (see experimental procedures). A portfolio is non-dominated if

there is no other portfolio that performs better under all models and elicitation com-

binations.We investigate the set of portfolios that are non-dominated in order to get

insight into individual investments within the portfolios that are robust to the full

range of beliefs and models.

For the proof of concept, we rely on available data and existing expert elicitations

derived from three large-scale expert elicitation studies.4 Thus, we consider portfo-

lios made up of R&D investments in five low-carbon energy technologies: electricity

from biomass, liquid biofuels, carbon capture and storage (CCS), nuclear, and solar

and three possible levels of investment in each technology, making a total of 35

possible portfolios of investment (see Table 1 in experimental procedures for the

definitions of the investment levels, which vary by technology). We note that this

represents four generation technologies and one transportation. We construct

three sets of probability distributions from the three large-scale expert elicitation

studies,4 one for each study to represent parametric uncertainty. The expert elici-

tation studies provide forecasts of the costs and efficiencies of the five technolo-

gies, conditioned on R&D investments.4 The studies were undertaken indepen-

dently by three institutions (Harvard, UMass, and Fondazione Eni Enrico Mattei

[FEEM]) and harmonized in Baker et al.4 We note that these elicitations were pub-

lished between 2008 and 2014 and that they are limited in the technologies they

consider. As such, we interpret the strength of this article not as statements of

fact about technology investment portfolios but rather as the presentation of a

consistent framework for synthesizing different assumptions about technology in-

vestment and modeling framework into a single decision framework for identifying

robust pathways. We briefly discuss alternative methods for characterizing para-

metric uncertainty. An advantage of our approach is that it facilitates the discovery

of robust alternatives that would not have been discovered if only one model or set

of cost assumptions were used.

The costs and efficiencies in the elicitation datasets are propagated through the

technologically detailed global change analysis model (GCAM).26 GCAM, with its

detailed energy module, selects technology deployment and estimates the impact

of technology cost and efficiency assumptions on emission abatement costs and
Joule 7, 2245–2260, October 18, 2023 2247
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climate variables such as temperature and carbon dioxide (CO2) emissions and con-

centration. We soft link the climate variables from GCAM with the damage function

modules of three prominent cost-benefit models, DICE (Dynamic Iintegrated Ccli-

mate-Eeconomy),27 FUND (Climate Framework for Uncertainty, Negotiation and

Distribution),28 and PAGE (Policy Analysis of the Greenhouse Effect)29 (see supple-

mental information section ‘‘overview of the global integrated assessment models

(IAMs) used in this study’’ for detail), to account for the impact of clean energy tech-

nology cost and efficiency from the three expert elicitation studies on climate

change, through climate damages. In cost-benefit IAMs, climate change damages

are represented by a damage function that relates climate variables, such as temper-

ature, CO2 concentrations, and sea-level rise, to economic welfare.30

Combining the three large expert elicitations, which represent parametric uncer-

tainty, with the three-cost-benefit IAMs to represent model uncertainty related to

climate damages, leads to a total of nine possible beliefs. Synthesizing all of these

parts into a single decision framework, the overall objective is to minimize the sum

of the expected value of the cost of abatement (from GCAM), the cost of damages

(from DICE/PAGE/FUND), and the opportunity cost of the R&D portfolio. We iden-

tify all non-dominated portfolios of R&D investment across these beliefs. Finally, we

perform this illustrative analysis by running GCAM under three global climate pol-

icies: a $125/tCO2 carbon tax, a $50/tCO2 carbon tax (both growing by 3% per

year starting in 2025 to 2100), and a reference scenario with no constraint on emis-

sions termed BAU (business as usual) (see experimental procedures). In each sce-

nario, we used the shared socioeconomic pathway (SSP2), which follows a trajectory

in which social, economic, and technological trends do not deviate much from cur-

rent trends.31 In SSP2, resource and energy use intensity decreases, whereas global

population growth is moderate and plateaus in the latter half of the century. Glob-

ally, there are medium challenges to climate change mitigation and adaptation.

Thus, we illustrate how this method can provide insights into specific R&D invest-

ments, including identifying areas of agreement and disagreement.

We note that this method can be used to integrate multiple technologically detailed

IAMs, which would address structural uncertainty more deeply, accounting for

different input data and assumptions and modeling approaches on aspects such

as technological competition.30,32 The challenge, however, is in running large-scale

harmonized scenario analysis across these complex and computationally expensive

models. Thus, this is left for future work.
RESULTS

In this section, we use the proof of concept to illustrate the kinds of insights that can

arise from this methodology.
Disagreement is more important under less stringent policies

We identify a set of non-dominated portfolios for each of the three global climate pol-

icies. The size of the set of non-dominated portfolios decreases as the stringency of

the climate policy increases. Figure 1 shows the non-dominated portfolios under the

most stringent policy. The first five columns show the portfolios, displaying the level

of investment in each technology. In the following column, the R&D expenditures for

each portfolio are presented (the portfolios are presented in ascending order of

R&D). The last three columns display the objective value under each of the three

cost-benefit IAMs, averaged across the three expert elicitations with equal weight-

ing. The objective value is the expected value of the opportunity cost of R&D plus
2248 Joule 7, 2245–2260, October 18, 2023



Figure 1. Non-dominated portfolios for the $125/tCO2 tax policy

Columns 2–6 indicate the level of R&D investment for each technology, classified as low, mid, or high. Column 7 shows the total annual investment in

R&D for each portfolio. The last three columns show the expected NPV (net present value) of the total cost of abatement plus damages plus the cost of

investment in each portfolio under each of the three cost-benefit IAMs, averaged across the three expert elicitations.
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the cost of abatement plus the cost of climate damages, using the expert elicitation

probabilities over technological outcomes (see Table S2 for the non-averaged data).

Under a $125/tCO2 tax policy, out of the 243possible portfolios, just 16 portfolios are

non-dominated across the expert elicitations and the models.

Less stringent policies result in larger numbers of non-dominated portfolios across

all elicitation teams and models (see Tables S3 and S4). There are 37 and 56 non-

dominated portfolios, respectively, under the $50/tCO2 tax policy and under the

BAU case. More stringent climate policy increases the cost competitiveness of clean

energy technology, resulting in rapid deployment in GCAM. Rapid decarbonization

decreases climatic damages but raises abatement costs. As a result, the damage es-

timates play a smaller role in the objective when the policy is stringent. Decreased

disagreements among the models contribute to the smaller number of non-domi-

nated sets as the policy becomes more stringent. This pattern implies that the set

of non-dominated portfolios would be even smaller under a net-zero target because

this would leave even less room for disagreement among the damage models.

On the other hand, less stringent climate policy leads to higher emissions. With

higher emissions, the disagreement about the estimated climate damages is more

significant. Therefore, as the policy becomes less stringent, the damage models

and expert beliefs on technology cost are both important in the objective, leading

to a larger non-dominated set (see Figure S1 for the proportion of each technology

in the non-dominated portfolios across different policies for all the models).

Nevertheless, we note that four portfolios (those labeled 5, 7, 13, and 15 in Figure 1)

were present in each of the three non-dominated sets resulting from the three
Joule 7, 2245–2260, October 18, 2023 2249



Figure 2. Non-dominated portfolios and solutions to robustness concepts for the $125/tCO2 tax policy non-dominated portfolio

Shaded rows are not solutions to any of the robustness concepts considered. The values in the last column are ambiguity tolerance measured in trillions

of dollars.
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policies. These four portfolios include high investments in solar and bioelectricity,

mid-high investments in nuclear energy, and low or mid investments in biofuels

and CCS. This is a significant advantage of the approach implemented here, sug-

gesting that, independent of policy stringency, we can identify some agreement

on investment levels in individual technologies, despite disagreement among

models, policies, and expert beliefs.
This method encompasses other robustness concepts and uncovers new

portfolios of interest

Baker et al.21 showed that the non-dominated set under belief dominance encom-

passes the solutions from a number of other robustness concepts, including a-max-

min expected utility,33 where the decision maker considers the weighted average of

the worst expected payoff and the best-expected payoff, minmax regret with multi-

ple priors,34 Klibanoff smooth ambiguity (KMM),35 and subjective expected utility

using averaged (SEUa) probabilities.36 At least one optimal solution under each of

these concepts is in the belief-non-dominated set. Any optimal solution to a robust-

ness concept that is not in the belief-non-dominated set is (1) no better than those

optimal solutions that are in the belief-non-dominated set under the robustness

concept and (2) strictly worse than the solutions in the belief-non-dominated set un-

der at least one plausible probability distribution. In Figure 2, we illustrate how these

decision rules relate to the non-dominated set. In each case, we treat each combina-

tion of elicitation and model as a single belief. For example, the solution to the
2250 Joule 7, 2245–2260, October 18, 2023



Figure 3. Each ternary diagram shows the optimal investment in the technology in that row, for each combination of the three elicitation teams

(Harvard, UMass, and FEEM), given the model (DICE, PAGE, and FUND) in the column. Each point on the ternary diagram represents a weighting of

the three elicitation teams.

ll
Article
minmax regret decision rule is portfolio 13, where the minmax regret is taken over all

nine combinations of expert beliefs andmodels. For SEUa, if equal weight is given to

FEEM, Harvard, and UMass and to DICE, PAGE, and FUND, the optimal portfolio is

7; if all weight is put on the combination of PAGE with FEEM, the optimal portfolio is

2. For a-maxmin, the optimal portfolio moves from 7 to 8 to 10 as a is increased from

0 to 1 (implying increasing ambiguity aversion). The KMM results move from 7 to 10

to 13 as ambiguity aversion increases (shown in Figure 2 is ambiguity tolerance,

measured in trillions of dollars). Note that even considering a wide range of robust-

ness concepts and variations within those, the non-dominated set contains several

portfolios (i.e., 1, 3, 5, 9, 11, 12, 15, and 15), which were not uncovered by these

other methods.
Finding common ground and key disagreements

We further investigate the portfolios in Figure 3, which arise under a $125/tCO2 car-

bon tax. We find common ground; high R&D investment in solar and Bioelectricity is

robust across experts and damage models. On the other hand, the other three tech-

nologies show different investment levels among the non-dominated portfolios,

suggesting that disagreement is more relevant for these technologies under this pol-

icy. These disagreements are driven by (1) expert disagreement on the effectiveness

of R&D in the individual technologies, (2) differences in marginal damages across the

models, and (3) assumptions in GCAM about technology competition.

To explore this disagreement further, Figure 3 shows how the different combinations

of models (columns) under the different elicitation teams impact the different levels
Joule 7, 2245–2260, October 18, 2023 2251
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of investments in individual technologies (rows) for nuclear, CCS, and biofuel tech-

nologies. The ternary diagrams provide a visualization of which of the three invest-

ment levels is present in the optimal portfolio for each combination of 5,150 feasible

weightings (in steps of 0.01) of the three expert beliefs. Each point on the diagram

represents a weighting of the three teams: the center point is an equal weighting,

and the corners put all weight on one team. The most striking difference between

the models is observed for investment in nuclear energy. Almost all combinations

of elicitation teams lead to a high investment in nuclear under DICE, whereas almost

all combinations of elicitation teams point to a mid-investment under PAGE

and FUND.

Despite their similarities, these models differ significantly in terms of their input as-

sumptions and structure, particularly with regard to the degree of regional and sec-

toral disaggregation, formulation of climate damages, and treatment of adaptation.

These factors impact the estimated level of damages for eachmodel for a given tem-

perature and emissions trajectory. Of importance, in this case, is that the $125/tCO2

tax policy implemented here limits temperature change to less than 2.5�C under all

the portfolios. FUND has global net benefits (negative damages) under 2.5�C from

increased agricultural productivity due to CO2 fertilization37 and reduced heating

demand (that is, avoided energy costs). The inclusion of adaptation in PAGE means

that economic consequences can be largely averted until at least the 3�C threshold.

The damages in PAGE below 3�C are dominated by non-economic impacts (see

Table S1). By contrast, DICE has a simple quadratic damage function. This means

that below 2.5�Cwarming, DICE has the highest marginal damages among the three

models. Additionally, nuclear R&D is expensive, as seen in Table 1.

Finally, this version of GCAM26 allows for significant nuclear expansion, under the

implicit assumption that all safety and waste disposal issues are adequately ad-

dressed and improved to the point where social acceptability does not constrain

large-scale expansion of nuclear power.38 Thus, when R&D is successful at lowering

the cost of nuclear, it has a significant impact on abatement. Adding all this up, the

more expensive but effective R&D portfolios that include nuclear are significantly

more attractive under the higher marginal damages in DICE than under the less se-

vere marginal damages in PAGE and FUND.

In the case of biofuels and CCS, there is a great deal more agreement between the

models regarding R&D expenditure on these technologies. The disagreement

around these technologies is driven more by the elicitations rather than the models,

which can be seen in Baker et al.4 Although there are some non-dominated portfo-

lios with moderate or high investment in biofuels, most combinations of models and

elicitation result in a low-level investment in biofuels. Similarly, most possible com-

binations of beliefs and models result in a mid-level investment in CCS.
DISCUSSION

Key results and contributions

Over the last decade, expert elicitation and IAMs have become integral to analysts

and decision makers as they formulate policy responses to climate change. For

example, the Intergovernmental Panel on Climate Change Sixth Assessment Re-

ports (IPCC AR6)39 applied expert judgment to characterize uncertainty to provide

insights into specific risks around strategies and policies to address climate change

impact, adaptation, and vulnerability. The US government calculates the social cost

of carbon (SCC), a monetary estimate of the societal costs of the climate damage
2252 Joule 7, 2245–2260, October 18, 2023
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caused by an extra unit of CO2 emitted into the earth’s atmosphere, by averaging

the three highly aggregated cost-benefit models we used here.40 These models

have long histories and have produced most of the SCC estimates in recent scientific

literature. Averaging captures central tendencies, yet, according to the flaw of aver-

ages by Savage,41 ‘‘decisions based on the assumption that average conditions will

occur are wrong on average.’’ Thus, our key contribution is methodological—we pre-

sent a method that uses analysis to rigorously define a set of plausible portfolios un-

der model uncertainty, as well as parametric uncertainty. This method does not pre-

sent a single best answer but rather provides analysis that can inform negotiations

among a range of complex interacting stakeholders and decision makers.15,42,43

One key strength of this method is finding common ground by identifying robust in-

dividual investments.2,9,43

Our proof of concept illustrates that this method can highlight both common ground

and key places of disagreement. Under a $125/tCO2 tax on emissions, we find common

ground despite disagreement among the expert beliefs and the models, indicating

that high investment in bioelectricity and solar is robust to all beliefs and the models

given the climate policy. We did not see the same level of consensus about investment

in nuclear, biofuels, and CCS. We find that the disagreement about investment in bio-

fuels and CCS is largely parametric (relating to costs and efficiencies), whereas nuclear

is largely structural (relating to the diversity of the damage models). For nuclear, the

damage models play an important role. Almost all combinations of beliefs lead to a

high investment in nuclear under DICE and mid investment under PAGE and FUND.

The implication here is that our understanding of the structure of damages is particu-

larly important for allocating investment into nuclear. If we believe that the DICE dam-

age formulation is more relevant than the formulations of PAGE and FUND, at least at

lower temperatures, then a high investment in nuclear is warranted; if PAGE or FUND

are better representations, then this investment does not pay off because they are

mainly allocating mid-investment. Finally, we find that the disagreement between

expert beliefs and models is less important for more stringent climate policy.

The contribution of this work is that we go beyond the qualitative comparisons that

have been used in the past, where there was disagreement amongmodels. In partic-

ular, it has been very challenging to find ways to combinemodels, as averaging them

does not make sense. Thus, results presented here related to the robustness, or lack

thereof, across themodels are new. A particular technology that is robust across elic-

itations in one model is not guaranteed to be robust across multiple models. The key

example here is nuclear, which shows a high level of agreement when using one

model but shows significant disagreement when using more than one model. The

most important thing learned here is that the structure of damages is important

for determining the investment in nuclear R&D.

Limitations and future work

A limitation of this study is that the proof of concept only includes the five technol-

ogies for which elicitations that are dependent on R&D investments exist. It is

possible that, with the addition of other technologies, some of the robust portfolios

would change. Olaleye44 illustrated how optimal portfolios of energy R&D change if

individual technologies are eliminated and found intuitive results. If technologies act

as complements within the energy system, then excluding one of the technologies

would result in a sub-optimally low investment. If they act as substitutes, it would

result in a sub-optimally high investment. The impact in this framework is that adding

another technology may change which portfolios are in the non-dominated set. One

important technology that is excluded here is wind, especially offshore wind, which
Joule 7, 2245–2260, October 18, 2023 2253
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is a competitive, carbon-free intermittent electricity generation technology. Thus, it

is possible that high investment in solar would not be as robust if wind energy were

included. On the other hand, there are a number of technologies that are likely

competitive with both wind and solar, such as electrolyzers/hydrogen and transmis-

sion. Including these would make a high investment in solar more robust, but it

would also push up wind. Future work is needed to disentangle these effects.

Expert elicitations provide an important but imperfect way to forecast technological

change.45 The studies used in this paper were conditioned on R&D investments. This

provides probability information that cannot be easily obtained by backward-look-

ing methods, such as experience curves. However, recent work has shown expert

elicitations to have systematically underestimated technological change,12,46 and

portions of the elicitations used in this study include forecasts that have already

been bettered. Meng et al.12 showed that recent expert elicitations systematically

underestimated technological change in solar and overestimated technical change

in nuclear. The implications for this on R&D portfolios are ambiguous. On the one

hand, if we assume that solar will continue to overperform, this would underline

our results that high investment in solar is robust. Similarly, if we assume that nuclear

will continue to underperform, this would indicate the lack of robustness and imply

fewer high investments in nuclear in the non-dominated set. However, recent rapid

reductions in solar could imply slower improvements in the future, thus implying that

high investments are not robust. Overall, future work should include more types of

forecasts, including experience curves and updated elicitations using new methods.

Even if the overall magnitude of the elicitations is off, the relative proportions of R&D

investment would depend on the relative future improvements of the technologies.

The justification for themethod employed here is finding portfolios that are robust to

multiple studies rather than putting all weight on a single study. An important direc-

tion for future work is to expand this analysis to include more dimensions of policy

and uncertainty. Some directions of particular interest include exploring using

data- and model-based forecasts on cost that are conditioned on the modeling

approach and not necessarily conditioned on R&D, integrating multiple technolog-

ically detailed IAMs, perhaps in conjunction with a model comparison study, and

analyzing the implications of net zero carbon goals on R&D portfolios.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Franklyn Kanyako (fkanyako@umass.edu).

Materials availability

The specific model runs and expert elicitation data for this study are archived under

https://doi.org/10.5281/zenodo.5748125 under a CC-BY-4.0 license.

Data and code availability

The code for the IAM framework used in this study, Mimi-DICE, Mimi-FUND, and

Mimi-PAGE, and documentation are available in a public GitHub repository at

https://github.com/mimiframework/Mimi.jl. The technical documentation is avail-

able at https://www.mimiframework.org/. The source code and documentation for

the GCAM are publicly available at https://zenodo.org/record/5093192 and

http://jgcri.github.io/gcam-doc/, respectively. Model output and expert elicitation
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Figure 4. A schematic diagram representing the decision framework

The objective (represented by the diamond node) used to identify the non-dominated portfolios is to minimize the cost of R&D plus the cost of

abatement, plus the damages from climate change. This means that the non-dominated portfolios depend on the marginal damages from climate

change. Thus, the different damage models in the IAMs will lead to different portfolios and technologies.
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of R&D investment data are publicly available at https://doi.org/10.5281/zenodo.

5748125.

Methods

We employ a multi-model framework that comprises four IAMs and the RPDA21

framework to uncover non-dominated R&D portfolios across cost-benefit IAMs

and elicitation studies. Figure 4 is a schematic diagram representing the decision

framework. The main decision, shown by the rectangular node, is the amount of

R&D to allocate to each technology. The oval node represents the uncertainty

around the performance of technologies in 2030. As illustrated by the arrow leading

into the oval node, the probability distributions over technological performance are

conditional on R&D spending. For each set of technology performance metrics and

climate policy, the technologically detailed GCAM selects technology deployment

and estimates abatement costs and climate variables. Each set of performance met-

rics will result in different emissions paths and thus different paths for CO2 concen-

trations and global mean temperatures. These differ in terms of the overall level of

emissions and in terms of the timing of emissions. More success in technology will

typically lead to lower marginal costs and overall lower emissions. Due to various

constraints and initial conditions in GCAM, success in different technologies will

lead to different time paths. The cost-benefit IAMs (DICE, PAGE, and FUND) take

the GCAM climate variables as input and estimate the climate damages (see

Table S1 for damage description).

The main objective is to minimize the sum of the cost of abatement, the cost of

climate damages, and the cost of R&D investment. We implement the RPDA frame-

work previously employed by Baker et al.21 to identify the non-dominated portfolios

for each of three policies: reference and the two-carbon tax policy cases ($125/tCO2

and $50/tCO2) each increasing at 3% annually beginning 2025. There is no constraint

on emissions in the reference scenario. In each scenario, we used the SSP2, which

follows a trajectory in which social, economic, and technological trends do not

deviate much from trends.31 In SSP2, resource and energy use intensity decreases,

whereas global population growth is moderate and plateaus in the latter half of

the century. Globally, there are moderate challenges to climate change mitigation

and adaptation due to uneven development and income growth, slow progress in

achieving sustainable development goals, and challenges to reducing vulnerability

to societal and environmental changes. These factors pose obstacles and complex-

ities to climate change mitigation and adaptation efforts.

Below we discuss how expert elicitations are implemented into GCAM and provide

more detail on the objective and decision framework.
Joule 7, 2245–2260, October 18, 2023 2255

https://doi.org/10.5281/zenodo.5748125
https://doi.org/10.5281/zenodo.5748125


ll
Article
Implementing the expert elicitation into GCAM

Technology competition in GCAM is based on the performance metrics of each

technology, i.e., cost and efficiency of the technology (see supplemental informa-

tion section ‘‘overview of the global integrated assessment models (IAMs) used in

this study’’ GCAM description and technology competition). The performance met-

rics used as inputs are sampled from the harmonized probability distribution from

Baker et al.4 There is one distribution for each uncertain performance metric: solar

PV levelized cost of electricity, nuclear power overnight capital cost, liquid biofuels

levelized non-energy cost and conversion efficiency, bio-electricity non-energy cost

and conversion efficiency, and CCS capital cost and energy penalty. In total, these

eight independent probability distributions represent the cost and efficiency of

the technologies in the year 2030.

We generated 1,000 samples from each of the eight probability distributions using

the Latin hypercube sampling method, making a total of 8,000 parameters to be

evaluated. Each of the 1,000 samples reflects a potential future state of the world

of the cost and efficiency of the clean energy technologies listed above. We imple-

ment each of the 1,000 states of the world, one at a time, in GCAM, repeated for all

three policy cases: the business-as-usual case, with no climate policy in place, and

the two carbon tax policy cases. The elicitation dataset contains static values repre-

senting the states of the world of technology cost and efficiency in 2030. To run a

state of the world in GCAM, spanning from 2015 to 2100, we account for the change

in the performance metrics every 5 years between 2015 and 2030 and subsequent

years after 2030 using a slight modification of Moore’s law, shown in Equations 1

and 2. See Kanyako and Baker8 for more details.

Cij = � 1

2030 � 2015
ln

�
zijð2030Þ � zjmin

zjð2015Þ � zjmin

�
(Equation 1)
zijðtÞ = zj
min +

�
zjð2015Þ � zj

min
�
e�Cij ðt� t2015Þ (Equation 2)

Let cij be Moore’s constant associated with sample i and metric j. The constant is

calculated based on the elicitation data for the year 2030. zij(t) is metric j (cost or ef-

ficiency) for sample i, at time tt. Each metric j has one lower and one upper bound,

zj
min and zj

max. The lower bound is the cost or efficiency with cumulative probability

of 10�6; the upper bound is the opposite tail. We use the lower bound zj
min for sam-

ple ij, when the sample indicates cost decreasing after 2015, and an upper bound

zj
max if the sample indicates cost increasing after 2015. The base-year value for

each metric j for 2015, zj(2015) is constant across all samples; this value is taken

from GCAM default assumptions for all the performance metrics.26 Note, Equations

1 and 2 represent a case where the metric decreases in value approaching 2030, i.e.,

the metric’s value is lower in 2030 than in 2015. The approach is similar in the case

where metrics are higher in 2030, with a ceiling in the place of a floor.

Other methods for characterizing uncertainty

We note that choosing an R&D portfolio inherently requires probability distributions

that are conditioned on R&D investment, independent of the specific analysis

method. We are not aware of any methods other than expert elicitation that can pro-

vide conditional probability distributions that differentiate between technologies.

One method ripe for future research is using experience curve analysis to inform

and bound expert elicitations.

The RPDA method introduced in this paper, however, can be used for a range of de-

cision problems, some of which do not require conditional probability distributions.
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In such a case, empirical methods can be used to provide forecasts, with multiple

methods representing multiple beliefs (see Meng et al.12 for examples of multiple

methods). Such non-conditional probabilistic forecasts could inform robust near-

term investments in infrastructure such as transmission, for example.
Decision framework

Here, we describe the variables, objectives, and constraints of the decision problem.

We note that we extend the original RPDA framework by including model disagree-

ment. Let h = f1; 2; ::; 5g index the five technologies (note there are five technolo-

gies, indexed by h, and eight performance metrics, indexed by j) and f funding level.

We define portfolio x as a vector of binary variables such that xhf = 1 if technology h

is invested in at the f th funding level and 0 otherwise. Each technology in portfolio x

can be invested in at one of the three levels of investment (f = low;mid;high). There-

fore, for the five technologies with three levels of investment, we have a total of 35 =

243 possible portfolios. The total cost of R&D investment B(x) for portfolio x is the

sumof the individual R&D investments in each technology in the portfolio, multiplied

by the opportunity cost multiplier. We use a value of k = 4 for the opportunity cost

multiplier (see Nordhaus47 and Popp48 for details on the opportunity cost multiplier).

Previous research (Baker et al.,21 Baker et al.,9 and Baker and Solak10) have applied

this approach without strong sensitivity to this assumption. Table 1 shows the R&D

cost assumptions for different levels of investment. These assumptions came from

the harmonization of the expert elicitation studies.

Let m = f1; 2;3g be the index for the three cost-benefit models: DICE, PAGE, and

FUND and t = fHarvard;UMass; FEEMg index the individual elicitation teams. For

a sample zi = {zi1, zi2,.zi8}, the probability of realization is ftðzijxÞ, based on elicita-

tion team t given the portfolio x. The damages depend on the model m = {1, 2, 3}.

The overarching objective, represented by Hðx;m; tÞ is to minimize the expected

cost of abatement (total abatement cost [TAC]) plus the climate damages (Dm)

and the cost of R&D investment in portfolio xx, given a policy scenario s:

Hðx;m; tÞh
" X1;000

i = 1

ftðzijxÞfTACðzi; sÞ + Dmðzi; sÞg
#
+ kBðxÞ (Equation 3)
s:t:
X
f

xhf = 1ch

The constraint assures that each technology is only invested in once. In order to find

the non-dominated set across all models and teams, we begin by calculating the to-

tal expected cost, H, for each of the 243 portfolios using Equation 3. Then, using

Yukish’s simple cull method,49 we find the non-dominated sets. A portfolio x belief

dominates x0 if Hðx;m; tÞ%Hðx0;m; tÞcmd; t with strict inequality for at least one of

the beliefs. A portfolio xx is non-dominated if it is not dominated by any other

feasible portfolio.
TAC

The cost of reducing CO2 emissions below the BAU level is the abatement cost in the

objective function above. The cost of abatement is calculated by GCAM as the area

under the marginal abatement curve (MAC). The cost of reducing emissions by one

ton is referred to as the MAC.50 By applying a real discount rate of 3% per year to

future values, the discounted sum of the annual abatement costs from 2020 to

2100 equals the total present value of the TACs TACðzi; sÞ under policy s and sce-

nario zi
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TACðzi; sÞ =
X
t

dtACðzi; sÞt (Equation 4)

Where ACðzi ; sÞt is the annual abatement cost (in trillions of 2015 USD) under policy s

and state scenario zi at time t, and d is the discount factor. Note in the BAU case, the

cost of abatement is, by definition, zero. Hence, in Equation 4 above, TACðzi;
BAUÞ = 0.

Damages (Dm)

Each of the 1,000 states of the world implemented in GCAM leads to different emis-

sions and temperature paths. These emissions and temperature paths are used as

input to estimate climate damages using the cost benefit models for each of the

world (DICE, PAGE, and FUND). GCAM is a complex IAMs that uses linked modules

representing the global economy, energy, land, and climate systems to model en-

ergy technologies, energy use choices, land-use changes, and societal trends that

cause or prevent greenhouse gas emissions. In contrast to GCAM, cost benefit

models are simple IAMs used to estimate the SCC. Amonetary estimate of the quan-

tifiable costs and benefits associated with emitting one additional ton of CO2 (see

supplemental information section ‘‘overview of the global integrated assessment

models (IAM) used in this study’’).

We use GCAM’s detailed energy module to estimate the impact of different levels of

R&D investment in clean energy technologies through technology cost and effi-

ciency improvement on the CO2 emission abatement cost and climate variables

(CO2 emissions and temperature change). The CO2 emissions and temperature

change output from GCAM are used as input into the cost benefit IAMs to estimate

the impact of R&D investment on climate damages. For example, the global mean

temperature output from GCAM is used in DICE and PAGE from 2010 to 2100 for

each scenario. FUND is slightly more complicated. For each of the 14 impact sectors

in FUND, the temperature change, CO2 concentration, or CO2 emission output from

GCAM are used as input depending on main drivers of climate impact of that sector.

For each climate policy, $125/tCO2 and $50/tCO2 (each increasing at 3% annually

beginning 2025) and a reference case and damages are estimated for all 1,000 sce-

narios for each IAM. The damages calculated from the cost-benefit IAMs, and the

abatement cost estimated from GCAM are used as inputs into the decision

framework.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.joule.

2023.08.014.
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Supplemental Introduction 

S1. Overview of the global Integrated Assessment Models (IAM) used in this study. 

Integrated assessment (IA) modeling has emerged as a key technique in climate policy research1. 
IA modeling is a structured process of combining interdisciplinary strands of knowledge and 
insights from the economic, social, environmental, and institutional dimensions into one 
framework. The goal is to provide integrated insights to decision-makers by representing tradeoffs 
and interactions between different parts of society. Various modeling platforms could give other 
answers to the same question and input parameters.  

Below we provide a brief overview of the four IAMs used in this dissertation. We first 
introduce the technologically detailed cost-effectiveness model (GCAM), followed by the three 
high-level cost-benefit IAMs - DICE, PAGE, and FUND. Each of these models has different 
assumptions about the climate variables, a market economy, human relationships, and 
technological change, all aimed at providing insights to decision-makers through trade-offs and 
interactions between these climate variables and the impact sectors. Detailed characteristics of the 
three cost-benefit models, including input assumptions and structures, degrees of regional and 
sectoral aggregation, and formulation of the damage functions, are found in Table S1. 

GCAM – Description 

The global change assessment model (GCAM) is a global change integrated multi-sector model 
that explores both human and earth system dynamics. GCAM is an open-source model developed 
and maintained by the Joint Global Change Research Institute (JCRI); the model's complete 
documentation is accessible at this website (http://jgcri.github.io/gcam-doc/overview.html)2. 
GCAM depicts the behavior and interaction of five systems at the global and regional scales: 
energy, water, land, climate, and the economy, all of which are integrated into a unified computing 
framework. The climate model is used to investigate climate change mitigation measures such as 
carbon taxes, carbon trading, regulations, and rapid energy technology deployments3. The global 
energy-economic system is divided into 32 regions that are inextricably linked by international 
commerce in energy commodities, agricultural and forest products, and other items such as 
emission permits. The magnitude of economic activity is determined by population size, age, and 
gender, as well as labor productivity in each region. 

GCAM is a dynamic recursive partial equilibrium model that solves each five-year timestep 
between 1990 and 2100, modifying prices until supply and demand equilibrium is achieved in all 
energy and agricultural sectors. It is based on the market equilibrium concept, in which 
representative agents in GCAM make resource allocation decisions based on knowledge about 
prices, costs, and other relevant aspects. These agents transmit information about supply and 
demand for products and services to marketplaces. Markets exist for physical commodities such 
as energy or agricultural commodities, but they may also exist for non-physical products and 
services such as tradable emissions permits. GCAM finds a set of market pricing that balances 
supply and demand across all markets in the model. GCAM solves problems by iterating on market 
prices until an equilibrium is found within a user-specified tolerance threshold4. Following each 
period, the model will use as a starting point the resulting state of the world, including the impact 
of decisions taken in that period (for example, resource depletion, withdrawals from the capital 
stock and installations, changes in the landscape, and emissions) for the next period. 

http://jgcri.github.io/gcam-doc/overview.html
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Energy Technology Competition in GCAM 

GCAM's main energy module encompasses all primary, intermediate, and end-use energy markets, 
as well as greenhouse gas (GHG)markets, if a cap-and-trade mechanism is implemented. Primary 
energy reserves and energy resources are expected to be substantial, which, along with projected 
technical advancement, leads to decreased extraction costs due to resource depletion. Coal, gas, 
oil, and biomass are traded worldwide in the model, but wind, solar, geothermal, and hydropower 
are considered renewable energy sources that are not sold across regions in the model. The logit 
choice formulation is used to determine the market competitiveness and market share of each 
technology5. Options/choices are ordered according to preferences, with cost or profit as the key 
determinant. 

In the case of energy, the model considers input costs, output prices, and technological features to 
determine the market share of each technology. However, it should be noted that the best choice 
does not capture the entire market, as numerous factors such as individual preferences, local 
variation in cost/profit, and simple happenstance may cause some of the market to gravitate toward 
alternatives that are theoretically inferior choices based on their cost or profit alone4. Relative cost 
differences drive substitution across energy types in the supply sector, and the logit formulation 
ensures that a winner-take-all result is avoided. The precise share allocated to each technological 
choice is determined by the share weight of the logit exponent4: 

𝑠𝑖 =  
𝛼𝑖𝑐𝑖

𝛾

∑𝑁
𝑗=1 𝛼𝑗𝑐𝑗

𝛾                                                                 (1) 

Where 𝑠𝑖, 𝑐𝑖, 𝛼𝑖 are the market share, cost, and share weight of each technology, and 𝛾 is the logit 
exponent, which is determined exogenously and controls the extent to which cost affects the 
market share of each technology. The share weight calculated in the historical period is used in 
GCAM to ensure that the model can replicate historical data. The share weights are also used to 
phase in new technologies into the market gradually. To do this, GCAM initially sets the share 
weights for new technologies at low levels and progressively increases them as the technology 
becomes more generally accessible. 

DICE Model 

DICE-2013 (Dynamic Integrated Model of Climate and the Economy) is an inter-temporal 
optimization model of economic growth for the world as a single region, developed in 1990 by 
Nordhaus6. The model balances the cost of mitigation against the costs of climate change-related 
damages. Damages are assessed using a quadratic relationship between temperature change and 
damage. The highly aggregated model accounts for many features, such as the economic value of 
losses from biodiversity, ocean acidification, extreme events such as changes in ocean circulation, 
the effect of adaptation, and uncertainty implicitly through a simple damage function6.  

FUND Model 

FUND (The Climate Frameworks for Uncertainty, Negotiation, and Distribution) model of climate 
economics is a simplified representation of development, energy use, carbon cycle, and climate 
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developed by Richard Tol and David Anthoff7. The model has been used to investigate the costs 
and benefits of cost-effective, efficient, viable, and equitable climate policy. It is distinct from 
comparable integrated assessment models by its more thorough depiction of the economic 
consequences of climate change at the sectoral and regional levels, encompassing 14 different 
impact sectors and 16 main geographical regions. The costs of emission reduction are weighted 
against the avoided damage of climate change.  The climate damages from each of the 14 impact 
sectors are analyzed and estimated separately for each of the 16 regions. The parameters that define 
these regional sectorial damages are estimated from parametric uncertainty analysis with 
thousands of Monte Carlo simulations. The damages in each sector are scaled with dynamic 
vulnerability. Exposure or vulnerability to climate impacts changes dynamically over time, 
depending on the socioeconomic parameters such as population, GDP growth, and technological 
change8. 

PAGE Model 

The PAGE09 (Policy Analysis of the Greenhouse Effect) model developed by Hope9 assesses 
climate change implications and the costs of mitigation and adaptation policies. PAGE09 models 
eight world regions, taking income, population, and emissions policy as inputs. It estimates the 
impact of emissions on four impact sectors: “sea-level rise, economic damages, non-economic 
damages, and discontinuities”9. The four impact sectors are modeled independently and reflect 
damages as a proportion of GDP.  

PAGE09 performs parametric uncertainty analysis with thousands of Monte Carlo simulations 
from each sector to estimate the total damages from climate change. Before adaptation, the 
economic and non-economic impacts reflect the vulnerabilities of different regions and use a 
polynomial function to estimate temperature impacts over time. Sea level rise is a lagged linear 
function of global mean temperature. Discontinuity, or the risk of climate change triggering large-
scale damages, reflects a variety of different possible types of disasters. The model also includes 
two kinds of exogenously defined adaptation costs in each region. The increase in the modest sea-
level rise or warming without suffering any damages represented by the ‘plateau’ and the reduction 
in ‘impacts’ from the remaining damage is characterized by the fixed percentage reduction. 
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Table S1. Key characteristics of the three-cost benefit IAMs 

Model details  DICE2013 FUND  PAGE09 
 

Regions One region: world Sixteen regions Eight regions 

Damage function 𝐷 = 𝛿1∆𝑇 + 𝛿𝑞𝑇2 

 
𝛿1 and 𝛿𝑞 are the 
coefficients of the 
linear and quadratic 
damage function 
and ∆𝑇 is 
temperature change 

 
Sector-specific damages are 
formulated differently, with the 
damage function ƒ scaled by a 
dynamic vulnerability term, for 
example: 

𝐷 = 𝑓(∆𝑇𝑥) (
𝑌𝑃𝐶𝑡

𝑌𝑃𝐶0

)
−𝜀

 

𝑥 is the exponent of the climatic 
variable, YPC denotes per 
capita income, t and 0 represent 
the current and reference 
periods, and 𝜀 denotes income 
elasticity. 

Estimates residual 
damages as a percentage 
loss of regional GDP 
following adaptation: 
𝐷 = 𝛿∆(𝑇𝑟 − 𝑇𝑎𝑑𝑎𝑝𝑡)𝑥

+ 𝐶𝑎𝑑𝑎𝑝𝑡  

 
The exponent 𝑥 is 
uncertain, ranging between 
1 to 3. 
 
 

Climate variable Global mean 
temperature change, 
global mean seal 
level rise (SLR) 

Global mean and regional 
temperature change, CO2 
concentrations, global mean 
sea-level rise (SLR), ocean 
temperature 

Regional mean 
temperature change, 
global seal level rise 
(SLR) 

Socioeconomic 
drivers 

Global income Population, income, 
technological change, 
production cost, the land value 

Productivity, regional 
capacity for adaptation 
and cost, Scaling factor 
at the regional level, 
moderate equity 
weights 

Uncertainty No No Exponent and uncertain 
threshold damages 

Upper bound Rational By sector No 

 

S2: Supplemental Result 

Figure S1 shows, for each policy, the proportion of investment level into each technology that is 
low, mid, or high among the portfolios in the non-dominated sets. We see a general trend toward 
increased investment, there is a higher proportion of portfolios with high investments in 
technologies as we increase the stringency of the climate policy. The DICE damage module tends 
to lead to higher levels of investment in each of the technologies except CCS. CCS does increase      
with the stringency of the climate policy. There are several areas of convergence across models, 
such as a lack of "high" investment in CCS and uniform high investment in solar and bioelectricity 
under the $125/tCO2 tax policy. While the stringency of policy objectives is crucial for investment 
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in individual technologies, areas of convergence on investment levels in individual technologies 
can still be found regardless of expert beliefs, policies, or models.  

 

 
Figure S1: Proportion of each technology in the non-dominated portfolios across different policies for all the 
models. 
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 Table S2: Non-dominated portfolios for the $125/tCO2 tax policy. Columns 2-6 indicate the level of R&D 
investment for each technology, classified as Low, Mid, or High. Column 7 shows the total annual 
investment in R&D for each portfolio. The last 9 columns show the Expected NPV of the total cost of 
abatement plus damages plus the cost of investment in each portfolio under each of the three cost-benefit 
IAMs, across the three expert elicitations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Portfolio

Solar Nuclear Biofuels Bio-elec CCS Harvard FEEM UMASS Harvard FEEM UMASS Harvard FEEM UMASS

1 High Low Low High Low 63 92590 94711 92687 30852 31736 30440 38612 39213 37972

2 High Low Mid High Low 65 93173 94449 92480 31518 31605 30318 39270 39116 37890

3 High Low Low High Mid 75 92376 94491 92996 31136 31885 30868 38835 39323 38328

4 High Mid Low High Low 76 91149 94532 87531 30299 31807 29472 38169 39312 37400

5 High Mid Mid High Low 78 92379 94316 87252 31278 31682 29466 39096 39217 37462

6 High Low High High Low 82 93164 94284 91775 31632 31580 30893 39399 39128 38615

7 High Mid Low High Mid 88 90683 94107 86941 30410 31845 29094 38237 39326 37010

8 High Mid Mid High Mid 90 91967 93883 87374 31315 31725 29505 39102 39237 37462

9 High Mid High High Low 95 92418 94140 86950 31415 31646 29554 39245 39219 37610

10 High Mid High High Mid 107 92054 93867 87431 31474 31795 29863 39272 39337 37853

11 High High Low High Low 235 91007 94665 86889 30629 32443 29713 38555 40004 37723

12 High Mid Low High High 239 92320 94564 86697 31843 32571 29198 39581 40023 37109

13 High High Low High Mid 247 90379 94032 86330 30633 32334 29271 38527 39884 37263

14 High High Mid High Mid 249 91902 94005 86214 31652 32290 29431 39492 39855 37511

15 High High High High Low 254 92523 94375 86050 31874 32282 29495 39748 39895 37635

16 High High Low High High 398 92186 94406 86219 32150 32991 29347 39948 40518 37323

Technologies
DICE                                            

ENPV (In trillion of $2020)

FUND                                            

ENPV (In trillion of $2020)

PAGE                                            

ENPV (In trillion of $2020)
Annual R&D 

(In million 
USD)
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S3-S4: Supplemental Tables 

Less stringent policies result in a larger number of non-dominated portfolios across all elicitation 
teams and models. For instance, under the $50/tCO2 tax policy, 37 portfolios are non-dominated, 
and 56 are non-dominated under the reference base. This happens because as policy gets less 
stringent, emissions increase, and damages become more significant. This creates more space for 
model disagreement about the damages. 

 

Table S3: Non-dominated portfolios for the $50/tCO2 tax policy. Columns 2-6 indicate the level of R&D 
investment for each technology, classified as Low, Mid, or High. Column 7 shows the total annual 
investment in R&D for each portfolio. The last 9 columns show the Expected NPV of the total cost of 
abatement plus damages plus the cost of investment in each portfolio under each of the three cost-benefit 
IAMs, across the three expert elicitations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Portfolio

Solar Nuclear Biofuels Bio-elec CCS Harvard FEEM UMASS Harvard FEEM UMASS Harvard FEEM UMASS

1 Low Low Low Mid Low 18 81564 83478 80379 2096 2459 1983 11173 11240 11060

2 Low Low Mid Mid Low 20 81852 83121 81762 2082 2247 1999 11122 11070 11023

3 Mid Low Mid Low Low 21 82505 83016 82556 2348 2226 2032 11259 11004 10999

4 Mid Low Mid Mid Low 22 81556 82821 82127 2047 2171 2105 11081 10979 11076

5 Low Mid Low Mid Low 31 80843 83343 76995 2121 2528 1918 11239 11319 11182

6 Low Mid Mid Mid Low 33 81350 82984 77328 2109 2311 1966 11185 11144 11215

7 Mid Mid Low Mid Low 33 80864 83043 78325 2115 2456 1977 11206 11237 11120

8 Mid Mid Mid Mid Low 35 80966 82698 77919 2049 2239 1911 11131 11058 11111

9 Mid Low Mid High Low 36 81420 82448 81205 2073 2146 2217 11127 11001 11223

10 Low Low High Mid Low 37 81811 82901 81303 2142 2139 2111 11190 10999 11171

11 Mid Low High Low Low 37 82468 82688 80949 2418 2140 1970 11334 10965 11035

12 Mid Low High Mid Low 39 81478 82602 80817 2101 2058 2200 11147 10906 11250

13 Low Mid Low High Low 45 80374 82896 77007 2084 2478 1985 11258 11322 11248

14 Mid Mid Low High Low 47 80395 82625 77782 2088 2403 1996 11230 11239 11161

15 High Low Low Mid Low 49 81398 83084 81213 2112 2439 2101 11149 11185 11018

16 Mid Mid Mid High Low 49 80783 82332 77396 2071 2208 1990 11176 11075 11228

17 Low Mid High Mid Low 50 81286 82757 76873 2167 2204 2000 11253 11075 11303

18 Mid Mid High Low Low 50 81927 82409 79481 2504 2178 2153 11448 11028 11282

19 High Low Mid Mid Low 51 81254 82678 81621 2043 2213 2136 11090 10997 11033

20 Mid Mid High Mid Low 52 80888 82469 76942 2102 2128 1872 11195 10987 11160

21 Mid Mid High Mid Low 52 80888 82469 76942 2102 2128 1872 11195 10987 11160

22 Mid Low High High Low 53 81327 82201 80672 2122 2037 2285 11188 10935 11356

23 Low Mid Low High Mid 56 80022 82963 77033 2405 2900 2110 11533 11666 11334

24 Mid Mid Low High Mid 59 80159 82642 77451 2424 2815 2141 11512 11575 11266

25 High Mid Low Mid Low 62 80614 82975 77531 2071 2508 2003 11175 11264 11111

26 High Mid Mid Mid Low 64 80745 82567 77637 2052 2280 2012 11143 11076 11156

27 High Low Mid High Low 65 81120 82338 81376 2062 2183 2083 11127 11013 10964

28 Mid Mid High High Low 66 80703 82079 76909 2121 2094 2027 11237 11005 11328

29 High Low High Low Low 66 82223 82574 80576 2400 2228 1935 11317 11030 10938

30 High Low High Mid Low 68 81219 82466 80683 2103 2118 2153 11160 10939 11134

31 High Mid Low High Low 76 80238 82595 77380 2048 2467 2039 11190 11270 11164

32 High Mid Mid High Low 78 80585 82235 77133 2072 2248 2036 11181 11089 11231

33 High Mid High Mid Low 81 80726 82339 77322 2113 2186 2014 11213 11020 11231

34 High Low High High Low 82 81068 82086 80239 2118 2095 2077 11193 10964 11094

35 High Mid Low High Mid 88 80091 82462 77224 2478 2791 2172 11554 11545 11270

36 High High Low High Mid 247 80225 82675 77108 3148 3499 2850 12273 12291 12002

37 High High High High Low 254 80946 82411 76618 2861 2930 2778 12006 11831 12100

Technologies
Annual R&D 

(In million 
USD)

DICE                                            

ENPV (In trillion of $2020)

FUND                                           

ENPV (In trillion of $2020)

PAGE                                            

ENPV (In trillion of $2020)
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Table S4: Non-dominated portfolios under the reference case (Business as usual). Columns 2-6 
indicate the level of R&D investment for each technology, classified as Low, Mid, or High. 
Column 7 shows the total annual investment in R&D for each portfolio. The last 9 columns show 
the Expected NPV of the total cost of abatement plus damages plus the cost of investment in 
each portfolio under each of the three cost-benefit IAMs, across the three expert elicitations. 

 

Portfolio
Solar Nuclear Biofuels Bio-elec CCS Harvard FEEM UMASS Harvard FEEM UMASS Harvard FEEM UMASS

1 Low Low Low Low Low 16 77184 76975 77249 -2235 -2199 -2257 1552 1537 1558

2 Low Low Low Mid Low 18 75564 77136 74904 -2540 -2214 -2499 1513 1556 1487

3 Low Low Mid Low Low 18 76744 77039 76935 -2303 -2216 -2296 1543 1548 1553

4 Mid Low Low Low Low 18 76929 76830 77064 -2242 -2196 -2245 1550 1540 1559

5 Low Low Mid Mid Low 20 75855 76939 76074 -2471 -2245 -2373 1526 1555 1535

6 Mid Low Low Mid Low 20 75754 76856 76174 -2465 -2220 -2339 1525 1553 1537

7 Mid Low Mid Low Low 21 76355 76830 76592 -2329 -2215 -2303 1537 1548 1548

8 Mid Low Mid Mid Low 22 75587 76665 76342 -2475 -2249 -2326 1524 1553 1551

9 Low Mid Low Low Low 29 76021 76869 75037 -2309 -2161 -2445 1560 1583 1530

10 Low Mid Low Mid Low 31 74939 77001 72016 -2553 -2181 -2763 1541 1601 1437

11 Low Mid Mid Low Low 31 76222 76837 75191 -2309 -2190 -2433 1574 1590 1541

12 Mid Mid Low Low Low 31 76124 76749 74387 -2280 -2156 -2481 1571 1586 1514

13 Low Low Low High Low 32 75299 76854 74949 -2542 -2212 -2446 1570 1612 1552

14 Low Mid Mid Mid Low 33 75404 76804 72236 -2473 -2212 -2738 1560 1600 1450

15 Mid Mid Low Mid Low 33 74950 76732 73114 -2514 -2186 -2609 1548 1598 1479

16 Mid Mid Mid Low Low 34 75835 76650 73967 -2334 -2187 -2534 1568 1591 1506

17 Low Low Mid High Low 34 75755 76681 75072 -2434 -2235 -2439 1587 1612 1563

18 Mid Low Mid Mid Mid 34 75587 76615 76111 -2436 -2211 -2306 1569 1598 1590

19 Low Low High Low Low 35 76718 76807 75105 -2254 -2202 -2443 1596 1594 1539

20 Mid Mid Mid Mid Low 35 75063 76543 72734 -2489 -2215 -2663 1556 1598 1474

21 Mid Low Mid High Low 36 75485 76399 75465 -2437 -2240 -2378 1585 1609 1584

22 Mid Low High Low Low 37 76297 76597 75042 -2283 -2202 -2432 1588 1594 1545

23 Mid Low High Mid Low 39 75495 76561 75059 -2436 -2220 -2430 1574 1603 1562

24 Low Mid Low Mid Mid 42 74736 77066 72042 -2527 -2130 -2718 1579 1649 1483

25 Low Mid Low High Low 45 74571 76708 72026 -2563 -2179 -2709 1594 1656 1501

26 Low Mid Mid Mid Mid 45 75264 76739 72173 -2452 -2176 -2703 1601 1644 1494

27 Mid Mid Low Mid Mid 45 74831 76732 72974 -2484 -2141 -2584 1589 1644 1520

28 Low Mid Mid High Low 47 75275 76546 72026 -2439 -2202 -2718 1620 1657 1508

29 Mid Mid Low High Low 47 74586 76471 72677 -2520 -2181 -2607 1601 1655 1529

30 Mid Mid Mid Mid Mid 47 75032 76464 72609 -2453 -2181 -2640 1601 1642 1516

31 Mid Low Mid High Mid 48 75466 76371 75334 -2400 -2200 -2350 1630 1653 1625

32 Low Mid High Low Low 48 76159 76521 73647 -2263 -2184 -2546 1626 1633 1539

33 Mid Mid Mid High Low 49 74924 76285 72242 -2456 -2206 -2676 1616 1654 1523

34 Low Mid High Mid Low 50 75324 76684 71759 -2431 -2185 -2756 1611 1650 1488

35 Mid Mid High Low Low 50 75771 76335 73551 -2289 -2183 -2540 1619 1634 1544

36 Low Low High High Low 50 75690 76530 74664 -2389 -2212 -2455 1638 1660 1603

37 Mid Mid High Mid Low 52 74974 76425 71861 -2450 -2188 -2730 1607 1648 1500

38 Mid Low High High Low 53 75382 76246 74918 -2399 -2219 -2411 1635 1658 1620

39 Low Mid Low High Mid 56 74256 76765 72081 -2548 -2124 -2661 1628 1703 1549

40 Mid Mid Low High Mid 59 74365 76474 72474 -2500 -2132 -2587 1639 1700 1568

41 Mid Mid Mid High Mid 61 74885 76189 72298 -2421 -2174 -2633 1661 1697 1570

42 High Mid Low Mid Low 62 74775 76634 72439 -2416 -2072 -2534 1652 1705 1566

43 Low Mid High High Low 63 75195 76394 71663 -2396 -2180 -2729 1671 1705 1551

44 Mid Mid High Mid Mid 64 74985 76380 71988 -2408 -2149 -2678 1653 1696 1550

45 Mid Mid High High Low 66 74834 76126 71764 -2416 -2186 -2699 1667 1703 1562

46 High Mid Low High Low 76 74489 76410 72341 -2406 -2056 -2499 1708 1763 1627

47 Mid Mid High High Mid 78 74849 76094 72006 -2373 -2144 -2632 1713 1749 1616

48 High Mid Mid High Low 78 74779 76166 72012 -2357 -2090 -2557 1722 1760 1624

49 High Mid Low High Mid 88 74317 76281 72281 -2381 -2028 -2469 1748 1803 1671

50 High Mid Mid High Mid 90 74720 76056 72274 -2322 -2064 -2494 1765 1802 1679

51 High Mid High Low Mid 91 75364 76014 73438 -2164 -2053 -2367 1761 1781 1696

52 High Mid High High Low 95 74743 75990 71626 -2312 -2072 -2572 1774 1808 1668

53 High Mid High High Mid 107 74721 75955 72075 -2272 -2035 -2487 1819 1854 1728

54 High High Low High Low 235 74677 76655 72223 -1826 -1459 -1938 2329 2385 2237

55 High High Low High Mid 247 74426 76449 72221 -1808 -1440 -1903 2366 2423 2283

56 High High High High Low 254 75056 76323 71475 -1714 -1467 -2020 2400 2434 2278

Technologies
DICE                                            

ENPV (In trillion of $2020)

FUND                                            

ENPV (In trillion of $2020)

PAGE                                            

ENPV (In trillion of $2020)

Annual R&D 
(In million 

USD)
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