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This paper introduces an innovative approach that addresses uncertainties in both

technology costs and in integrated assessment models to design robust energy

investment portfolios of low-carbon energy technologies. The method facilitates

decision making by identifying common ground and disagreements, offering
valuable insights for crafting energy policies considering diverse perspectives and

uncertainties.

Franklyn Kanyako, Erin Baker,
David Anthoff

fkanyako@umass.edu

Highlights
Synthesize multiple expert beliefs
and climate models to inform

policy

The decision framework
addresses both structural and
parametric uncertainties

Uncover areas of consensus and
disagreement between models
and experts

More stringent climate policy
leads to less disagreement across
models and experts

Kanyako et al., Joule 7, 2245-2260
October 18, 2023 © 2023 Elsevier Inc.
https://doi.org/10.1016/j.joule.2023.08.014



mailto:fkanyako@umass.edu
https://doi.org/10.1016/j.joule.2023.08.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joule.2023.08.014&domain=pdf

Joule

¢? CellPress

|dentifying low-carbon energy R&D portfolios
that are robust when models and experts disagree

Franklyn Kanyako,'>* Erin Baker," and David Anthoff?

SUMMARY

Crafting energy policy in the face of climate change is daunting due
to disagreement over technological uncertainty and societal conse-
quences of climate change. We present an approach accounting for
structural and parameter uncertainty. We provide proof of concept
for designing energy R&D portfolios, accounting for uncertainty and
disagreement around technological change and climate impact. We
synthesize conflicting beliefs by combining expert elicitation studies
on technological change and climate impact models into one deci-
sion framework. We identify plausible R&D portfolios that are
robust to expert studies and climate impact models using the best
available information. In this proof of concept, the method success-
fully narrows portfolios and identifies common ground on some
technologies, allowing policymakers to negotiate over qualitative
issues. We illustrate how this method can identify where the
disagreement is most important. In this case, the different damage
models resulted in starkly different investments in nuclear energy
R&D.

INTRODUCTION

Strategic research and development (R&D) investment in low-carbon energy tech-
nology is a critical path to decarbonizing the energy sector.”-? Allocating investment
across portfolios of low-carbon energy technologies to reach climate targets in a
cost-effective way is a tough task that requires handling enormous uncertainty.
These uncertainties are related to the evolution of technologies and climate change,
the economic and societal consequences of long-term investments in the context of
this change, policy uncertainty,” and the modeling tools used to analyze technology
interaction and climate impact. Analyzing investment in low-carbon energy technol-
ogies under these uncertainties is a growing research area.” Most work in this area
has focused on analyzing portfolios of investment under “parametric uncertainty.”
We present a methodological contribution with an illustrative exercise as a proof of
concept with an integrated analytical approach that simultaneously addresses para-
metric and model (structural) uncertainty. Parametric uncertainty refers to uncer-
tainty over the values of key model parameters; for example, the evolution of the
costs and efficiency of energy technologies in response to investment in R&D."
Structural uncertainty refers to uncertainty about causal chains,” implicit assump-
tions, and worldview and is reflected by the wide range of models seen in the liter-
ature.® Going beyond sensitivity analysis and qualitative comparisons, we synthesize
multiple expert elicitations and multiple models into a single decision framework to
derive outcomes that are robust to both expert elicitation and model uncertainty.
These robust outcomes can enable decision makers to find common ground on in-
vestments in different energy technologies that are not only resilient to variations in

CONTEXT & SCALE

Low-carbon energy R&D
investment is complex, involving a
wide range of stakeholders with
conflicting beliefs and priorities,
making it difficult to arrive at a
single best solution. We propose
an integrated approach beyond
typical model intercomparison
studies, synthesizing information
from different cost-benefit models
and expert beliefs on technology
costs to identify low-carbon
energy portfolios robust to both
models and expert beliefs. For
instance, we found common
ground for high investments in
solar and bioelectricity across all
models and experts under a $125/
tCO, tax on emissions. However,
there is disagreement about
nuclear, biofuels, and CCS
investments. Furthermore,
stringent climate policies lead to
more consensus among the
models and experts in contrast to
less stringent policies. Our
approach can provide valuable
insights into robust investment
decisions and identify areas of
consensus and disagreement
between models and experts.
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key model parameters and implicit assumptions but also account for diverse beliefs
of the decision-makers and expert opinions.

Some of the techniques that have been employed to investigate parametric uncer-
tainty in climate and energy technologies include sensitivity analysis,” uncertainty
analysis,” and sophisticated models of decision making under uncertainty.” Sensi-
tivity analysis, for instance, takes energy R&D investment as a given and examines
the potential consequences of a range of technology assumptions. Uncertainty anal-
ysis goes a step further, employing Monte Carlo or other similar methods to explore
probability distributions over integrated assessment model (IAM) outputs of inter-
est.® Finally, a number of papers have used stochastic dynamic programming to
identify optimal R&D portfolios under a wide range of assumptions or models.”'%""
For climate change policy, however, deriving probability distributions around the
uncertain parameters can be difficult due to the significant disagreement among ex-
perts and forecasting methods over these distributions.’? This disagreement is of
particular importance because there is no single decision maker poised to solve
climate change but rather a wide range of stakeholders with oft-conflicting criteria.
Approaches to address such disagreement have included robust optimization,'?

9,14

ambiguity aversion,” * and bottom-up exploratory methods, such as robust deci-

sion making."®

On the other hand, structural uncertainty, which we will use interchangeably with
model uncertainty, has been addressed qualitatively through multi-model intercom-
parison studies.”"'® These studies compare results side by side and provide qualita-
tive analysis of what drives the differences in the model outputs. For example, Bo-
setti et al.” used distributions over technological costs in three global I1AMs to
investigate the impact that technology assumptions have on environmental and eco-
nomic metrics across the models. Similarly, Gillingham et al."® combined parametric
and structural uncertainty in their analysis. They performed uncertainty analysis using
probability distributions overpopulation, total factor productivity, and climate sensi-
tivity and compared these results across multiple IAMs. They found that for most
model outputs, parametric uncertainty was more important than model uncertainty
in the sense that the outputs varied more within models than between them.* A
recent study by Xexakis et al."” underscores the necessity of incorporating citizens’
perspectives in energy transition scenarios, emphasizing that energy transition sce-
narios should not solely rely on model-based scenarios but also incorporate the vary-
ing citizens’ beliefs that may not always be aligned with the model-based scenarios.

In this article, we introduce a method that combines multiple expert beliefs and mul-
tiple models while respecting the full range of information. A key criticism of
both traditional methods'® and non-expected utility or robust optimization
methods'*'??? is that they do not reflect the full range of beliefs. These previous
methods mathematically resolve conflict (through averaging or eliminating informa-
tion) and result in a fully ordered set, masking disagreement and limiting decision-
maker flexibility. The approach illustrated here provides a way of accounting for mul-
tiple contrasting beliefs and models in a concise framework to provide a set of
plausible alternatives. These alternatives can initiate a discussion among agents
and policymakers without having to choose a priori a specific decision rule, model,
or beliefs, thus avoiding challenges before the analysis begins.

Objectives and overall approach

We use a multi-model framework to combine multiple cost-benefit IAMs’ climate
damage modules and multiple expert elicitation studies on the future cost of
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Table 1. Annual R&D expenditures cost of each project, in millions of dollars, assumed constant
over a 20-year period

Investment level Nuclear Solar PV Bioelectricity Bioliquids CCs
Low 6.2 1.7 1.4 1.4 5.3
Mid 19.2 4.0 3.0 3.7 17.1
High 178.3 33.0 16.9 20.3 168.1

See Baker et al.” for more details about Table 1.

low-carbon energy technologies. We implement robust portfolio decision analysis
(RPDA) and belief dominance,”’ expanding this decision framework to account for
model uncertainty. In our proof of concept, we derive specific insights into portfolios
of low-carbon energy R&D investment that are robust to both parametric and
climate damage uncertainty. Belief dominance is a dominance concept (similar to
Pareto and stochastic dominance) that exists in the literature under a range of
names.””?> Under belief dominance, one alternative dominates another if it per-
forms better under all plausible “beliefs” about the state of the world, where we
allow beliefs to include models, as well as probability distributions over parameters.
We use belief dominance to identify non-dominated portfolios of investments in en-
ergy technology (see experimental procedures). A portfolio is non-dominated if
there is no other portfolio that performs better under all models and elicitation com-
binations. We investigate the set of portfolios that are non-dominated in order to get
insight into individual investments within the portfolios that are robust to the full
range of beliefs and models.

For the proof of concept, we rely on available data and existing expert elicitations
derived from three large-scale expert elicitation studies.” Thus, we consider portfo-
lios made up of R&D investments in five low-carbon energy technologies: electricity
from biomass, liquid biofuels, carbon capture and storage (CCS), nuclear, and solar
and three possible levels of investment in each technology, making a total of 3°
possible portfolios of investment (see Table 1 in experimental procedures for the
definitions of the investment levels, which vary by technology). We note that this
represents four generation technologies and one transportation. We construct
three sets of probability distributions from the three large-scale expert elicitation
studies,” one for each study to represent parametric uncertainty. The expert elici-
tation studies provide forecasts of the costs and efficiencies of the five technolo-
gies, conditioned on R&D investments.” The studies were undertaken indepen-
dently by three institutions (Harvard, UMass, and Fondazione Eni Enrico Mattei
[FEEM]) and harmonized in Baker et al.* We note that these elicitations were pub-
lished between 2008 and 2014 and that they are limited in the technologies they
consider. As such, we interpret the strength of this article not as statements of
fact about technology investment portfolios but rather as the presentation of a
consistent framework for synthesizing different assumptions about technology in-
vestment and modeling framework into a single decision framework for identifying
robust pathways. We briefly discuss alternative methods for characterizing para-
metric uncertainty. An advantage of our approach is that it facilitates the discovery
of robust alternatives that would not have been discovered if only one model or set
of cost assumptions were used.

The costs and efficiencies in the elicitation datasets are propagated through the
technologically detailed global change analysis model (GCAM).?® GCAM, with its
detailed energy module, selects technology deployment and estimates the impact
of technology cost and efficiency assumptions on emission abatement costs and
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climate variables such as temperature and carbon dioxide (CO,) emissions and con-
centration. We soft link the climate variables from GCAM with the damage function
modules of three prominent cost-benefit models, DICE (Dynamic lintegrated Ccli-
mate—Eeconomy),27 FUND (Climate Framework for Uncertainty, Negotiation and
Distribution),?® and PAGE (Policy Analysis of the Greenhouse Effect)?? (see supple-
mental information section “overview of the global integrated assessment models
(IAMs) used in this study” for detail), to account for the impact of clean energy tech-
nology cost and efficiency from the three expert elicitation studies on climate
change, through climate damages. In cost-benefit IAMs, climate change damages
are represented by a damage function that relates climate variables, such as temper-
ature, CO, concentrations, and sea-level rise, to economic welfare.*”

Combining the three large expert elicitations, which represent parametric uncer-
tainty, with the three-cost-benefit IAMs to represent model uncertainty related to
climate damages, leads to a total of nine possible beliefs. Synthesizing all of these
parts into a single decision framework, the overall objective is to minimize the sum
of the expected value of the cost of abatement (from GCAM), the cost of damages
(from DICE/PAGE/FUND), and the opportunity cost of the R&D portfolio. We iden-
tify all non-dominated portfolios of R&D investment across these beliefs. Finally, we
perform this illustrative analysis by running GCAM under three global climate pol-
icies: a $125/tCO, carbon tax, a $50/tCO, carbon tax (both growing by 3% per
year starting in 2025 to 2100), and a reference scenario with no constraint on emis-
sions termed BAU (business as usual) (see experimental procedures). In each sce-
nario, we used the shared socioeconomic pathway (SSP2), which follows a trajectory
in which social, economic, and technological trends do not deviate much from cur-
rent trends.>’ In SSP2, resource and energy use intensity decreases, whereas global
population growth is moderate and plateaus in the latter half of the century. Glob-
ally, there are medium challenges to climate change mitigation and adaptation.
Thus, we illustrate how this method can provide insights into specific R&D invest-
ments, including identifying areas of agreement and disagreement.

We note that this method can be used to integrate multiple technologically detailed
IAMs, which would address structural uncertainty more deeply, accounting for
different input data and assumptions and modeling approaches on aspects such
as technological competition.*** The challenge, however, is in running large-scale
harmonized scenario analysis across these complex and computationally expensive
models. Thus, this is left for future work.

RESULTS

In this section, we use the proof of concept to illustrate the kinds of insights that can
arise from this methodology.

Disagreement is more important under less stringent policies

We identify a set of non-dominated portfolios for each of the three global climate pol-
icies. The size of the set of non-dominated portfolios decreases as the stringency of
the climate policy increases. Figure 1 shows the non-dominated portfolios under the
most stringent policy. The first five columns show the portfolios, displaying the level
of investment in each technology. In the following column, the R&D expenditures for
each portfolio are presented (the portfolios are presented in ascending order of
R&D). The last three columns display the objective value under each of the three
cost-benefit IAMs, averaged across the three expert elicitations with equal weight-
ing. The objective value is the expected value of the opportunity cost of R&D plus
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Annual Average of ENPV
Portfolio Technologies R&D (trillion of $2020)
(million

Solar | Nuclear | Biofuels | Bio-elec | CCS USD) DICE | FUND | PAGE

1 Low Low Low 63 110 365 455
2 Low Mid Low 65 110 367 457
3 Low Low Mid 75 110 369 457
4 Mid Low Low 76 107 360 451
5 Mid Mid Low 78 108 | 363 455
6 Low Low 82 110 | 370 460
7 Mid Low Mid 88 107 359 450
8 Mid Mid Mid 90 107 363 455
9 Mid Low 95 107 364 456
10 Mid Mid 107 107 366 457
11 Low Low 235 107 364 457
12 Mid Low 239 107 368 458
13 Low Mid 247 106 362 454
14 Mid Mid 249 107 367 459
15 Low 254 107 368 461
16 Low 398 107 371 463

Figure 1. Non-dominated portfolios for the $125/tCO, tax policy

Columns 2-6 indicate the level of R&D investment for each technology, classified as low, mid, or high. Column 7 shows the total annual investment in
R&D for each portfolio. The last three columns show the expected NPV (net present value) of the total cost of abatement plus damages plus the cost of
investment in each portfolio under each of the three cost-benefit IAMs, averaged across the three expert elicitations.

the cost of abatement plus the cost of climate damages, using the expert elicitation
probabilities over technological outcomes (see Table S2 for the non-averaged data).
Undera $125/tCO, tax policy, out of the 243 possible portfolios, just 16 portfolios are
non-dominated across the expert elicitations and the models.

Less stringent policies result in larger numbers of non-dominated portfolios across
all elicitation teams and models (see Tables S3 and S4). There are 37 and 56 non-
dominated portfolios, respectively, under the $50/tCO; tax policy and under the
BAU case. More stringent climate policy increases the cost competitiveness of clean
energy technology, resulting in rapid deployment in GCAM. Rapid decarbonization
decreases climatic damages but raises abatement costs. As a result, the damage es-
timates play a smaller role in the objective when the policy is stringent. Decreased
disagreements among the models contribute to the smaller number of non-domi-
nated sets as the policy becomes more stringent. This pattern implies that the set
of non-dominated portfolios would be even smaller under a net-zero target because
this would leave even less room for disagreement among the damage models.

On the other hand, less stringent climate policy leads to higher emissions. With
higher emissions, the disagreement about the estimated climate damages is more
significant. Therefore, as the policy becomes less stringent, the damage models
and expert beliefs on technology cost are both important in the objective, leading
to a larger non-dominated set (see Figure S1 for the proportion of each technology
in the non-dominated portfolios across different policies for all the models).

Nevertheless, we note that four portfolios (those labeled 5, 7, 13, and 15 in Figure 1)
were present in each of the three non-dominated sets resulting from the three
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Portfolios Robustness Concepts
Minmax SEU o-Maxmin KMM (equal
Regret weights)
1
2 PAGE-FEEM
3
FUND-Harvard, PAGE-
4
Harvard
5
6 FUND-FEEM
FUND-UMass, PAGE- _
7 UMass, Equal Weight a=0..0.6 Above 76
a=0.7...09
9
10 DICE-FEEM o =1 (Maxmin) 0.05-1
11
12
Minmax
13 DICE-Harvard 1.2-75
Regret
14
15 DICE-UMass
16

Figure 2. Non-dominated portfolios and solutions to robustness concepts for the $125/tCO, tax policy non-dominated portfolio
Shaded rows are not solutions to any of the robustness concepts considered. The values in the last column are ambiguity tolerance measured in trillions
of dollars.

policies. These four portfolios include high investments in solar and bioelectricity,
mid-high investments in nuclear energy, and low or mid investments in biofuels
and CCS. This is a significant advantage of the approach implemented here, sug-
gesting that, independent of policy stringency, we can identify some agreement
on investment levels in individual technologies, despite disagreement among
models, policies, and expert beliefs.

This method encompasses other robustness concepts and uncovers new
portfolios of interest

Baker et al.”’ showed that the non-dominated set under belief dominance encom-
passes the solutions from a number of other robustness concepts, including a-max-
min expected utility,*® where the decision maker considers the weighted average of
the worst expected payoff and the best-expected payoff, minmax regret with multi-
ple priors,** Klibanoff smooth ambiguity (KMM),** and subjective expected utility
using averaged (SEUa) probabilities.® At least one optimal solution under each of
these concepts is in the belief-non-dominated set. Any optimal solution to a robust-
ness concept that is not in the belief-non-dominated set is (1) no better than those
optimal solutions that are in the belief-non-dominated set under the robustness
concept and (2) strictly worse than the solutions in the belief-non-dominated set un-
der at least one plausible probability distribution. In Figure 2, we illustrate how these
decision rules relate to the non-dominated set. In each case, we treat each combina-
tion of elicitation and model as a single belief. For example, the solution to the
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Figure 3. Each ternary diagram shows the optimal investment in the technology in that row, for each combination of the three elicitation teams
(Harvard, UMass, and FEEM), given the model (DICE, PAGE, and FUND) in the column. Each point on the ternary diagram represents a weighting of
the three elicitation teams.

minmax regret decision rule is portfolio 13, where the minmax regret is taken over all
nine combinations of expert beliefs and models. For SEUa, if equal weight is given to
FEEM, Harvard, and UMass and to DICE, PAGE, and FUND, the optimal portfolio is
7; if all weight is put on the combination of PAGE with FEEM, the optimal portfolio is
2. For a-maxmin, the optimal portfolio moves from 7 to 8 to 10 as a is increased from
0to 1 (implying increasing ambiguity aversion). The KMM results move from 7 to 10
to 13 as ambiguity aversion increases (shown in Figure 2 is ambiguity tolerance,
measured in trillions of dollars). Note that even considering a wide range of robust-
ness concepts and variations within those, the non-dominated set contains several
portfolios (i.e., 1, 3, 5, 9, 11, 12, 15, and 15), which were not uncovered by these
other methods.

Finding common ground and key disagreements

We further investigate the portfolios in Figure 3, which arise under a $125/tCO;, car-
bon tax. We find common ground; high R&D investment in solar and Bioelectricity is
robust across experts and damage models. On the other hand, the other three tech-
nologies show different investment levels among the non-dominated portfolios,
suggesting that disagreement is more relevant for these technologies under this pol-
icy. These disagreements are driven by (1) expert disagreement on the effectiveness
of R&D in the individual technologies, (2) differences in marginal damages across the
models, and (3) assumptions in GCAM about technology competition.

To explore this disagreement further, Figure 3 shows how the different combinations
of models (columns) under the different elicitation teams impact the different levels
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of investments in individual technologies (rows) for nuclear, CCS, and biofuel tech-
nologies. The ternary diagrams provide a visualization of which of the three invest-
ment levels is present in the optimal portfolio for each combination of 5,150 feasible
weightings (in steps of 0.01) of the three expert beliefs. Each point on the diagram
represents a weighting of the three teams: the center point is an equal weighting,
and the corners put all weight on one team. The most striking difference between
the models is observed for investment in nuclear energy. Almost all combinations
of elicitation teams lead to a high investment in nuclear under DICE, whereas almost
all combinations of elicitation teams point to a mid-investment under PAGE
and FUND.

Despite their similarities, these models differ significantly in terms of their input as-
sumptions and structure, particularly with regard to the degree of regional and sec-
toral disaggregation, formulation of climate damages, and treatment of adaptation.
These factors impact the estimated level of damages for each model for a given tem-
perature and emissions trajectory. Of importance, in this case, is that the $125/tCO,
tax policy implemented here limits temperature change to less than 2.5°C under all
the portfolios. FUND has global net benefits (negative damages) under 2.5°C from
increased agricultural productivity due to CO, fertilization®” and reduced heating
demand (that is, avoided energy costs). The inclusion of adaptation in PAGE means
that economic consequences can be largely averted until at least the 3°C threshold.
The damages in PAGE below 3°C are dominated by non-economic impacts (see
Table S1). By contrast, DICE has a simple quadratic damage function. This means
that below 2.5°C warming, DICE has the highest marginal damages among the three
models. Additionally, nuclear R&D is expensive, as seen in Table 1.

Finally, this version of GCAM?® allows for significant nuclear expansion, under the
implicit assumption that all safety and waste disposal issues are adequately ad-
dressed and improved to the point where social acceptability does not constrain
large-scale expansion of nuclear power.?® Thus, when R&D is successful at lowering
the cost of nuclear, it has a significant impact on abatement. Adding all this up, the
more expensive but effective R&D portfolios that include nuclear are significantly
more attractive under the higher marginal damages in DICE than under the less se-
vere marginal damages in PAGE and FUND.

In the case of biofuels and CCS, there is a great deal more agreement between the
models regarding R&D expenditure on these technologies. The disagreement
around these technologies is driven more by the elicitations rather than the models,
which can be seen in Baker et al.” Although there are some non-dominated portfo-
lios with moderate or high investment in biofuels, most combinations of models and
elicitation result in a low-level investment in biofuels. Similarly, most possible com-
binations of beliefs and models result in a mid-level investment in CCS.

DISCUSSION

Key results and contributions

Over the last decade, expert elicitation and IAMs have become integral to analysts
and decision makers as they formulate policy responses to climate change. For
example, the Intergovernmental Panel on Climate Change Sixth Assessment Re-
ports (IPCC AR6)*” applied expert judgment to characterize uncertainty to provide
insights into specific risks around strategies and policies to address climate change
impact, adaptation, and vulnerability. The US government calculates the social cost
of carbon (SCC), a monetary estimate of the societal costs of the climate damage
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caused by an extra unit of CO, emitted into the earth’s atmosphere, by averaging
the three highly aggregated cost-benefit models we used here.”® These models
have long histories and have produced most of the SCC estimates in recent scientific
literature. Averaging captures central tendencies, yet, according to the flaw of aver-
ages by Savage,”’ “decisions based on the assumption that average conditions will
occur are wrong on average.” Thus, our key contribution is methodological—we pre-
sent a method that uses analysis to rigorously define a set of plausible portfolios un-
der model uncertainty, as well as parametric uncertainty. This method does not pre-
sent a single best answer but rather provides analysis that can inform negotiations
among a range of complex interacting stakeholders and decision makers.'4%*
One key strength of this method is finding common ground by identifying robust in-
dividual investments.? 43

Our proof of concept illustrates that this method can highlight both common ground
and key places of disagreement. Under a $125/tCO; tax on emissions, we find common
ground despite disagreement among the expert beliefs and the models, indicating
that high investment in bioelectricity and solar is robust to all beliefs and the models
given the climate policy. We did not see the same level of consensus about investment
in nuclear, biofuels, and CCS. We find that the disagreement about investment in bio-
fuels and CCS is largely parametric (relating to costs and efficiencies), whereas nuclear
is largely structural (relating to the diversity of the damage models). For nuclear, the
damage models play an important role. Almost all combinations of beliefs lead to a
high investment in nuclear under DICE and mid investment under PAGE and FUND.
The implication here is that our understanding of the structure of damages is particu-
larly important for allocating investment into nuclear. If we believe that the DICE dam-
age formulation is more relevant than the formulations of PAGE and FUND, at least at
lower temperatures, then a high investment in nuclear is warranted; if PAGE or FUND
are better representations, then this investment does not pay off because they are
mainly allocating mid-investment. Finally, we find that the disagreement between
expert beliefs and models is less important for more stringent climate policy.

The contribution of this work is that we go beyond the qualitative comparisons that
have been used in the past, where there was disagreement among models. In partic-
ular, it has been very challenging to find ways to combine models, as averaging them
does not make sense. Thus, results presented here related to the robustness, or lack
thereof, across the models are new. A particular technology that is robust across elic-
itations in one model is not guaranteed to be robust across multiple models. The key
example here is nuclear, which shows a high level of agreement when using one
model but shows significant disagreement when using more than one model. The
most important thing learned here is that the structure of damages is important
for determining the investment in nuclear R&D.

Limitations and future work

A limitation of this study is that the proof of concept only includes the five technol-
ogies for which elicitations that are dependent on R&D investments exist. It is
possible that, with the addition of other technologies, some of the robust portfolios
would change. Olaleye™ illustrated how optimal portfolios of energy R&D change if
individual technologies are eliminated and found intuitive results. If technologies act
as complements within the energy system, then excluding one of the technologies
would result in a sub-optimally low investment. If they act as substitutes, it would
resultin a sub-optimally high investment. The impact in this framework is that adding
another technology may change which portfolios are in the non-dominated set. One
important technology that is excluded here is wind, especially offshore wind, which
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is a competitive, carbon-free intermittent electricity generation technology. Thus, it
is possible that high investment in solar would not be as robust if wind energy were
included. On the other hand, there are a number of technologies that are likely
competitive with both wind and solar, such as electrolyzers/hydrogen and transmis-
sion. Including these would make a high investment in solar more robust, but it
would also push up wind. Future work is needed to disentangle these effects.

Expert elicitations provide an important but imperfect way to forecast technological
change.”” The studies used in this paper were conditioned on R&D investments. This
provides probability information that cannot be easily obtained by backward-look-
ing methods, such as experience curves. However, recent work has shown expert

12,46 and

elicitations to have systematically underestimated technological change,
portions of the elicitations used in this study include forecasts that have already
been bettered. Meng et al.'? showed that recent expert elicitations systematically
underestimated technological change in solar and overestimated technical change
in nuclear. The implications for this on R&D portfolios are ambiguous. On the one
hand, if we assume that solar will continue to overperform, this would underline
our results that high investment in solar is robust. Similarly, if we assume that nuclear
will continue to underperform, this would indicate the lack of robustness and imply
fewer high investments in nuclear in the non-dominated set. However, recent rapid
reductions in solar could imply slower improvements in the future, thus implying that
high investments are not robust. Overall, future work should include more types of
forecasts, including experience curves and updated elicitations using new methods.

Even if the overall magnitude of the elicitations is off, the relative proportions of R&D
investment would depend on the relative future improvements of the technologies.
The justification for the method employed here is finding portfolios that are robust to
multiple studies rather than putting all weight on a single study. An important direc-
tion for future work is to expand this analysis to include more dimensions of policy
and uncertainty. Some directions of particular interest include exploring using
data- and model-based forecasts on cost that are conditioned on the modeling
approach and not necessarily conditioned on R&D, integrating multiple technolog-
ically detailed IAMs, perhaps in conjunction with a model comparison study, and
analyzing the implications of net zero carbon goals on R&D portfolios.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-
filled by the lead contact, Franklyn Kanyako (fkanyako@umass.edu).

Materials availability
The specific model runs and expert elicitation data for this study are archived under
https://doi.org/10.5281/zenodo.5748125 under a CC-BY-4.0 license.

Data and code availability

The code for the IAM framework used in this study, Mimi-DICE, Mimi-FUND, and
Mimi-PAGE, and documentation are available in a public GitHub repository at
https://github.com/mimiframework/Mimi.jl. The technical documentation is avail-
able at https://www.mimiframework.org/. The source code and documentation for
the GCAM are publicly available at https://zenodo.org/record/5093192 and
http://jgcri.github.io/gcam-doc/, respectively. Model output and expert elicitation
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Figure 4. A schematic diagram representing the decision framework

The objective (represented by the diamond node) used to identify the non-dominated portfolios is to minimize the cost of R&D plus the cost of
abatement, plus the damages from climate change. This means that the non-dominated portfolios depend on the marginal damages from climate
change. Thus, the different damage models in the IAMs will lead to different portfolios and technologies.

of R&D investment data are publicly available at https://doi.org/10.5281/zenodo.
5748125.

Methods

We employ a multi-model framework that comprises four IAMs and the RPDA?'
framework to uncover non-dominated R&D portfolios across cost-benefit IAMs
and elicitation studies. Figure 4 is a schematic diagram representing the decision
framework. The main decision, shown by the rectangular node, is the amount of
R&D to allocate to each technology. The oval node represents the uncertainty
around the performance of technologies in 2030. As illustrated by the arrow leading
into the oval node, the probability distributions over technological performance are
conditional on R&D spending. For each set of technology performance metrics and
climate policy, the technologically detailed GCAM selects technology deployment
and estimates abatement costs and climate variables. Each set of performance met-
rics will result in different emissions paths and thus different paths for CO, concen-
trations and global mean temperatures. These differ in terms of the overall level of
emissions and in terms of the timing of emissions. More success in technology will
typically lead to lower marginal costs and overall lower emissions. Due to various
constraints and initial conditions in GCAM, success in different technologies will
lead to different time paths. The cost-benefit IAMs (DICE, PAGE, and FUND) take
the GCAM climate variables as input and estimate the climate damages (see
Table S1 for damage description).

The main objective is to minimize the sum of the cost of abatement, the cost of
climate damages, and the cost of R&D investment. We implement the RPDA frame-
work previously employed by Baker et al.?" to identify the non-dominated portfolios
for each of three policies: reference and the two-carbon tax policy cases ($125/tCO,
and $50/tCO,) each increasing at 3% annually beginning 2025. There is no constraint
on emissions in the reference scenario. In each scenario, we used the SSP2, which
follows a trajectory in which social, economic, and technological trends do not
deviate much from trends.?" In SSP2, resource and energy use intensity decreases,
whereas global population growth is moderate and plateaus in the latter half of
the century. Globally, there are moderate challenges to climate change mitigation
and adaptation due to uneven development and income growth, slow progress in
achieving sustainable development goals, and challenges to reducing vulnerability
to societal and environmental changes. These factors pose obstacles and complex-
ities to climate change mitigation and adaptation efforts.

Below we discuss how expert elicitations are implemented into GCAM and provide
more detail on the objective and decision framework.
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Implementing the expert elicitation into GCAM

Technology competition in GCAM is based on the performance metrics of each
technology, i.e., cost and efficiency of the technology (see supplemental informa-
tion section “overview of the global integrated assessment models (IAMs) used in
this study” GCAM description and technology competition). The performance met-
rics used as inputs are sampled from the harmonized probability distribution from
Baker et al.” There is one distribution for each uncertain performance metric: solar
PV levelized cost of electricity, nuclear power overnight capital cost, liquid biofuels
levelized non-energy cost and conversion efficiency, bio-electricity non-energy cost
and conversion efficiency, and CCS capital cost and energy penalty. In total, these
eight independent probability distributions represent the cost and efficiency of
the technologies in the year 2030.

We generated 1,000 samples from each of the eight probability distributions using
the Latin hypercube sampling method, making a total of 8,000 parameters to be
evaluated. Each of the 1,000 samples reflects a potential future state of the world
of the cost and efficiency of the clean energy technologies listed above. We imple-
ment each of the 1,000 states of the world, one at a time, in GCAM, repeated for all
three policy cases: the business-as-usual case, with no climate policy in place, and
the two carbon tax policy cases. The elicitation dataset contains static values repre-
senting the states of the world of technology cost and efficiency in 2030. To run a
state of the world in GCAM, spanning from 2015 to 2100, we account for the change
in the performance metrics every 5 years between 2015 and 2030 and subsequent
years after 2030 using a slight modification of Moore’s law, shown in Equations 1
and 2. See Kanyako and Baker® for more details.

_ 1 2;(2030) — z™" _
Cj= - 5030 — 2015/n [4(2015) — (Equation 1)
zi(t) = ijm+ (Zj(2015) — iji”)e’cu(f*tzms) (Equation 2)

Let ¢;; be Moore’s constant associated with sample i and metric j. The constant is
calculated based on the elicitation data for the year 2030. z;(t) is metric j (cost or ef-
ficiency) for sample i, at time tt. Each metric j has one lower and one upper bound,
zjmi” and z"®*. The lower bound is the cost or efficiency with cumulative probability
of 107°; the upper bound is the opposite tail. We use the lower bound z™" for sam-
ple ij, when the sample indicates cost decreasing after 2015, and an upper bound
z"® if the sample indicates cost increasing after 2015. The base-year value for
each metric j for 2015, z(2015) is constant across all samples; this value is taken
from GCAM default assumptions for all the performance metrics.”® Note, Equations
1 and 2 represent a case where the metric decreases in value approaching 2030, i.e.,
the metric’s value is lower in 2030 than in 2015. The approach is similar in the case
where metrics are higher in 2030, with a ceiling in the place of a floor.

Other methods for characterizing uncertainty

We note that choosing an R&D portfolio inherently requires probability distributions
that are conditioned on R&D investment, independent of the specific analysis
method. We are not aware of any methods other than expert elicitation that can pro-
vide conditional probability distributions that differentiate between technologies.
One method ripe for future research is using experience curve analysis to inform
and bound expert elicitations.

The RPDA method introduced in this paper, however, can be used for a range of de-
cision problems, some of which do not require conditional probability distributions.
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In such a case, empirical methods can be used to provide forecasts, with multiple
methods representing multiple beliefs (see Meng et al.'” for examples of multiple
methods). Such non-conditional probabilistic forecasts could inform robust near-
term investments in infrastructure such as transmission, for example.

Decision framework

Here, we describe the variables, objectives, and constraints of the decision problem.
We note that we extend the original RPDA framework by including model disagree-
ment. Let h = {1,2,..,5} index the five technologies (note there are five technolo-
gies, indexed by h, and eight performance metrics, indexed by j) and ffunding level.
We define portfolio x as a vector of binary variables such that x;s = 1 if technology h
is invested in at the f funding level and 0 otherwise. Each technology in portfolio x
can be invested in at one of the three levels of investment (f = low,mid,high). There-
fore, for the five technologies with three levels of investment, we have a total of 3° =

243 possible portfolios. The total cost of R&D investment B(x) for portfolio x is the
sum of the individual R&D investments in each technology in the portfolio, multiplied
by the opportunity cost multiplier. We use a value of k = 4 for the opportunity cost
multiplier (see Nordhaus®’ and Popp*® for details on the opportunity cost multiplier).
Previous research (Baker et al.,”! Baker et al.,” and Baker and Solak'®) have applied
this approach without strong sensitivity to this assumption. Table 1 shows the R&D
cost assumptions for different levels of investment. These assumptions came from
the harmonization of the expert elicitation studies.

Let m = {1,2,3} be the index for the three cost-benefit models: DICE, PAGE, and
FUND and 7 = {Harvard, UMass, FEEM} index the individual elicitation teams. For
a sample z; = {z;1, z2,...z;g}, the probability of realization is f,(zj|x), based on elicita-
tion team 7 given the portfolio x. The damages depend on the model m = {1, 2, 3}.
The overarching objective, represented by H(x; m;7) is to minimize the expected
cost of abatement (total abatement cost [TAC]) plus the climate damages (D)
and the cost of R&D investment in portfolio xx, given a policy scenario s:

1,000
H(x;m;7) = Z (zx){TAC(z;,5) + Dn(z;,5)} | +kB(x) (Equation 3)

i=

s.t. Zth =1Vh
7

The constraint assures that each technology is only invested in once. In order to find
the non-dominated set across all models and teams, we begin by calculating the to-
tal expected cost, H, for each of the 243 portfolios using Equation 3. Then, using
Yukish's simple cull method,*” we find the non-dominated sets. A portfolio x belief
dominates X if H(x; m;7) < H(x'; m; 7) ¥V md, 7 with strict inequality for at least one of
the beliefs. A portfolio xx is non-dominated if it is not dominated by any other
feasible portfolio.

TAC

The cost of reducing CO, emissions below the BAU level is the abatement cost in the
objective function above. The cost of abatement is calculated by GCAM as the area
under the marginal abatement curve (MAC). The cost of reducing emissions by one
ton is referred to as the MAC.” By applying a real discount rate of 3% per year to
future values, the discounted sum of the annual abatement costs from 2020 to
2100 equals the total present value of the TACs TAC(z;, s) under policy s and sce-
nario z;
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TAC(z;,s) = Z(StAC(z,»,s)r (Equation 4)
t

Where AC(z;, s), is the annual abatement cost (in trillions of 2015 USD) under policy s
and state scenario z; at time t, and ¢ is the discount factor. Note in the BAU case, the
cost of abatement is, by definition, zero. Hence, in Equation 4 above, TAC(z,
BAU) = 0.

Damages (D,,)

Each of the 1,000 states of the world implemented in GCAM leads to different emis-
sions and temperature paths. These emissions and temperature paths are used as
input to estimate climate damages using the cost benefit models for each of the
world (DICE, PAGE, and FUND). GCAM is a complex |AMs that uses linked modules
representing the global economy, energy, land, and climate systems to model en-
ergy technologies, energy use choices, land-use changes, and societal trends that
cause or prevent greenhouse gas emissions. In contrast to GCAM, cost benefit
models are simple IAMs used to estimate the SCC. A monetary estimate of the quan-
tifiable costs and benefits associated with emitting one additional ton of CO; (see
supplemental information section “overview of the global integrated assessment
models (IAM) used in this study”).

We use GCAM’s detailed energy module to estimate the impact of different levels of
R&D investment in clean energy technologies through technology cost and effi-
ciency improvement on the CO, emission abatement cost and climate variables
(CO, emissions and temperature change). The CO, emissions and temperature
change output from GCAM are used as input into the cost benefit IAMs to estimate
the impact of R&D investment on climate damages. For example, the global mean
temperature output from GCAM is used in DICE and PAGE from 2010 to 2100 for
each scenario. FUND is slightly more complicated. For each of the 14 impact sectors
in FUND, the temperature change, CO; concentration, or CO, emission output from
GCAM are used as input depending on main drivers of climate impact of that sector.
For each climate policy, $125/tCO; and $50/tCO; (each increasing at 3% annually
beginning 2025) and a reference case and damages are estimated for all 1,000 sce-
narios for each IAM. The damages calculated from the cost-benefit IAMs, and the
abatement cost estimated from GCAM are used as inputs into the decision
framework.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.joule.
2023.08.014.
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Supplemental Introduction
S1. Overview of the global Integrated Assessment Models (IAM) used in this study.

Integrated assessment (IA) modeling has emerged as a key technique in climate policy research'.
IA modeling is a structured process of combining interdisciplinary strands of knowledge and
insights from the economic, social, environmental, and institutional dimensions into one
framework. The goal is to provide integrated insights to decision-makers by representing tradeoffs
and interactions between different parts of society. Various modeling platforms could give other
answers to the same question and input parameters.

Below we provide a brief overview of the four IAMs used in this dissertation. We first
introduce the technologically detailed cost-effectiveness model (GCAM), followed by the three
high-level cost-benefit IAMs - DICE, PAGE, and FUND. Each of these models has different
assumptions about the climate variables, a market economy, human relationships, and
technological change, all aimed at providing insights to decision-makers through trade-offs and
interactions between these climate variables and the impact sectors. Detailed characteristics of the
three cost-benefit models, including input assumptions and structures, degrees of regional and
sectoral aggregation, and formulation of the damage functions, are found in Table S1.

GCAM - Description

The global change assessment model (GCAM) is a global change integrated multi-sector model
that explores both human and earth system dynamics. GCAM is an open-source model developed
and maintained by the Joint Global Change Research Institute (JCRI); the model's complete
documentation is accessible at this website (http:/jgcri.github.io/gcam-doc/overview.html)?.
GCAM depicts the behavior and interaction of five systems at the global and regional scales:
energy, water, land, climate, and the economy, all of which are integrated into a unified computing
framework. The climate model is used to investigate climate change mitigation measures such as
carbon taxes, carbon trading, regulations, and rapid energy technology deployments®. The global
energy-economic system is divided into 32 regions that are inextricably linked by international
commerce in energy commodities, agricultural and forest products, and other items such as
emission permits. The magnitude of economic activity is determined by population size, age, and
gender, as well as labor productivity in each region.

GCAM is a dynamic recursive partial equilibrium model that solves each five-year timestep
between 1990 and 2100, modifying prices until supply and demand equilibrium is achieved in all
energy and agricultural sectors. It is based on the market equilibrium concept, in which
representative agents in GCAM make resource allocation decisions based on knowledge about
prices, costs, and other relevant aspects. These agents transmit information about supply and
demand for products and services to marketplaces. Markets exist for physical commodities such
as energy or agricultural commodities, but they may also exist for non-physical products and
services such as tradable emissions permits. GCAM finds a set of market pricing that balances
supply and demand across all markets in the model. GCAM solves problems by iterating on market
prices until an equilibrium is found within a user-specified tolerance threshold*. Following each
period, the model will use as a starting point the resulting state of the world, including the impact
of decisions taken in that period (for example, resource depletion, withdrawals from the capital
stock and installations, changes in the landscape, and emissions) for the next period.


http://jgcri.github.io/gcam-doc/overview.html

Energy Technology Competition in GCAM

GCAM's main energy module encompasses all primary, intermediate, and end-use energy markets,
as well as greenhouse gas (GHG)markets, if a cap-and-trade mechanism is implemented. Primary
energy reserves and energy resources are expected to be substantial, which, along with projected
technical advancement, leads to decreased extraction costs due to resource depletion. Coal, gas,
oil, and biomass are traded worldwide in the model, but wind, solar, geothermal, and hydropower
are considered renewable energy sources that are not sold across regions in the model. The logit
choice formulation is used to determine the market competitiveness and market share of each
technology”. Options/choices are ordered according to preferences, with cost or profit as the key
determinant.

In the case of energy, the model considers input costs, output prices, and technological features to
determine the market share of each technology. However, it should be noted that the best choice
does not capture the entire market, as numerous factors such as individual preferences, local
variation in cost/profit, and simple happenstance may cause some of the market to gravitate toward
alternatives that are theoretically inferior choices based on their cost or profit alone?. Relative cost
differences drive substitution across energy types in the supply sector, and the logit formulation
ensures that a winner-take-all result is avoided. The precise share allocated to each technological
choice is determined by the share weight of the logit exponent*:

aicg/
Si =

y (1)

N
j=1 ¢

Where s;, ¢;, a; are the market share, cost, and share weight of each technology, and y is the logit
exponent, which is determined exogenously and controls the extent to which cost affects the
market share of each technology. The share weight calculated in the historical period is used in
GCAM to ensure that the model can replicate historical data. The share weights are also used to
phase in new technologies into the market gradually. To do this, GCAM initially sets the share
weights for new technologies at low levels and progressively increases them as the technology
becomes more generally accessible.

DICE Model

DICE-2013 (Dynamic Integrated Model of Climate and the Economy) is an inter-temporal
optimization model of economic growth for the world as a single region, developed in 1990 by
Nordhaus®. The model balances the cost of mitigation against the costs of climate change-related
damages. Damages are assessed using a quadratic relationship between temperature change and
damage. The highly aggregated model accounts for many features, such as the economic value of
losses from biodiversity, ocean acidification, extreme events such as changes in ocean circulation,
the effect of adaptation, and uncertainty implicitly through a simple damage function®.

FUND Model

FUND (The Climate Frameworks for Uncertainty, Negotiation, and Distribution) model of climate
economics is a simplified representation of development, energy use, carbon cycle, and climate



developed by Richard Tol and David Anthoff’. The model has been used to investigate the costs
and benefits of cost-effective, efficient, viable, and equitable climate policy. It is distinct from
comparable integrated assessment models by its more thorough depiction of the economic
consequences of climate change at the sectoral and regional levels, encompassing 14 different
impact sectors and 16 main geographical regions. The costs of emission reduction are weighted
against the avoided damage of climate change. The climate damages from each of the 14 impact
sectors are analyzed and estimated separately for each of the 16 regions. The parameters that define
these regional sectorial damages are estimated from parametric uncertainty analysis with
thousands of Monte Carlo simulations. The damages in each sector are scaled with dynamic
vulnerability. Exposure or vulnerability to climate impacts changes dynamically over time,
depending on the socioeconomic parameters such as population, GDP growth, and technological
change®.

PAGE Model

The PAGEQ9 (Policy Analysis of the Greenhouse Effect) model developed by Hope’ assesses
climate change implications and the costs of mitigation and adaptation policies. PAGE09 models
eight world regions, taking income, population, and emissions policy as inputs. It estimates the
impact of emissions on four impact sectors: “sea-level rise, economic damages, non-economic
damages, and discontinuities™. The four impact sectors are modeled independently and reflect
damages as a proportion of GDP.

PAGEOQ9 performs parametric uncertainty analysis with thousands of Monte Carlo simulations
from each sector to estimate the total damages from climate change. Before adaptation, the
economic and non-economic impacts reflect the vulnerabilities of different regions and use a
polynomial function to estimate temperature impacts over time. Sea level rise is a lagged linear
function of global mean temperature. Discontinuity, or the risk of climate change triggering large-
scale damages, reflects a variety of different possible types of disasters. The model also includes
two kinds of exogenously defined adaptation costs in each region. The increase in the modest sea-
level rise or warming without suffering any damages represented by the ‘plateau’ and the reduction
in ‘impacts’ from the remaining damage is characterized by the fixed percentage reduction.



Table S1. Key characteristics of the three-cost benefit IAMs

Model details DICE2013 FUND PAGE09

Regions One region: world Sixteen regions Eight regions

Estimates residual
damages as a percentage
loss of regional GDP
following adaptation:

D= 6A(Tr - Tadapt)x

Damage function D = §,AT + 6,T?

Sector-specific damages are
formulated differently, with the
damage function f scaled by a

dynamic vulnerability term, for

6, and &, are the
coefficients of the

linear and quadratic example: + Cadapt
damage function B s (YPCe\ ™
and AT is aACH )(YPC0>

temperature change The exponent x is
uncertain, ranging between

1 to 3.

x is the exponent of the climatic
variable, YPC denotes per
capita income, t and 0 represent
the current and reference
periods, and € denotes income
elasticity.
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Socioeconomic
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Global mean
temperature change,
global mean seal
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Global income
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temperature
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No
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Regional mean
temperature change,
global seal level rise
(SLR)

Productivity, regional
capacity for adaptation
and cost, Scaling factor
at the regional level,
moderate equity
weights

Exponent and uncertain
threshold damages

No

S2: Supplemental Result

Figure S1 shows, for each policy, the proportion of investment level into each technology that is
low, mid, or high among the portfolios in the non-dominated sets. We see a general trend toward
increased investment, there is a higher proportion of portfolios with high investments in
technologies as we increase the stringency of the climate policy. The DICE damage module tends
to lead to higher levels of investment in each of the technologies except CCS. CCS does increase
with the stringency of the climate policy. There are several areas of convergence across models,
such as a lack of "high" investment in CCS and uniform high investment in solar and bioelectricity
under the $125/tCO2 tax policy. While the stringency of policy objectives is crucial for investment



in individual technologies, areas of convergence on investment levels in individual technologies
can still be found regardless of expert beliefs, policies, or models.
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Figure S1: Proportion of each technology in the non-dominated portfolios across different policies for all the
models.



Table S2: Non-dominated portfolios for the $125/tCO2 tax policy. Columns 2-6 indicate the level of R&D
investment for each technology, classified as Low, Mid, or High. Column 7 shows the total annual
investment in R&D for each portfolio. The last 9 columns show the Expected NPV of the total cost of
abatement plus damages plus the cost of investment in each portfolio under each of the three cost-benefit
IAMs, across the three expert elicitations.

Annual R&D DICE FUND PAGE
Portfolio Technologies (In million ENPV (In trillion of $2020) | ENPV (In trillion of $2020) | ENPV (In trillion of $2020)
Solar | Nuclear [ Biofuels | Bio-elec| CCS USD) Harvard ~ FEEM UMASS |Harvard FEEM UMASS |Harvard  FEEM UMASS

1 Low |Low Low 63| 92590 94711  92687| 30852 31736  30440] 38612 39213 37972

2 Low [(Mid Low 65| 93173 94449 92480 31518 31605 30318 39270 39116 37890

3 Low |Low Mid 75| 92376 94491  92996| 31136 31885 30868 38835 39323 38328

4 Mid Low Low 76| 91149 94532 87531 30299 31807  29472| 38169 39312 37400

5 Mid Mid Low 78] 92379 94316  87252] 31278 31682  29466| 39096 39217 37462

6 Low Low 82| 93164 94284  91775| 31632 31580  30893| 39399 39128 38615

7 Mid Low Mid 88| 90683 94107 86941 30410 31845 29094 38237 39326 37010

8 Mid Mid Mid 90| 91967 93883  87374| 31315 31725  29505| 39102 39237 37462

9 Mid Low 95| 92418 94140 86950 31415 31646 29554 39245 39219 37610

10 Mid Mid 107| 92054 93867 87431 31474 31795  29863| 39272 39337 37853

11 Low Low 235( 91007 94665  86889| 30629 32443  29713| 38555 40004 37723

12 Mid Low 29| 92320 94564  86697| 31843 32571  29198] 39581 40023 37109

13 Low Mid 247] 90379 94032  86330| 30633 32334 29271 38527 39884 37263

14 Mid Mid 29 91902 94005  86214| 31652 32290 29431 39492 39855 37511

15 Low 2540 92523 94375 86050 31874 32282 29495 39748 39895 37635

16 Low 398] 92186 94406 86219 32150 32991  29347| 39948 40518 37323




S3-S4: Supplemental Tables

Less stringent policies result in a larger number of non-dominated portfolios across all elicitation
teams and models. For instance, under the $50/tCO2 tax policy, 37 portfolios are non-dominated,
and 56 are non-dominated under the reference base. This happens because as policy gets less
stringent, emissions increase, and damages become more significant. This creates more space for
model disagreement about the damages.

Table S3: Non-dominated portfolios for the $50/tCO2 tax policy. Columns 2-6 indicate the level of R&D
investment for each technology, classified as Low, Mid, or High. Column 7 shows the total annual
investment in R&D for each portfolio. The last 9 columns show the Expected NPV of the total cost of
abatement plus damages plus the cost of investment in each portfolio under each of the three cost-benefit
IAMs, across the three expert elicitations.

Annual R&D DICE FUND PAGE
Portfolio Technologies (In million ENPV (In trillion of $2020) ENPV (In trillion of $2020) ENPV (In trillion of $2020)
Solar | Nuclear | Biofuels | Bio-elec| CCS USD) Harvard ~ FEEM UMASS |Harvard FEEM UMASS | Harvard  FEEM UMASS

1|Low Low Low Mid Low 18] 81564 83478 80379 2096 2459 1983 11173 11240 11060}
2|Low Low Mid Mid Low 20 81852 83121 81762 2082 2247 1999] 11122 11070 11023
3|mid Low Mid Low Low 21] 82505 83016 82556 2348 2226 2032 11259 11004 10999
4|mid Low Mid Mid Low 22| 81556 82821 82127 2047 2171 2105| 11081 10979 11076
5|Low Mid Low Mid Low 31] 80843 83343 76995 2121 2528 1918] 11239 11319 11182
6|Low Mid Mid Mid Low 33| 81350 82984 77328 2109 2311 1966| 11185 11144 11215
7|mid Mid Low Mid Low 33| 80864 83043 78325 2115 2456 1977 11206 11237 11120)
8|mid Mid Mid Mid Low 35| 80966 82698 77919 2049 2239 1911f 11131 11058 11111
9|mid Low i 36| 81420 82448 81205 2073 2146 2217 11127 11001 11223
10 37| 81811 82901 81303 2142 2139 2111 11290 10999 11174
37| 82468 82688 80949 2418 2140 1970 11334 10965 11035

39| 81478 82602 80817 2101 2058 22000 11147 10906  11250]

45| 80374 82896 77007 2084 2478 1985( 11258 11322 11248

471 80395 82625 77782 2088 2403 1996 11230 11239 11161

49| 81398 83084 81213 2112 2439 2101 11149 11185 11018

49| 80783 82332 77396 2071 2208 1990| 11176 11075  11228]

so| 81286 82757 76873 2167 2204 2000 11253 11075 11303

50| 81927 82409 79481 2504 2178 2153] 11448 11028 11282

51 81254 82678 81621 2043 2213 2136] 11090 10997 11033

52| 80888 82469 76942 2102 2128 1872| 11195 10987  11160)

52| 80888 82469 76942 2102 2128 1872] 11195 10987  11160)

53| 81327 82201 80672 2122 2037 2285 11188 10935 11356

56| 80022 82963 77033 2405 2900 2110] 11533 11666 11334

59| 80159 82642 77451 2424 2815 2141 11512 11575 11266

62| 80614 82975 77531 2071 2508 2003| 11175 11264 11114

64| 80745 82567 77637 2052 2280 2012| 11143 11076 11156

65| 81120 82338 81376 2062 2183 2083 11127 11013 10964

66| 80703 82079 76909 2121 2094 2027| 11237 11005 11328

66| 82223 82574 80576 2400 2228 1935 11317 11030  10938|

68| 81219 82466 80683 2103 2118 2153 11160 10939 11134

76] 80238 82595 77380 2048 2467 2039] 11190 11270 11164

78| 80585 82235 77133 2072 2248 2036| 11181 11089 11231

81 80726 82339 77322 2113 2186 2014 11213 11020 11231

82 81068 82086 80239 2118 2095 2077] 11193 10964 11094

88 80091 82462 77224 2478 2791 2172 11554 11545 11270

247| 80225 82675  77108] 3148 3499 2850 12273 12291 12002

254 80946 82411 76618 2861 2930 2778 12006 11831 12100




Table S4: Non-dominated portfolios under the reference case (Business as usual). Columns 2-6
indicate the level of R&D investment for each technology, classified as Low, Mid, or High.
Column 7 shows the total annual investment in R&D for each portfolio. The last 9 columns show
the Expected NPV of the total cost of abatement plus damages plus the cost of investment in
each portfolio under each of the three cost-benefit [AMs, across the three expert elicitations.

Annual R&D DICE FUND PAGE
Portfoliol Technologies (In million ENPV (In trillion of $2020) ENPV (In trillion of $2020) ENPV (In trillion of $2020)
Solar | Nuclear | Biofuels | Bio-elec| CCS USD) Harvard ~ FEEM UMASS |Harvard ~FEEM UMASS | Harvard ~ FEEM UMASS

Tlow  Low Low Low Low 16 77188 76975 77249 2235 2199 2257 1ss2 1537 155§

2low  Low Low Mid Low 18 75564 77136 74004 2540 2214 2409 1513 1556 1487

3low  Low Mid Low Low 18 76744 77039 76935 2303  -2216  -2206| 1543 1548 1553

4Md  Low Low Low Low 18| 76929 76830  770e4] -2242 2196  -2245| 1550 1540 1559

Slow  Low Mid Mid Low 200 75855 76939 76074|  -2471  -2245 2373 1526 1555 1535

6Md  Low Low Mid Low 20 75754 76856 76174|  -2465  -2220  -2339] 1525 1553 1537

7Md  Low Mid Low Low 21| 76355 76830 76592  -2329  -2215  -2303] 1537 1548 1548

gMid  Low Mid Mid Low 2| 75587 76665 76342|  -2475  -2249  -2326 1524 1553 1551

9low  Mid Low Low Low 29| 76021 76869  75037] -2309  -2161  -2445| 1560 1583 1530
10low  Mid Low Mid Low 31| 74939 77001 72016 -2553  -2181  -2763] 1541 1601 1437
low  Mid Mid Low Low 31| 76222 76837 75191 -2309  -2190  -2433 1574 1500 1541
2 Md  Mid Low Low Low 31| 76124 76749  74387] -2280  -2156  -2481] 1571 158 1514
13low  low Low Low 3)| 75099 7essa 74989 2542 -212  -2446 1570 1612 1552
4low  Mid Mid Mid Low 33| 75404 76804 72236 -2473  -212  -2738] 1560 1600 1450
15Md  Mid Low Mid Low 33| 74050 76732 73114 -2514  -2186  -2609] 1548 1508 1479
16Md  Mid Mid Low Low 3| 75835 76650  73967] -2334  -2187  -2534] 1568 1501 1506
17low  low Mid gAY Low 34| 75755 76681 75072 2434 2235 2439 1587 1612 1563
18Mid  low Mid Mid Mid 3| 75587 76615 76111]  -2436  -2211  -2306) 1569 1508 1500
19w  low (g Low Low 35| 76718 76807 75105 -2254  -2202 2443 1596 1504 1539
0Md M Mid Mid Low 35| 75063 76543 72734|  -2489  -215  -2663| 1556 1508 1474
2AMd  Low Mid Low 36| 75485 76399 75465  -2437  -2240  -2378] 1585 1609 1584
2Md  Low Low Low 37| 76297 76597  75042|  -2283  -2200  -2432| 1588 1504 1545
2BMd  Low Mid Low 30| 75495 76561  75059|  -2436  -2220  -2430] 1574 1603 1562
dlow  Mid Low Mid Mid 4| 74136 77086 72042] 2527 2130 2718|1579 1649 1483
Blow  Mid Low [ Low 4s| 74571 76708 72026| 2563  -2179 2700 1594 1656 1501
%low  Mid Mid Mid Mid as| 7564 76739 72173] 2452 2176 -2703| 1601 1644 1494
7Md M Low Mid Mid as| 74831 76732 72074] 2488 2141 -2584] 1589 1644 1520
Blow  Mid Mid Low a7l 7575 76586 72006] 2439 202 -2718] 1620 1657 1508
29Md  Mid Low Low 471 7a586 76471 72677] 2520 2181 -2607] 1601 1655 1529
0Md M Mid a7l 75032 7ese4  72609] 2453 2181 -2640] 1601 1642 1516
31Md  Low i Mid agl 7566 76371 7533|2400 2200 -2350] 1630 1653 1625
2w Md Low agl 76159 76521 73647] 2263 -2188  -2546] 1626 1633 1539
BMd  Mid ' Low ao| 7494 76285 7242 2456 2206 -2676] 1616 1654 1523
Mlow M Low 50| 7534 76688 71759]  -2431 2185 -2756) 1611 1650 1488
3sMd M Low so| 75771 76335 73551 -2289  -2183  -2540] 1619 1634 1544
36low  Low Low 50| 75690 76530  74664| -2389  -2212  -2455| 1638 1660 1603
7Md  Mid Low 5)| 74974 76425 71861  -2450  -2188  -2730] 1607 1648 1500
38Mid  Low Low s3| 75382 76246 74918  -2399  -2219  -2411] 1635 1658 1620
Plow  Mid Mid s6| 74256 76765 72081 -2548  -2124  -2661] 1628 1703 1549
oMd  Mid Mid so| 74365 76474 72474  -2500  -2132  -2587] 1639 1700 1568
aMd  Mid i Mid 61| 74885 76189 72208 -2421  -2174  -2633 1661 1697 1570
42| High wid Low 62| 74775 76634 72439 2416 2012 2534 1652 1705 1566
Blow  Mid Low 63| 75195 76394 71663 -2396  -2180 -2729] 1671 1705 1551
“Md M Mid 64| 74985 76380 71988 -2408  -2149  -2678) 1653 1696 1550
sMd M 66| 74834 76126  71764| -2416  -2186  -2699] 1667 1703 1562
46 [High] vid Low 76| 7a489 76410  72341|  -2406  -2056  -2499] 1708 1763 1627
7Mid  Mid Mid 78| 7409 76004 72006 -2373  -2144 2632 1713 1749 1616
43 Mid i Low 78| 74779 76166 72012 -2357  -2000 2557 1722 1760 1624
4 Mid ss| 74317 7681 72281 2381 208 -2469| 1748 1803 1671
50 Mid 9| 7470 76056 7227|2322 2084 -2494| 1765 1802 1679
51 Mid 91| 75364 76014  73438] 2164 2053 -2367] 1761 1781 1696
52 Mid 95| 74743 75990  7166) 2312 2072 -2572] 1774 1808 1668
53 Mid i 107 74721 75055 72075 -2272  -2035  -2487] 1819 1854 1728
54 35| 74677 76655 7223|1826 1459  -1938] 2329 2385 2237
55 i 47| 7a6 76849 72221  -1808  -1440  -1903| 2366 2423 2283
56 254 7505 76323 71475 1714 -1467  -2020] 2400 2434 2278
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