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Mode Vector Modulation: Extending Stokes Vector
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Abstract—We examine the scalability of Stokes vector mod-
ulation (SVM) to higher-dimensional Stokes spaces in order to
decrease the energy consumption of optical links. We propose
and study mode vector modulation (MVM), a new multidimen-
sional SVM scheme for transmission over multimode/multicore
optical fibers or free-space modes. MVM can be demodulated
using a digital polarimetric direct-detection (DD) receiver that is
an extension of the original single-mode Stokes vector receiver to
multimode links. This paper focuses on the MVM transceiver ar-
chitecture, the back-to-back performance of optically-preamplified
DD MVM receivers, the optimized geometric shaping of the MVM
constellation, and the related bit-to-symbol mapping. We show that
MVM DD outperforms conventional single-mode, direct-detection-
compliant, digital modulation formats by several dB in terms of
receiver sensitivity and the SNR gain increases with the number
of spatial degrees of freedom (SDOFs) N . At the conclusion of the
study, we consider the potential application of MVM as a substitute
for M -ary pulse amplitude modulation (M -PAM) or M -SVM in
short-haul optical links and evaluate its benefits and drawbacks.

Index Terms—Data center interconnects, polarization shift
keying (PolSK), Stokes vector modulation (SVM), direct
detection (DD), short-haul optical communications, space division
multiplexing (SDM).

I. INTRODUCTION

S
PECTRALLY-EFFICIENT modulation formats for high-

capacity, short-haul optical communications systems [1],

[2], in conjunction with advanced direct-detection receivers,

have become one of the most active research areas in contem-

porary optical communications.

Low cost, low energy consumption, and high spectral ef-

ficiency are desirable features for short-haul applications [3].

To satisfy these requirements, commercially-available 400G-

Ethernet optical interconnects for various distances currently

use several parallel fiber lanes (or separate wavelengths), each

carrying either binary intensity modulation (IM) or quaternary

Manuscript received 23 March 2023; revised 31 August 2023; accepted
30 September 2023. Date of publication 17 November 2023; date of current
version 18 March 2024. This work was supported in part by the National
Science Foundation under Grant 1911183 and in part by the Air Force Research
Laboratory under Grant FA8750-20-1-1004 PCSN T04257. (Corresponding

author: Ioannis Roudas.)

Jaroslaw Kwapisz and Eric Fink are with the Department of Mathe-
matical Sciences, Montana State University, Bozeman, MT 59717 USA
(e-mail: jkwapisz@montana.edu; eric.fink@montana.edu).

Ioannis Roudas is with the Department of Electrical and Com-
puter Engineering, Montana State University, Bozeman, MT 59717 USA
(e-mail: ioannis.roudas@montana.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JLT.2023.3333801.

Digital Object Identifier 10.1109/JLT.2023.3333801

pulse amplitude modulation (4-PAM), and direct-detection (DD)

receivers [4], [5], [6], [7].

Given the forecasted exponential increase in data traffic in

the near future due to broadband applications [8], to accom-

modate traffic demands, it will be important to keep increasing

the spectral efficiency per fiber lane or per wavelength channel

of short-haul optical links in an energy-efficient manner. The

main disadvantage of M -PAM is that, at the amplified spon-

taneous emission (ASE) noise limit, its energy consumption

scales quadratically with the number of amplitude levels M [9]

since the M -PAM constellation is one-dimensional. Therefore,

it would be beneficial to adopt advanced multi-dimensional

modulation formats, which are preferably still amenable to direct

detection but offer a better spectral efficiency-energy efficiency

trade-off compared to M -PAM.

Looking forward, we anticipate that it will be necessary to

modulate additional attributes of the optical wave other than

the amplitude, e.g., the phase or the polarization, in order to

increase spectral efficiency beyond today’s values while keeping

energy consumption at acceptable levels. Consequently, it will

be necessary to recover the information imprinted in the electric

field of the optical wave using either direct-detection-based

interferometry [10], direct-detection-based polarimetry [11],

self-homodyning [2], [12], [13], [14], [15], or low-cost co-

herent detection [16], [17], [18], [19], [20], [21]. In this pa-

per, we focus our attention exclusively on digital polarization

modulation formats in conjunction with direct-detection-based

polarimetry.

Polarization shift keying (PolSK) was first studied in the late

1980s [22], [23] and early 1990s [24], [25], [26] before later

falling into obscurity. It was recently revived as a subset of

Stokes vector modulation (SVM) [27], [28], [29], [30], [31],

[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],

[44], [45], [46], [47] when research in direct-detection systems

was rekindled. This renewed interest in digital polarization

modulation formats has been fueled by the maturity and low cost

of integrated photonic components and the possibility of using

adaptive electronic equalizers in the direct-detection optical

receivers to compensate for polarization rotations introduced

by short optical fibers1.

SVM allows for more power-efficient signaling than M -

PAM. This is achieved by spreading the constellation points

1Other applications of the Stokes space formalism were also proposed in
combination with various modulation formats [48], [49], [50], [51], [52], [53],
[54], as well as in combination with digital signal processing (DSP) [55], [56],
[57], [58], [59].
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Fig. 1. Hierarchical organization of the paper (Abbreviations: MVM=Mode vector modulation, Tx=transmitter, Rx=receiver, UB=Union Bound, BER=bit
error rate, SER=symbol error rate, MAP= maximum a posteriori, ML=maximum likelihood, MZM=Mach-Zehnder modulator, B2S mapping=bit-to-symbol
mapping).

in the three-dimensional Stokes space, as opposed to the one-

dimensional M -PAM signal space.

To further increase the energy-efficiency of SVM formats, a

transition to a higher-dimensional Stokes space is necessary,

which can be achieved by using SVM together with few-

mode fibers (FMFs) and multicore fibers (MCFs) or free-space

modes [53]. We call this novel, multi-dimensional version of

SVM mode vector modulation (MVM).

SVM and MVM are spatial modulation formats [60]. It is

worth mentioning here that several papers studied spatial mod-

ulation formats for coherent optical communication systems

over MCFs. For instance, Eriksson et al. [61] analyzed multidi-

mensional position modulation (MDPM) with multiple pulses

per frame (K-over-L-MDPM) in combination with quadrature

phase shift keying (QPSK), polarization-multiplexed QPSK

(PM-QPSK) and polarization-switched QPSK (PS-QPSK) to

increase both the spectral efficiency and the asymptotic en-

ergy efficiency compared to conventional modulation formats.

In companion papers, Puttnam et al. [62], [63], [64] re-

viewed spatial modulation formats for high-capacity coherent

or self-homodyne optical systems using homogeneous multicore

fibers.

In this article, we study, for the first time, short-haul optical

interconnects using MVM along with optically-preamplified

direct-detection receivers. A visual abstract of the paper is given

in Fig. 1. In the remainder of the paper, we elaborate on the

following topics:

1) An overview of MVM along with the necessary mathe-

matical formalism, notation, and simplifying assumptions

(Section II);

2) The optimal MVM transceiver architecture (Section III);

3) The performance limits of MVM optically-preamplified

direct-detection receivers using both Monte Carlo simula-

tion and a new analytical formula that we derived for the

union bound (Section IV);

4) The design of geometrically-shaped constellations with

arbitrary cardinality M , obtained by numerical optimiza-

tion of various objective functions using the method of

gradient descent (Section V);

5) The bit-to-symbol mapping optimization using simulated

annealing (Section VI);

6) The investigation of various constellation designs and bit

encodings using analytical and numerical methods (Sec-

tion VII);

7) The use of simplex MVM constellations based on symmet-

ric, informationally complete, positive operator-valued

measure (SIC-POVM) vectors [65] (Section VII);

8) A comparative analysis of MVM DD against alterna-

tive modulation formats used in short-haul optical links

(Section VIII).

Early results on the above topics were presented in [66], [67],

[68], [69], [70], [71].

II. MODE VECTOR MODULATION OVERVIEW

A. MVM Signal Representation

As mentioned before, MVM can be used together with mul-

timode and multicore fibers, as well as for free-space transmis-

sion. In this section, for the description of the operation of the

MVM transceiver, without loss of generality, we examine the

special case of MVM transmission over an ideal homogeneous

multicore fiber with identical single-mode cores and negligible

differential group delay among cores.

We assume that we select a subset of K single-mode cores

of the multicore fiber (Fig. 2). MVM consists in sending optical

pulses over all these cores simultaneously with the same shape

but different amplitudes and initial phases (Fig. 3). Similar to

SVM over single-mode fibers (SMFs), wherein the optical wave

can be analyzed in two orthogonal states of polarization, e.g., x
and y, the composite optical wave of MVM over a homogeneous

single-mode-core multicore fiber can be described by N = 2K
orthogonal states of polarization, e.g., x and y in each core.

The mathematical representation of the MVM signals at the

fiber input is written as

Em(t) = Am exp (ιφm) g(t)|sm〉, (1)

where m = 1, . . . ,M , Am and φm denote the common ampli-

tude and phase, respectively, g(t) is a real function describing
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Fig. 2. MVM over homogeneous MCFs with single-mode cores.

Fig. 3. (a) Intensity plot and (b) Polarization ellipses of an MVM signal
propagating over an ideal homogeneous two-core MCF with identical uncoupled
single-mode cores.

the pulse shape, and |sm〉 is a generalized unit Jones vector col-

lecting the complex excitations of the cores, i.e., the amplitudes

and phases of electric fields of the optical waves [72], [73], [74].

The signal energy Es is given by [9]

Es :=
1

2

∫ ∞

−∞
Em(t)†Em(t)dt =

A2
m

2

∫ ∞

−∞
g(t)2dt =

A2
m

2
Eg,
(2)

where † denotes the adjoint (i.e., conjugate transpose) of a matrix

and Eg denotes the pulse energy defined as

Eg :=

∫ ∞

−∞
g(t)2dt. (3)

In the remainder of the article, without loss of generality, we

consider that the common amplitude Am and phase φm in (1)

are constant. In other words, we focus exclusively on a special

case of MVM that is a generalization of PolSK to higher dimen-

sions.

In PolSK MVM, we modulate all available spatial degrees of

freedom (SDOFs) to transmit an MVM symbol. In the SVM

literature, however, alternative modulation and demodulation

strategies have been proposed, which could be applied to MVM

as well. For instance, it is possible to transmit an unmodulated

carrier on one of the SDOFs [29], [30], [31], [53] and use this

carrier to perform self-homodyning of the remaining SDOFs.

This technique takes advantage of a fraction (N − 1)/N of

the available capacity. However, for large N , the capacity loss

is immaterial. Furthermore, on the upside, this self-homodyne

technique enables the use of more spectrally-efficient modula-

tion formats, such as 16-QAM, and it is amenable to electronic

chromatic dispersion compensation. The merits of such alterna-

tive MVM schemes vis-à-vis the PolSK MVM examined here

are outside of the scope of this article and will be part of future

research.

B. Mathematical Notation

Throughout the paper, we follow the conventions of [73], [74],

[75], where Dirac’s ket vectors represent both unit and non-unit

vectors in the generalized Jones space, while hats indicate unit

vectors and arrows indicate non-unit vectors in the generalized

Stokes space.

We can parameterize a unit Jones vector |s〉, up to phase, using

2N − 2 hyperspherical coordinates [74], i.e.,

|s〉 :=
[
cosφ1, sinφ1 cosφ2 e

ιθ1 , sinφ1 sinφ2 cosφ3 e
ιθ2 , . . . ,

sinφ1 · · · cosφN−1 e
ιθN−2 , sinφ1 · · · sinφN−1 e

ιθN−1

]T
,

(4)

where the superscript T indicates transposition.

Unit Jones vectors up to phase are often represented by

generalized real unit Stokes vectors ŝ in a higher-dimensional

real vector space R
N2−1. Generalized unit Stokes vectors are

defined by the quadratic form [74]

ŝ := CN 〈s|Λ|s〉, (5)

where Λ denotes the generalized Gell-Mann matrix vector and

CN denotes the normalization coefficient [74],

CN :=

√

N

2 (N − 1)
. (6)

From the generalized Stokes vector definition (5), we notice

that the dimensionality of the generalized Stokes space grows

quadratically with the number of spatial and polarization modes

N in MMFs/MCFs. Therefore, instead of using SVM DD in

conjunction with the conventional 3D Stokes space, we can

generate more energy-efficient constellations by spreading the

constellation points in the generalized Stokes space.

Also notice that the N2 − 1 components of ŝ are functions

of the 2N − 2 hyperspherical coordinates of |s〉 in (4) and,

therefore, are interdependent.

For each unit Jones vector |s〉, we can define the associated

projection operator S := |s〉〈s|, which represents a mode filter,

i.e., the equivalent of a polarizer in the two-dimensional case.

This projection operator can be expressed in terms of the identity

matrix and the generalized Gell-Mann matrices [74]

S =
1

N
IN +

1

2CN
ŝ ·Λ. (7)

By rearranging the terms in (7), we obtain

ŝ ·Λ = 2CN

(

S− 1

N
IN

)

. (8)

From (8), we see that Stokes vectors arise as coefficients with

respect to a fixed Gell-Mann basis for the trace-neutralized dyad

S− 1
N IN , assuming 〈s|s〉 = 1.
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Fig. 4. Schematic of the proposed (a) MVM transmitter and (b) Optically-preamplified MVM DD receiver for an ideal homogeneous two-core MCF with identical
uncoupled single-mode cores. Symbols: LD=laser diode, MZM=Mach-Zehnder modulator, OA=optical amplifier and matched optical filter, PCTR=polarization
controller, PBC/S=polarization beam combiner/splitter, 90°=90°-optical hybrid, ADC=Analog-to-digital converter. (Condition: N = 4.)

In the remainder of the article, we will use the Jones vector

up to phase eιθ|s〉, the dyad S = |s〉〈s|, and the Stokes vector

ŝ interchangeably, depending on which one is more convenient.

In particular, even when we use Jones vectors to represent points

in a constellation, since we consider noncoherent detection, we

refer to it as a generalized Stokes constellation.

C. Simplifying Assumptions

In Section IV, we will analytically calculate the back-to-back

performance of M -ary MVM over N spatial and polarization

degrees of freedom in the ASE noise-limited regime. For math-

ematical tractability, we neglect all transmission impairments

other than ASE noise and random carrier phase shifts, as well as

transceiver imperfections and implementation penalties. These

simplifying assumptions are justified in the sense that we want

to quantify the ultimate potential of MVM for use in optical

interconnects.

Nevertheless, it is worth discussing upfront about the antici-

pated impact of the most prominent transmission effects.

In general, the extension of SVM to MVM requires similar

conditions for transmission, i.e., negligible chromatic disper-

sion (CD), modal dispersion (MD), and mode-dependent loss

(MDL), or their full compensation, either in the optical or the

electronic domain, before making decisions on the received

symbols at the receiver. Let us briefly contemplate how fea-

sible it would be to satisfy these requirements in the case

of practical homogeneous multicore fibers with single-mode

cores.

As a starting point, consider transmission over homogeneous

MCFs with uncoupled or weekly-coupled single-mode cores.

These fibers typically exhibit static and dynamic intercore

skew [62]. The static differential mode group delay (DMGD)

spread is on the order of 0.5 ns/km and grows linearly with the

transmission distance. The DMGD spread due to the dynamic

component of the intercore skew is of the order of 0.5 ps/km and

also grows linearly with the transmission distance.

On the other hand, coupled-core MCFs exhibit modal dis-

persion and strong coupling among their supermodes and the

DMGD grows with the square root of the transmission dis-

tance [76], [77]. From published values based on the characteri-

zation of several coupled-core MCFs used in MDM experiments,

we conclude that the MD coefficient is currently on the order of

3-6 ps/
√

km. These values are much higher than typical polariza-

tion mode dispersion (PMD) coefficient values for single-mode

fibers (SMFs), e.g., from the data sheet of Corning SMF-28

Ultra optical fiber [78], we notice that the PMD coefficient is

less than 0.1 ps/
√

km.

Transmission impairments can be compensated using a com-

bination of optical and electronic techniques at the transmitter

and the receiver. These techniques are out of the scope of this

article, since we are interested in the back-to-back performance

of MVM systems, and will be part of future work. For simplicity,

in the depiction of the optically-preamplified MVM DD receiver

in Fig. 4(b), we assume ideal optical post-compensation of all

transmission impairments.

III. TRANSCEIVER DESIGN

In Fig. 4(a), we draw the block diagram of an MVM transmit-

ter for an ideal homogeneous multicore fiber with two iden-

tical single-mode cores (N = 4). The schematic shows the

optical components required for a single wavelength but the

architecture can be easily generalized for wavelength division

multiplexing (WDM). Our goal is to generate the N spatial

and polarization components of the MVM signal as described

by (1).

The transmitter design begins with a single semiconductor

laser diode. Subsequently, a Mach-Zehnder modulator, followed

by a phase modulator, can be employed to alter the pulse shape

g(t), as well as the common amplitude Am and phase φm

of the MVM signal according to (1). After that, electro-optic

splitters can be used to partition the signal into N parallel

branches. By adjusting the control voltage of each Y-junction,

an arbitrary power splitting ratio between its two output ports

can be achieved. Recalling the hyper-spherical parametrization

of the unit Jones vector |sm〉 in (4), the power splitting ratio is

cos2(φ1) : sin
2(φ1) at the first Y-junction, cos2(φ2) : sin

2(φ2)
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Fig. 5. Least mean squares (LMS) algorithm for polarization tracking [29].

at the second Y-junction, and so forth2. Then, an array of phase

modulators is used to generate phase differences among vector

components. Finally, polarization controllers and polarization

beam combiners are used to merge pairs of signals originating

from different optical paths to create orthogonal states of polar-

ization (SOPs) that are launched into separate fiber cores.

The purpose of the optical front-end and the DSP unit of

the MVM receiver is to infer the Stokes components of the

incoming spatial superchannel, which are given by (5), from a

set of power measurements. To begin, it is necessary to separate

the spatial and polarization components of the individual trib-

utaries of the spatial superchannel using mode demultiplexers

and polarization beam splitters. Then, an array ofN photodiodes

are used to measure their powers. In addition, polarization

controllers and power splitters/couplers are used to combine

the different spatial and polarization components pairwise in

order to create N(N − 1)/2 distinct combinations. The real

and imaginary parts of the latter are measured using an array

of 2N(N − 1) identical photodiodes grouped in pairs. In total,

2N2 −N photodiodes are employed to measure all the elements

of the dyad S = |s〉〈s| independently [69].

However, by taking advantage of the interdependence of

Stokes components, as they are functions of the 2N − 2 hyper-

spherical coordinates of |s〉, it is possible to reduce the direct-

detection receiver front-end complexity. In [69], we showed that

O(N) photodiodes are sufficient to estimate the Stokes param-

eters of the spatial superchannel. Fig. 4(b) shows an example of

a reduced-complexity direct-detection receiver for N = 4.

For the purposes of this article, we assume that the simplifying

assumptions of Section II-C hold, i.e., the optically-equalized

communication channel exhibits negligible CD, MD, and MDL

so that the residual transmission effects (random modal bire-

fringence and random differential carrier phase shifts) can be

modeled by a frequency-independent random unitary matrix.

The action of this transfer matrix is a dynamic rotation of the

received mode vector that varies slowly over time.

Stokes receiver DSP (Fig. 5) [29] can estimate Stokes vector

rotations caused by fiber propagation and can counteract them

by multiplying, in Stokes space, the received generalized Stokes

vector �r(n) at the n−th time instant with a compensating gen-

eralized (N2 − 1)× (N2 − 1) Müller matrix M(n). Alterna-

tively, it is possible to perform optical derotation and MD/PMD

2An alternative design, similar to the one proposed by Kikuchi and Kawakami
for SVM [79], would entail the use of a passive 1:N splitter, followed by an
array of N parallel quadrature modulators, one at each individual transmitter
branch.

compensation of the received generalized Jones vector, which is

driven by the Stokes vector receiver DSP.

Notice that the proper operation of MVM DD system does not

require the absence of intermodal crosstalk. Intermodal crosstalk

by itself can be mathematically represented as a generalized

polarization rotation. The memoryless MIMO DSP equalizer

in the MVM DD receiver can fully invert the channel transfer

matrix in the generalized Stokes space and counteract intermodal

crosstalk. In principle, there is virtually no signal-to-noise ratio

penalty due to intermodal crosstalk.

The decisions of the Stokes vector receiver in Fig. 4(b) are

based on the maximum a posteriori (MAP) criterion [9], which

is equivalent to the maximum-likelihood criterion for equiprob-

able signals [9] (see Section IV-B). Applying the maximum-

likelihood criterion in the generalized Jones space, we will show

that the optimum decision maximizes the modulus of the inner

product of Jones vectors (cf. (24)).

IV. SYMBOL ERROR PROBABILITY

In this Section, we describe the derivation of an upper bound

for the back-to-back symbol error probability of the optically-

preamplified MVM DD receiver based on the union bound

formalism [9].

A. Transmission Channel Model

We formulate the transmission channel by a discrete-time

model [80]. All optical and electronic signals from now on are

represented by their samples taken once per symbol.

After optical post-compensation, we assume that all trans-

mission impairments are fully compensated. For instance, let U

denote the unitary Jones transfer matrix of the optical fiber due

to modal birefringence. We assume that the unitary fiber transfer

matrix U is fully compensated, up to a random phase θ, by a

zero-forcing optical adaptive equalizer with transfer matrix W

so that

WU = eιθIN , (9)

where IN denotes the N ×N identity Jones matrix.

After the optical front-end, at a given sampling instant, in the

absence of noise, the incoherent receiver recovers the transmitted

Jones vector |sm〉 up to phase θ, which one could denote by

eιθ|sm〉.
Optical amplifiers introduce ASE noise, which is modelled

as additive white Gaussian noise (AWGN). As a result, the

received vector at a given sampling instant before photodetection

equals [80]

|r〉 = Ameιφmeιθ|sm〉+ |n〉, (10)

where θ is uniformly distributed over [0, 2π) and |n〉 is a noise

vector in Jones space. Notice that |r〉 and |n〉 are non-normalized

Jones vectors, whereas |sm〉 is a unit Jones vector.

Assuming identical optical amplifiers at the output of all cores,

|n〉 has independent and identically distributed (i.i.d.) entries fol-

lowing a complex Gaussian distribution. The probability density
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function (pdf) of |n〉 is

P (|n〉) = 1

(2πσ2)N
exp

(

−〈n|n〉
2σ2

)

, (11)

where σ2 denotes the noise variance per quadrature after the

matched optical filter.

The noise energy in each spatial degree of freedom is

N0 =
1

2

∫ ∞

−∞
nν(t)

†
nν(t)dt = σ2, (12)

where nν(t) is the complex noise component in a single quadra-

ture plane of the electric field (given by any |ν〉 ∈ C
N ).

The symbol SNR γs, taking into account the noise over a

spatial degree of freedom of the signal |sm〉, is defined as

γs :=
Es
N0

=
A2

m

2σ2
Eg. (13)

In the following, without any loss of generality, we assume that

Am = 1 and Eg = 1, so

γs =
1

2σ2
. (14)

The received dyad R = |r〉〈r| is related to the transmitted

dyad Sm = |sm〉〈sm| by the Stokes channel formula:

|r〉〈r|
︸ ︷︷ ︸

R

= |sm〉〈sm|
︸ ︷︷ ︸

Sm

+ 2� (|sm〉〈n|) + |n〉〈n|
︸ ︷︷ ︸

Nm

, (15)

where �(.) denotes the real part. Observe that, in this for-

mulation, the last two terms form a non-Gaussian noise Nm

exhibiting signal-noise and noise-noise beating

Nm := 2� (|sm〉〈n|) + |n〉〈n|. (16)

As we indicated before, Jones vectors up to phase can be de-

scribed by their dyads or their generalized real Stokes vectors in

a higher-dimensional real vector spaceRN2−1. Thus, the channel

formula (15) could be expressed in three equivalent forms.

In translating to the generalized Stokes space, one has to

keep in mind that the received Jones vector |r〉 is typically

a non-unit vector (up to phase) and its dyad is expanded in

the Gell-Mann basis as R = 〈r|r〉
N IN + 1

2CN
�r ·Λ (cf. (7)) so

that the generalized Stokes vector �r ∈ R
N2−1 has squared norm

‖�r‖2 = 〈r|r〉2 = tr(R2). The noise Nm, which is a Hermitian

matrix, could be Gell-Mann expanded in a similar way.

B. Optimum Decision Criterion for Equipower Signals

The decision scheme at the receiver uses the maximum a

posteriori probability (MAP) criterion [9] to select a signal ŝm̂
out of the set of M transmitted signals given that �r was received

m̂ := argmax
1≤m≤M

P(ŝm | �r). (17)

From Bayes’ theorem, the conditional probability distribution

of ŝm given �r is

P(ŝm | �r) = PmP(�r | ŝm)

P(�r)
, (18)

where Pm is the probability of sending ŝm, P(�r) is the marginal

pdf of receiving�r, andP(�r | ŝm) is the likelihood pdf of receiving

�r given that ŝm was sent.

By substituting (18) into (17) and omitting the common

denominator P(�r) (which does not influence the decision), we

obtain

m̂ = argmax
1≤m≤M

PmP(�r | ŝm). (19)

In this article, we focus exclusively on equiprobable symbols,

and, therefore, Pm = 1/M. In this case, the maximum a poste-

riori probability (MAP) criterion of (19) becomes equivalent to

the maximum-likelihood (ML) criterion [9]

m̂ = argmax
1≤m≤M

P(�r | ŝm). (20)

The likelihood pdf in (20) is obtained by considering the Jones

vectors corresponding to �r and ŝm, noting that |r〉 − eιθ|sm〉 =
|n〉 by (10), and averaging the pdf (11) over all θ [9]:

P(�r | ŝm)

=
1

(2πσ2)N

∫ 2π

0

exp

(

−‖|r〉 − eιθ|sm〉‖2
2σ2

)
dθ

2π

=
1

(2πσ2)N
exp

(

−〈r|r〉 − 〈sm|sm〉
2σ2

)

I0

( |〈r|sm〉|
σ2

)

,

(21)

where we used the modified Bessel function of the first kind of

zero order

I0(x) :=
1

π

∫ π

0

exp (x cos θ) dθ. (22)

Equality (21) is obtained by expanding in the exponent (cf. (15)):

‖|r〉 − eιθ|sm〉‖2

= 〈r|r〉+ 〈sm|sm〉 − 2�
(

eι(θ−θm)|〈r|sm〉|
)

︸ ︷︷ ︸

2 cos(θ−θm)|〈r|sm〉|

, (23)

where θm denotes the argument of 〈r|sm〉 (which is immaterial).

Based on (21), we can rewrite the maximum likelihood (ML)

criterion (20) as [81]

m̂ = argmax
1≤m≤M

|〈r|sm〉|, (24)

where we used the monotonicity of I0(x) and the fact that

〈sm|sm〉 = 1.

In particular, in the Jones space, the ML decision regionDm ⊂
C

N for |sm〉 is

Dm = {|r〉 : |〈r|sm〉| ≥ |〈r|sm′〉| for allm′ 
= m} . (25)

In passing, note that Dm viewed in the Stokes space is the

Voronoi cell around ŝm, and this is so irrespective of which

applicable concept of distance, dic or dStokes, is used (cf. Sec-

tion IV-D).

The symbol error probability is the expected probability of

missing the right ML decision region, expressed by the following

sum of integrals with respect to the 2N -dimensional volume in
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C
N :

Pe|s =
M∑

m=1

Pm

∑

m′ 
=m

∫

Dm′
P(�r | ŝm) d|r〉. (26)

In principle,Pe|s can be computed based on the channel model,

but its analytic evaluation is impossible for all but the simplest

constellations due to the complex geometry of the ML decision

regions Dm. Therefore, readily computable analytic bounds on

Pe|s are of value.

C. Union Bound

The general form of the union bound is [9]

Pe|s ≤
M∑

m=1

Pm

∑

m′ 
=m

P
m′|m
e,bin , (27)

where P
m′|m
e,bin is the pairwise error probability of deciding on

|sm′〉 when |sm〉 was sent in a binary fashion, while no other

symbols are considered. Therefore,

P
m′|m
e,bin =

∫

Dm′ |m
P(�r | ŝm) d|r〉. (28)

Above, the pairwise error decision region Dm′|m is where

Pm′P(�r|ŝm′) ≥ PmP(�r|ŝm), i.e., for equiprobable symbols,

Dm′|m =
{
|r〉 ∈ C

N : |〈r|sm′〉| ≥ |〈r|sm〉|
}
. (29)

Inequality (27) follows from the manifest inclusion Dm′ ⊂
Dm′|m.

Our main result gives an explicit form for the terms in the

union bound.

Theorem 1: The pairwise error probability between two

equiprobable non-orthogonal unit vectors |sm〉, |sm′〉 ∈ C
N

is

P
m′|m
e,bin = Q1 (

√
γsρ−,

√
γsρ+)

− 1

2
exp

(

−γs
2

)

I0

(γsγ

2

)

, (30)

where we defined the length parameters

ρ2∓ :=
1∓ δ

2
, (31a)

δ :=
√

1− γ2, (31b)

γ := |〈sm|sm′〉| > 0, (31c)

and Q1 stands for the Marcum Q-function of the first order

defined by [9]

Q1(a, b) :=

∫ ∞

b

x exp

(

−x2 + a2

2

)

I0(ax) dx. (32)

The formulas extend to the case of orthogonal signals, when

γ = 0 and one can fall back onto Q1(0, b) = exp
(

− b
2

2

)

. To

improve readability, we leave the proof of Theorem 1 to Ap-

pendix A. For ease of reference, we instantiate (27) with (30)

and record the following corollary.

Corollary 1: Given an MVM signal constellation repre-

sented by equiprobable unit Jones vectors (|sm〉)Mm=1 ∈ C
N

the symbol error probability Pe|s is bounded by

Pe|s ≤
1

M

M∑

m=1

∑

m′ 
=m

[

Q1 (
√
γsρ−,

√
γsρ+)

−1

2
exp

(

−γs
2

)

I0

(γsγ

2

)]

. (33)

Below, we present asymptotic expressions that are valid for

larger values of the symbol SNR γs and are obtained by imple-

menting the results reported in [82] (proven in [83] and based

on [84], [85]). The derivation of these formulas is given in

Appendix B.

Corollary 2: For large values of the symbol SNR γs, when

γsρ+ρ− = γsγ/2 is sufficiently large, we can use asymptotic

expansions for P
m′|m
e,bin , and the zeroth and first order approx-

imations are as follows:

P
m′|m
e,bin ∼ 1

2

√
γ

1− δ
erfc

(√
γs
√
1− γ√
2

)

− 1

2
√
πγγs

exp

[

−γs(1− γ)

2

]

(34)

and

P
m′|m
e,bin

∼
[
1

2

√
γ

1− δ
−
√

1− γ

γ

1

8
√
2

(
1 + δ

γ
+ 3

)]

× erfc

(√
γs
√
1− γ√
2

)

+
1

8
√
π

[
√
2

√

1− γ

1− δ
(γγs)

− 1

2 − (γγs)
− 3

2

]

× exp

[

−γs(1− γ)

2

]

. (35)

We note that the particular appeal of the asymptotic expres-

sions in the corollary above is their ability to handle poorly

separated vectors (with γ ≈ 1). Pairs of vectors with small

separation contribute the bulk of the Pe|s. Moreover, MVM

constellations with a given spectral efficiency per SDOF (e.g.,

analogous to QPSK) have diminishing minimal distance with

the increase of the number of cores/modes.

When γ is not too close to 1 and the symbol SNR is large, we

have a simpler asymptotic expression (with a straightforward
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derivation given in Appendix B):

P
m′|m
e,bin ∼ 1

2

1√
π

√
1 + γ

1− γ

1√
γ
√
γs

exp

[

−γs(1− γ)

2

]

. (36)

In any case, the leading exponential asymptotics is

exp

[

−γs(1− γ)

2

]

= exp

[

−1

2
γs

dic(ŝm, ŝm′)2

2

]

, (37)

where dic(ŝm, ŝm′) is the incoherent distance between ŝm and

ŝm′ (as defined in Section IV-D, ahead). This indicates that the

distance dic is a natural way of expressing proximity of the

symbols in our context.

We add that, if γ = 0, (34)–(36) are not valid. However, then

P
m′|m
e,bin equals 1

2 exp(−γs/2) and is eclipsed by the terms with

γ > 0 in the sum giving the union bound (27). Even though (34)

and (35) work well even for moderately small values of γ, one

can safely drop the terms with the smaller γ ≈ 0.

Appendices A and B are devoted to the proofs of the Theo-

rem 1 and the Corollary 2, respectively. Section VII shows com-

parisons of the union bound for Pe|s obtained by using the above

theoretical approximations and numerically-computed, Monte

Carlo-based, values of Pe|s for several example constellations.

D. Distance Definitions

For the optimal geometric shaping of an MVM constellation,

which is discussed in Section V, it is necessary to adopt some

function of the distance between constellation points. The choice

of a distance function depends on the detection scheme and the

nature of the dominant channel impairments. For the back-to-

back performance evaluation of optically-preamplified MVM

DD receivers, we consider that ASE noise is the dominant im-

pairment. In this case, for equienergetic MVM constellations, the

suitable metric turns out to be the chordal Fubini-Study distance,

which is a special case of what we call below incoherent/DD

distance. We note that there are several arguments advocating

naturality of this metric. Perhaps the strongest is based on the

way it enters the previously derived asymptotic form of the union

bound (37) for the symbol error probability.

One quick takeaway is that there is a better distance than the

ordinary Euclidean Stokes distance, which is often the default

choice and was also initially used in our computations (see

Section V-B). Below, we define the incoherent/DD distance and

relate it to other common distance functions.

1) Coherent Distance: In Jones space CN , we have the stan-

dard Euclidean distance between MVM symbols, which can be

written as a function of the Hermitian inner product

dc(|s〉, |s′〉) := ‖|s〉 − |s′〉‖

=
√

〈s|s〉 − 2�〈s|s′〉+ 〈s′|s′〉. (38)

For unit vectors, (38) is expressed in terms of the coherent angle

θc ∈ [0, π] as

dc(|s〉, |s′〉
)
=

√
2
√

1− cos θc, (39)

where cos θc := �〈s|s′〉.

We refer to this distance as coherent distance, since the

probability of making a binary error between |s〉 and |s′〉 in

a coherent receiver depends on dc in a natural way.

2) Incoherent Distance: In the case of incoherent detection,

a transmitted MVM symbol is abstractly represented by a Jones

vector up to phase, eιθ|s〉, with indeterminate θ ∈ [0, 2π). Math-

ematically, as long as |s〉 
= 0, this is a circle in Jones space

C
N . From this standpoint, one might guess that the natural

distance between symbols s and s′ is the minimum coherent

Jones distance between the two circles:

dic(|s〉, |s′〉) := min
θ,θ′

‖eιθ|s〉 − eιθ
′ |s′〉‖

=
√

‖s‖2 − 2|〈s|s′〉|+ ‖s′‖2. (40)

When ‖s‖ = ‖s′‖ = 1, we can use the incoherent/DD angle

θic ∈ [0, π/2]:

dic(|s〉, |s′〉) =
√
2
√

1− γ, (41)

where γ := cos θic := |〈s|s′〉|.
In this case, the distance coincides with the chordal Fubini-

Study distance on the complex projective space. In Appendices

A and B, the incoherent cosine γ = cos θic = |〈s|s′〉| of two

normalized symbols under consideration will make frequent

appearance.

Of course, if only from �〈s|s′〉 ≤ |〈s|s′〉|, we have

dic(|s〉, |s′〉) ≤ dc(|s〉, |s′〉) and θic ≤ θc. (42)

The loss of phase information degrades one’s ability to distin-

guish symbols.

3) Hilbert-Schmidt and Stokes Distance: Another way to

represent incoherently-received symbols is with dyads S :=
|s〉〈s|. Their natural ambient linear space is MN×N (C) of all

N ×N complex matrices, which can be used together with the

Hilbert-Schmidt Hermitian inner product tr(A†
B), where the

operator tr( ) denotes the trace of a matrix.

The Hilbert-Schmidt distance on MN×N (C) is defined as

dHS(A,B) := ‖A−B‖HS

=
√

tr(A†A)− 2�tr(A†B) + tr(B†B). (43)

Restricted to dyads, since ‖S‖2HS = 〈s|s〉2 and tr(S†
S
′) =

|〈s|s′〉|2 is already real, we get

dHS(S,S
′) =

√

〈s|s〉2 − 2|〈s|s′〉|2 + 〈s′|s′〉2. (44)

When ‖|s〉‖ = ‖|s′〉‖ = 1, we could speak of Hilbert-Schmidt

angle and

dHS(S,S
′) =

√
2
√

1− γ2, where γ := |〈s|s′〉|. (45)

Traditionally, incoherently-received MVM symbols are rep-

resented by Stokes vectors ŝ ∈ R
N2−1, whose entries are the

coefficients of the expansion of the trace-neutralized dyad S,

e.g., S− 1
N IN (assuming normalization 〈s|s〉 = 1), with re-

spect to the Gell-Mann matrix basis [73]. The Euclidean dis-

tance in Stokes space, called Stokes distance, coincides with the

Hilbert-Schmidt distance up to scaling (having to do with the
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said trace adjustment and the conventions for the Gell-Mann

matrix basis):

dStokes(ŝ, ŝ
′) = 2CN

√

1− γ2. (46)

The Stokes distance is better suited for thermal noise-limited

DD receivers, not for their ASE noise-limited counterparts,

which have been the focus of this work.

V. GEOMETRIC CONSTELLATION SHAPING

A quintessential problem in digital communications systems

is the optimal selection of signal sets to minimize the symbol

error probability under various noise distributions and channel

impairments. The term geometric constellation shaping means

that the positions of constellation points in the signal space are

selected appropriately in order to minimize the error probability.

As a prototypical example, Foschini et al. [86] numerically

optimized the shapes of two-dimensional signal constellations

with arbitrary cardinality in the case of AWGN and coher-

ent detection. Extending this work to optical communications,

Karlsson and Agrell [87] investigated optimized power-efficient

multidimensional modulation formats for coherent optical com-

munications systems. For relatively small dimensions N , they

used sphere-packing algorithms to optimize the constellation

points. For larger dimensions, their design strategy was to select

points from N -dimensional lattices [87].

In the case of SVM (N = 2), geometric constellation shaping

for equipower signal sets (PolSK) was performed numerically,

initially by Betti et al. [22], by maximizing the minimum

Euclidean distance among signals in Stokes space, and then,

by Benedetto and Poggiolini [25], by using the exact symbol

error probability of M -ary PolSK as an objective function. To

derive a formula for the symbol error probability, Benedetto and

Poggiolini calculated the boundaries of the decision regions,

initially considering signal vectors in Stokes space that were

placed at the vertices of a regular polyhedron inscribed within

the Poincaré sphere, and then extending the analysis to generic

equipower constellations with constellation points at the vertices

of irregular polyhedra [25]. Optimum signal constellations for

the case of N = 2 and M = 4, 8, 16 and 32 signals were

derived [25]. Kikuchi [27] used suboptimal 2D quaternary

and cubic octary constellations for implementation simplicity.

Morsy-Osman et al. [40] designed intensity/polarization SVM

constellations based on the face-centered cubic (FCC) lattice to

achieve maximum packing density, assuming a thermal-noise-

limited scenario and using the minimum Euclidean distance

criterion.

Our goal here is to spread out the MVM constellation points

on the surface of the Poincaré sphere in the generalized Stokes

space and, thus, improve the symbol error probability in a DD

based link. Since the adoption of symbol error probability as ob-

jective function leads to a computationally-intensive numerical

optimization, a suitably-selected simplified objective function is

used instead. The gradient-descent method [88] is used for the

minimization of the simplified objective function.

To facilitate calculations, we consider an objective function

from electrostatics [89], wherein the constellation points are

assumed to be identical charges on the surface of a perfectly-

conducting Poincaré hypersphere. Starting from given initial

positions, the charges are allowed to equilibriate under the

action of Coulomb forces. In other words, we recast the

original three-dimensional Thomson problem [89] to higher-

dimensional Stokes space. This adaptation requires constraining

theM constellation points to a (2N − 2)–dimensional manifold

due to the relationships (4), (5) relating the higher-dimensional

Jones and Stokes spaces [72], [73], [74]. The manifold is equiv-

alent to the complex projective space.

It is worth saying a few words here about the extensive litera-

ture on the Thomson problem. Since the original publication of

the problem by J. J. Thomson in 1904, numerous papers were

written on this topic and its variants. Saff and Kuijlaars [90] give

a comprehensive survey of the literature in the two dimensional

case N = 2, with an emphasis on the case when M is large.

Global minima for the Thomson Problem for N = 2 are posted

on the Cambridge website [91].

The function SpherePoints[n] in Wolfram Mathematica [92]

gives the positions of n approximately uniformly distributed

points on the surface of the S2 unit sphere in three dimensions,

with exact values for certain small n and a spiral-based approx-

imation for large n [92].

Closely related to Thomson’s problem is the Tammes prob-

lem whose goal is to find the arrangement of M points on a

unit sphere which maximizes the minimum Euclidean distance

between any two points. Jasper et al. [93] studied the Tammes

problem in the complex projective space and maintain a website

listing the current best-known numerical approximations [94].

A. Gradient Computation

Consider a perfectly-conducting Poincaré hypersphere with

identical charges at the positions of the constellation points,

which are constrained to the complex projective space manifold.

As charges repel each other with Coulomb forces, they move

within the manifold until they reach an equilibrium distribution

with minimum potential energy.

The electrostatic potential energy Ω(dij) of two charges i, j
separated by a distance dij is inversely proportional to their

distance: Ω(dij) ∼ d−1
ij . The total electrostatic potential energy

U of a system of M charges can be obtained by calculating the

potential energy Ω(dij) for each individual pair of charges i, j
and adding the potential energies for all distinct combinations

of charge pairs

U =

M∑

i=1

M∑

j=i+1

Ω(dij). (47)

The distancesdij can be calculated in terms of the correspond-

ing unit Jones vectors |si〉 ∈ C
N , i = 1, . . . ,M , as follows:

dij = ψ
(
|〈si|sj〉|2

)
= ψ

(
γ2
)
. (48)

We leave the function ψ unspecified for now to allow use of

various distances between vectors (cf. Section IV-D).
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To compute the gradient, we first assume that the Jones vectors

depend on a certain parameter t and compute

∂U

∂t
=
∑

i<j

Ω′(dij)
∂dij
∂t

=
∑

i<j

Ω′(dij)ψ
′ (|〈si|sj〉|2

) ∂|〈si|sj〉|2
∂t

=
∑

i<j

Ω′(dij)ψ
′ (|〈si|sj〉|2

)

· 2�
(

〈sj |si〉
〈
∂si
∂t

∣
∣
∣
∣
sj

〉

+ 〈si|sj〉
〈
∂sj
∂t

∣
∣
∣
∣
si

〉)

,

(49)

where primes denote derivatives and we used multilinearity to

evaluate
∂|〈si|sj〉|2

∂t .

Taking t to be the real and imaginary parts of sim = xim +
ιyim, the components of the gradient of U are found as

∂U

∂xim
=
∑

j: j 
=i

Ω′(dij)ψ
′ (|〈si|sj〉|2

)
2� (〈sj |si〉sjm) (50)

and

∂U

∂yim
=
∑

j: j 
=i

Ω′(dij)ψ
′ (|〈si|sj〉|2

)
2� (〈sj |si〉sjm) , (51)

where �(.) denotes the imaginary part. To state the end result,

the gradient3 ∇U is the vector of real and imaginary parts of the

(complex) vector
(

∂U
∂sim

)

∈ C
M×N given by

∂U

∂sim
= 2

∑

j: j 
=i

Ω′(dij)ψ
′ (|〈si|sj〉|2

)
〈sj |si〉sjm. (52)

B. Example: Coulomb Potential

In the following, we adapt the three-dimensional Thomson

problem [89] to the generalized Stokes space. It is true that

the use of the electrostatic potential energy as an objective

function in lieu of the symbol error probability is not justi-

fied by the underlying physics of the problem under study.

Nevertheless, as shown in Fig. 15, the minimization of the

electrostatic potential yields nearly optimal results that are very

close to the ones obtained by minimizing the symbol error

probability.

For the Thomson problem, we use the Euclidean distance

dStokes in the Stokes space, per (46), so that (48) is written as

ψ(t) := 2CN

√
1− t, (53)

where now t = γ2.

From ψ(t)2 = −4C2
N t+ Const, we get ψ′(t) =

−2C2
Nψ(t)−1, so

∂U

∂sim
= − 4C2

N

∑

j: j 
=i

Ω′(dij)ψ
(
|〈si|sj〉|2

)−1 〈sj |si〉sjm

3N.B.: This is not a complex derivative as U is not necessarily analytic.

= − 4C2
N

∑

j: j 
=i

Ω′(dij)d
−1
ij 〈sj |si〉sjm. (54)

Furthermore, for the case of electrostatic Coulomb forces acting

in the Stokes space, we have the inverse distance potential

Ω(dij) = d−1
ij , Ω′(dij) = −d−2

ij . (55)

Thus, instantiating (52) yields

∂U

∂sim
= 4C2

N

∑

j: j 
=i

d−3
ij 〈sj |si〉sjm. (56)

C. Numerical Details

We developed an efficient, partially-compiled Mathematica

code implementing the gradient-descent optimization algorithm

for arbitrary potential energies. This implementation is ade-

quately fast on a personal computer to enable design of MVM

constellations with up to M = 1024 points for up to N = 8
spatial degrees of freedom (SDOFs) (see Fig. 18).

The gradient-descent optimization algorithm starts with ei-

ther a randomly-generated constellation or a small random

perturbation of a deterministic constellation. To give an exam-

ple, consider the following deterministic constellation of Jones

vectors: their first component is set equal to unity, while their

remaining N − 1 components take all possible combinations

of values in {±1,±ι}. Finally, the Jones vector length is nor-

malized to unity. This process yields an MVM constellation with

M = 4N−1 vectors. We call it the standard constellation. Math-

ematically, it represents the orbits of the vertices of a hypercube

in C
N under the circle action by the phase rotation. For this

reason, its more descriptive name could be standard reduced

hypercube constellation or standard reduced Jones hypercube

constellation.

VI. BIT-TO-SYMBOL MAPPING

Once we have geometrically optimized a constellation

(|sm〉)Mm=1 to reduce the symbol errors, we seek to minimize bit

errors by optimizing the bit-to-symbol mapping. In commonly-

used modulation formats, such as M -PAM, M -PSK, M -QAM

on a square lattice, and their generalization to cubic lattices

of any dimension, this task is achieved via Gray coding [95].

Unfortunately, in general, no such labeling readily exists for the

MVM format.

Given a bit encoding (bm)Mm=1, where the length of each bit

block bm is k = log2(M), we use the union bound (27) to find

that the average bit error probability Pe|b (at a symbol SNR γs)

is bounded by

Pe|b ≤
1

kM

M∑

m=1

∑

m′ 
=m

P
m′|m
e,bin hmm′ , (57)

where hmm′ denotes the Hamming distance between bm and

bm′ . This is based on the observation that the expected number

of bit errors corresponding to mistakenly receiving |sm′〉 when

|sm〉was transmitted isP
m′|m
e,bin hmm′ . We use the right side of (57)
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as an objective function ξ for evaluating various bit encodings:

ξ = ξ
(
(|sm〉)Mm=1, (bm)Mm=1, σ

2
)

=
1

kM

M∑

m=1

∑

m′ 
=m

P
m′|m
e,bin hmm′ . (58)

Finding a bit encoding (bm)Mm=1 that minimizes ξ at a symbol

SNR γs serves as a proxy for minimizing bit errors for a

given constellation and, thus, finding the optimal bit-to-symbol

mapping. WithM !possible encodings, the sheer number of com-

binations prohibits brute-force solutions for all but the smallest

constellations. This optimization problem can be viewed as a

type of Quadratic Assignment Problem [96], i.e., the optimal

assignment of {1, 2, . . . ,M} (in binary) to (|sm〉)Mm=1 with pair-

wise distances given by 1
kM P

m′|m
e,bin and pairwise weights given

by Hamming distances hmm′ . Quadratic Assignment Problems

are known to be NP-hard [97] and encompass the classical

Traveling Salesman Problem as a special case.

Given these rapidly scaling combinatorics, we turn to nu-

merical minimization. In particular, simulated annealing has a

long history of use for combinatorial optimization problems [98]

and lies within the broader class of Metropolis-Hastings al-

gorithms. Inspired by metallurgy, simulated annealing algo-

rithms work by stochastically exploring the search space, help-

ing prevent the algorithm from becoming entrapped near local

minima.

Our implementation begins with an initial bit-to-symbol

mapping (bm)Mm=1 (either randomly selected or the current

best known encoding) and a sequence of temperatures (Tn)
per a selected cooling schedule [98]. In each iteration, a

new candidate encoding (b′
m)Mm=1 is generated by randomly

swapping the bit encodings for two symbols. We then com-

pare ξ((b′
m)Mm=1) against ξ((bm)Mm=1). If ξ((b′

m)Mm=1) <
ξ((bm)Mm=1), then (b′

m)Mm=1 is automatically accepted. Oth-

erwise, (b′
m)Mm=1 is probabilistically accepted or rejected by

comparing exp{[ξ((bm)Mm=1)− ξ((b′
m)Mm=1)]/Tn} against a

uniformly randomly generated value in [0,1]. The initial high

temperatures give a higher probability of accepting a candidate

encoding (b′
m)Mm=1 in order to explore the search space, while

the final low temperatures exploit local optimizations.

Implementing a simulated annealing optimization algorithm

inherently requires significant tuning of parameters. Choices

such as initial and final temperatures, cooling schedule, and

number of iterations must all be carefully selected for the

specific problem in order to properly balance exploration versus

exploitation. After an investigation of various cooling schedules,

we established that a classic exponential cooling schedule of

Tn = αnT0, whereα denotes the cooling factor, was well-suited

to this problem. With further experimentation, we found that

setting the initial temperatureT0 as the standard deviation of ξ for

a random sample of bit encodings gave acceptable performance

across a wide range of constellation sizes M , without the need

for extensively tuning this parameter.

We remark that the constellation (|sm〉)Mm=1 is static and the

P
m′|m
e,bin terms in (58) are computed once at the outset and then

stored for all future evaluations of ξ.

Fig. 6. Square antiprism (Conditions: N = 2, M = 8).

Finally, we note that hmm′ is trivially bounded by k for all

m 
= m′. Hence the performance increase that can possibly be

achieved by optimizing the bit-to-symbol mapping (bm)Mm=1

is limited by a factor of k (cf. Fig. 14), in contrast to the

several orders of magnitude of performance improvement that

can be obtained by geometrically optimizing the constellation

(|sm〉)Mm=1 (cf. Fig. 15). Therefore, the allocation of compu-

tation time when generating an (N,M)-MVM format should

place greater emphasis on geometric optimization, while not

completely neglecting to optimize the bit-to-symbol mapping.

VII. RESULTS AND DISCUSSION

In Sections IV and V, we derived an upper bound for the

symbol error probability of (N,M)-MVM and discussed ac-

celerated geometric constellation shaping in the generalized

Stokes space using an electrostatic analog (i.e., an extension

of the Thomson problem to higher dimensions). In Section VI,

we proposed a method to optimize the bit-to-symbol mapping

of arbitrary MVM constellations using simulated annealing. In

this section, we navigate the reader through the steps of the

formalism presented in Sections IV–VI by providing illustrative

examples for specific N , M .

A. Constellation Design

As a starting point, to develop some physical intuition by visu-

alization, we consider constellation shaping and bit-to-symbol

mapping in the three-dimensional Stokes space.

We first examine the optimal distribution of eight points on

the surface of the Poincaré sphere S2. From [25], we know

that the optimal constellation corresponds to a square antiprism

inscribed in the sphere as shown in Fig. 6 (rather than a cube

as proposed by [27]). We want to test whether the solution of

the Thomson problem using the method of gradient descent

coincides with the solution of [25].

Fig. 7 shows the evolution of the potential energy given by

(47) as a function of the number of gradient descent iterations

associated with 100 different random initial configurations of

M = 8 point charges on S2. After about 1,000 iterations, all

cases converge to essentially identical square antiprisms (up to

arbitrary 3D rotations), like the one shown in Fig. 6.
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Fig. 7. Thomson algorithm convergence for 100 distinct initial configurations
(Conditions: N = 2, M = 8). After roughly 1000 iterations, all cases have
converged to square antiprisms.

Close inspection reveals that the Euclidean distances between

constellation points provided by the solution of the Thomson

problem using the method of gradient descent in Fig. 7 are

slightly different from the ones provided by [25]. Actually, the

constellation of [25] is unstable from an electrostatic point-of-

view. In other words, if the constellation of [25] is provided as

an initial configuration for the Thomson problem, the gradient

in (56) of the potential energy in (47) is non-zero, and, therefore,

the constellation points experience Coulomb forces that move

them to slightly different final positions. The same holds if one

uses as initial guesses for the Thomson problem various point

configurations provided by the minimization of alternative cost

functions, e.g., for the Tammes problem [93].

In conclusion, the polytopes provided by the minimization

of different cost functions for N = 2,M = 8 correspond to

slightly different square antiprisms. For practical engineering

purposes, however, we consider that these differences among

various constellation configurations are immaterial and that the

numerical solution of the Thomson problem using the method of

gradient descent provides sufficient optimization effectiveness

at low computational cost.

Next, we shift our focus to the optimal bit-to-symbol mapping

for the square antiprism. To facilitate visualization, we represent

the configuration of the constellation points on the surface of

the Poincaré sphere by a two-dimensional graph whose vertices

represent the constellation points and whose edges represent

closest neighbors. For the case of the square antiprism of Fig. 6,

we obtain the graph shown in Fig. 8. The two square faces on the

opposite sides of the square antiprism are shown in red and green

respectively, and the edges interconnecting them are shown with

dotted black lines. The two square faces have sides equal to 1.17

and the edges interconnecting them are 1.29 long.

In Gray coding, the closest neighbors at distance 1.17 are

assigned binary words that differ in only one bit, i.e., they have

a Hamming distance of one. Since each vertex in Fig. 8 has only

two closest neighbors belonging to the same square face, it is

straightforward to Gray label the vertices of the square faces

using all binary words of three bits. For instance, one can Gray

code the green square using the binary words with their most

significant bit (msb) equal to zero and then use the remaining

Fig. 8. Bit-to-symbol mapping for the square antiprism (Conditions: N = 2,
M = 8). The red, green, and black edges have lengths of approximately 1.17,
1.17, and 1.29, respectively.

binary words with their msb equal to one for the red square. The

proposed bit-to-symbol mapping in Fig. 8 is just one of many

possible Gray mappings.

However, since the second-closest neighbors at distance 1.29

are not very different distance-wise compared to the first neigh-

bors at distance 1.17, we have to take into account that erroneous

symbol decisions can lead to second-closest neighbors with

significant probability. The proposed bit-to-symbol mapping in

Fig. 8 offers almost all the benefits of Gray coding. Each symbol

error leads to 3 neighboring nodes that differ by one bit and to

only one neighboring node that differs by two bits.

In this particular case, the problem of assigning binary words

to constellation points in order to minimize the bit error prob-

ability can be solved manually as follows: starting with the

green square, we go in the clockwise direction and assign bits to

symbols using all Gray words of zero msb. Then, starting from

the vertex between 000 and 001, we trace the red square in the

counterclockwise direction and assign bits to symbols using all

Gray words of unit msb. We verified that the solution obtained

via the simulated annealing algorithm is indeed the one found

manually in Fig. 8. This is evidence that the simulated annealing

algorithm performs adequately.

In order to further validate bit-to-symbol mappings provided

by our simulated annealing algorithm, we ran benchmarking

tests on constellations that admit Gray coding [99] (e.g., M-PSK

and M-QAM). Our implementation of the simulated annealing

algorithm displayed strong performance in these tests, often

finding the global minimum for small constellation sizes.

For larger M , the computational complexity of assigning

binary words to constellation points in order to minimize the

bit error probability grows exponentially. Let us see why that

is: There are M ! ways that we can assign M words of k
bits to the M nodes. Using the dominant term in Stirling’s

approximation for factorials, we see that M ! ∼ MMe−M for

M � 1. Computing the objective function for all possible ar-

rangements and selecting the bit-to-symbol mapping that yields

the global minimum is clearly computationally prohibitive for

large values of M . Simulated annealing can be used to solve

such combinatorial optimization problems. While it may not

find globally optimal solutions, evidence from tests performed
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Fig. 9. Illustration of optimized constellations (b), (d), with M=256 points
for (a) SMF (N=2); and (c) dual-core MCF (N=4), respectively.

Fig. 10. Histograms of internodal distances. (Yellow: Thomson problem;
Black: Tammes problem [93]). (Conditions: N = 4, M = 32).

on small constellation sizes suggests that simulated anneal-

ing can produce bit-to-symbol mappings that are sufficiently

nearly-optimal.

We continue by examining constellation shaping and bit-to-

symbol mapping in higher-dimensional Stokes spaces based on

the physical intuition provided by the three-dimensional Stokes

space.

Examples of optimized constellations for N = 2 and N = 4
and M = 256 are shown in Fig. 9(b), (d), respectively.

To illustrate the difficulties of bit-to-symbol mapping in

higher-dimensional Stokes spaces, let us take a closer look at

the optimized MVM constellation for N = 4, M = 32. The

histograms of internodal distances for the Thomson problem

and the Tammes problem [94] are shown in Fig. 10. Notice

that the constellations found by solving these two problems

are not identical. For instance, there are 343 closest neighbor

pairs at distance 1.33 in the Tammes problem, whereas the

Thomson problem gives a continuum-like distribution of intern-

odal distances in the range 1.1–1.6 for the closest neighbors.

Choosing the Tammes problem solution due to its high degree

of symmetry, we make a 2D graph of the 32 vertices with

edges interconnecting closest neighbors only (Fig. 11). Since the

average vertex degree in the graph is 21 (Fig. 12), it is obvious

that Gray coding cannot be applied. For 32 constellation points,

the number of possible codings is 32! ≈ 2.6× 1035, so a brute

force optimization by exhaustive enumeration is impossible. A

Fig. 11. Constellation graph and bit-to-symbol mapping (Conditions: N = 4,
M = 32).

Fig. 12. Histogram of vertex degrees for the constellation graph of Fig. 11
(Conditions: N = 4, M = 32).

Fig. 13. Bit error probability vs bit SNR (dB) per SDOF (Points: Monte Carlo
simulation; Blue line: union bound (Corollary 1); dashed lines: asymptotics
(Corollary 2). (Conditions: N = 8, M = 64).

bit-to-symbol mapping given by simulated annealing is shown

in Fig. 11.

B. Validity of the Error Probability Upper Bounds

The symbol error probability for equienergetic signals is

bounded by using the analytical union bound of Corollary 1.

We want to gain insight into the validity and the tightness of

this bound at various bit SNRs. In Fig. 13, we check the validity

of Corollary 1 and the asymptotic expressions of Corollary 2

by Monte Carlo simulation. We observe that the union bound is

Authorized licensed use limited to: Montana State University Library. Downloaded on September 30,2024 at 21:05:41 UTC from IEEE Xplore.  Restrictions apply. 



KWAPISZ et al.: MODE VECTOR MODULATION: EXTENDING STOKES VECTOR MODULATION TO HIGHER DIMENSIONS 1979

Fig. 14. Bit error rate (BER) versus bit SNR per SDOF for the optimized
bit-to-symbol mapping (in blue) and randomized bit-to-symbol mappings (in
gray).

asymptotically tight and spot-on for bit error probabilities below

the order of 10−3. Otherwise, the union bound overestimates

larger error probabilities due to the significant overlap between

the pairwise decision regions.

C. Impact of Bit-to-Symbol Mapping

Fig. 14 compares the bit error rates (computed using Monte

Carlo simulation) of the optimized bit-to-symbol mapping pro-

vided by simulated annealing (in blue) against multiple random-

ized encodings (in gray) for the same (4,64)-MVM constellation.

We observe a performance gain of the optimized encoding over

randomized encodings across a wide range of bit SNRs. In

particular, we note that our bit-to-symbol mapping optimization

requires a concrete choice of noise level σ2 in defining the

objective function of (58) for simulated annealing. Hence it is

possible that the suitability of an encoding might change with the

noise level, requiring different optimizations for different noise

levels. However, Fig. 14 shows that a bit-to-symbol mapping

optimized at one noise level (in this case, a bit SNR per SDOF

of 10 dB) performs well across a range of SNRs, showing that

this concern is immaterial in practice.

D. Potential Selection for Constellation Optimization

We use the union bound of Corollary 1 to compare the

performance of various (4,64)-MVM constellations obtained via

different optimization methods. Fig. 15 shows the symbol error

probability Pe|s as a function of the symbol SNR per SDOF. The

blue and orange curves correspond to constellations obtained

using the gradient descent method with a Thomson (Coulomb)

potential and with the union bound based on Corollary 1 as an

objective function, respectively. The green curve is a numerical

approximation of a solution to the Tammes problem using the

Matlab code provided by [93]. Finally, as a baseline for our anal-

ysis, the red curve corresponds to a standard Jones hypercube

constellation (cf. Section V-C).

Given the different algorithmic approaches and computational

complexities of these methods, the parameters are selected in

such a way that each implementation takes roughly the same

amount of computing time in order to provide a fair comparison.

Using the union bound as the objective function yields the best

Fig. 15. Performance comparison of different (4,64)-MVM constellations
optimized using various potential functions and algorithms.

Fig. 16. Bit error probability of M−ary MVM based on SIC-POVM vectors
vs the bit SNR per SDOF.

performing constellation, as befits its intrinsic nature, despite

its high computational complexity resulting in fewer gradient

descent steps in the allotted time. Belying its extrinsic moti-

vation, the Thomson method performs remarkably well, with

only a slightest penalty compared to the Union Bound potential.

The Tammes Problem method also performs quite well, with

only a marginal performance loss compared to the Union Bound

method. Finally, we observe that all three numerical optimiza-

tions outperform the standard Jones hypercube constellation by

more than 3 dB at low symbol error probabilities.

E. Simplex MVM Constellations

In Fig. 16, we plot the upper limit of the bit error probability

of simplex MVM constellations, given by SIC-POVM vectors,

for an optically-preamplified MVM DD receiver with a matched

optical filter, as a function of the bit SNR per SDOF. The Jones

space dimension varies from N = 2 to N = 16 in power-of-two

increments for different lines from top to bottom. The accuracy

of the curves has also been checked by Monte Carlo simulation

and the numerical data agree asymptotically with the analytical

curves, however, the Monte Carlo simulation results have been

omitted from Fig. 16 to avoid clutter. We observe that the bit

SNR required to achieve a given bit error probability decreases

as N increases. This is explained by the squared incoherent

distance between two SIC-POVM Stokes vectors equaling d2ic =
2(1− 1/

√
N + 1), which is an increasing function of N . (In
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contrast, the squared Stokes distance d2Stokes = 2(1 + 1/(N2 −
1)) decreases, highlighting the superiority of dic over dStokes in

this context.)

F. Performance Comparison of Various Modulation Formats

Armed with Corollary 1, we want to compare the performance

of MVM with that of conventional modulation formats for short-

haul transmission and optically-preamplified direct detection.

For a fair comparison, we want to select the MVM con-

stellation cardinality so that MVM exhibits the same spectral

efficiency as conventional modulation formats. In single-mode

transmission, spectral efficiency is defined as the ratio of the

net bit rate after FEC to the channel bandwidth. Here, we

use the following definition of the spectral efficiency per SDOF:

Let the symbol interval be Ts and the symbol rate be Rs = T−1
s .

Assuming ideal Nyquist pulses and since MVM is a carrier

modulation, the signal bandwidth Bs is equal to the symbol

rate Rs. Suppose that the bit interval is Tb and the bit rate

is Rb. Let M be the number of constellation symbols. Then,

k = log2 M bits are transmitted per symbol interval. We define

the spectral efficiency per SDOF as η := Rb/(NBs). Since

Ts = kTb and Rb = kRs, the spectral efficiency per SDOF is

η = kN−1.

For instance, for SIC-POVMs, there are M = N2 constel-

lation points and, therefore, the spectral efficiency per SDOF

is η = 2N−1 log2 N . Consequently, by increasing the dimen-

sionality N of Jones space, the normalized spectral efficiency

per SDOF decreases.

For illustration, suppose we have an ideal homogeneous MCF

with eight identical single-mode cores. The most straightfor-

ward way to use this fiber is to transmit 8 independent parallel

channels, each carrying a binary signal, e.g., based on either

intensity modulation (IM), binary DPSK (DBPSK), or binary

SVM (BSVM). When ideal Nyquist pulses with zero roll-off

factor are used, all the aforementioned modulation formats can

achieve a theoretical spectral efficiency of 0.5 b/s/Hz/SDOF.

Alternatively, rather than using the 8 cores independently, we

can transmit a single MVM channel by sending pulses over all

eight cores in parallel, i.e., simultaneously utilizing all 16 avail-

able SDOFs. Therefore, we should choose (16, 256)-MVM,

which results in a spectral efficiency 0.5 b/s/Hz/SDOF as well.

In the 255-dimensional generalized Stokes space, the optimal

(16,256)-MVM constellation corresponds to a 256-simplex [66].

In Fig. 17, we present analytical plots of the bit error prob-

ability vs. the bit SNR per SDOF at the decision device.

Single-polarization, optically-preamplified, direct-detection re-

ceivers require 15.83 dB, 13 dB, and 16 dB for IM [100],

DBPSK [100], and BSVM [44], respectively, to achieve a

bit error probability of 10−9. In contrast, the (16, 256)-MVM

optically-preamplified, direct-detection receiver requires only

8.84 dB, to achieve the same bit error probability. This corre-

sponds to bit SNR gains of 4.16 dB, 7 dB, and 7.16 dB over

DBPSK, IM, and BSVM, respectively. We conclude that the

use of MVM can greatly improve system performance over

conventional modulation formats at the expense of transceiver

complexity [66].

Fig. 17. Bit error probability for (16,256)-MVM in comparison to conven-
tional modulation formats for an 8-core MCF.

Fig. 18. MVM spectral efficiencies per SDOF vs the bit SNR per SDOF
required to achieve a bit error probability of 10

−4 for different degrees of
freedom N and constellation cardinalities M . Blue, red, and black curves
correspond to N = 2, 4, 8, respectively. The number listed next to each point
corresponds to the constellation cardinality.

G. MVM Performance for Various (N,M) Pairs

In this subsection, we examine the performance of

geometrically-optimized signal sets that correspond to the dens-

est sphere packing in the generalized Stokes space. We show that

the best trade-off between spectral and energy efficiency occurs

for simplex constellations.

Fig. 18 shows the MVM spectral efficiency per SDOF vs the

bit SNR per SDOF required to achieve a bit error probability of

10−4. Each curve corresponds to a different degree of freedom

N , and each point marked on a curve corresponds to a different

constellation cardinality M . It is worth mentioning that these

graphs represent the performance of geometrically-shaped con-

stellations with optimized bit-to-symbol mappings. Curves for

non-optimized constellations lie on the right of these graphs.

Furthermore, the apex (leftmost point) of each graph in Fig. 18

corresponds to a simplex constellation. Apparently, the best

combination of spectral efficiency per SDOF and receiver sensi-

tivity is achieved for SIC-POVMs. Higher spectral efficiencies

can be obtained with a modest bit SNR penalty by switching to a

constellation with more points, especially in higher-dimensional

settings.

For the qualitative interpretation of results of Fig. 18, we

need to take a closer look at the evaluation of error probability.
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Fig. 19. (a) Optimized constellation and spherical Voronoi cells for N =

2,M = 256, obtained by solving the Thomson problem; (b) Intensity plots
of the optimal MVM signal set for N = 4, M = 16, over a two-core multicore
fiber with identical uncoupled single-mode cores.

The leading term of the asymptotic expression for the pairwise

symbol error probability based on the union bound is given by

(37).

For M > N , the Welch-Rankin bound on γ is written as [93]

γ ≥
√

(M −N)/N(M − 1). This bound is not tight when the

signal set cardinality tends to infinity. Below, we estimate γ from

geometric arguments.

Fig. 19 shows the optimal Thomson constellation and the

partitioning of the sphere into Dirichlet (Voronoi) cells for

N = 2, M = 256. In general, for N = 2 with large M , the

Dirichlet cells for an optimal configuration are roughly hexag-

onal [90]. For simplicity, let us assume that the constellation

points form an ideal hexagonal lattice. The Dirichlet cell for a

two-dimensional hexagonal lattice is a regular hexagon of side

d/
√
3, where d is the minimum Euclidean distance between

pairs of points. The area of each cell is δA =
√
3d2/2. We can

estimate d if we divide the area of the unit sphere S2, equal to

A = 4π, by the total area of M cells. We obtain the estimate

d2 ≈ 8π/(
√
3M). We observe that, in the asymptotic limit of

large M , the Euclidean distance is inversely proportional to

the square root of the number of points M . By combining the

formulas [75] d2 = ‖ŝ− ŝ′‖2 = 2(1− ŝ · ŝ′), γ2 = |〈s|s′〉|2 =
(1 + ŝ · ŝ′)/2, and using the first-order Taylor expansion of the

square root of γ2, we obtain the average symbol error probability

P̄e|s ∼ exp[−πγs/(2
√
3M)].

The average bit error probability for a Gray-like bit-to-symbol

mapping is related to the average symbol error probability by

P̄e|b � P̄e|s/k, wherek := log2 M . For quasi-orthogonal signal

sets, it is related by P̄e|b � MP̄e|s/[2(M − 1)] � P̄e|s/2. Gray-

like bit-to-symbol mappings are expected at large constellation

cardinalities M , while orthogonal signal sets exist for M < N
and quasi-orthogonal signal sets occur for N < M < N2. In

general, the difference in SNR between the different bit-to-

symbol mappings is asymptotically small. For the purposes of

qualitatively understanding the results shown in Fig. 18, it is

reasonable to assume that P̄e|b � P̄e|s.

The spectral efficiency per SDOF for MVM is defined as

η := k/N and the symbol SNR per SDOF is related to the bit

SNR per SDOF via γs := kγb. For a given average bit error

probability, we can write for N = 2 (SVM case) that

η ∼ γb(dB)

20 log 2
. (59)

Using a similar geometric argument for N > 2 (MVM case),

we find that d2 ∼ M− 1

N−1 and we can write

η ∼ N − 1

N

γb(dB)

10 log 2
. (60)

Rephrasing the above expressions, we expect that the slope

η/γb(dB) ∼ 0.16 for N = 2 at large constellation cardinalities

M and that it will increase towards 0.33 as N → ∞, which is

approximately the slope of the Shannon capacity formula for

AWGN.

At the opposite extreme, γ = 0 for orthogonal signal sets with

M < N and we expect that

η ∼ 10−γb(dB)/10. (61)

Using the preceding asymptotic analysis, we consider the

results shown in Fig. 18. The MVM spectral efficiency η is

generally expected to follow a C-shaped curve when plotted

against the bit SNR per SDOF γb (dB). The upper part of the

curve will increase linearly with the bit SNR per (59) and (60),

while the lower part of the curve will decrease exponentially

with the bit SNR per (61). Each curve’s apex occurs for the

simplex constellation with M = N2, where γ2 = (N + 1)−1.

We thus conclude that the simplex constellations offer the best

balance between energy and spectral efficiency for N > 2. An

example of a simplex signal set forN = 4 andM = 16 is shown

in Fig. 19(b).

From Fig. 17, we observe that (16,256)-MVM offers 7.2 dB

better energy efficiency for an error probability of 10−9 com-

pared to the binary SVM for the same spectral efficiency

(0.5 b/s/Hz/SDOF). This is due to the fact that geometrically-

shaped (16,256)-MVM has a configuration of constellation

points in the 16D Jones space with a larger minimal distance.

From Fig. 18, we also notice that, as the spectral efficiency

per SDOF increases, increasing the dimensionality N of the

MVM is increasingly beneficial from the energy efficiency point

of view. Transmitting an SVM superchannel offers no such

benefit.

H. Spectral Efficiency vs Energy Efficiency Trade-Offs

In Fig. 20, we plot the change in spectral efficiency per SDOF

for SIC-POVM (simplex) MVM for different N as a function of

the bit SNR per SDOF required to achieve a bit error probability

of 10−4 (in blue). In the same figure, we graph Shannon’s

formula for the spectral efficiency of an AWGN channel (in

red) [9]. The maximum spectral efficiency for the simplex MVM

is equal to 1.06 b/s/Hz/SDOF and occurs for N = 3. Similarly,

the spectral efficiency for N = 2 and N = 4 is 1 b/s/Hz/SDOF.

This means that, at best, the spectral efficiency of the simplex

MVM is approximately equal to that of binary intensity mod-

ulation per SDOF for low N ’s and decreases thereafter with

increasing N .

Notice that the simplex MVM DD over SDM fibers offers

6.6 dB sensitivity improvement compared to the conventional
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Fig. 20. SIC-POVM MVM spectral efficiencies per SDOF vs the bit SNR per
SDOF required to achieve a bit error probability of 10−4 (in blue). Results for
coherent PAM, QAM, and for SVM DD for various constellation cardinalities
are also shown in magenta, green, and black, respectively.

TABLE I
COMPARISON OF DIFFERENT TRANSMISSION SCHEMES IN TERMS OF

IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY

simplex SVM over SMFs (N = 2), at the expense of spectral

efficiency per SDOF.

Based on our analysis, we conclude that using MVM DD

over SDM fibers could potentially be beneficial, since the spatial

degrees of freedom in SDM fibers are utilized as one channel

instead of as individual channels, as is standard engineering

practice. In comparison to SVM DD over SMFs, MVM offers a

greater degree of flexibility for balancing energy consumption

and spectral efficiency.

VIII. COMMERCIAL VIABILITY OF MVM DD SYSTEMS

This section provides a point-by-point comparison of MVM

in relation to other modulation formats considered for short-haul

optical links. For the comparison, we use two performance

metrics (spectral efficiency and bit SNR) and quantify the hard-

ware complexity (in terms of component count, i.e., number of

photodiodes/transimpedance amplifiers (TIAs) and ADCs) and

the computational complexity (in terms of real multiplications

per received symbol).

Table I compares the above metrics for a superchannel com-

posed of SVM tributaries vs a single MVM channel using all

available SDOFs. For an objective comparison, the aggregate

data rate is the same in both cases.

For the comparison, without loss of generality, we consider a

homogeneous multicore fiber with K single-mode cores. Thus,

we have at our disposition N = 2K SDOFs.

For a given number of SDOFs N , MVM signals reside in a

N -dimensional Jones space. In contrast, for a superchannel com-

posed of K = N/2 SVM tributaries, the signals corresponding

to each individual SVM tributary reside in a 2D Jones space.

The composite constellation of the SVM superchannel is the

Cartesian product of K SVM constellations. For a fair com-

parison, if M is the MVM constellation cardinality, we assume

that theK = N/2 SVM tributaries have individual constellation

cardinalities M1/K . This gives the same spectral efficiency per

SDOF equal to (log2 M)/N .

If we use the conventional Stokes vector DD receiver with

three balanced photodiode pairs [27], we need 6 photodiodes

per SDOF. Therefore, we need 6K photodiodes to transmit K
independent SVM channels in parallel over the K cores. Since

N = 2K, this transmission technique requires 3N photodiodes

in total. We want to compare this number of photodiodes to the

number of photodiodes we need to send a single MVM channel

using N degrees of freedom. The simple naive generalization of

the conventional Stokes vector DD receiver architecture from

two to N dimensions uses O(N2) photodiodes due to the

fact that the dimension of the generalized Stokes space in-

creases quadratically with the number of SDOFs, i.e., asN2 − 1
[69]. The simplified MVM DD receiver architecture shown in

Fig. 4(b), which was proposed by the authors in [69], takes into

account the interdependence of the Stokes parameters to reduce

the hardware complexity. The complexity increases linearly with

the number ofO(N) degrees of freedom [69]. This receiver uses

N − 1 optical hybrids with two balanced receivers each, i.e.,

4 photodiodes per hybrid. In addition, it uses N single-ended

photodiodes to measure the optical powers of the N SDOFs.

Therefore, a total of 5N − 4 photodiodes are required. However,

we can employ a simplified version of the previous MVM DD

receiver that uses 3N − 2 single-ended photodiodes instead of

the configuration using 5N − 4 photodiodes. This is achieved

by using exclusively asymmetric 90-degree optical hybrids and

single-ended photodetectors at the four output ports of each

hybrid. This receiver configuration eliminates the need for N
single-ended photodiodes to measure the optical powers of theN
SDOFs. A different version of a reduced-hardware-complexity

receiver for SVM can be found in [41], [45].

In both aforementioned MVM DD receiver configurations,

3N − 2 ADCs are necessary. This number should be compared

to the number of required ADCs in the SVM DD receiver case,

i.e., 3K = 3N/2. In other words, for large values of N , we need

twice the number of ADCs when sending an MVM channel

versus a superchannel composed of K SVM tributaries. This is

the price we have to pay to gain in receiver sensitivity.

We assume that the LMS algorithm shown in Fig. 5 is used to

derotate the transfer matrix of the fiber in the generalized Stokes

space. There are two phases of operation, i.e., the training phase
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TABLE II
CAPACITY UPGRADE SCENARIOS FOR FUTURE DATACENTER OPTICAL

INTERCONNECTS

and the decision-directed phase. During the training phase, the

transfer matrix of the fiber is computed using training symbols.

During the decision-directed phase, the LMS algorithm uses

symbol decisions to track and counteract small fiber rotations

that occurred since the training phase.

For the comparison of the computational complexity for a

superchannel composed of SVM tributaries per lane vs a single

MVM channel using all available SDOFs, we ignore the training

phase and we take into account only the number of multiplica-

tions during the decision-directed phase.

The received generalized Stokes vector at the n−th instant is

represented as a column vector �r(n) with N2 − 1 elements. The

equalizer Müller matrix has dimensions (N2 − 1)× (N2 − 1).
To generate each one of the components of the output gener-

alized Stokes vector �z(n), using a simple algorithm for matrix

multiplication, requires O(N2) real multiplications. Since �z(n)
has N2 − 1 elements, we need O(N4) real multiplications per

received symbol.

Furthermore, for symbol decisions, we use the ML criterion,

where �z(n) is compared to all M nominal Stokes vectors rep-

resenting the MVM alphabet symbols using the distance metric

(24). We need O(N2) real multiplications per dot product, i.e.,

O(MN2) real multiplications per received symbol.

We note that the above simplified analysis does not take into

account the non-linear interdependences of the components of

the Stokes vectors and Müller matrices involved, which offer a

path to complexity reduction (much like we did for the diode

count at the receiver).

Various capacity upgrade scenarios for future datacenter opti-

cal interconnects are shown in Table II. Quad Small Form Factor

Pluggable Double-Density (QSFP-DD) 400 GbE transceivers

that use 8 fiber lanes with 50 Gb/s net bit rate per lane and

PAM4 modulation are commercially available. It is expected

that QSFP-DD 800 GbE and 1.6 TbE transceivers based on

8 and 16 fiber lanes, respectively, with 100 Gb/s net bit rate

per lane and PAM4 modulation will be manufactured soon. In

the more distant future, it is expected that 1.6TbE transceivers

that use 8 fiber lanes, 200 Gb/s net bit rate per lane, and

PAM4 modulation will be commercialized. Transceivers based

on lite coherent detection technology that will support multi-

TbE intra- and inter-data-center links are further down the

road.

Table II also includes a few alternative SVM/MVM options

for 400 GbE-1.6 TbE using 2/4/8 SDOFs. Can these solu-

tions prevail over M -PAM? We can infer the performance

advantages of these schemes by reviewing experimental results

of recent SVM DD publications.

Feasibility experiments in the SVM literature that modulate

all Stokes parameters simultaneously [33], [34] have achieved

spectral efficiencies of 6 b/s/Hz and above 300 Gb/s per SVM

channel. We conclude that, at least in principle, we can exceed

the 200 Gb/s net bit rate per lane that seems to be the practical

limit of the PAM4 technology.

It is worth emphasizing that the MVM concept can be equally

well implemented using different sets of fully degenerate de-

grees of freedom other than SDOFs. In the ASE-noise-limited

regime, in the absence of other transmission impairments, there

is an equivalence in performance among systems using spa-

tial and polarization modes and systems using other degrees

of freedom, e.g., in the time domain (time slots), frequency

domain (wavelength channels), or hybrid modes (combina-

tions of the above). A hybrid space/time MVM implementation

for N = 4 was reported for the first time by Morsy-Osman

et al. [32], where two SOPs and two time-slots were used

jointly to achieve transmission of 320 Gb/s over 10 km of

SMF using HD-FEC and 360 Gb/s over 20 km of SMF using

SD-FEC.

Notice that the SVM constellations used in the above experi-

ments [32], [33], [34] were not optimized. Optimized SVM con-

stellations based on the face-centered cubic (FCC) lattice [40]

with 16 and 64 points achieved 4 and 6 dB improved receiver sen-

sitivity at SER of 10−5 compared to DP-PAM4 and DP-PAM8,

respectively.

Can MVM-based optical interconnects compete with their co-

herent detection counterparts? It is clear that coherent detection

is superior to any direct-detection scheme, both in sensitivity

and DSP capabilities, for any modulation format. Therefore,

SVM/DD and MVM/DD are proposed as intermediate solutions

in terms of performance between M -PAM/DD and DP-16-

QAM/coherent optical interconnects.

The closest SVM/MVM variant to coherent detection is to

transmit an unmodulated carrier on one of the SDOFs and use

this carrier to perform self-homodyning of the remaining SD-

OFs, like in [29], [30], [31], [53]. As mentioned above, this self-

homodyne technique enables the use of more spectrally-efficient

modulation formats, such as 16-QAM, and enables electronic

chromatic dispersion compensation. This is not the case for

M -PAM/DD, SVM/DD, and MVM/DD, where chromatic dis-

persion compensation should be achieved either optically, using

a dispersion compensating fiber or working in the O-band, or

using electronic pre-compensation.
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IX. CONCLUSION

In this article, we investigated the merits of MVM with

equipower signal sets, which is a direct extension of PolSK

for the generalized Stokes space. In other words, we limited

ourselves to a subset of the full spatial modulation/direct-

detection family set. We derived an analytical upper limit for

the back-to-back performance of M -ary MVM over N spatial

degrees of freedom in the amplified spontaneous emission (ASE)

noise-limited regime.

We also elaborated on the following topics: (i) The optimal

MVM transceiver architecture; (ii) The use of simplex MVM

constellations based on SIC-POVM vectors; (iii) The design of

M -ary geometrically-shaped constellations obtained by numeri-

cal optimization of various objective functions using the method

of gradient descent; and (iv) The optimal bit-to-symbol mapping

using simulated annealing.

We showed that it is potentially beneficial to use MVM DD

over SDM fibers, i.e., to use spatial degrees of freedom in SDM

fibers together as a single channel instead of individually as sep-

arate channels, per standard engineering practice. Compared to

SVM DD over SMFs, MVM DD over SDM fibers offers greater

flexibility for better trade-offs between energy consumption and

spectral efficiency.

The successful commercialization of MVM eventually de-

pends on technoeconomics. MVM, like other advanced direct-

detection techniques for spectrally-efficient transmission [12],

[13], [14], [27], requires several parallel optical branches fol-

lowed by ADCs and DSP, all of which increase cost and energy

consumption in comparison to M -ary PAM and approach or

even exceed the complexity of coherent receivers. Therefore,

MVM’s future commercial viability depends on the develop-

ment of inexpensive silicon photonic (SiP) integrated circuits

and application-specific integrated circuits (ASICs) for DSP.

APPENDIX A

PAIRWISE SYMBOL ERROR PROBABILITY

The goal of this appendix is to compute the pairwise error

probability P
m′|m
e,bin defined by (28) and prove (30).

The starting point for the analytical calculation of the pairwise

symbol error probability is the maximum-likelihood decision

criterion (24). This criterion, in turn, results in comparing the

square magnitude of the projections of the received Jones vector

|r〉 on a pair of nominal Jones vectors |s〉, |s′〉 representing trans-

mitted MVM symbols and choosing the largest one. However,

the vectors |s〉, |s′〉 are not orthogonal, in general. To facilitate

the derivation of a closed formula for the pairwise symbol error

probability, we use an orthogonal coordinate system described

by the unit Jones vectors |u±〉. These new vectors are the result

of symmetrically opening up |s′〉 and |s〉 to be orthogonal.

We assume that the amplifier noise vector |n〉 that affects the

received Jones vector |r〉 has spatial and polarization compo-

nents that are independent and identically distributed Gaussian

complex random variables. The magnitudes of the projections

of the received Jones vector |r〉 on the unit Jones vectors |u±〉
result in two independent random variables following Rice dis-

tributions. From that point, we can directly derive a closed form

expression for the pairwise symbol error probability. The final

result is identical to the formula for the error probability of the

envelope detection of correlated binary signals [9].

A. Geometric Setup

We fix m 
= m′ and, to simplify expressions, set |s〉 := |sm〉
and |s′〉 := |sm′〉. We assume that

〈s|s〉 = 〈s′|s′〉 = 1, (62a)

γ := 〈s|s′〉 > 0. (62b)

In (62b), we dropped the absolute value on 〈s|s′〉 because,

since we deal with two vectors in isolation and only the pro-

jection operators S = |s〉〈s| and S
′ = |s′〉〈s′| matter, we can

adjust the phase of |s′〉 so that 〈s|s′〉 is a positive real. As the

first step, we reduce the considerations to the two-dimensional

complex subspaceΣ spanned by |s〉 and |s′〉 and derive analytical

expressions in a convenient orthonormal basis for Σ.

We express P
m′|m
e,bin as

P
m′|m
e,bin = P

(
|〈r|s′〉|2 − |〈r|s〉|2 ≥ 0

)

= P (〈r|∆|r〉 ≥ 0) , (63)

where we introduced the difference of dyads ∆ := S
′ − S and

the associated quadratic form4

|〈r|s′〉|2 − |〈r|s〉|2 = tr (RS
′)− tr (RS) = tr (R∆)

= 〈r|∆|r〉. (64)

The following three real length parameters will play a key role:

δ :=
√

1− γ2, (65a)

ρ± :=

√

1± δ

2
. (65b)

For ease of reference we record that

γ =
√

1− δ2 = 2ρ+ρ−, (66a)

ρ± − ρ∓γ = (1− 2ρ2∓)ρ± = ±δρ±. (66b)

We also introduce two vectors in Σ, |u+〉 and |u−〉, defined

as

|u±〉 := ±ρ±|s′〉 − ρ∓|s〉
δ

. (67)

Their scalar components along |s′〉 and |s〉 are found, via (66a)

and (66b), to be

〈s′|s′〉u± = ± ρ± − ρ∓γ

δ
= ρ±, (68a)

〈s|s〉u± = ± ρ±γ − ρ∓
δ

= ρ∓. (68b)

Computing ∆|u±〉 as the difference of the projections onto

|s′〉 and |s〉 (and then using (67)) gives

∆|u±〉 = ρ±|s′〉 − ρ∓|s〉 = ±δ|u±〉. (69)

4Note that this formulation makes it clear that Dm
′ |m is bounded by 3D-cone

in Σ treated as a 4D real space.
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Thus, |u±〉 are eigenvectors of ∆ with eigenvalues ±δ, re-

spectively. They are normalized since combining (67) and (68a),

(68b) yields

〈u±|u±〉 = ± 1

δ
〈 (ρ±|s′〉 − ρ∓|s〉) |u±〉

= ± 1

δ

(
ρ2± − ρ2∓

)
= 1. (70)

Because∆ is Hermitian of rank two, the eigenvectors |u±〉 are

orthogonal and the remaining eigenvalue of ∆, other than ±δ,

is zero (with the orthogonal complement Σ⊥ as its eigenspace).

The underlying geometry is simple: Examining (67), we see that

|u±〉 sit in the real sub-plane insideΣ spanned by |s′〉 and |s〉. The

vectors |s′〉 and |s〉 form an acute angle (by virtue of our initial

phase rotation). From (68a) and (68b), 〈s′|u+〉 = ρ+ = 〈s|u−〉,
so this acute angle is positioned symmetrically within the right

angle formed by |u±〉. One could say that |u±〉 are the result of

symmetrically opening up |s′〉 and |s〉 to be orthogonal.

B. Signal Decomposition

With our orthonormal basis |u±〉 of Σ in hand, we orthogo-

nally decompose the noise

|n〉 = |n+〉+ |n−〉+ |ñ〉, (71)

where the components along |u±〉 are

|n+〉 := 〈n|u+〉|u+〉 (72a)

and

|n−〉 := 〈n|u−〉|u−〉, (72b)

and |ñ〉 is the component orthogonal to Σ. (Going forward, tilde

indicates components orthogonal to Σ.) Inverting (67), we get

the analogous decomposition of the symbols

|s〉 = ρ−|u+〉+ ρ+|u−〉, (73a)

|s′〉 = ρ+|u+〉+ ρ−|u−〉. (73b)

Because the Gaussian noise |n〉 is symmetric with respect to

phase rotations, we can disregard the random phase in (10) and

express the Jones vector representing the incoherently-received

signal as |r〉 = |s〉+ |n〉. Putting together (71) and (73a), (73b),

reveals its components along |u±〉 as equal to

|r+〉 = ρ−|u+〉+ |n+〉, (74a)

|r−〉 = ρ+|u−〉+ |n−〉, (74b)

with the squared magnitudes consequently given by

〈r±|r±〉 = ρ2∓ + 2ρ∓�〈n±|u±〉+ 〈n±|n±〉. (75)

The full |r〉 decomposes into orthogonal components,

|r〉 = |s〉+ |n〉 = |r+〉+ |r−〉+ |r̃〉, (76)

along the eigenspaces of ∆ for eigenvalues δ, −δ, and 0,

respectively.

Using ∆|r̃〉 = 0 as well as ∆|r±〉 = ±δ|r±〉 and 〈r−|r+〉 =
0, the quadratic form simplifies to

〈r|∆|r〉 = 〈 |r+〉+ |r−〉+ |r̃〉 | ∆ | |r+〉+ |r−〉+ |r̃〉 〉
= 〈r+|∆|r+〉+ 〈r−|∆|r−〉
= δ〈r+|r+〉 − δ〈r−|r−〉. (77)

Finally, substituting (75), yields

〈r|∆|r〉 = tδ
[
ρ2− − ρ2+ + 2�

{
ρ−〈u+|n+〉

− ρ+〈u−|n−〉
}

+ 〈n+|n+〉 − 〈n−|n−〉
]
. (78)

Apart form the signal terms ρ∓, the last expression includes

fluctuations resulting from signal-ASE noise and ASE noise-

ASE noise beatings.

C. Pairwise Symbol Error Probability Calculation

We are ready to derive the closed form (30) for P
m′|m
e,bin

by identifying the relevant probability distributions associ-

ated to the quadratic form. We can describe the points

of Σ by their components x− + ιy− and x+ + ιy+ with

respect to the orthonormal basis |u∓〉. Accordingly, we

have four independent real Gaussian random variables with

variance σ2:

x∓ := �〈n|u∓〉 (79a)

and

y∓ := �〈n|u∓〉. (79b)

The last equation of the previous section, (78), reads

1

δ
〈r|∆|r〉 = ρ2− − ρ2+ + 2ρ−x+ − 2ρ+x−

+ x2
+ + y2+ − x2

− − y2−. (80)

So, upon completing the squares, the sought pairwise error

probability in (63) is

P
m′|m
e,bin = P (〈r|∆|r〉 ≥ 0)

= P
[

(ρ− + x+)
2 + y2+ ≥ (ρ+ + x−)

2 + y2−

]

. (81)

This is to say that

P
m′|m
e,bin = P (ψ− ≥ ψ+) , (82)

where we introduced two independent Rice-distributed random

variables

ψ− :=

√

(x+ + ρ−)
2 + y2+, (83a)

ψ+ :=

√

(x− + ρ+)
2 + y2−, (83b)
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with reference distances ρ− and ρ+, respectively, and a common

scale parameter σ. The PDFs of ψ± are

f±(x) =
x

σ2
exp

(

−x2 + ρ2±
2σ2

)

I0

(xρ±
σ2

)

, (84)

with the corresponding tail (complementary) distribution func-

tions [9]

P (ψ± ≥ x) = Q1

(
ρ±√
σ2

,
x√
σ2

)

. (85)

Recall that Q1 stands for the Marcum function defined by (32).

Thus, formula (82) can be represented by a single

integral:

P
m′|m
e,bin =

∫ ∞

0

P (ψ− ≥ x) f+(x)dx

=

∫ ∞

0

Q1

(
ρ−√
σ2

,
x√
σ2

)
x

σ2

exp

(

−x2 + ρ2+
2σ2

)

I0

(xρ+
σ2

)

dx. (86)

The last integral can be computed in closed form [101]

P
m′|m
e,bin = P (ψ− ≥ ψ+)

= Q1(a, b)−
1

2
exp

(

−a2 + b2

2

)

I0(ab), (87)

where, recalling that γs =
1

2σ2 per (14), we set

a :=
ρ−√
2σ2

= ρ−
√
γs, (88a)

b :=
ρ+√
2σ2

= ρ+
√
γs. (88b)

Using ρ2− + ρ2+ = 1 and ρ2−ρ
2
+ = 1−δ2

4 = γ2

4 from (65a)

through (66b) gives

a2 + b2 = (ρ2− + ρ2+)γs = γs, (89a)

2ab = 2ρ−ρ+γs = γγs. (89b)

Thus (87) coincides with the promised formula (30). �

APPENDIX B

ASYMPTOTICS FOR LARGE SNRS

We derive the approximate formulas for the error probability

stated in Corollary 2 and valid for large SNR parameters γs, as

well as the simplified approximation (36).

The exact formula (30) reads

P
m′|m
e,bin = Q1 (ρ−

√
γs, ρ+

√
γs)−

1

2
exp

(

−γs
2

)

I0

(γγs
2

)

.

(90)

For large x := γγs

2 , taking the first n+ 1 terms of the Hankel

asymptotics given by [101]

I0(x) =
ex√
2πx

(

1 +
1

8x
+

1 · 9
2!(8x)2

+
1 · 9 · 25
3!(8x)3

+ . . .

)

,

yields an approximation to the Bessel term in (90):

exp
(

−γs
2

)

I0

(γγs
2

)

∼ gn exp

[

−γs(1− γ)

2

]

, (91)

with

gn :=
1√
π

(

1

(γγs)
1

2

+
1
4

(γγs)
3

2

+
9
32

(γγs)
5

2

+ . . .

)

, (92)

where the sum is terminated on
(2n−1)!!2

4nn! (γγs)
−n−1/2

forn ≥ 1.

A similar asymptotic expansion for the Marcum function term

Q1

(
ρ−

√
γs, ρ+

√
γs
)

in (90) is more subtle and can be extracted

from [82] in the form of a linear combination of the exponential

exp[−γs(1−γ)
2 ] and the error function erfc

(√
γs

√
1−γ√
2

)

with the

coefficients described below. (Here erfc(x) := 2√
π

∫∞
x e−t2 dt.)

To start, define en and fn recursively: Let e0 := 0 and follow

with

en :=
1

1
2 − n

[
1− γ

γ
en−1 −

(γγs
2

) 1

2
−n
]

(n ≥ 1). (93)

Let f0 :=
√
π
√

γ
1−γ and follow with

fn :=
1

1
2 − n

1− γ

γ
fn−1 (n ≥ 1). (94)

Then, using constants

An,m :=
1

n!2n
Γ( 12 +m+ n)

Γ( 12 +m− n)
=

1

n!2n

n−1∏

i=−n

(

m+ i+
1

2

)

,

(95)

define a multiplier

λn :=
(−1)n

2
√
2π

(
ρ+
ρ−

An,0 −An,1

)

, (96)

and set

e′n := λnen, (97a)

f′n := λnfn, (97b)

e′′n :=

n∑

i=0

e′i, (97c)

f′′n :=

n∑

i=0

f′i. (97d)

We note that f′′n only depends on γ while e′′n is a linear combi-

nation of the powers (γγs)
− 1

2 , (γγs)
− 3

2 , . . ., (γγs)
− 2n−1

2 with

γ-dependent coefficients (for n ≥ 1).

The approximation given by formula (37) in [82] reads then

Q1 (ρ−
√
γs, ρ+

√
γs)

∼ e′′n exp

[

−γs(1− γ)

2

]

+ f′′n erfc

(√
γs
√
1− γ√
2

)

. (98)

An important feature of (98) is that it is valid uniformly across

γ ∈ (0, 1) (as long as γγs is sufficiently large). In [84] explicit
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error bounds are discussed together with suitable expansion ter-

mination criteria. For our purposes, using n = 1 gives excellent

results.

To approximate the error probability P
m′|m
e,bin , as given by (90),

we combine the Marcum and Bessel approximations, (98) and

(91), and obtain:

P
m′|m
e,bin ∼ f′′n erfc

(√
γs
√
1− γ√
2

)

+

(

e′′n − 1

2
gn

)

exp

[

−γs(1− γ)

2

]

. (99)

Corollary 2 will follow now by using n = 0, 1 in (99).

To streamline formulas we reach back to (65a), (65b), and

note

ρ+
ρ−

=

√
1 + δ√
1− δ

=
1 + δ√
1− δ2

=
1 + δ

γ
. (100)

Also, squaring as follows

(ρ+ ± ρ−)
2 =

(√

1 + δ

2
±
√

1− δ

2

)2

= 1±
√

1− δ2,

(101)

gives

ρ+ ± ρ− =
√

1± γ. (102)

In particular,

ρ+
ρ−

− 1 =
ρ+ − ρ−

ρ−
=

√
2

√

1− γ

1− δ
. (103)

Taking n = 0, we find A0,0 = 1 and A0,1 = 1, so

f′′0 = f′0 = λ0f0 =
1

2
√
2π

(
ρ+
ρ−

− 1

)√
π

√
γ

1− γ

=
1

2

√
γ

1− δ
, (104)

where we used (103). Plugging (104) and e′′0 = 0 and g0 =
(γγs)

−1/2/
√
π (from (92)) into (99) reproduces (34), the first

formula in Corollary 2:

P
m′|m
e,bin ∼ 1

2

√
γ

1− δ
erfc

(√
γs
√
1− γ√
2

)

− 1

2
√
πγγs

exp

[

−γs(1− γ)

2

]

. (105)

Taking n = 1, we find A1,0 = − 1
8 and A1,1 = 3

8 , so

f′1 = f1λ1 =
1

1
2 − 1

1− γ

γ

√
π

√
γ

1− γ

(−1)1

2
√
2π

(

−ρ+
ρ−

1

8
− 3

8

)

= −
√

1− γ

γ

1

8
√
2

(
ρ+
ρ−

+ 3

)

= −
√

1− γ

γ

1

8
√
2

(
1 + δ

γ
+ 3

)

, (106)

where we used (100). Thus, using (104), we arrive with

f′′1 = f′0 + f′1

=
1

2

√
γ

1− δ
−
√

1− γ

γ

1

8
√
2

(
1 + δ

γ
+ 3

)

. (107)

Turning attention to e′′1 = e′1 = e1λ1, we have

e′′1 =
1

1
2 − 1

(

−
(γγs

2

) 1

2
−1
)

(−1)1

2
√
2π

(

−ρ+
ρ−

1

8
− 3

8

)

=
1

8
√
π

(
ρ+
ρ−

+ 3

)

(γγs)
− 1

2 . (108)

Fetching g0 from (92) and then using (103) gives

e′′1 −
1

2
g0 =

1

8
√
π

(
ρ+
ρ−

+ 3

)

(γγs)
− 1

2 − 1

2

1√
π
(γγs)

− 1

2

=
1

8
√
π

(
ρ+
ρ−

− 1

)

(γγs)
− 1

2

=

√
2

8
√
π

√

1− γ

1− δ
(γγs)

− 1

2 . (109)

Subtracting one more term of the Bessel expansion (92) yields

e′′1 −
1

2
g1 =

√
2

8
√
π

√

1− γ

1− δ
(γγs)

− 1

2 − 1

8
√
π
(γγs)

− 3

2 .

(110)

One can check now that plugging (110) and (107) into (99)

reproduces (35), the second formula in Corollary 2.

Remark 1: Dropping the (γγs)
− 3

2 term in the second formula

in Corollary 2 yields

P
m′|m
e,bin ∼

[
1

2

√
γ

1− δ
−
√

1− γ

γ

1

8
√
2

(
1 + δ

γ
+ 3

)]

· erfc
(√

γs
√
1− γ√
2

)

+

√
2

8
√
π

√

1− γ

1− δ
(γγs)

− 1

2 exp

[

−γs(1− γ)

2

]

.

(111)

This is a somewhat looser approximation for very large γs
but works well for moderate values of γs of interest in our

applications.

It remains to derive the crude approximation (36). When√
x =

√
γs

√
1−γ√
2

is large, which happens for large γs when γ
is not too close to 1, the simple standard asymptotic form

erfc(
√
x) ∼ 1√

πx
e−x is appropriate and, when substituted into

(105), yields (36):

P
m′|m
e,bin

∼ 1

2

[√
γ

1−δ

√
2√

π
√
γs
√
1−γ

− 1√
πγγs

]

exp

[

−γs(1−γ)

2

]

=
1

2

[ √
2γ√

1− δ
√
1− γ

− 1

]

1√
πγγs

exp

[

−γs(1− γ)

2

]
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=
1

2

√
1 + γ√
1− γ

1√
πγγs

exp

[

−γs(1− γ)

2

]

, (112)

where the last equality can be obtained by using

√

1 + γ +
√

1− γ =
√
2
√
1 + δ, (113)

which itself is evident from δ =
√

1− γ2 after squaring.

It is worth recording that (112) can be also rewritten as

P
m′|m
e,bin ∼ 1√

2π

√

1 + 1
1−d2ic/2

dic

1√
γs

exp

(

−1

2
γs

d2ic

2

)

,

(114)

where dic stands for dic(sm, sm′) =
√
2
√
1− γ, the incoherent

distance between the two symbols sm and sm′ (as given by

(41)). This explains the leading asymptotic behavior given in

expression (37).
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