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Mode Vector Modulation: Extending Stokes Vector
Modulation to Higher Dimensions

Jaroslaw Kwapisz

Abstract—We examine the scalability of Stokes vector mod-
ulation (SVM) to higher-dimensional Stokes spaces in order to
decrease the energy consumption of optical links. We propose
and study mode vector modulation (MVM), a new multidimen-
sional SVM scheme for transmission over multimode/multicore
optical fibers or free-space modes. MVM can be demodulated
using a digital polarimetric direct-detection (DD) receiver that is
an extension of the original single-mode Stokes vector receiver to
multimode links. This paper focuses on the MVM transceiver ar-
chitecture, the back-to-back performance of optically-preamplified
DD MVM receivers, the optimized geometric shaping of the MVM
constellation, and the related bit-to-symbol mapping. We show that
MVM DD outperforms conventional single-mode, direct-detection-
compliant, digital modulation formats by several dB in terms of
receiver sensitivity and the SNR gain increases with the number
of spatial degrees of freedom (SDOFs) IN. At the conclusion of the
study, we consider the potential application of MVM as a substitute
for M -ary pulse amplitude modulation (M -PAM) or M-SVM in
short-haul optical links and evaluate its benefits and drawbacks.

Index Terms—Data center interconnects, polarization shift
keying (PolSK), Stokes vector modulation (SVM), direct
detection (DD), short-haul optical communications, space division
multiplexing (SDM).

I. INTRODUCTION

PECTRALLY-EFFICIENT modulation formats for high-
S capacity, short-haul optical communications systems [1],
[2], in conjunction with advanced direct-detection receivers,
have become one of the most active research areas in contem-
porary optical communications.

Low cost, low energy consumption, and high spectral ef-
ficiency are desirable features for short-haul applications [3].
To satisfy these requirements, commercially-available 400G-
Ethernet optical interconnects for various distances currently
use several parallel fiber lanes (or separate wavelengths), each
carrying either binary intensity modulation (IM) or quaternary
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pulse amplitude modulation (4-PAM), and direct-detection (DD)
receivers [4], [5], [6], [7].

Given the forecasted exponential increase in data traffic in
the near future due to broadband applications [8], to accom-
modate traffic demands, it will be important to keep increasing
the spectral efficiency per fiber lane or per wavelength channel
of short-haul optical links in an energy-efficient manner. The
main disadvantage of M-PAM is that, at the amplified spon-
taneous emission (ASE) noise limit, its energy consumption
scales quadratically with the number of amplitude levels M [9]
since the M -PAM constellation is one-dimensional. Therefore,
it would be beneficial to adopt advanced multi-dimensional
modulation formats, which are preferably still amenable to direct
detection but offer a better spectral efficiency-energy efficiency
trade-off compared to M -PAM.

Looking forward, we anticipate that it will be necessary to
modulate additional attributes of the optical wave other than
the amplitude, e.g., the phase or the polarization, in order to
increase spectral efficiency beyond today’s values while keeping
energy consumption at acceptable levels. Consequently, it will
be necessary to recover the information imprinted in the electric
field of the optical wave using either direct-detection-based
interferometry [10], direct-detection-based polarimetry [11],
self-homodyning [2], [12], [13], [14], [15], or low-cost co-
herent detection [16], [17], [18], [19], [20], [21]. In this pa-
per, we focus our attention exclusively on digital polarization
modulation formats in conjunction with direct-detection-based
polarimetry.

Polarization shift keying (PolSK) was first studied in the late
1980s [22], [23] and early 1990s [24], [25], [26] before later
falling into obscurity. It was recently revived as a subset of
Stokes vector modulation (SVM) [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [371, [38], [39], [40], [41], [42], [43],
[44], [45], [46], [47] when research in direct-detection systems
was rekindled. This renewed interest in digital polarization
modulation formats has been fueled by the maturity and low cost
of integrated photonic components and the possibility of using
adaptive electronic equalizers in the direct-detection optical
receivers to compensate for polarization rotations introduced
by short optical fibers'.

SVM allows for more power-efficient signaling than M-
PAM. This is achieved by spreading the constellation points

Other applications of the Stokes space formalism were also proposed in
combination with various modulation formats [48], [49], [50], [51], [52], [53],
[54], as well as in combination with digital signal processing (DSP) [55], [56],
[571, [58], [59].
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in the three-dimensional Stokes space, as opposed to the one-
dimensional M -PAM signal space.

To further increase the energy-efficiency of SVM formats, a
transition to a higher-dimensional Stokes space is necessary,
which can be achieved by using SVM together with few-
mode fibers (FMFs) and multicore fibers (MCFs) or free-space
modes [53]. We call this novel, multi-dimensional version of
SVM mode vector modulation (MVM).

SVM and MVM are spatial modulation formats [60]. It is
worth mentioning here that several papers studied spatial mod-
ulation formats for coherent optical communication systems
over MCFs. For instance, Eriksson et al. [61] analyzed multidi-
mensional position modulation (MDPM) with multiple pulses
per frame (K -over-L-MDPM) in combination with quadrature
phase shift keying (QPSK), polarization-multiplexed QPSK
(PM-QPSK) and polarization-switched QPSK (PS-QPSK) to
increase both the spectral efficiency and the asymptotic en-
ergy efficiency compared to conventional modulation formats.
In companion papers, Puttnam et al. [62], [63], [64] re-
viewed spatial modulation formats for high-capacity coherent
or self-homodyne optical systems using homogeneous multicore
fibers.

In this article, we study, for the first time, short-haul optical
interconnects using MVM along with optically-preamplified
direct-detection receivers. A visual abstract of the paper is given
in Fig. 1. In the remainder of the paper, we elaborate on the
following topics:

1) An overview of MVM along with the necessary mathe-
matical formalism, notation, and simplifying assumptions
(Section II);

2) The optimal MVM transceiver architecture (Section III);

3) The performance limits of MVM optically-preamplified
direct-detection receivers using both Monte Carlo simula-
tion and a new analytical formula that we derived for the
union bound (Section IV);

4) The design of geometrically-shaped constellations with
arbitrary cardinality M, obtained by numerical optimiza-
tion of various objective functions using the method of
gradient descent (Section V);

5) The bit-to-symbol mapping optimization using simulated
annealing (Section VI);

6) The investigation of various constellation designs and bit
encodings using analytical and numerical methods (Sec-
tion VII);

7) The use of simplex MVM constellations based on symmet-
ric, informationally complete, positive operator-valued
measure (SIC-POVM) vectors [65] (Section VII);

8) A comparative analysis of MVM DD against alterna-
tive modulation formats used in short-haul optical links
(Section VIII).

Early results on the above topics were presented in [66], [67],

[68], [69], [70], [71].

II. MODE VECTOR MODULATION OVERVIEW

A. MVM Signal Representation

As mentioned before, MVM can be used together with mul-
timode and multicore fibers, as well as for free-space transmis-
sion. In this section, for the description of the operation of the
MVM transceiver, without loss of generality, we examine the
special case of MVM transmission over an ideal homogeneous
multicore fiber with identical single-mode cores and negligible
differential group delay among cores.

We assume that we select a subset of K single-mode cores
of the multicore fiber (Fig. 2). MVM consists in sending optical
pulses over all these cores simultaneously with the same shape
but different amplitudes and initial phases (Fig. 3). Similar to
SVM over single-mode fibers (SMFs), wherein the optical wave
can be analyzed in two orthogonal states of polarization, e.g., x
and y, the composite optical wave of MVM over a homogeneous
single-mode-core multicore fiber can be described by N = 2 K
orthogonal states of polarization, e.g., x and y in each core.

The mathematical representation of the MVM signals at the
fiber input is written as

En(t) = Ay exp (tdm) g(t)[5m), (D

where m =1,..., M, A,, and ¢,,, denote the common ampli-
tude and phase, respectively, g(t) is a real function describing
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Fig. 2. MVM over homogeneous MCFs with single-mode cores.
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Fig. 3. (a) Intensity plot and (b) Polarization ellipses of an MVM signal
propagating over an ideal homogeneous two-core MCF with identical uncoupled
single-mode cores.

the pulse shape, and |s,,,) is a generalized unit Jones vector col-

lecting the complex excitations of the cores, i.e., the amplitudes

and phases of electric fields of the optical waves [72], [73], [74].
The signal energy &; is given by [9]

00 A2
/ g(t)?dt = 7’”59,
2)

where T denotes the adjoint (i.e., conjugate transpose) of a matrix
and &, denotes the pulse energy defined as

&y ::/

In the remainder of the article, without loss of generality, we
consider that the common amplitude A,,, and phase ¢,, in (1)
are constant. In other words, we focus exclusively on a special
case of MVM that is a generalization of PolSK to higher dimen-
sions.

In PolSK MVM, we modulate all available spatial degrees of
freedom (SDOFs) to transmit an MVM symbol. In the SVM
literature, however, alternative modulation and demodulation
strategies have been proposed, which could be applied to MVM
as well. For instance, it is possible to transmit an unmodulated
carrier on one of the SDOFs [29], [30], [31], [53] and use this
carrier to perform self-homodyning of the remaining SDOFs.
This technique takes advantage of a fraction (N — 1)/N of
the available capacity. However, for large N, the capacity loss
is immaterial. Furthermore, on the upside, this self-homodyne

1 [~ A?
== E,,(t)'E =m
Es 2/700 m () Ep, (t)dt 5

g(t)%dt. 3)
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technique enables the use of more spectrally-efficient modula-
tion formats, such as 16-QAM, and it is amenable to electronic
chromatic dispersion compensation. The merits of such alterna-
tive MVM schemes vis-a-vis the PolSK MVM examined here
are outside of the scope of this article and will be part of future
research.

B. Mathematical Notation

Throughout the paper, we follow the conventions of [73], [74],
[75], where Dirac’s ket vectors represent both unit and non-unit
vectors in the generalized Jones space, while hats indicate unit
vectors and arrows indicate non-unit vectors in the generalized
Stokes space.

We can parameterize a unit Jones vector |s), up to phase, using
2N — 2 hyperspherical coordinates [74], i.e.,

s) :

[cos b1, sin ¢y cos dg €01, sin ¢y sin py cos 3 €2, ...,

. ) . .
sin ¢ -+ - cos pn_1 BLHN,Q, sin ¢ - - -sin py_1 eLeN,l]

“

where the superscript 7" indicates transposition.

Unit Jones vectors up to phase are often represented by
generalized real unit Stokes vectors § in a higher-dimensional
real vector space RV *~1, Generalized unit Stokes vectors are
defined by the quadratic form [74]

§:=Cn{(s|Als), Q)

where A denotes the generalized Gell-Mann matrix vector and
C'y denotes the normalization coefficient [74],

N

“EVam

(6)
From the generalized Stokes vector definition (5), we notice
that the dimensionality of the generalized Stokes space grows
quadratically with the number of spatial and polarization modes
N in MMFs/MCFs. Therefore, instead of using SVM DD in
conjunction with the conventional 3D Stokes space, we can
generate more energy-efficient constellations by spreading the
constellation points in the generalized Stokes space.

Also notice that the N2 — 1 components of § are functions
of the 2N — 2 hyperspherical coordinates of |s) in (4) and,
therefore, are interdependent.

For each unit Jones vector |s), we can define the associated
projection operator S := |s)(s|, which represents a mode filter,
i.e., the equivalent of a polarizer in the two-dimensional case.
This projection operator can be expressed in terms of the identity
matrix and the generalized Gell-Mann matrices [74]

1 1
S=—1Iy+

N 5Cn §-A. @)
By rearranging the terms in (7), we obtain
. 1
§5-A=2Cy (SNIN>. (8)

From (8), we see that Stokes vectors arise as coefficients with
respect to a fixed Gell-Mann basis for the trace-neutralized dyad
S — + Iy, assuming (ss) = 1.
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Schematic of the proposed (a) MVM transmitter and (b) Optically-preamplified MVM DD receiver for an ideal homogeneous two-core MCF with identical

uncoupled single-mode cores. Symbols: LD=laser diode, MZM=Mach-Zehnder modulator, OA=optical amplifier and matched optical filter, PCTR=polarization
controller, PBC/S=polarization beam combiner/splitter, 90°=90°-optical hybrid, ADC=Analog-to-digital converter. (Condition: N = 4.)

In the remainder of the article, we will use the Jones vector
up to phase e'?|s), the dyad S = |s)(s|, and the Stokes vector
§ interchangeably, depending on which one is more convenient.
In particular, even when we use Jones vectors to represent points
in a constellation, since we consider noncoherent detection, we
refer to it as a generalized Stokes constellation.

C. Simplifying Assumptions

In Section IV, we will analytically calculate the back-to-back
performance of M-ary MVM over N spatial and polarization
degrees of freedom in the ASE noise-limited regime. For math-
ematical tractability, we neglect all transmission impairments
other than ASE noise and random carrier phase shifts, as well as
transceiver imperfections and implementation penalties. These
simplifying assumptions are justified in the sense that we want
to quantify the ultimate potential of MVM for use in optical
interconnects.

Nevertheless, it is worth discussing upfront about the antici-
pated impact of the most prominent transmission effects.

In general, the extension of SVM to MVM requires similar
conditions for transmission, i.e., negligible chromatic disper-
sion (CD), modal dispersion (MD), and mode-dependent loss
(MDL), or their full compensation, either in the optical or the
electronic domain, before making decisions on the received
symbols at the receiver. Let us briefly contemplate how fea-
sible it would be to satisfy these requirements in the case
of practical homogeneous multicore fibers with single-mode
cores.

As a starting point, consider transmission over homogeneous
MCFs with uncoupled or weekly-coupled single-mode cores.
These fibers typically exhibit static and dynamic intercore
skew [62]. The static differential mode group delay (DMGD)
spread is on the order of 0.5 ns/km and grows linearly with the
transmission distance. The DMGD spread due to the dynamic
component of the intercore skew is of the order of 0.5 ps/km and
also grows linearly with the transmission distance.

On the other hand, coupled-core MCFs exhibit modal dis-
persion and strong coupling among their supermodes and the

DMGD grows with the square root of the transmission dis-
tance [76], [77]. From published values based on the characteri-
zation of several coupled-core MCFs used in MDM experiments,
we conclude that the MD coefficient is currently on the order of
3-6 ps/+/km. These values are much higher than typical polariza-
tion mode dispersion (PMD) coefficient values for single-mode
fibers (SMFs), e.g., from the data sheet of Corning SMF-28
Ultra optical fiber [78], we notice that the PMD coefficient is
less than 0.1 ps/v/km.

Transmission impairments can be compensated using a com-
bination of optical and electronic techniques at the transmitter
and the receiver. These techniques are out of the scope of this
article, since we are interested in the back-to-back performance
of MVM systems, and will be part of future work. For simplicity,
in the depiction of the optically-preamplified MVM DD receiver
in Fig. 4(b), we assume ideal optical post-compensation of all
transmission impairments.

III. TRANSCEIVER DESIGN

In Fig. 4(a), we draw the block diagram of an MVM transmit-
ter for an ideal homogeneous multicore fiber with two iden-
tical single-mode cores (/N = 4). The schematic shows the
optical components required for a single wavelength but the
architecture can be easily generalized for wavelength division
multiplexing (WDM). Our goal is to generate the /N spatial
and polarization components of the MVM signal as described
by (1).

The transmitter design begins with a single semiconductor
laser diode. Subsequently, a Mach-Zehnder modulator, followed
by a phase modulator, can be employed to alter the pulse shape
g(t), as well as the common amplitude A,, and phase ¢,
of the MVM signal according to (1). After that, electro-optic
splitters can be used to partition the signal into N parallel
branches. By adjusting the control voltage of each Y-junction,
an arbitrary power splitting ratio between its two output ports
can be achieved. Recalling the hyper-spherical parametrization
of the unit Jones vector |s,,) in (4), the power splitting ratio is
cos?(¢y) : sin?(¢y) at the first Y-junction, cos?(¢2) : sin®(¢o)

Authorized licensed use limited to: Montana State University Library. Downloaded on September 30,2024 at 21:05:41 UTC from IEEE Xplore. Restrictions apply.



1970

ML 5(n)
=

é(n)

M(n)

LMS

Fig. 5. Least mean squares (LMS) algorithm for polarization tracking [29].

at the second Y-junction, and so forth?. Then, an array of phase
modulators is used to generate phase differences among vector
components. Finally, polarization controllers and polarization
beam combiners are used to merge pairs of signals originating
from different optical paths to create orthogonal states of polar-
ization (SOPs) that are launched into separate fiber cores.

The purpose of the optical front-end and the DSP unit of
the MVM receiver is to infer the Stokes components of the
incoming spatial superchannel, which are given by (5), from a
set of power measurements. To begin, it is necessary to separate
the spatial and polarization components of the individual trib-
utaries of the spatial superchannel using mode demultiplexers
and polarization beam splitters. Then, an array of [NV photodiodes
are used to measure their powers. In addition, polarization
controllers and power splitters/couplers are used to combine
the different spatial and polarization components pairwise in
order to create N(N — 1)/2 distinct combinations. The real
and imaginary parts of the latter are measured using an array
of 2N (N — 1) identical photodiodes grouped in pairs. In total,
2N? — N photodiodes are employed to measure all the elements
of the dyad S = |s)(s| independently [69].

However, by taking advantage of the interdependence of
Stokes components, as they are functions of the 2N — 2 hyper-
spherical coordinates of |s), it is possible to reduce the direct-
detection receiver front-end complexity. In [69], we showed that
O(N) photodiodes are sufficient to estimate the Stokes param-
eters of the spatial superchannel. Fig. 4(b) shows an example of
a reduced-complexity direct-detection receiver for N = 4.

For the purposes of this article, we assume that the simplifying
assumptions of Section II-C hold, i.e., the optically-equalized
communication channel exhibits negligible CD, MD, and MDL
so that the residual transmission effects (random modal bire-
fringence and random differential carrier phase shifts) can be
modeled by a frequency-independent random unitary matrix.
The action of this transfer matrix is a dynamic rotation of the
received mode vector that varies slowly over time.

Stokes receiver DSP (Fig. 5) [29] can estimate Stokes vector
rotations caused by fiber propagation and can counteract them
by multiplying, in Stokes space, the received generalized Stokes
vector 7(n) at the n—th time instant with a compensating gen-
eralized (N2 — 1) x (N? — 1) Miiller matrix M(n). Alterna-
tively, it is possible to perform optical derotation and MD/PMD

% An alternative design, similar to the one proposed by Kikuchi and Kawakami
for SVM [79], would entail the use of a passive 1:IN splitter, followed by an
array of IV parallel quadrature modulators, one at each individual transmitter
branch.
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compensation of the received generalized Jones vector, which is
driven by the Stokes vector receiver DSP.

Notice that the proper operation of MVM DD system does not
require the absence of intermodal crosstalk. Intermodal crosstalk
by itself can be mathematically represented as a generalized
polarization rotation. The memoryless MIMO DSP equalizer
in the MVM DD receiver can fully invert the channel transfer
matrix in the generalized Stokes space and counteract intermodal
crosstalk. In principle, there is virtually no signal-to-noise ratio
penalty due to intermodal crosstalk.

The decisions of the Stokes vector receiver in Fig. 4(b) are
based on the maximum a posteriori (MAP) criterion [9], which
is equivalent to the maximum-likelihood criterion for equiprob-
able signals [9] (see Section IV-B). Applying the maximum-
likelihood criterion in the generalized Jones space, we will show
that the optimum decision maximizes the modulus of the inner
product of Jones vectors (cf. (24)).

IV. SYMBOL ERROR PROBABILITY

In this Section, we describe the derivation of an upper bound
for the back-to-back symbol error probability of the optically-
preamplified MVM DD receiver based on the union bound
formalism [9].

A. Transmission Channel Model

We formulate the transmission channel by a discrete-time
model [80]. All optical and electronic signals from now on are
represented by their samples taken once per symbol.

After optical post-compensation, we assume that all trans-
mission impairments are fully compensated. For instance, let U
denote the unitary Jones transfer matrix of the optical fiber due
to modal birefringence. We assume that the unitary fiber transfer
matrix U is fully compensated, up to a random phase 6, by a
zero-forcing optical adaptive equalizer with transfer matrix W
so that

WU = 1y, )

where Iy denotes the N x N identity Jones matrix.

After the optical front-end, at a given sampling instant, in the
absence of noise, the incoherent receiver recovers the transmitted
Jones vector |s,;,) up to phase 6, which one could denote by
e?)s,,).

Optical amplifiers introduce ASE noise, which is modelled
as additive white Gaussian noise (AWGN). As a result, the
received vector at a given sampling instant before photodetection
equals [80]

Ir) = Ape®me|s,,) + |n), (10)
where 6 is uniformly distributed over [0, 27) and |n) is a noise
vector in Jones space. Notice that |r) and |n) are non-normalized
Jones vectors, whereas |s,,) is a unit Jones vector.

Assuming identical optical amplifiers at the output of all cores,
|n) has independent and identically distributed (i.i.d.) entries fol-
lowing a complex Gaussian distribution. The probability density
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function (pdf) of |n) is

P 1) = oz o (- 505 ).

where % denotes the noise variance per quadrature after the
matched optical filter.
The noise energy in each spatial degree of freedom is

(11)

No = L /DQ n,(t)'n,(t)dt = o2, (12)

2 )
where n, (t) is the complex noise component in a single quadra-
ture plane of the electric field (given by any |v) € C).
The symbol SNR +;, taking into account the noise over a
spatial degree of freedom of the signal |s,,), is defined as
& A2
= = T
7 No 20277
In the following, without any loss of generality, we assume that
Ap=1land &, = 1,50

(13)

1
- 2027

The received dyad R = |r)(r| is related to the transmitted
dyad S,;, = [$1m) (S| by the Stokes channel formula:

) (r] = |sm)(sm| + 2R (|sm)(nl) + |n)(n,
N~ ——

R S

Vs (14)

5)

N

where R(.) denotes the real part. Observe that, in this for-
mulation, the last two terms form a non-Gaussian noise N,
exhibiting signal-noise and noise-noise beating

Ny = 2R (|sm){(n]) + |n)(n]. (16)

As we indicated before, Jones vectors up to phase can be de-
scribed by their dyads or their generalized real Stokes vectors in
ahigher-dimensional real vector space RY 1 Thus, the channel
formula (15) could be expressed in three equivalent forms.

In translating to the generalized Stokes space, one has to
keep in mind that the received Jones vector |r) is typically
a non-unit vector (up to phase) and its dyad is expanded in

the Gell-Mann basis as R = <T]l;’> Iy + ﬁf’- A (cf. (7)) so

that the generalized Stokes vector ¥ € RV *has squared norm
|72 = (r|r)? = tr(R?). The noise N,,,, which is a Hermitian
matrix, could be Gell-Mann expanded in a similar way.

B. Optimum Decision Criterion for Equipower Signals

The decision scheme at the receiver uses the maximum a
posteriori probability (MAP) criterion [9] to select a signal 5,3,
out of the set of M transmitted signals given that 7" was received

m = argmax P (&, | 7). 17

1<m<M

From Bayes’ theorem, the conditional probability distribution
of §,, given is

P P(7| 8m)

P(sm | T) = P

(18)

1971

where P, is the probability of sending §,,,, P(7) is the marginal
pdf of receiving 7, and P (7| §,,, ) is the likelihood pdf of receiving
7’ given that §,,, was sent.

By substituting (18) into (17) and omitting the common
denominator P(7) (which does not influence the decision), we
obtain

m = argmax P, P (7| $m). (19)

1<m<M
In this article, we focus exclusively on equiprobable symbols,
and, therefore, P,, = 1/M. In this case, the maximum a poste-
riori probability (MAP) criterion of (19) becomes equivalent to
the maximum-likelihood (ML) criterion [9]

m = argmax P (7| $m,).
1<m<M

(20)

The likelihood pdf in (20) is obtained by considering the Jones
vectors corresponding to 7 and 3,,, noting that |rr) — e*?|s,,,) =
|n) by (10), and averaging the pdf (11) over all 6 [9]:

P(7| 3m)

e [Mep (Nt @
(2ma2)N 202 21

1 {rlr) - <8m8m>> I (|<r|8m>|> 7

B (2wo2)N P (_ 202 a?
2D

where we used the modified Bessel function of the first kind of
zero order

To(z) = © /ﬂ exp (2 cos 0) df. 22)
0

™

Equality (21) is obtained by expanding in the exponent (cf. (15)):
) — e*lsm) 12
= (r[r) + (smlsm) = 20 (00| (r]s,0)]),

2cos(0—0.,)[(r|sm)]

(23)

where 0,,, denotes the argument of (r|s,, ) (which is immaterial).
Based on (21), we can rewrite the maximum likelihood (ML)
criterion (20) as [81]

m = argmax [(r|s,, )],
1<m<M

(24)

where we used the monotonicity of Ip(z) and the fact that
<5m|5m> =1

In particular, in the Jones space, the ML decision region D,,, C
CN for s,,) is

Do = {|7)  |(7|8m)] = [{r]8m)| forallm’ #m}. (25)

In passing, note that D,,, viewed in the Stokes space is the
Voronoi cell around §,,, and this is so irrespective of which
applicable concept of distance, dj. or dgkes, 1S used (cf. Sec-
tion IV-D).

The symbol error probability is the expected probability of
missing the right ML decision region, expressed by the following
sum of integrals with respect to the 2/ N-dimensional volume in

Authorized licensed use limited to: Montana State University Library. Downloaded on September 30,2024 at 21:05:41 UTC from IEEE Xplore. Restrictions apply.



1972

e|§_Z-P7nZ/ PT|Sm d|7>

m=1 m'#£Em n

(26)

Inprinciple, I s can be computed based on the channel model,
but its analytic evaluation is impossible for all but the simplest
constellations due to the complex geometry of the ML decision
regions D,,,. Therefore, readily computable analytic bounds on
Ps are of value.

C. Union Bound

The general form of the union bound is [9]

e‘SSZP Z ebln’

m=1 m'#m

27

where P’ u;” is the pairwise error probability of deciding on
[Smr) when |s;n) was sent in a binary fashion, while no other
symbols are considered. Therefore,
Pl = / P 8w dir). (28)
pm/|m
Above, the pairwise error decision region D™!™ is where
Py P(78m) > PpP(718m), i.€., for equiprobable symbols,

rlsm)} -

Inequality (27) follows from the manifest inclusion D,, C
Dmim,

Our main result gives an explicit form for the terms in the
union bound.

: N
Theorem 1: The pairwise error probability between two
equiprobable non-orthogonal unit vectors |s,, ), |s,,/) € C
is

Dmf\m _ {‘ c CN |3m >| > | (29)

POV = Q1 (VAsp—, vsP+)
s (-F)n(R). o
where we defined the length parameters
pa = 1%5 (31a)
§:=/1-72, (31b)
7= [{smlsm)| > 0, Gle)

and @ stands for the Marcum Q-function of the first order
defined by [9]

o0 2 2
Q1(a,b) ::/ 2 exp <—x ;’a )Io(ax)dx. (32)
b

A J

The formulas extend to the case of orthogonal signals, when
= 0 and one can fall back onto Q1(0,b) = exp (77) To
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improve readability, we leave the proof of Theorem 1 to Ap-
pendix A. For ease of reference, we instantiate (27) with (30)
and record the following corollary.

- 0
Corollary 1: Given an MVM signal constellation repre-
sented by equiprobable unit Jones vectors (|s,,))M_, € CV
the symbol error probability I is bounded by

1 M
Pe|s§MZ Z

m=1m'#m

[Q1 (/T n/Ta4)

Ly ]
K )

Below, we present asymptotic expressions that are valid for
larger values of the symbol SNR ~, and are obtained by imple-
menting the results reported in [82] (proven in [83] and based
on [84], [85]). The derivation of these formulas is given in
Appendix B.

4 N
Corollary 2: For large values of the symbol SNR +,, when
YsP+P— = 7s7y/21s sufficiently large, we can use asymptotic
expansions for P’ mim
imations are as follows:

PW{;!m ~ 1 erfc VsVl
e,bin 2\ 11— 5 \/§

1
—2exp (— 33)

and the zeroth and first order approx-

1 '78(1_7)
=5 — . exp |:——2 :| (34)
and
o
1 v J1=v 1 1+6
iV (5]
xerfc(ﬁ 1-7 )
8\/— l\/_\/ (775) 7% — ’Y'Ys)_g]
xexp[ ’ys(lT—'y] 35)
K )

We note that the particular appeal of the asymptotic expres-
sions in the corollary above is their ability to handle poorly
separated vectors (with vy ~ 1). Pairs of vectors with small
separation contribute the bulk of the F;. Moreover, MVM
constellations with a given spectral efficiency per SDOF (e.g.,
analogous to QPSK) have diminishing minimal distance with
the increase of the number of cores/modes.

When 7 is not too close to 1 and the symbol SNR is large, we
have a simpler asymptotic expression (with a straightforward
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derivation given in Appendix B):

mim 11 /1 1 (1 —
T~ 5= e exp {—7( ”)]. (36)
b TN 1=y v 2
In any case, the leading exponential asymptotics is
¥s(1 =) 1 dic(8m; 5m)?
- = — s, 37
exp [ B ] exp [ 57 B (37)

where dic(Sm,, $nv) is the incoherent distance between §,,, and
S, (as defined in Section IV-D, ahead). This indicates that the
distance d;. is a natural way of expressing proximity of the
symbols in our context.

We add that, if v = 0, (34)—(36) are not valid. However, then

P:i;‘l;n equals 1 exp(—7;/2) and is eclipsed by the terms with
~ > 0 1in the sum giving the union bound (27). Even though (34)
and (35) work well even for moderately small values of -, one
can safely drop the terms with the smaller v ~ 0.

Appendices A and B are devoted to the proofs of the Theo-
rem 1 and the Corollary 2, respectively. Section VII shows com-
parisons of the union bound for F,; obtained by using the above
theoretical approximations and numerically-computed, Monte
Carlo-based, values of P, for several example constellations.

D. Distance Definitions

For the optimal geometric shaping of an MVM constellation,
which is discussed in Section V, it is necessary to adopt some
function of the distance between constellation points. The choice
of a distance function depends on the detection scheme and the
nature of the dominant channel impairments. For the back-to-
back performance evaluation of optically-preamplified MVM
DD receivers, we consider that ASE noise is the dominant im-
pairment. In this case, for equienergetic MVM constellations, the
suitable metric turns out to be the chordal Fubini-Study distance,
which is a special case of what we call below incoherent/DD
distance. We note that there are several arguments advocating
naturality of this metric. Perhaps the strongest is based on the
way it enters the previously derived asymptotic form of the union
bound (37) for the symbol error probability.

One quick takeaway is that there is a better distance than the
ordinary Euclidean Stokes distance, which is often the default
choice and was also initially used in our computations (see
Section V-B). Below, we define the incoherent/DD distance and
relate it to other common distance functions.

1) Coherent Distance: In Jones space cN , we have the stan-
dard Euclidean distance between MVM symbols, which can be
written as a function of the Hermitian inner product

de(ls), [s')) = llls) = sl
= /(sls) — 2R(s[s") + (s']s").

For unit vectors, (38) is expressed in terms of the coherent angle
. € [0, 7] as

(38)

de(|s),]s")) = V2y/1 — cos b,

= R(s]s').

(39)

where cos 0,
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We refer to this distance as coherent distance, since the
probability of making a binary error between |s) and |s') in
a coherent receiver depends on d. in a natural way.

2) Incoherent Distance: In the case of incoherent detection,
a transmitted MVM symbol is abstractly represented by a Jones
vector up to phase, e’ |s), with indeterminate 6 € [0, 27). Math-
ematically, as long as |s) # 0, this is a circle in Jones space
CN. From this standpoint, one might guess that the natural
distance between symbols s and s’ is the minimum coherent
Jones distance between the two circles:

die(]3), 1)) += mine*?]s) — e7|s') |

= VIsl? =2/(s[sH[ + ]2 40)
When ||s|| = ||s'|| = 1, we can use the incoherent/DD angle
Oic € [0,7T/2]1
dic(ls), ') = V2y/1 -7, @1)
where v := cos 6. := [(s|s")].

In this case, the distance coincides with the chordal Fubini-
Study distance on the complex projective space. In Appendices
A and B, the incoherent cosine v = cos 6. = [(s]s')| of two
normalized symbols under consideration will make frequent
appearance.

Of course, if only from R(s|s’) <

dic(]s), [s)) < de(]s). [5))

The loss of phase information degrades one’s ability to distin-
guish symbols.

3) Hilbert-Schmidt and Stokes Distance: Another way to
represent incoherently-received symbols is with dyads S :=
|s)(s|. Their natural ambient linear space is My n(C) of all
N x N complex matrices, which can be used together with the
Hilbert-Schmidt Hermitian inner product tr(A'B), where the
operator tr( ) denotes the trace of a matrix.

The Hilbert-Schmidt distance on My v (C) is defined as

|(s]s")|, we have

and 6. < 6.. 42)

dus(A,B) = |A = Bl x4

= \/ir(ATA) — 2Rix(ATB) + r(BIB). (43)

Restricted to dyads, since [|S||% ¢ = (s|s)? and tr(S'S’) =
|(s|s"}|? is already real, we get

dis(S, S") = V/(s]s)2 — 2[(s[s)[> + (s']')2. (44

When |[||s)|| = |||s')]| = 1, we could speak of Hilbert-Schmidt
angle and

dus(S,S') = V2¢/1 —~2, where v :=|(s|s")].  (45)

Traditionally, incoherently-received MVM symbols are rep-
resented by Stokes vectors 5 € RY 2’1, whose entries are the
coefficients of the expansion of the trace-neutralized dyad S,
e.g., S— +1Iy (assuming normalization (s|s) = 1), with re-
spect to the Gell-Mann matrix basis [73]. The Euclidean dis-
tance in Stokes space, called Stokes distance, coincides with the
Hilbert-Schmidt distance up to scaling (having to do with the

Authorized licensed use limited to: Montana State University Library. Downloaded on September 30,2024 at 21:05:41 UTC from IEEE Xplore. Restrictions apply.



1974

said trace adjustment and the conventions for the Gell-Mann
matrix basis):

dsokes (8, 8') = 2CN /1 — 2.

The Stokes distance is better suited for thermal noise-limited
DD receivers, not for their ASE noise-limited counterparts,
which have been the focus of this work.

(46)

V. GEOMETRIC CONSTELLATION SHAPING

A quintessential problem in digital communications systems
is the optimal selection of signal sets to minimize the symbol
error probability under various noise distributions and channel
impairments. The term geometric constellation shaping means
that the positions of constellation points in the signal space are
selected appropriately in order to minimize the error probability.
As a prototypical example, Foschini et al. [86] numerically
optimized the shapes of two-dimensional signal constellations
with arbitrary cardinality in the case of AWGN and coher-
ent detection. Extending this work to optical communications,
Karlsson and Agrell [87] investigated optimized power-efficient
multidimensional modulation formats for coherent optical com-
munications systems. For relatively small dimensions N, they
used sphere-packing algorithms to optimize the constellation
points. For larger dimensions, their design strategy was to select
points from N-dimensional lattices [87].

In the case of SVM (/N = 2), geometric constellation shaping
for equipower signal sets (PolSK) was performed numerically,
initially by Betti et al. [22], by maximizing the minimum
Euclidean distance among signals in Stokes space, and then,
by Benedetto and Poggiolini [25], by using the exact symbol
error probability of M-ary PolSK as an objective function. To
derive a formula for the symbol error probability, Benedetto and
Poggiolini calculated the boundaries of the decision regions,
initially considering signal vectors in Stokes space that were
placed at the vertices of a regular polyhedron inscribed within
the Poincaré sphere, and then extending the analysis to generic
equipower constellations with constellation points at the vertices
of irregular polyhedra [25]. Optimum signal constellations for
the case of N =2 and M = 4, 8, 16 and 32 signals were
derived [25]. Kikuchi [27] used suboptimal 2D quaternary
and cubic octary constellations for implementation simplicity.
Morsy-Osman et al. [40] designed intensity/polarization SVM
constellations based on the face-centered cubic (FCC) lattice to
achieve maximum packing density, assuming a thermal-noise-
limited scenario and using the minimum Euclidean distance
criterion.

Our goal here is to spread out the MVM constellation points
on the surface of the Poincaré sphere in the generalized Stokes
space and, thus, improve the symbol error probability in a DD
based link. Since the adoption of symbol error probability as ob-
jective function leads to a computationally-intensive numerical
optimization, a suitably-selected simplified objective function is
used instead. The gradient-descent method [88] is used for the
minimization of the simplified objective function.

To facilitate calculations, we consider an objective function
from electrostatics [89], wherein the constellation points are
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assumed to be identical charges on the surface of a perfectly-
conducting Poincaré hypersphere. Starting from given initial
positions, the charges are allowed to equilibriate under the
action of Coulomb forces. In other words, we recast the
original three-dimensional Thomson problem [89] to higher-
dimensional Stokes space. This adaptation requires constraining
the M constellation points to a (2N — 2)—dimensional manifold
due to the relationships (4), (5) relating the higher-dimensional
Jones and Stokes spaces [72], [73], [74]. The manifold is equiv-
alent to the complex projective space.

It is worth saying a few words here about the extensive litera-
ture on the Thomson problem. Since the original publication of
the problem by J. J. Thomson in 1904, numerous papers were
written on this topic and its variants. Saff and Kuijlaars [90] give
a comprehensive survey of the literature in the two dimensional
case N = 2, with an emphasis on the case when M is large.
Global minima for the Thomson Problem for N = 2 are posted
on the Cambridge website [91].

The function SpherePoints[n] in Wolfram Mathematica [92]
gives the positions of n approximately uniformly distributed
points on the surface of the S? unit sphere in three dimensions,
with exact values for certain small n and a spiral-based approx-
imation for large n [92].

Closely related to Thomson’s problem is the Tammes prob-
lem whose goal is to find the arrangement of M points on a
unit sphere which maximizes the minimum Euclidean distance
between any two points. Jasper et al. [93] studied the Tammes
problem in the complex projective space and maintain a website
listing the current best-known numerical approximations [94].

A. Gradient Computation

Consider a perfectly-conducting Poincaré hypersphere with
identical charges at the positions of the constellation points,
which are constrained to the complex projective space manifold.
As charges repel each other with Coulomb forces, they move
within the manifold until they reach an equilibrium distribution
with minimum potential energy.

The electrostatic potential energy €2(d;;) of two charges i, j
separated by a distance d;; is inversely proportional to their
distance: Q(d;;) ~ d;jl. The total electrostatic potential energy
U of a system of M charges can be obtained by calculating the
potential energy €(d;;) for each individual pair of charges i, j
and adding the potential energies for all distinct combinations
of charge pairs

M M
U=> > Q(dy). (47)
i=1 j=i+1

The distances d;; can be calculated in terms of the correspond-
ing unit Jones vectors |s;) € CN,i=1,..., M, as follows:
dij =¥ ([(sils)]*) =% (+%) - (48)

We leave the function 1) unspecified for now to allow use of
various distances between vectors (cf. Section IV-D).
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To compute the gradient, we first assume that the Jones vectors
depend on a certain parameter ¢t and compute

U oy s Oy
o7 = 2 Y (dij)—;

i<j

g (e a2 s
_ ;Q(dij)w (IGsilsi)?) ===
— ZQ’(dij)w’(|<si|5j>|2)

. OR <<5j|sl-> <a;; 3j> + (sils;) <a88t]

where primes denote derivatives and we used multilinearity to
Al(sils;)I?
ot -

).

(49)

evaluate
Taking ¢ to be the real and imaginary parts of s;,, = T +
1Yim,» the components of the gradient of U are found as

oU , )
OTim > Q(di)y (I(silsi)]?) 2R ((s5]5:)55m)  (50)
ji g
and
oUu , ) -
Byim Z ' (di)t’ (|(silsi)°) 23 ((s;s:)85m) » 5D

where (.) denotes the imaginary part. To state the end result,
the gradient® VU is the vector of real and imaginary parts of the

(complex) vector( ou ) e CMxN

&s“n =2 Z Q/ ” ,

Ji jFi

given by

(I(sils;)1?) (sjls:)8jm.  (52)

B. Example: Coulomb Potential

In the following, we adapt the three-dimensional Thomson
problem [89] to the generalized Stokes space. It is true that
the use of the electrostatic potential energy as an objective
function in lieu of the symbol error probability is not justi-
fied by the underlying physics of the problem under study.
Nevertheless, as shown in Fig. 15, the minimization of the
electrostatic potential yields nearly optimal results that are very
close to the ones obtained by minimizing the symbol error
probability.

For the Thomson problem, we use the Euclidean distance
dstokes in the Stokes space, per (46), so that (48) is written as

P(t) :==2CNV1 —t, (53)
where now t = 2.
From ¢(t)?2 = —4C%t + Const, we get '(t)=
—20%9(t) "
ou ,
s = —ACK Y 2w (ilsi) ) oilsi)sim
s i g

3N.B.: This is not a complex derivative as U is not necessarily analytic.
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= — 4C]2V Z Q/(dlj)d;1 <Sj‘8i>8jm. (54)
Jr j#i

Furthermore, for the case of electrostatic Coulomb forces acting

in the Stokes space, we have the inverse distance potential

Qdiy) =d;}', V(dij) = —d;}. (55)
Thus, instantiating (52) yields

ou

o = =4C% sz;ézd (s5]51)8jm- (56)

C. Numerical Details

We developed an efficient, partially-compiled Mathematica
code implementing the gradient-descent optimization algorithm
for arbitrary potential energies. This implementation is ade-
quately fast on a personal computer to enable design of MVM
constellations with up to M = 1024 points for up to N =8
spatial degrees of freedom (SDOFs) (see Fig. 18).

The gradient-descent optimization algorithm starts with ei-
ther a randomly-generated constellation or a small random
perturbation of a deterministic constellation. To give an exam-
ple, consider the following deterministic constellation of Jones
vectors: their first component is set equal to unity, while their
remaining N — 1 components take all possible combinations
of values in {£1, +¢}. Finally, the Jones vector length is nor-
malized to unity. This process yields an MVM constellation with
M = 4N~1 vectors. We call it the standard constellation. Math-
ematically, it represents the orbits of the vertices of a hypercube
in CV under the circle action by the phase rotation. For this
reason, its more descriptive name could be standard reduced
hypercube constellation or standard reduced Jones hypercube
constellation.

VI. BIT-TO-SYMBOL MAPPING

Once we have geometrically optimized a constellation
(|5m))M_; to reduce the symbol errors, we seek to minimize bit
errors by optimizing the bit-to-symbol mapping. In commonly-
used modulation formats, such as M-PAM, M-PSK, M-QAM
on a square lattice, and their generalization to cubic lattices
of any dimension, this task is achieved via Gray coding [95].
Unfortunately, in general, no such labeling readily exists for the
MVM format.

Given a bit encoding (b,,))_,, where the length of each bit
block by, is k = logy (M), we use the union bound (27) to find
that the average bit error probability Py, (at a symbol SNR )
is bounded by

Pm|m

e,bin

e\b—kMZ Z

m=1m/#m

(57)

mm’7

where A,y denotes the Hamming distance between b, and
b,,/. This is based on the observation that the expected number
of bit errors corresponding to mistakenly receiving |s,,,/) when

|5, ) was transmitted is P} Imp . Weuse the right side of (57)

e,bin
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as an objective function ¢ for evaluating various bit encodings:

§=¢ ((|5m>)m 15 (bm)rAr/L[:D 02)

kMZ Z ebln

m=1m/#m

(58)

Finding a bit encoding (b,,)?/_, that minimizes ¢ ata symbol
SNR ~, serves as a proxy for minimizing bit errors for a
given constellation and, thus, finding the optimal bit-to-symbol
mapping. With M ! possible encodings, the sheer number of com-
binations prohibits brute-force solutions for all but the smallest
constellations. This optimization problem can be viewed as a
type of Quadratic Assignment Problem [96], i.e., the optimal
assignmentof {1,2, ..., M} (inbinary)to (|s,,))}_, with pair-
wise distances given by k}u P:;)K? and pairwise weights given
by Hamming distances D, . Quadratic Assignment Problems
are known to be NP-hard [97] and encompass the classical
Traveling Salesman Problem as a special case.

Given these rapidly scaling combinatorics, we turn to nu-
merical minimization. In particular, simulated annealing has a
long history of use for combinatorial optimization problems [98]
and lies within the broader class of Metropolis-Hastings al-
gorithms. Inspired by metallurgy, simulated annealing algo-
rithms work by stochastically exploring the search space, help-
ing prevent the algorithm from becoming entrapped near local
minima.

Our implementation begins with an initial bit-to-symbol
mapping (b,,)*_, (either randomly selected or the current
best known encoding) and a sequence of temperatures (T,)
per a selected cooling schedule [98]. In each iteration, a
new candidate encoding (b, )M_, is generated by randomly
swapping the bit encodings for two symbols. We then com-
pare &((by,)n/_y) against &((bm)pimy). If €((b),)7=y) <
&((b,,)M_)), then (b!,)M_, is automatically accepted. Oth-
erwise, (b/,)M_, is probabilistically accepted or rejected by
comparing exp{[¢((byn) ) — (b)) 2_,)]/T,} against a
uniformly randomly generated value in [0,1]. The initial high
temperatures give a higher probability of accepting a candidate
encoding (b, )M_, in order to explore the search space, while
the final low temperatures exploit local optimizations.

Implementing a simulated annealing optimization algorithm
inherently requires significant tuning of parameters. Choices
such as initial and final temperatures, cooling schedule, and
number of iterations must all be carefully selected for the
specific problem in order to properly balance exploration versus
exploitation. After an investigation of various cooling schedules,
we established that a classic exponential cooling schedule of
T, = a™Tj, where a denotes the cooling factor, was well-suited
to this problem. With further experimentation, we found that
setting the initial temperature 7| as the standard deviation of ¢ for
arandom sample of bit encodings gave acceptable performance
across a wide range of constellation sizes M, without the need
for extensively tuning this parameter.

M

We remark that the constellation (|s,,))A_; is static and the

Pe"i)‘lgn terms in (58) are computed once at the outset and then

stored for all future evaluations of &.
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Fig. 6.  Square antiprism (Conditions: N = 2, M = 8).

Finally, we note that h,,,, is trivially bounded by k for all
m # m’'. Hence the performance increase that can possibly be
achieved by optimizing the bit-to-symbol mapping (b,,)_,
is limited by a factor of %k (cf. Fig. 14), in contrast to the
several orders of magnitude of performance improvement that
can be obtained by geometrically optimizing the constellation
(|8m))M_, (cf. Fig. 15). Therefore, the allocation of compu-
tation time when generating an (N, M)-MVM format should
place greater emphasis on geometric optimization, while not
completely neglecting to optimize the bit-to-symbol mapping.

VII. RESULTS AND DISCUSSION

In Sections IV and V, we derived an upper bound for the
symbol error probability of (N, M)-MVM and discussed ac-
celerated geometric constellation shaping in the generalized
Stokes space using an electrostatic analog (i.e., an extension
of the Thomson problem to higher dimensions). In Section VI,
we proposed a method to optimize the bit-to-symbol mapping
of arbitrary MVM constellations using simulated annealing. In
this section, we navigate the reader through the steps of the
formalism presented in Sections IV=VI by providing illustrative
examples for specific N, M.

A. Constellation Design

As astarting point, to develop some physical intuition by visu-
alization, we consider constellation shaping and bit-to-symbol
mapping in the three-dimensional Stokes space.

We first examine the optimal distribution of eight points on
the surface of the Poincaré sphere S2. From [25], we know
that the optimal constellation corresponds to a square antiprism
inscribed in the sphere as shown in Fig. 6 (rather than a cube
as proposed by [27]). We want to test whether the solution of
the Thomson problem using the method of gradient descent
coincides with the solution of [25].

Fig. 7 shows the evolution of the potential energy given by
(47) as a function of the number of gradient descent iterations
associated with 100 different random initial configurations of
M = 8 point charges on S2. After about 1,000 iterations, all
cases converge to essentially identical square antiprisms (up to
arbitrary 3D rotations), like the one shown in Fig. 6.
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Fig. 7. Thomson algorithm convergence for 100 distinct initial configurations
(Conditions: N =2, M = 8). After roughly 1000 iterations, all cases have
converged to square antiprisms.

Close inspection reveals that the Euclidean distances between
constellation points provided by the solution of the Thomson
problem using the method of gradient descent in Fig. 7 are
slightly different from the ones provided by [25]. Actually, the
constellation of [25] is unstable from an electrostatic point-of-
view. In other words, if the constellation of [25] is provided as
an initial configuration for the Thomson problem, the gradient
in (56) of the potential energy in (47) is non-zero, and, therefore,
the constellation points experience Coulomb forces that move
them to slightly different final positions. The same holds if one
uses as initial guesses for the Thomson problem various point
configurations provided by the minimization of alternative cost
functions, e.g., for the Tammes problem [93].

In conclusion, the polytopes provided by the minimization
of different cost functions for N = 2, M = 8 correspond to
slightly different square antiprisms. For practical engineering
purposes, however, we consider that these differences among
various constellation configurations are immaterial and that the
numerical solution of the Thomson problem using the method of
gradient descent provides sufficient optimization effectiveness
at low computational cost.

Next, we shift our focus to the optimal bit-to-symbol mapping
for the square antiprism. To facilitate visualization, we represent
the configuration of the constellation points on the surface of
the Poincaré sphere by a two-dimensional graph whose vertices
represent the constellation points and whose edges represent
closest neighbors. For the case of the square antiprism of Fig. 6,
we obtain the graph shown in Fig. 8. The two square faces on the
opposite sides of the square antiprism are shown in red and green
respectively, and the edges interconnecting them are shown with
dotted black lines. The two square faces have sides equal to 1.17
and the edges interconnecting them are 1.29 long.

In Gray coding, the closest neighbors at distance 1.17 are
assigned binary words that differ in only one bit, i.e., they have
a Hamming distance of one. Since each vertex in Fig. 8 has only
two closest neighbors belonging to the same square face, it is
straightforward to Gray label the vertices of the square faces
using all binary words of three bits. For instance, one can Gray
code the green square using the binary words with their most
significant bit (msb) equal to zero and then use the remaining
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Fig. 8.  Bit-to-symbol mapping for the square antiprism (Conditions: N = 2,
M = 8). The red, green, and black edges have lengths of approximately 1.17,
1.17, and 1.29, respectively.

binary words with their msb equal to one for the red square. The
proposed bit-to-symbol mapping in Fig. 8 is just one of many
possible Gray mappings.

However, since the second-closest neighbors at distance 1.29
are not very different distance-wise compared to the first neigh-
bors at distance 1.17, we have to take into account that erroneous
symbol decisions can lead to second-closest neighbors with
significant probability. The proposed bit-to-symbol mapping in
Fig. 8 offers almost all the benefits of Gray coding. Each symbol
error leads to 3 neighboring nodes that differ by one bit and to
only one neighboring node that differs by two bits.

In this particular case, the problem of assigning binary words
to constellation points in order to minimize the bit error prob-
ability can be solved manually as follows: starting with the
green square, we go in the clockwise direction and assign bits to
symbols using all Gray words of zero msb. Then, starting from
the vertex between 000 and 001, we trace the red square in the
counterclockwise direction and assign bits to symbols using all
Gray words of unit msb. We verified that the solution obtained
via the simulated annealing algorithm is indeed the one found
manually in Fig. 8. This is evidence that the simulated annealing
algorithm performs adequately.

In order to further validate bit-to-symbol mappings provided
by our simulated annealing algorithm, we ran benchmarking
tests on constellations that admit Gray coding [99] (e.g., M-PSK
and M-QAM). Our implementation of the simulated annealing
algorithm displayed strong performance in these tests, often
finding the global minimum for small constellation sizes.

For larger M, the computational complexity of assigning
binary words to constellation points in order to minimize the
bit error probability grows exponentially. Let us see why that
is: There are M! ways that we can assign M words of k
bits to the M nodes. Using the dominant term in Stirling’s
approximation for factorials, we see that M! ~ MMe=M for
M > 1. Computing the objective function for all possible ar-
rangements and selecting the bit-to-symbol mapping that yields
the global minimum is clearly computationally prohibitive for
large values of M. Simulated annealing can be used to solve
such combinatorial optimization problems. While it may not
find globally optimal solutions, evidence from tests performed
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Fig. 9. Illustration of optimized constellations (b), (d), with M =256 points
for (a) SMF (IN=2); and (c) dual-core MCF (/N =4), respectively.
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Fig. 10. Histograms of internodal distances. (Yellow: Thomson problem;
Black: Tammes problem [93]). (Conditions: N = 4, M = 32).

on small constellation sizes suggests that simulated anneal-
ing can produce bit-to-symbol mappings that are sufficiently
nearly-optimal.

We continue by examining constellation shaping and bit-to-
symbol mapping in higher-dimensional Stokes spaces based on
the physical intuition provided by the three-dimensional Stokes
space.

Examples of optimized constellations for N = 2 and N =4
and M = 256 are shown in Fig. 9(b), (d), respectively.

To illustrate the difficulties of bit-to-symbol mapping in
higher-dimensional Stokes spaces, let us take a closer look at
the optimized MVM constellation for N =4, M = 32. The
histograms of internodal distances for the Thomson problem
and the Tammes problem [94] are shown in Fig. 10. Notice
that the constellations found by solving these two problems
are not identical. For instance, there are 343 closest neighbor
pairs at distance 1.33 in the Tammes problem, whereas the
Thomson problem gives a continuum-like distribution of intern-
odal distances in the range 1.1-1.6 for the closest neighbors.
Choosing the Tammes problem solution due to its high degree
of symmetry, we make a 2D graph of the 32 vertices with
edges interconnecting closest neighbors only (Fig. 11). Since the
average vertex degree in the graph is 21 (Fig. 12), it is obvious
that Gray coding cannot be applied. For 32 constellation points,
the number of possible codings is 32! &~ 2.6 x 103, so a brute
force optimization by exhaustive enumeration is impossible. A
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Fig. 11.  Constellation graph and bit-to-symbol mapping (Conditions: N = 4,
M = 32).
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Fig. 12.  Histogram of vertex degrees for the constellation graph of Fig. 11
(Conditions: N = 4, M = 32).
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Fig. 13.  Biterror probability vs bit SNR (dB) per SDOF (Points: Monte Carlo

simulation; Blue line: union bound (Corollary 1); dashed lines: asymptotics
(Corollary 2). (Conditions: N = 8, M = 64).

bit-to-symbol mapping given by simulated annealing is shown
in Fig. 11.

B. Validity of the Error Probability Upper Bounds

The symbol error probability for equienergetic signals is
bounded by using the analytical union bound of Corollary 1.
We want to gain insight into the validity and the tightness of
this bound at various bit SNRs. In Fig. 13, we check the validity
of Corollary 1 and the asymptotic expressions of Corollary 2
by Monte Carlo simulation. We observe that the union bound is
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Fig. 14.  Bit error rate (BER) versus bit SNR per SDOF for the optimized

bit-to-symbol mapping (in blue) and randomized bit-to-symbol mappings (in
gray).

asymptotically tight and spot-on for bit error probabilities below
the order of 1073. Otherwise, the union bound overestimates
larger error probabilities due to the significant overlap between
the pairwise decision regions.

C. Impact of Bit-to-Symbol Mapping

Fig. 14 compares the bit error rates (computed using Monte
Carlo simulation) of the optimized bit-to-symbol mapping pro-
vided by simulated annealing (in blue) against multiple random-
ized encodings (in gray) for the same (4,64)-M VM constellation.
We observe a performance gain of the optimized encoding over
randomized encodings across a wide range of bit SNRs. In
particular, we note that our bit-to-symbol mapping optimization
requires a concrete choice of noise level o2 in defining the
objective function of (58) for simulated annealing. Hence it is
possible that the suitability of an encoding might change with the
noise level, requiring different optimizations for different noise
levels. However, Fig. 14 shows that a bit-to-symbol mapping
optimized at one noise level (in this case, a bit SNR per SDOF
of 10 dB) performs well across a range of SNRs, showing that
this concern is immaterial in practice.

D. Potential Selection for Constellation Optimization

We use the union bound of Corollary 1 to compare the
performance of various (4,64)-MVM constellations obtained via
different optimization methods. Fig. 15 shows the symbol error
probability I as a function of the symbol SNR per SDOF. The
blue and orange curves correspond to constellations obtained
using the gradient descent method with a Thomson (Coulomb)
potential and with the union bound based on Corollary 1 as an
objective function, respectively. The green curve is a numerical
approximation of a solution to the Tammes problem using the
Matlab code provided by [93]. Finally, as a baseline for our anal-
ysis, the red curve corresponds to a standard Jones hypercube
constellation (cf. Section V-C).

Given the different algorithmic approaches and computational
complexities of these methods, the parameters are selected in
such a way that each implementation takes roughly the same
amount of computing time in order to provide a fair comparison.
Using the union bound as the objective function yields the best
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Fig. 15. Performance comparison of different (4,64)-MVM constellations
optimized using various potential functions and algorithms.
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Fig. 16.  Bit error probability of M —ary MVM based on SIC-POVM vectors
vs the bit SNR per SDOF.

performing constellation, as befits its intrinsic nature, despite
its high computational complexity resulting in fewer gradient
descent steps in the allotted time. Belying its extrinsic moti-
vation, the Thomson method performs remarkably well, with
only a slightest penalty compared to the Union Bound potential.
The Tammes Problem method also performs quite well, with
only a marginal performance loss compared to the Union Bound
method. Finally, we observe that all three numerical optimiza-
tions outperform the standard Jones hypercube constellation by
more than 3 dB at low symbol error probabilities.

E. Simplex MVM Constellations

In Fig. 16, we plot the upper limit of the bit error probability
of simplex MVM constellations, given by SIC-POVM vectors,
for an optically-preamplified MVM DD receiver with a matched
optical filter, as a function of the bit SNR per SDOF. The Jones
space dimension varies from N = 2to N = 16 in power-of-two
increments for different lines from top to bottom. The accuracy
of the curves has also been checked by Monte Carlo simulation
and the numerical data agree asymptotically with the analytical
curves, however, the Monte Carlo simulation results have been
omitted from Fig. 16 to avoid clutter. We observe that the bit
SNR required to achieve a given bit error probability decreases
as N increases. This is explained by the squared incoherent
distance between two SIC-POVM Stokes vectors equaling dZ =
2(1 = 1/+/N + 1), which is an increasing function of N. (In
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contrast, the squared Stokes distance d2 ., = 2(1 + 1/(N? —
1)) decreases, highlighting the superiority of d;. over dgkes in
this context.)

FE. Performance Comparison of Various Modulation Formats

Armed with Corollary 1, we want to compare the performance
of MVM with that of conventional modulation formats for short-
haul transmission and optically-preamplified direct detection.

For a fair comparison, we want to select the MVM con-
stellation cardinality so that MVM exhibits the same spectral
efficiency as conventional modulation formats. In single-mode
transmission, spectral efficiency is defined as the ratio of the
net bit rate after FEC to the channel bandwidth. Here, we
use the following definition of the spectral efficiency per SDOF:
Let the symbol interval be T and the symbol rate be R; = Ts’l.
Assuming ideal Nyquist pulses and since MVM is a carrier
modulation, the signal bandwidth B is equal to the symbol
rate R;. Suppose that the bit interval is 7} and the bit rate
is Ry. Let M be the number of constellation symbols. Then,
k = logy M bits are transmitted per symbol interval. We define
the spectral efficiency per SDOF as 7 := R, /(NN Bsy). Since
Ts = kT, and R, = kR, the spectral efficiency per SDOF is
n=kN1L

For instance, for SIC-POVMs, there are M = N2 constel-
lation points and, therefore, the spectral efficiency per SDOF
is 7 = 2 N~!log, N. Consequently, by increasing the dimen-
sionality N of Jones space, the normalized spectral efficiency
per SDOF decreases.

For illustration, suppose we have an ideal homogeneous MCF
with eight identical single-mode cores. The most straightfor-
ward way to use this fiber is to transmit 8 independent parallel
channels, each carrying a binary signal, e.g., based on either
intensity modulation (IM), binary DPSK (DBPSK), or binary
SVM (BSVM). When ideal Nyquist pulses with zero roll-off
factor are used, all the aforementioned modulation formats can
achieve a theoretical spectral efficiency of 0.5 b/s/Hz/SDOF.

Alternatively, rather than using the 8 cores independently, we
can transmit a single MVM channel by sending pulses over all
eight cores in parallel, i.e., simultaneously utilizing all 16 avail-
able SDOFs. Therefore, we should choose (16,256)-MVM,
which results in a spectral efficiency 0.5 b/s/Hz/SDOF as well.
In the 255-dimensional generalized Stokes space, the optimal
(16,256)-M VM constellation corresponds to a 256-simplex [66].

In Fig. 17, we present analytical plots of the bit error prob-
ability vs. the bit SNR per SDOF at the decision device.
Single-polarization, optically-preamplified, direct-detection re-
ceivers require 15.83 dB, 13 dB, and 16 dB for IM [100],
DBPSK [100], and BSVM [44], respectively, to achieve a
bit error probability of 10~°. In contrast, the (16,256)-MVM
optically-preamplified, direct-detection receiver requires only
8.84 dB, to achieve the same bit error probability. This corre-
sponds to bit SNR gains of 4.16 dB, 7 dB, and 7.16 dB over
DBPSK, IM, and BSVM, respectively. We conclude that the
use of MVM can greatly improve system performance over
conventional modulation formats at the expense of transceiver
complexity [66].
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Fig. 17.  Bit error probability for (16,256)-MVM in comparison to conven-

tional modulation formats for an 8-core MCF.
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Fig. 18. MVM spectral efficiencies per SDOF vs the bit SNR per SDOF

required to achieve a bit error probability of 10™* for different degrees of
freedom N and constellation cardinalities M. Blue, red, and black curves
correspond to N = 2,4, 8, respectively. The number listed next to each point
corresponds to the constellation cardinality.

G. MVM Performance for Various (N, M) Pairs

In this subsection, we examine the performance of
geometrically-optimized signal sets that correspond to the dens-
est sphere packing in the generalized Stokes space. We show that
the best trade-off between spectral and energy efficiency occurs
for simplex constellations.

Fig. 18 shows the MVM spectral efficiency per SDOF vs the
bit SNR per SDOF required to achieve a bit error probability of
10~*. Each curve corresponds to a different degree of freedom
N, and each point marked on a curve corresponds to a different
constellation cardinality M. It is worth mentioning that these
graphs represent the performance of geometrically-shaped con-
stellations with optimized bit-to-symbol mappings. Curves for
non-optimized constellations lie on the right of these graphs.
Furthermore, the apex (leftmost point) of each graph in Fig. 18
corresponds to a simplex constellation. Apparently, the best
combination of spectral efficiency per SDOF and receiver sensi-
tivity is achieved for SIC-POVMs. Higher spectral efficiencies
can be obtained with a modest bit SNR penalty by switching to a
constellation with more points, especially in higher-dimensional
settings.

For the qualitative interpretation of results of Fig. 18, we
need to take a closer look at the evaluation of error probability.
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Fig. 19. (a) Optimized constellation and spherical Voronoi cells for N =
2, M = 256, obtained by solving the Thomson problem; (b) Intensity plots
of the optimal MVM signal set for N = 4, M = 16, over a two-core multicore
fiber with identical uncoupled single-mode cores.

The leading term of the asymptotic expression for the pairwise
symbol error probability based on the union bound is given by
(37).

For M > N, the Welch-Rankin bound on + is written as [93]
v > /(M — N)/N(M — 1). This bound is not tight when the
signal set cardinality tends to infinity. Below, we estimate y from
geometric arguments.

Fig. 19 shows the optimal Thomson constellation and the
partitioning of the sphere into Dirichlet (Voronoi) cells for
N =2, M = 256. In general, for N = 2 with large M, the
Dirichlet cells for an optimal configuration are roughly hexag-
onal [90]. For simplicity, let us assume that the constellation
points form an ideal hexagonal lattice. The Dirichlet cell for a
two-dimensional hexagonal lattice is a regular hexagon of side
d/ /3, where d is the minimum Euclidean distance between
pairs of points. The area of each cell is 64 = v/3d? /2. We can
estimate d if we divide the area of the unit sphere S2, equal to
A = 4m, by the total area of M cells. We obtain the estimate
d? ~ 87 /(v/3M). We observe that, in the asymptotic limit of
large M, the Euclidean distance is inversely proportional to
the square root of the number of points M. By combining the
formulas [75] d? = ||§ — §||> = 2(1 — 5 - &),~% = |{s|s")|* =
(14 §-8§)/2, and using the first-order Taylor expansion of the
square root of 2, we obtain the average symbol error probability
Pys ~ exp[—ms/(2v/3M)].

The average bit error probability for a Gray-like bit-to-symbol
mapping is related to the average symbol error probability by
P, ~ P,;/k,wherek := log, M.For quasi-orthogonal signal
sets, itis related by P, ~ M P, /[2(M — 1)] ~ P,|,/2. Gray-
like bit-to-symbol mappings are expected at large constellation
cardinalities M, while orthogonal signal sets exist for M < N
and quasi-orthogonal signal sets occur for N < M < N2. In
general, the difference in SNR between the different bit-to-
symbol mappings is asymptotically small. For the purposes of
qualitatively understanding the results shown in Fig. 18, it is
reasonable to assume that Pe‘b o~ Pe‘s.

The spectral efficiency per SDOF for MVM is defined as
7 := k/N and the symbol SNR per SDOF is related to the bit
SNR per SDOF via v, := kv,. For a given average bit error

1981

probability, we can write for N = 2 (SVM case) that

_ w(dB)
20log 2’

Using a similar geometric argument for N > 2 (MVM case),
we find that d2 ~ M~ 5T and we can write

N —1 v(dB)

N 10log2’

Rephrasing the above expressions, we expect that the slope
n/vp(dB) ~ 0.16 for N = 2 at large constellation cardinalities
M and that it will increase towards 0.33 as N — oo, which is
approximately the slope of the Shannon capacity formula for
AWGN.

At the opposite extreme, v = 0 for orthogonal signal sets with
M < N and we expect that

(59)

(60)

0~ 10~ (dB)/10 (61)

Using the preceding asymptotic analysis, we consider the
results shown in Fig. 18. The MVM spectral efficiency 7 is
generally expected to follow a C-shaped curve when plotted
against the bit SNR per SDOF ~, (dB). The upper part of the
curve will increase linearly with the bit SNR per (59) and (60),
while the lower part of the curve will decrease exponentially
with the bit SNR per (61). Each curve’s apex occurs for the
simplex constellation with M = N2, where 72 = (N + 1)~L.
We thus conclude that the simplex constellations offer the best
balance between energy and spectral efficiency for N > 2. An
example of a simplex signal setfor N = 4 and M = 16is shown
in Fig. 19(b).

From Fig. 17, we observe that (16,256)-MVM offers 7.2 dB
better energy efficiency for an error probability of 10~° com-
pared to the binary SVM for the same spectral efficiency
(0.5 b/s/Hz/SDOF). This is due to the fact that geometrically-
shaped (16,256)-MVM has a configuration of constellation
points in the 16D Jones space with a larger minimal distance.
From Fig. 18, we also notice that, as the spectral efficiency
per SDOF increases, increasing the dimensionality N of the
MVM is increasingly beneficial from the energy efficiency point
of view. Transmitting an SVM superchannel offers no such
benefit.

H. Spectral Efficiency vs Energy Efficiency Trade-Offs

In Fig. 20, we plot the change in spectral efficiency per SDOF
for SIC-POVM (simplex) MVM for different N as a function of
the bit SNR per SDOF required to achieve a bit error probability
of 107* (in blue). In the same figure, we graph Shannon’s
formula for the spectral efficiency of an AWGN channel (in
red) [9]. The maximum spectral efficiency for the simplex MVM
is equal to 1.06 b/s/Hz/SDOF and occurs for N = 3. Similarly,
the spectral efficiency for N = 2 and N = 4 is 1 b/s/Hz/SDOF.
This means that, at best, the spectral efficiency of the simplex
MVM is approximately equal to that of binary intensity mod-
ulation per SDOF for low N’s and decreases thereafter with
increasing V.

Notice that the simplex MVM DD over SDM fibers offers
6.6 dB sensitivity improvement compared to the conventional
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Fig.20. SIC-POVM MVM spectral efficiencies per SDOF vs the bit SNR per

SDOF required to achieve a bit error probability of 10~% (in blue). Results for
coherent PAM, QAM, and for SVM DD for various constellation cardinalities
are also shown in magenta, green, and black, respectively.

TABLE I

COMPARISON OF DIFFERENT TRANSMISSION SCHEMES IN TERMS OF
IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY

- . Parallel
;l"crﬁg;r:lsmon Smgll\i—él;/[a.nnel SVM channels
(SVM superchannel)
Cores per channel K 1
SDOFs per channel 2N 2
Cogstellation M MUK
cardinality per channel
Spectral efficiency per SDOF (log, M) /N (log, M) /N
Conventional: 2N? — N
Number of photodiodes Simplified-1: 5N — 4 3N
Simplified-2: 3N — 2
Conventional: N?
Number of ADC’s Simplified-1: 3N — 2 %
Simplified-2: 3N — 2
: T
Computational complexity I\I/}ysOSL([]XTJ) %

(Terminology: Simplified-1: MVM DD receiver architecture with linearized hardware complexity
and balanced photodetectors after each 90-degree optical hybrid [69]; Simplified-2: Configuration
composed exclusively of asymmetric 90-degree optical hybrids and single-ended photodetectors
(unpublished)).

simplex SVM over SMFs (/N = 2), at the expense of spectral
efficiency per SDOF.

Based on our analysis, we conclude that using MVM DD
over SDM fibers could potentially be beneficial, since the spatial
degrees of freedom in SDM fibers are utilized as one channel
instead of as individual channels, as is standard engineering
practice. In comparison to SVM DD over SMFs, MVM offers a
greater degree of flexibility for balancing energy consumption
and spectral efficiency.

VIII. COMMERCIAL VIABILITY OF MVM DD SYSTEMS

This section provides a point-by-point comparison of MVM
in relation to other modulation formats considered for short-haul
optical links. For the comparison, we use two performance
metrics (spectral efficiency and bit SNR) and quantify the hard-
ware complexity (in terms of component count, i.e., number of
photodiodes/transimpedance amplifiers (TIAs) and ADCs) and
the computational complexity (in terms of real multiplications
per received symbol).
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Table I compares the above metrics for a superchannel com-
posed of SVM tributaries vs a single MVM channel using all
available SDOFs. For an objective comparison, the aggregate
data rate is the same in both cases.

For the comparison, without loss of generality, we consider a
homogeneous multicore fiber with K single-mode cores. Thus,
we have at our disposition N = 2 K SDOFs.

For a given number of SDOFs N, MVM signals reside in a
N-dimensional Jones space. In contrast, for a superchannel com-
posed of K = N/2 SVM tributaries, the signals corresponding
to each individual SVM tributary reside in a 2D Jones space.
The composite constellation of the SVM superchannel is the
Cartesian product of K SVM constellations. For a fair com-
parison, if M is the MVM constellation cardinality, we assume
thatthe K = N/2 SVM tributaries have individual constellation
cardinalities M '/ This gives the same spectral efficiency per
SDOF equal to (logy M)/N.

If we use the conventional Stokes vector DD receiver with
three balanced photodiode pairs [27], we need 6 photodiodes
per SDOF. Therefore, we need 6 K photodiodes to transmit K
independent SVM channels in parallel over the K cores. Since
N = 2K, this transmission technique requires 3N photodiodes
in total. We want to compare this number of photodiodes to the
number of photodiodes we need to send a single MVM channel
using NV degrees of freedom. The simple naive generalization of
the conventional Stokes vector DD receiver architecture from
two to N dimensions uses O(N?) photodiodes due to the
fact that the dimension of the generalized Stokes space in-
creases quadratically with the number of SDOFs, i.e., as N 2_1
[69]. The simplified MVM DD receiver architecture shown in
Fig. 4(b), which was proposed by the authors in [69], takes into
account the interdependence of the Stokes parameters to reduce
the hardware complexity. The complexity increases linearly with
the number of O (V) degrees of freedom [69]. This receiver uses
N — 1 optical hybrids with two balanced receivers each, i.e.,
4 photodiodes per hybrid. In addition, it uses /N single-ended
photodiodes to measure the optical powers of the N SDOFs.
Therefore, a total of 5N — 4 photodiodes are required. However,
we can employ a simplified version of the previous MVM DD
receiver that uses 3/N — 2 single-ended photodiodes instead of
the configuration using 5N — 4 photodiodes. This is achieved
by using exclusively asymmetric 90-degree optical hybrids and
single-ended photodetectors at the four output ports of each
hybrid. This receiver configuration eliminates the need for NV
single-ended photodiodes to measure the optical powers of the NV
SDOFs. A different version of a reduced-hardware-complexity
receiver for SVM can be found in [41], [45].

In both aforementioned MVM DD receiver configurations,
3N — 2 ADC:s are necessary. This number should be compared
to the number of required ADCs in the SVM DD receiver case,
i.e., 3K = 3N/2.In other words, for large values of N, we need
twice the number of ADCs when sending an MVM channel
versus a superchannel composed of K SVM tributaries. This is
the price we have to pay to gain in receiver sensitivity.

We assume that the LMS algorithm shown in Fig. 5 is used to
derotate the transfer matrix of the fiber in the generalized Stokes
space. There are two phases of operation, i.e., the training phase
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TABLE I
CAPACITY UPGRADE SCENARIOS FOR FUTURE DATACENTER OPTICAL
INTERCONNECTS
Aggregate Modulation Spatial Net symbol rate (GBd)
bit rate format lanes per lane

PAM 4 8 fibers 25
(2,4)-SVM 8 cores 25
400 Gbps  — O MVM | 4 core pairs 25
(8,256)-MVM | 2 core tetrads 25
PAM 4 8 fibers 50
. (2,4)-SVM 8 cores 50
800 Gbps =76 MVM | 4 core pairs 50
(8,256)-MVM | 2 core tetrads 50
PAM 4 8 fibers 100
1.6 Tbps (2,4)-SVM 8 cores 100
Scenario 1 (4,16)-MVM 4 core pairs 100
(8,256)-MVM | 2 core tetrads 100
PAM 4 16 fibers 50
1.6 Tbps (2,4)-SVM 16 cores 50
Scenario 2 (4,16)-MVM 8 core pairs 50
(8,256)-MVM | 4 core tetrads 50

and the decision-directed phase. During the training phase, the
transfer matrix of the fiber is computed using training symbols.
During the decision-directed phase, the LMS algorithm uses
symbol decisions to track and counteract small fiber rotations
that occurred since the training phase.

For the comparison of the computational complexity for a
superchannel composed of SVM tributaries per lane vs a single
MVM channel using all available SDOFs, we ignore the training
phase and we take into account only the number of multiplica-
tions during the decision-directed phase.

The received generalized Stokes vector at the n—th instant is
represented as a column vector 7(n) with N2 — 1 elements. The
equalizer Miiller matrix has dimensions (N2 — 1) x (N? —1).
To generate each one of the components of the output gener-
alized Stokes vector Z(n), using a simple algorithm for matrix
multiplication, requires O(N?) real multiplications. Since Z(n)
has N? — 1 elements, we need O(N*) real multiplications per
received symbol.

Furthermore, for symbol decisions, we use the ML criterion,
where Z(n) is compared to all M nominal Stokes vectors rep-
resenting the MVM alphabet symbols using the distance metric
(24). We need O(N?) real multiplications per dot product, i.e.,
O(M N*?) real multiplications per received symbol.

We note that the above simplified analysis does not take into
account the non-linear interdependences of the components of
the Stokes vectors and Miiller matrices involved, which offer a
path to complexity reduction (much like we did for the diode
count at the receiver).

Various capacity upgrade scenarios for future datacenter opti-
cal interconnects are shown in Table II. Quad Small Form Factor
Pluggable Double-Density (QSFP-DD) 400 GbE transceivers
that use 8 fiber lanes with 50 Gb/s net bit rate per lane and
PAM4 modulation are commercially available. It is expected
that QSFP-DD 800 GbE and 1.6 TbE transceivers based on

8 and 16 fiber lanes, respectively, with 100 Gb/s net bit rate
per lane and PAM4 modulation will be manufactured soon. In
the more distant future, it is expected that 1.6TbE transceivers
that use 8 fiber lanes, 200 Gb/s net bit rate per lane, and
PAM4 modulation will be commercialized. Transceivers based
on lite coherent detection technology that will support multi-
TbE intra- and inter-data-center links are further down the
road.

Table II also includes a few alternative SVM/MVM options
for 400 GbE-1.6 TbE using 2/4/8 SDOFs. Can these solu-
tions prevail over M-PAM? We can infer the performance
advantages of these schemes by reviewing experimental results
of recent SVM DD publications.

Feasibility experiments in the SVM literature that modulate
all Stokes parameters simultaneously [33], [34] have achieved
spectral efficiencies of 6 b/s/Hz and above 300 Gb/s per SVM
channel. We conclude that, at least in principle, we can exceed
the 200 Gb/s net bit rate per lane that seems to be the practical
limit of the PAM4 technology.

It is worth emphasizing that the MVM concept can be equally
well implemented using different sets of fully degenerate de-
grees of freedom other than SDOFs. In the ASE-noise-limited
regime, in the absence of other transmission impairments, there
is an equivalence in performance among systems using spa-
tial and polarization modes and systems using other degrees
of freedom, e.g., in the time domain (time slots), frequency
domain (wavelength channels), or hybrid modes (combina-
tions of the above). A hybrid space/time MVM implementation
for N =4 was reported for the first time by Morsy-Osman
et al. [32], where two SOPs and two time-slots were used
jointly to achieve transmission of 320 Gb/s over 10 km of
SMF using HD-FEC and 360 Gb/s over 20 km of SMF using
SD-FEC.

Notice that the SVM constellations used in the above experi-
ments [32], [33], [34] were not optimized. Optimized SVM con-
stellations based on the face-centered cubic (FCC) lattice [40]
with 16 and 64 points achieved 4 and 6 dB improved receiver sen-
sitivity at SER of 1075 compared to DP-PAM4 and DP-PAMS,
respectively.

Can MVM-based optical interconnects compete with their co-
herent detection counterparts? It is clear that coherent detection
is superior to any direct-detection scheme, both in sensitivity
and DSP capabilities, for any modulation format. Therefore,
SVM/DD and MVM/DD are proposed as intermediate solutions
in terms of performance between M-PAM/DD and DP-16-
QAM/coherent optical interconnects.

The closest SVM/MVM variant to coherent detection is to
transmit an unmodulated carrier on one of the SDOFs and use
this carrier to perform self-homodyning of the remaining SD-
OFs, like in [29], [30], [31], [53]. As mentioned above, this self-
homodyne technique enables the use of more spectrally-efficient
modulation formats, such as 16-QAM, and enables electronic
chromatic dispersion compensation. This is not the case for
M-PAM/DD, SVM/DD, and MVM/DD, where chromatic dis-
persion compensation should be achieved either optically, using
a dispersion compensating fiber or working in the O-band, or
using electronic pre-compensation.
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IX. CONCLUSION

In this article, we investigated the merits of MVM with
equipower signal sets, which is a direct extension of PolSK
for the generalized Stokes space. In other words, we limited
ourselves to a subset of the full spatial modulation/direct-
detection family set. We derived an analytical upper limit for
the back-to-back performance of M-ary MVM over N spatial
degrees of freedom in the amplified spontaneous emission (ASE)
noise-limited regime.

We also elaborated on the following topics: (i) The optimal
MVM transceiver architecture; (ii) The use of simplex MVM
constellations based on SIC-POVM vectors; (iii) The design of
M -ary geometrically-shaped constellations obtained by numeri-
cal optimization of various objective functions using the method
of gradient descent; and (iv) The optimal bit-to-symbol mapping
using simulated annealing.

We showed that it is potentially beneficial to use MVM DD
over SDM fibers, i.e., to use spatial degrees of freedom in SDM
fibers together as a single channel instead of individually as sep-
arate channels, per standard engineering practice. Compared to
SVM DD over SMFs, MVM DD over SDM fibers offers greater
flexibility for better trade-offs between energy consumption and
spectral efficiency.

The successful commercialization of MVM eventually de-
pends on technoeconomics. MVM, like other advanced direct-
detection techniques for spectrally-efficient transmission [12],
[13], [14], [27], requires several parallel optical branches fol-
lowed by ADCs and DSP, all of which increase cost and energy
consumption in comparison to M-ary PAM and approach or
even exceed the complexity of coherent receivers. Therefore,
MVM’s future commercial viability depends on the develop-
ment of inexpensive silicon photonic (SiP) integrated circuits
and application-specific integrated circuits (ASICs) for DSP.

APPENDIX A
PAIRWISE SYMBOL ERROR PROBABILITY

The goal of this appendix is to compute the pairwise error
probability P} ™ defined by (28) and prove (30).

1n

The starting;oint for the analytical calculation of the pairwise
symbol error probability is the maximum-likelihood decision
criterion (24). This criterion, in turn, results in comparing the
square magnitude of the projections of the received Jones vector
|r) on a pair of nominal Jones vectors |s), |s’) representing trans-
mitted MVM symbols and choosing the largest one. However,
the vectors |s), |s') are not orthogonal, in general. To facilitate
the derivation of a closed formula for the pairwise symbol error
probability, we use an orthogonal coordinate system described
by the unit Jones vectors |uy ). These new vectors are the result
of symmetrically opening up |s') and |s) to be orthogonal.

We assume that the amplifier noise vector |n) that affects the
received Jones vector |r) has spatial and polarization compo-
nents that are independent and identically distributed Gaussian
complex random variables. The magnitudes of the projections
of the received Jones vector |r) on the unit Jones vectors |uy)
result in two independent random variables following Rice dis-
tributions. From that point, we can directly derive a closed form
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expression for the pairwise symbol error probability. The final
result is identical to the formula for the error probability of the
envelope detection of correlated binary signals [9].

A. Geometric Setup

We fix m # m/ and, to simplify expressions, set |s) := [s,,)
and |s') := |s,,/). We assume that

(sls) = (s']s') = 1, (62a)

v = (s|s') > 0. (62b)

In (62b), we dropped the absolute value on (s|s’) because,
since we deal with two vectors in isolation and only the pro-
jection operators S = |s)(s| and S’ = |s')(s’| matter, we can
adjust the phase of |s) so that (s|s’) is a positive real. As the
first step, we reduce the considerations to the two-dimensional
complex subspace X spanned by | s) and |s") and derive analytical
expressions in a convenient orthonormal basis for 3.

m/|m
We express P, ;. as

P — P (|(r]s")|? = |(r]s)[? > 0)

e,bin
=P ((r|lalr) > 0), (63)

where we introduced the difference of dyads A := S’ — S and
the associated quadratic form*

[(r|s)|* = |(r]s)]* = tr (RS') — tr (RS) = tr (RA)

= (r|A|r). (64)
The following three real length parameters will play a key role:
0:=+/1—12, (65a)

[1£6
Pt =\ —. (65b)

2

For ease of reference we record that
Y=V1-6>=2pip_, (66a)
pr — p=y = (1= 2p3)pe = £p. (66b)

We also introduce two vectors in X, |uy) and |u_), defined
as

_ L pels) = pel)
. —pls)

Their scalar components along |s’) and |s) are found, via (66a)
and (66b), to be

|u) (67)

I (68a)
iPiW—/):F _

(s|s)us = 5 = ps. (68b)

Computing A|uy) as the difference of the projections onto
|s’) and |s) (and then using (67)) gives

Alus) = pels') — pes) = £6lus). (69)

/lm

4Note that this formulation makes it clear that D"
in X treated as a 4D real space.

is bounded by 3D-cone
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Thus, |u+) are eigenvectors of A with eigenvalues 40, re-
spectively. They are normalized since combining (67) and (68a),
(68b) yields

—_

(uslus) = £ 5( (p2ls) — pls)) us)

=+ (p2-p}) =1 (70)
Because A is Hermitian of rank two, the eigenvectors |u.. ) are
orthogonal and the remaining eigenvalue of A, other than 44,
is zero (with the orthogonal complement X as its eigenspace).
The underlying geometry is simple: Examining (67), we see that
|us) sitin the real sub-plane inside X spanned by |s’) and | s). The
vectors |s') and |s) form an acute angle (by virtue of our initial
phase rotation). From (68a) and (68b), (s'|u4) = p4 = (s|u_),
so this acute angle is positioned symmetrically within the right
angle formed by |u4 ). One could say that |u. ) are the result of
symmetrically opening up |s') and |s) to be orthogonal.

B. Signal Decomposition

With our orthonormal basis |u4) of ¥ in hand, we orthogo-
nally decompose the noise

[n) = n4) + |n-) + (7)), (71)
where the components along |u.) are
In4) == (nfug)|uy) (72a)
and
In-) = (nlu_)lu-), (72b)

and |7 is the component orthogonal to X. (Going forward, tilde
indicates components orthogonal to 3..) Inverting (67), we get
the analogous decomposition of the symbols

(73a)
(73b)

|s) = p-lug) + pylu-),
|s') = plus) + p-lu-).

Because the Gaussian noise |n) is symmetric with respect to
phase rotations, we can disregard the random phase in (10) and
express the Jones vector representing the incoherently-received
signal as |r) = |s) + |n). Putting together (71) and (73a), (73b),
reveals its components along |u.) as equal to

Ir) = p-lus) + Iny), (74a)
o) = pahu) + Ino), (74b)
with the squared magnitudes consequently given by
(relre) = pi + 2p:R(nsfus) + (nelne).  (75)
The full |r) decomposes into orthogonal components,
) = Is) + [n) = [r4) + Ir) +17), (76)

1985

along the eigenspaces of A for eigenvalues J, —9, and 0,
respectively.
Using A7) = 0 as well as Alry) = +6|ry) and (r_|ry) =
0, the quadratic form simplifies to
(rlAlr) = (lre) +r) + 7 [ A |re) +1r-) + 7))
= (re|Alrs) + (- |Alr)

= 3l — dlr_|r). 77)
Finally, substituting (75), yields
(rlAr) = t6[p2 = pi + 2R{p-(us[ny)
—pilu-ln-)}
+ (n4ny) — (n-|n-)]. (78)

Apart form the signal terms p+, the last expression includes
fluctuations resulting from signal-ASE noise and ASE noise-
ASE noise beatings.

C. Pairwise Symbol Error Probability Calculation

We are ready to derive the closed form (30) for Pe"ﬂzl
by identifying the relevant probability distributions associ-
ated to the quadratic form. We can describe the points
of ¥ by their components z_ +ty_ and x4 + (y4 with
respect to the orthonormal basis |us). Accordingly, we
have four independent real Gaussian random variables with

variance o2:

xx = R(n|ug) (79a)
and
Y = S(nfug) (79b)
The last equation of the previous section, (78), reads
SUrIAl) = 92— 2+ 2wy —2pia
+ 23 4yt —a® — 2. (80)

So, upon completing the squares, the sought pairwise error
probability in (63) is

P™I™ — p((r|A|r) > 0)

e,bin
=P |(p-+2:)> +12 > (pr +2 )’ +42|. 8D
This is to say that
P = P (o >4y, (82)

where we introduced two independent Rice-distributed random
variables

b= (zy +p )"+ 03, (83a)

(@ +pp)* + 12, (83b)

Yy =
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with reference distances p_ and p., respectively, and a common
scale parameter o. The PDFs of 1/, are

2 4 p (:cpi )
I 0o\ —"—"QH5 />
202 o2
with the corresponding tail (complementary) distribution func-
tions [9]

fe(z) = o exp <— (84)

Py > ) = (85)

o (45 7%)
Vo2 o2
Recall that ), stands for the Marcum function defined by (32).
Thus, formula (82) can be represented by a single
integral:

/Pw > 2) fo(2)da

=/f@1 (f=7m) =

z? + pi TPy
The last integral can be computed in closed form [101]
Pe bll;n - P(d}* > 1/’+)
1 a? 4+ b?
— Qi) - o (55 ) fan). 67
where, recalling that v, = 517 per (14), we set
P
a:= = (88a)
ooz = PV
b= 2 = (88b)
V202
Using p2 +p3 =1 and p?p? = % = % from (65a)
through (66b) gives
a® +b% = (02 + p5)vs = s (89a)
2ab = 2p_pyvs = VYs- (89b)
Thus (87) coincides with the promised formula (30). U

APPENDIX B
ASYMPTOTICS FOR LARGE SNRS

We derive the approximate formulas for the error probability
stated in Corollary 2 and valid for large SNR parameters v, as
well as the simplified approximation (36).

The exact formula (30) reads

ebm = Ql (p \/’%7P+\/’E)

sor(-5) 0 (7).
(90)
For large = := 1=, taking the first n 4 1 terms of the Hankel

asymptotics given by [101]
n 1-9-25 N
3(8x)2 )7

Y G S AL
Yr 8r = 2!(8x)?2
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yields an approximation to the Bessel term in (90):

o (-5) 0 (3) ~eue [ 202, o

with

1 1 1 =
gn = — T + 5 + =+, 92)
VI\(e)E (1) (r7e)®
where the sum is terminated on (27;711)!”2 (775)7"71/2 forn > 1.

A similar asymptotic expansion for the Marcum function term

Q1 (p—\/7s» p++/7s) in (90) is more subtle and can be extracted
from [82] in the form of a linear combination of the exponential

exp|— %(177)] and the error function erfc (% 177) with the
coefficients described below. (Here erfc(x) \F [Zetadt)

To start, define e,, and f,, recursively: Let ep := 0 and follow
with

) 1 1—7
en = g —_—

e 1 — (st_"} (n>1). (93)

Let £o := /7 /775 and follow with

1 1-
fi=———Lf,y (n>1) (94)
5 = n
Then, using constants
1 (X +m+n) 1 1
Apm = 0 = i+ =)
MR T A m—n)  ni2r ,l__[n <m+z+2>
(95)
define a multiplier
(=" <P+ )
Ap 1= —A, A, 96
5v2r \p 0 1 (96)
and set
el = Anen, (97a)
£l = Anfp, (97b)
n
e;/l = e;, (97¢)
=0
£ = £l (97d)
1=0

We note that £/ only depends on 7 while e/ is a linear combi-
nation of the powers (77:)~ 2, (vys) 2, ..., (77s) = with
~v-dependent coefficients (for n > 1).

The approximation given by formula (37) in [82] reads then

Q1 (P Vss P+ Vs)

~ el exp [—W] + £ erfc (W) . (98)

An important feature of (98) is that it is valid uniformly across
~v € (0,1) (as long as v is sufficiently large). In [84] explicit
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error bounds are discussed together with suitable expansion ter-
mination criteria. For our purposes, using n = 1 gives excellent
results.

To approximate the error probability P, b‘lT, as given by (90),
we combine the Marcum and Bessel appr0x1mations, (98) and
(91), and obtain:

sV 1-
£/ erfc <\W)

V2
1 (1 —
+ <e',; - 2gn> exp [_’y ( 5 7)} .
Corollary 2 will follow now by using n = 0, 1 in (99).

To streamline formulas we reach back to (65a), (65b), and
note

!
Prn lm -~

e,bin

99)

pr  VI¥d 145 149 (100)
p- VJ1-6 J1-02 ’

Also, squaring as follows

2
1 1-—
(p+ £p-)" = +5ﬂ:\/(s =1+£V1-¢%
2 2
(101)
gives
prEp_=+/1x7. (102)
In particular,
Pr g _PE=P-_ T (103)
p- p— 1-9
Taking n = 0, we find Ag o = 1 and Ay =1, so
£y = £, = Aofo = 1( )f
00 227 \ p- 1—v
Ly
=—4/— 104
S\ T3 (104)
where we used (103). Plugging (104) and e =0 and gy =

(yys) "2 //7 (from (92)) into (99) reproduces (34), the first
formula in Corollary 2:
"Im 1 Y

m/
Pe,bin ~ 5

()

] =f10 =
1—7 1
Vo S\T( >
_ 1= 1 <1+5+
V v 8v2\ v

(106)

1987

where we used (100). Thus, using (104), we arrive with

] =1f,+ £}

1 ~ \/1 -~ 1 (1 +0 )
== - +3).
2 \/1 -0 7 8V2\ v
Turning attention to e = €| = e\, we have
o — 1 ( (’775)%7 ) (_1)1 (_erl - 3)
il 2 2v2r \ p-8 8

8\% ( +3) (y7s) 72 -

Fetching g from (92) and then using (103) gives

1 1 1 11 _1
el — §g0 W~ <p+ +3) (vys) 2 — (77s)"2

(107)

(108)

W 3 m
1 P+ _1
[N et —— s 2
N ( ) (77s)
V2 1— 1
s) 2. 109
= 8/n (w ) (109)
Subtracting one more term of the Bessel expansion (92) yields
1 V21— 11— _1 1 _3
n_ 5 _ 3
138 5 5 (17s) N (77s)
(110)

One can check now that plugging (110) and (107) into (99)
reproduces (35), the second formula in Corollary 2.

Remark 1: Dropping the (7)™ % term in the second formula
in Corollary 2 yields

ST
e (L)
\/5

1—7(

m'|m
e,bin

\/5

75(1—7)]_
G

3 _
YYs) 2 exp 5
(111)

This is a somewhat looser approximation for very large -
but works well for moderate values of ~y5 of interest in our
applications.

It remains to derive the crude approximation (36). When

NEES Wf ‘;ﬂ is large, which happens for large v, when ~

is not too close to 1, the simple standard asymptotic form
erfc(y/T) ~ ﬁe’m is appropriate and, when substituted into
(105), yields (36):

Pl

~1 e[ 20
2 |V 1-6 vry7avI=7 Va7is 2
=3 | 1| e[ 2]
2 |VI—ovi—y | Vi 2
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11 1 s(1—
R SVAT RS - [_7(7)} , (112)
2 V1= T 2
where the last equality can be obtained by using
VIty+ 41—~ =V2V1+5, (113)

which itself is evident from § = /1 — 2 after squaring.

It

is worth recording that (112) can be also rewritten as

1
1+ 1-a2/2 1

: 1 1 a2
Pm, |m -~ L si 7
Vs P ( 27 2 >

e,bin \/ﬂ

dic

(114)

where d; stands for dic(Sp, Simr) = v/2y/T — 7, the incoherent
distance between the two symbols s,, and s, (as given by
(41)). This explains the leading asymptotic behavior given in
expression (37).
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