




2.2 Related Work

To enhance accuracy and e�ciency, the prior work has pursued two

orthogonal directions: improving sketch structure and designing

e�cient counters. Table 1 provides a summary of existing work.

2.2.1 Sketch Structures. There are broadly two sketch structures

for per-�ow size measurement: multi-update sketches and single

update sketches. The multi-update sketches include CountMin (CM)

[11], Counter Update (CU) [15], Count Sketch (CS) [8] and their

variants. CM hashes each �ow f to d counters in a two-dimensional

counter array, and increases all the d counters by one for each

arrival packet of the �ow. To estimate the size of the �ow, it returns

the minimum value of the d counters. CU di�ers from CM by only

increasing the smallest one(s) of the d counters by one for each

arrival packet of the �ow. However, it still has to perform d memory

accesses to retrieve the current values of the counters. CS either

increases or decreases all the d counters by one, based on a pseudo-

random hash �ag of the �ow. Each counter provides an unbiased

estimate of the �ow size. CS uses the median value of the d counters

as the �nal estimate. CM/CU/CS and their variants are widely used

in network tra�c measurement research [18, 30, 50, 54–58].

The most notable single update sketch is Randomized Counter

Sharing (RCS) [26, 27]. RCS also maps each �ow f to l counters,

but only randomly selects one of the l counters to increase for each

arrival item of �ow f . Because the counters are shared by all �ows,

each counter of �ow f carries noise from other �ows. To estimate

the size of �ow f , RCS returns the sum of its l counters subtracted by

an average noise measured across all counters. RCS adopts a large

value for l (such as 50 in [26, 27]) to ensure su�ciently randomized

noise distribution, but the total noise present in a �ow’s counters

is proportional to l .

There are layered sketch structures, including Counter Braids

[32] and Pyramid Sketch [52], built on top of CM/CU, and Counter

Tree [9], built on top of RCS. They use small counters at the bottom

layer, and these counters will over�ow into higher layers recursively.

They are more memory e�cient, thanks to small counters, but

they have variable processing time due to the need to operate

on multiple layers of CM/CU/RCS when over�ow happens. Their

worst-case processing time is determined by the number of layers.

Recent research shows that using more e�cient counter designs

outperforms multiple layers of small counters [4, 51].

The Bucketized Rank Indexed Counter (Brick) [22] partitions a

counter array into groups of k counters each, called bricks. Each

brick is multi-layered, with k small counters at the bottom, which

over�ows recursively to higher layers. Di�erent from Counter

Braids where each counter over�ows into multiple higher-layer

counters, each counter in Brick over�ows into a single higher-layer

counter. However, each layer requires an index array to keep in-

formation about where each of its counters over�ows into. It thus

has higher memory overhead than Counter Braids under the same

counting range.

CM, CU, CS and RCS are generic sketch structures that can adopt

di�erent counter designs, which will be elaborated next.

2.2.2 E�icient Counters. A regular counter of r bits has a range

of [0, 2r ). To expand the range, DIScount COunting (DISCO) [21]

sacri�ces counting accuracy by mapping the counter values to a

sequence of integers with increasing gaps, {0, 1, b
2−1
b−1
, ...,

b2r −1−1
b−1

},

where b > 1, which spans a much wider range but has a much

coarser counting granularity. DISCO increments its counter proba-

bilistically, where the exact probability is determined by the current

counter value. Its range is O(b2
r
), but its counting is highly in-

accurate. Counter Estimation Decoupling for Approximate Rates

(CEDAR) [42] improves over DISCO with a mapping function that

minimizes the maximum relative error in counting. The Indepen-

dent Counter Estimation Buckets (ICE-Buckets) [13] partitions a

counter array into buckets of k counters each. Each bucket be-

gins with a small-ranged mapping function. Whenever a counter

over�ows, it switches to a larger-ranged mapping function.

Self-adjusting counters (SCs) in [4] begin as 8-bit regular coun-

ters. When counters over�ow, they will merge with neighboring

counters in the array to create larger-sized counters. Self-Adjusting

Lean Streaming Analytics (SALSA) implement SCs in various sketch

structures such as CM, CU, and CS to measure per-�ow size; they

are denoted as CM-SC, CU-SC, and CS-SC, respectively.

Another approach to expand counter range is through sampling.

Additive error counter [3] begins with a sampling probability of

1. Each time over�ow occurs, the sampling probability is halved.

CM with additive error counters is called Additive Error Estimator

(AEE) [3]. All counters in AEE share the same sampling probabil-

ity, which is determined by the counter that over�ows the most.

This approach is e�cient in tracking the sizes of large �ows, but

aggressive sampling across all counters may result in poor size

estimation for small and medium �ows or even completely miss

some small �ows [23, 28, 31], which is undesirable for per-�ow size

measurement, as is considered in this paper.

Active counter (ACs) [39] splits its bits in two parts: a number

part v and an exponent part e . Its value is v × 2e . To increase the

counter by one, we must do so probabilistically, with a probability

of 1
2e
. Combining RCS [26, 27] and active counters produce a sketch

denoted as RCS-AC [59].

Self-adaptive counters [51] also have a number part and an ex-

ponent part. The exponent part has a variable length, its bits must

be all ones, and the number of ones is the exponent value. The two

parts are separated by a bit zero. Its range is limited, comparing with

AC [39]. For example, for a 16-bit counter, if we want at least 10

bits in the number part for resolution (i.e., counting accuracy), the

exponent for a self-adaptive counter can only be up to 5, whereas

the exponent for AC can be up to 31, with a range 226 times larger.

2.2.3 Hash Table, Flow Spread and Heavy Hi�ers. Hash tables [14,

16] can be used to keep track of the size of each �ow. However, if

the number of �ows exceeds the number of hash entries (such that

sketches become necessary), hash tables can only keep the large

�ows for heavy hitter detection [38]. Sketches for a di�erent task

of measuring per-�ow spread [46, 49, 58], i.e., number of distinct

data items in each �ow, may also be used for estimating per-�ow

size. But their performance is generally much worse [58]. Sketches

for detecting heavy hitters [2, 5, 30] do not perform per-�ow size

measurement.

2.3 Motivation

We want to explore a new sketch design that possesses the bene�ts

from both worlds: the accuracy of the multi-update sketches and



Table 1: Performance comparison of the proposed SSVS sketch and existing solutions. SSVS is the only one that performs single-

update (low processing time for recording) and high-accuracy per-�ow size measurement. Layered sketches need additional

processing overhead to update possibly a chain of counters at the upper layers when counters at the bottom layer over�ow.

Solutions with bold font are considered as the state of the art.

Group of Solutions Solutions Counters Used Measure Per-�ow? Counter Updates per Item Accuracy

Generic sketch structures

CM [11] Regular counters Yes Multi-update Medium

CU [15] Regular counters Yes Multi-update Medium

CS [8] Regular counters Yes Multi-update Medium

RCS [26, 27] Regular counters Yes Single-update Low

Layered sketches

Counter Braids [32] Small-size regular counters Yes Multi-update and recursive update Low

Brick [22] Small-size regular counters No Multi-update and recursive update High

Pyramid Sketch [52] Small-size regular counters Yes Multi-update and recursive update Medium

Counter Tree [9] Small-size regular counters Yes Recursive update Low

E�cient counter designs

AEE [3] Small-size regular counters No Multi-update High

DISCO [21] Small-size counters Yes Multi-update Low

CEDAR [42] Small-size counters Yes Multi-update Medium

ICE-buckets [13] Small-size counters No Multi-update High

Self-adaptive counters [51] Small-size counters Yes Multi-update High

SC/SALSA [4] Small to large counters Yes Multi-update High

AC [39] Small-size counters Yes Multi-update High

Hash tables
Cuckoo �lter [16] Regular counters No Single-update High

Tinytable [14] Regular counters No Single-update High

This paper SSVS Small-size variable counters Yes Single-update High

the e�ciency of the single-update sketches. For that, we have to

integrate the enabling properties from both multi-update sketches

and single-update sketches in a novel structure that resolves their

incompatibility.

First, to minimize the processing overhead, we prefer a single

update sketch, which means the multi-update sketch structures

and their variants (including the generic sketch structures and the

layered sketches in Table 1) [4, 8, 9, 11, 15, 22, 32, 52] are out of

consideration. The existing single-update sketches, RCS [26, 27]

and its variant RCS-AC [59], have very poor accuracy, as shown

in Figure 1. They map each �ow to l counters and record each

data item of the �ow by increasing one of the l counters by one.

The expectation of the noise (from other �ows) in each counter is

estimated as the average value of all counters. This approach is valid

only if noise is about randomly distributed in all counters, which

requires the value of l to be large (e.g., 50 in [27] and 512 in [59]).

However, because the overall noise level in a �ow’s size estimate

increases with l , the large value of l causes the poor accuracy of

RCS-AC. Now the question is how to reduce l . Our single-update

sketch design will use noise cancelation to ensure that each of the

l counters has a noise expectation of zero and l can be any small

value. Moreover, it eliminates the overhead in RCS/RCS-AC to scan

the whole counter array for an estimate of the noise expectation

per counter (as it is zero in our design).

Second, by increasing the number of counters, we can further im-

prove the accuracy of a single-update sketch. With a given amount

of memory, more counters mean fewer bits per counter. We have a

three-way tradeo� to play: number of counters, range, and count-

ing accuracy. The existing work has their limitations in this space

of tradeo�. Some counter designs in Table 1 such as DISCO [21]

and CEDAR [42] achieve large range by sacri�cing counting accu-

racy, particularly in the low end of its range. They are suitable for

large �ows, but not for small �ows or medium �ows (depending on

the counter con�guration). Other designs are adaptive to ensure

more accurate counting for small �ows at cost of limited range [51],

expansion in counter size [4], or processing overhead [13, 39]. To

address these issues, we integrate self-adjusting counters [4] and

active counters [39] in an e�cient variable counter structure that

expands the range to very large values, ensures precise counting

up to 216, bounds the relative counting error beyond 216 to a small

value, and limits the counter size to 16 bits in the worst case.

3 SINGLE UPDATE SKETCH WITH VARIABLE
COUNTER STRUCTURE (SSVS)

In this section, we propose a new single update sketch, denoted

as SSVS, with a variable counter structure. The performance gap

between our new sketch and the existing single update sketches,

RCS/RCS-AC, is signi�cant, as shown in Figure 1. To achieve such

a performance boost, its design di�ers from the existing work in

counter structure, sketch design, data recording, and query opera-

tion.

3.1 Variable Counter Structure

Our idea of variable counter structure is motivated from the limita-

tions of the counters used in RCS/RCS-AC. For a range of 232, RCS

will need 32-bit regular counters; observing the byte boundary, RCS-

AC will need 16-bit active counters (ACs), each with 5-bit exponent.

From Figure 1, RCS-AC is more accurate than RCS. The reason is

that it has twice the number of counters. However, active counters

perform probabilistic counting and thus incur counting errors. Can

we create even more counters, nearly twice as many as RCS-AC has

at least initially, yet count precisely until it becomes infeasible with

16 bits per counter? Our insight is that each counter should be made

dynamic, counting precisely up to 16 bits and then switching to

probabilistic counting with progressively increasing error. Because

we do not know beforehand howmany data items each counter will
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Figure 2: Variable Counter Structure. A 64-bit block of SRAM, divided into 4 intervals of 16 bits each. The interpretation of the

counters in the counter arrayC depends on the values of the indicator array I . In this example, each 16-bit interval has the same

bit value of 00010010110011002. The �rst bit of each counter is the sign. Since I[0]=0, the �rst 16 bits of memory are interpreted

as two 8-bit counters, b[0] and b[1]. The value of the �rst 8-bit counter, with its sign being 0, isC[0].b[0] = 00100102 = 1810. The

value of the second 8-bit counter, with its sign being 1, is C[0].b[1] = −10011002 = −7610. For the second counter we have I[1]=1,

so the second 16-bit interval is a short counter.With the sign being 0, its value isC[1].s = 0010010110011002 = 481210. For the third

counter we have I[2]=2, so we interpret the �rst bit as the sign, the next 12 bits as the value and the last 3 bits as the exponent.

The value part isC[2].a1.v = 0010010110012 = 60110 and the exponent part isC[2].a1.e = 1002 = 410. Therefore, the counter’s value

is C[2].a1.v · 2C[2].a1.e
= 601 · 24 = 9616. For the last counter we have I[3] = 3, so its value part is C[3].a2.v = 00100101102 = 15010

and its exponent part is C[3].a2.e = 011002 = 1210. Therefore, the counter’s value is C[3].a2.v · 2C[3].a2.e
= 150 · 212 = 614400.

record, the counters must individually adapt from exact counting

to probabilistic counting on the �y. None of the existing counter

designs, including active counters, can do this well.1 In comparison,

our variable counter design is structured speci�cally with such

a goal in mind. Observing the byte boundary, it begins with byte

counters in order to maximize the number of counters; note that the

accuracy of all sketches improves with a larger number of counters.

Each byte counter will over�ow into a 16-bit counter, still for exact

counting, which will then over�ow into a 16-bit active counter with

3-bit exponent, which will expand to 5-bit exponent upon over-

�ow.2 This design of dynamic adaptation from exact counting to

probabilistic counting progressively in a variable counter structure

has advantage over the existing designs in maximizing the number

of counters and minimizing the counting error at the small end.

SSVS uses an array C ofm words, each of 16 bits or two bytes,3

and an array I of m indicators, each of 2 bits. I is the indicator

for C , specifying how C should be interpreted, as explained below.

Consider any j ∈ [0,m).

• When I [j] = 0, we treatC[j] as two byte counters, referred to

as C[j].b[0] and C[j].b[1], each of 8 bits. The �rst bit is the

sign and the remaining 7 bits are the value of the counter.

• When I [j] = 1, we treat C[j] as a short counter of two bytes,

denoted as C[j].s . The �rst bit is the sign and the remaining

15 bits are the value of the counter.

• When I [j] = 2, we treat C[j] as a small-ranged active counter

of two bytes, denoted as C[j].a1, with its �rst bit as the sign,

the next (15 − α) bits as the value part, together denoted

1Paper [47] is a variant of active counter, with a less e�cient exponent design. For

example, it uses 1010011111
2
to represent 10102 × 25 , where the �ve trailing ones rep-

resent an exponent of 5. In contrast, our design uses �ve-bit exponent for a multiplying

factor of 20 through 231 .
2Given 16 bits in total, with 2 more bits in exponent, there are two fewer bits in the
value part, which increases probabilistic counting error.
3A word is typically 32 or 64 bits long. One may refer to 16 bits as a short word, but
we refer to it as word for simplicity.

as C[j].a1.v , and the remaining α bits as the exponent part,

denoted as C[j].a1.e , where α is a small integer parameter,

such as 3 used in our experiments. We abbreviate Active

Counter as AC. With 3 bits of exponent, the range of a small-

ranged AC is (−219, 219). With 12 bits of value, the rounding

error is less than 1
211

.

• When I [j] = 3, we treat C[j] as a large-ranged active counter

of two bytes, denoted as C[j].a2, with its �rst bit as the sign,

the next (15 − β) bits as the value part, denoted as C[j].a2.v ,

and the remaining β bits as the exponent part, denoted as

C[j].a2.e , where β is another integer parameter, such as 5

used in our experiments. Its range is (−241, 241), with its

rounding error less than 1
29
.

We will adopt α = 3 and β = 5 in the rest of the paper. These

parameter values cover a broad range, while the user can certainly

change them to other values based on application need.

The array C has a variable counter structure, de�ned by the

indicator array I , which initially sets all indicators to zero and

evolves as the data items of the �ows are recorded. C is initialized

with 2m small byte counters, aligning with our goal of maximizing

the number of counters to enhance accuracy. Each byte counter

counts precisely until over�ow. When that happens, we expand

the counting range by merging two adjacent byte counters into a

short counter to continue exact counting. When a short counter

over�ows, it becomes a small-ranged active counter and then a

large-ranged active counter, which is controlled by the counter’s

indicator. We illustrate how arrays C and I work with an example

in Figure 2, in which each 16-bit segment has the same bit value,

but the content of C is interpreted di�erently, depending on I .

3.2 Mapping Flows to Counters

Each �ow f is mapped to l counters in C using l hash functions

hi (.), 0 ≤ i < l , where l is a system parameter that controls the

estimation error, which we will analyze later. For a single update
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Figure 3: Examples illustrating how we handle over�ows in C[hmr (f )]: Example (a): The byte counter C[hmr (f )].b[0] is on the

verge of over�owing, with a pending increase. We mergeC[hmr (f )].b[0] andC[hmr (f )].b[1] to create the short counterC[hmr (f )].s.

The resulting value is the sum of the two byte counters plus 1, which equals 127 + 3 + 1 = 131. I [hmr (f )] is updated from 0 to 1.

Example (b): The short counter C[hmr (f )].s = 215 − 1 is approaching its over�ow point. When faced with a pending increase to

215, we convert it into a small-ranged active counter by setting the value part (12 bits) to 211 and the exponent part (3 bits) to

4. I [hmr (f )] is accordingly incremented to 2. Example (c): The small-ranged active counterC[hmr (f )].a1 = (212 − 1) × 27 is nearing

its over�ow threshold. When confronted with a pending increase in the value part to 212, we transform it into a large-ranged

active counter by setting the value part (10 bits) to 29 and the exponent part (5 bits) to 10. I [hmr (f )] is updated to 3. By following

this approach, we ensure that counter transformations are performed without incurring any errors.

sketch, each data item of �ow f will be recorded by one of its l coun-

ters. According to [58] and [46], practically, one may implement l

hash functions from a master hash function H as hi (x) = H (x ⊕ i),

0 ≤ i < l , where ⊕ is the XOR operator.

The hash value of �ow f is an integer, denoted as hi (f ), 0 ≤

i < l . Let h0i (f ) and h
1
i (f ) be the the �rst and second bits of hi (f ),

respectively. Let h2+i (f ) be the remaining bits. Suppose that the

range of h2+i (f ) is larger that the range ofm. We de�ne hmi (f ) =

h2+i (f ) mod m.

We use hmi (f ), 0 ≤ i < l , as an index to map f to a word in

C , i.e., C[hmi (f )], and to an indicator in I , i.e., I [hmi (f )]. We use

I [hmi (f )] to interpret the counter(s) in C[hmi (f )]. If there are two

byte counters in case of I [hmi (f )] = 0, we use h1i (f ) to further map

f to one of the two byte counters. The details are given below.

• If I [hmi (f )] = 0, we map f to C[hmi (f )].b[h1i (f )], which is a

byte counter.

• If I [hmi (f )] = 1, 2, or 3, we map f to C[hmi (f )].s ,

C[hmi (f )].a1, or C[hmi (f )].a2, respectively, which are the

same two bytes but interpreted di�erently.

We haven’t used h0i (f ) yet, which is left for the data recording

operation below.

3.3 Recording Data Items

Each data item of a �ow will be recorded by one of the l counters

that the �ow is mapped to. Which counter to use is randomly

selected, and the counter is either increased or decreased by one,

pseudo-randomly determined based on the �ow ID. As the counter

may be shared by other �ows (noise), some of those �ows will

increase the counter and others will decrease the counter, resulting

in noise cancelation and lowering the residual noise, which may be

positive or negative, with an expectation of zero. Such a technique

was used in CS [8], a multi-update sketch. Below we adopt it in a

single update sketch with a variable counter structure.

At the beginning of each measurement period, all bits inC and I

are set to zeros. When processing the next arrival data item, which

carries a �ow ID f , we generate a random number r in the range of

[0, l). We compute the hash hr (f ) = H (f ⊕ r ), compute the index

hmr (f ) and record the data item in the counterC[hmr (f )]. The exact

recording operation is based on the value of h0r (f ). If h
0
r (f ) = 0, we

increase C[hmr (f )] by one; if h0r (f ) = 1, we decrease C[hmr (f )] by

one.

The increase (or decrease) of an AC is di�erent from a byte/short

counter. The AC increase (or decrease) is done probabilisti-

cally: Depending on the value of h0r (f ), for a small-ranged AC,

C[hmr (f )].a1.v is increased (or decreased) by one with probability
1

2C [hmr (f )].a1.e
; for a large-ranged AC,C[hmr (f )].a2.v is increased (or

decreased) by one with probability 1

2C [hmr (f )].a2.e
.

IfC[hmr (f )] is a byte counter and it over�ows, we need to expand

its size to a short counter. If C[hmr (f )] is a short counter and it

over�ows, we need to turn it into a small-ranged AC. When that

counter over�ows, we turn it into a large-ranged AC. We do not

expect a large-ranged AC to over�ow, since its range is (−241, 241).

But if it does, it is easy to rede�ne the size of its exponent part

from 5 bits, to 6 bits or more. Below we explain how exactly to

handle the problem that a pending increase (or decrease) would

cause C[hmr (f )] to over�ow.



Algorithm 1 Data-Item Recording

Input: �ow ID f , a master hash function H , counter array C and

indicator array I

Output: single counter update to C and I

1: r = random.nextInt(0, l-1);

2: hr (f ) = H (f ⊕ r );

3: hmr (f ) = h+2r (f ) mod m;

4: if I [hmr (f )] = 0 then

5: run Algorithm 2 Update byte counter;

6: else if I [hmr (f )] = 1 then

7: run Algorithm 3 Update short counter;

8: else if I [hmr (f )] = 2 then

9: if random.nextInt(0, 2C[hmr (f )].a1.e − 1) = 0 then

10: run Algorithm 4 Update small-ranged AC;

11: else

12: if random.nextInt(0, 2C[hmr (f )].a2.e − 1) = 0 then

13: run Algorithm 5 Update large-ranged AC;

return updated C and I ;

Algorithm 2 Update byte counter

Input: bit h0r (f ), bit h
1
r (f ), counter C[h

m
r (f )], and indicator

I [hmr (f )]

Output: updated counter C[hmr (f )] and indicator I [hmr (f )]

1: if h0r (f ) = 0 then

2: if C[hmr (f )].b[h1r (f )] = 127 then

3: I [hmr (f )] = I [hmr (f )] + 1;

4: C[hmr (f )].s = C[hmr (f )].b[0] +C[hmr (f )].b[1];

5: C[hmr (f )].s = C[hmr (f )].s + 1;

6: else

7: C[hmr (f )].b[h1r (f )] = C[h
m
r (f )].b[h1r (f )] + 1;

8: else

9: if C[hmr (f )].b[h1r (f )] = −127 then

10: I [hmr (f )] = I [hmr (f )] + 1;

11: C[hmr (f )].s = C[hmr (f )].b[0] +C[hmr (f )].b[1];

12: C[hmr (f )].s = C[hmr (f )].s − 1;

13: else

14: C[hmr (f )].b[h1r (f )] = C[h
m
r (f )].b[h1r (f )] − 1;

return updated C[hmr (f )] and I [hmr (f )];

• Case 0: I [hmr (f )] = 0.

C[hmr (f )] is eitherC[hmr (f )].b[0] orC[hmr (f )].b[1]. We need

to combine the two byte counters into a short counter.

We set I [hmr (f )] = 1, add the values of C[hmr (f )].b[0]

and C[hmr (f )].b[1] to C[hmr (f )].s , i.e. C[hmr (f )].s =

C[hmr (f )].b[0] + C[hmr (f )].b[1]. Then, we increase (or de-

crease) C[hmr (f )].s by one, based on the value of h0r (f ). We

give an example for this case in Figure 3 (a).

• Case 1: I [hmr (f )] = 1.

We need to turn a short counter into a small-ranged AC.

We set I [hmr (f )] = 2 and turn C[hmr (f )].s into C[hmr (f )].a1

by right-shifting the counter by 4 bits and then setting

C[hmr (f )].a1.e (i.e., the right-most 3 bits) to 4. Then, we in-

crease (or decrease) C[hmr (f )].a1 by one, based on the value

of h0r (f ). We give an example for this case in Figure 3 (b).

• Case 2: I [hmr (f )] = 2.

We need to turn a small-ranged AC to a large-ranged AC.

We set I [hmr (f )] = 3 and turnC[hmr (f )].a1 intoC[hmr (f )].a2

by right-shifting the counter by 3 bits and then setting

C[hmr (f )].a2.e (i.e., the right-most 5 bits) to 10. Then, we in-

crease (or decrease) C[hmr (f )].a2 by one, based on the value

of h0r (f ). We give an example for this case in Figure 3 (c).

• Case 3: I [hmr (f )] = 3.

If a large-ranged AC over�ows, it means that the exponent

part requires more than 5 bits. We have to increase the size

of the exponent part for all large-ranged ACs, which may

be done by right-shifting the value part for one bit and thus

allowing the expansion of the exponent part by one bit.

The detailed recording operations are given in Algorithm 1. The

update operations of byte counters are given in Algorithm 2, and

of other counters are provided in Github [36]. For each arrival

data item, at most one counter in C will be updated. Because an

active counter is updated probabilistically, there is a chance that

no counter update is actually needed. Occasionally, we may also

need to update an indicator, but that is rare.

3.4 Size Query and SSVS-1

To answer a query for the size of �ow f , we retrieve the �ow’s l

indicators, I [hmi (f )], 0 ≤ i < l , and l counters, C[hmi (f )]. A simple

method is to estimate the �ow size n̂f as

n̂f =
∑l−1

i=0
δC[hmi (f )], (1)

where δ = 1 when h0i (f ) = 0 and δ = −1 when h0i (f ) = 1.

Each of the l counters carries noise from other �ows. But those

noises come randomly as positive or negative, and they statistically

cancel out each other. Let nf be the true size of �ow f . We have

the following theorem. Its proof can be found in the supplementary

material and in GitHub [36].

Theorem 1. For any �ow f , the expectation and variance of n̂f
produced by SSVS-1 follow:

E(n̂f )

{

= nf , if ∀0 ≤ i < l, I [hmi (f )] ∈ {0, 1};

∈ [(1 − 0.01)nf , (1 + 0.01)nf ], otherwise;
(2)

Var(n̂f ) ≤ 2.0402l2(n/m − n/(2m2)). (3)

We refer to our sketch design, the recording operations and the

query method (1) together as SSVS-1.

3.5 Modi�ed Size Estimation Method and
SSVS-2

From Theorem 3, the standard error in n̂f is minimized when l = 1,

which is con�rmed by our experiments discussed later. As explained

in Section 2.3, a small value of l will help SSVS-1 be more accurate

than RCS/RCS-AC, which is also con�rmed by our experiments. It

is well known that network tra�c traces follow power-law distri-

butions [1, 35, 40], with most �ows being small or medium, and

very few �ows being very large. For such data sets, as each �ow is



split among few counters (small l ), the sizes of large �ows are con-

centrated in a small number of counters, causing big noise (called

noise outlier) to other �ows that share these counters. To further

improve accuracy, we need a way to block out the noise outliers.

We attempt to exclude the noise outliers from the estimation for-

mula by establishing a so-called noise interval and only the counters

within the noise interval are used for �ow size computation.

Before any query, we generate a large set F of fake �ow IDs

(corresponding to �ows of size zero). We use (1) to estimate their

�ow sizes, which are in fact the residual noises after cancellation.

Letw be the average residual noise, i.e.,w =

∑

f ′∈F |n̂f |

|F |
, which is a

measure of overall residual noise level.

Given a query on �ow f , we sort its l counters, C[hmi (f )], 0 ≤

i < l , and �nd the closest two counters, denoted as c and c ′ with

c ≤ c ′, which tend to locate at the center of the distribution. We

de�ne a noise interval for �ow f as [c − w
k
, c ′ + w

k
], where k is a

parameter that controls the width of the interval. We will study

this parameter experimentally. We abbreviate the noise interval as

±w
k
. The purpose of noise interval is to keep out the noise outliers.

We estimate the size of �ow f based on the subset Nf of counters

that fall within the interval.

Nf = {δC[hmi (f )] | c −
w

k
≤ δC[hmi (f )] ≤ c ′ +

w

k
, 0 ≤ i < l}

n̂∗
f
=

l

|Nf |

∑

x ∈Nf
x,

(4)

where δ = 1 when h0i (f ) = 0 and δ = −1 when h0i (f ) = 1.

We refer to the version of our sketch using (4) as SSVS-2. The

only di�erence between SSVS-1 and SSVS-2 is their estimation

formulas. We know that SSVS-1 is optimized at l = 1. That is not

the case for SSVS-2. In fact, because the noise interval contains at

least two counters, SSVS-1 and SSVS-2 will be identical if they use

the same number of counters per �ow at l = 1 or 2. Our experiments

will show that SSVS-2 with l = 4 consistently outperforms SSVS-1

with l = 1.

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setting

We have implemented the following sketches for per-�ow size mea-

surement: (1) the proposed SSVS-1 and SSVS-2, which have the

same recording operations but di�erent query methods; (2) ran-

domized counter sharing (RCS) [27], which is the best single update

sketch in terms of low processing overhead (note that its Counter

Tree variant [9] sometimes has to update multiple counters in a

hierarchical structure and thus has higher overhead); (3) Random-

ized Counter Sharing with active counters (RCS-AC) [59], which

is also a single update sketch; (4) a group of widely used multi-

update sketches that employ regular counters as building blocks,

including CountMin (CM) [11], Count Sketch (CS) [8], and Counter

Update (CU) [15]; (5) their variants that use self-adjusting coun-

ters [4], including CountMin with self-adjusting counters (CM-SC),

Count Sketch with self-adjusting counter (CS-SC), and Counter Up-

date with self-adjusting counter (CU-SC); (6) their variants that use

active counters [39], including CountMin with active counter (CM-

AC), Count Sketchwith active counter (CS-AC), and Counter Update

with active counter (CU-AC); (7) their variants that use CEDAR

counters [42], including CountMin with CEDAR (CM-CE), Count

Sketch with CEDAR (CS-CE), and Counter Update with CEDAR

(CU-CE); and (8) their variants that use self-adaptive counters [51],

including CountMin with self-adaptive counter (CM-SA), Count

Sketch with self-adaptive counter (CS-SA), and Counter Update

with self-adaptive counter (CU-SA). Layered sketches have higher

processing overhead due to counter updates across layers, and it is

shown in [4] that CM-SC also outperforms Pyramid sketch in accu-

racy and shown in [51] that CM-SA, CS-SA and SU-SA outperform

Counter Tree in accuracy.

The self-adjusting counters used in CM-SC, CS-SC andCU-SC are

up to 32 bits, with amaximum range of 232. The active counters used

in CM-AC, CS-AC and CU-AC are 16 bits with the same structure

as our large-ranged ACs, with a maximum range of 241. To have a

range of up to 232, we allocate each CEDAR counter 12 bits, which

is recommended in its original experiments. Self-adaptive counters

have two versions: static and dynamic. We use the dynamic one,

because it is more accurate, as demonstrated in the original paper.

Each self-adaptive counter is 16 bits, which is the same parameter

setting as the original paper. We set l = 50 for RCS [26, 27], l = 512

for RCS-AC [59], as in the original papers, andd = 4 for CM, CS, CU,

CM-SC, CS-SC, CU-SC, CM-AC, CS-AC and CU-AC. See Section 2.2

for their de�nitions. For SSVS-1 and SSVS-2, we will experimentally

study how they react to di�erent l values.

Table 2: Statistics of the tra�c trace fromCAIDAused in our

experiments

Flow size range Avg �ow Size No. of �ows

[1,10] 3.1 355580

[11,100] 25.7 68057

[101,1000] 308.7 12034

[1001,10000] 2805.2 2218

≥ 10001 19370.7 274

Table 3: Statistics of the web data set in our experiments

Flow size range Avg �ow Size No. of �ows

[1,10] 1.8 913742

[11,100] 30.1 65053

[101,1000] 315.9 14393

[1001,10000] 3072.7 3860

≥ 10001 22209.3 751

Our evaluation uses two sets of performance metrics, one set

for estimation accuracy and the other set for recording overhead.

Estimation accuracy is evaluated by the average absolute error and

the average relative error. Consider a set F of �ows. ∀f ∈ F , let n̂f
and nf be the �ow size estimate and the true �ow size, respectively.

The average absolute error is de�ned as
∑

f ∈F (|n̂f − nf |)/|F |. The

average relative error is de�ned as
∑

f ∈F
|n̂f −nf |

nf
/|F |. The absolute

error is more useful for small �ows, whereas the relative error is

more useful for large �ows. For example, we consider n̂f = 5 to be

a good estimation for nf = 1 because it is o� only by 4 although

the relative error is 400%. We consider n̂f = 100200 to be a good

estimation for nf = 100000 although the absolute error 200 is much

worse, but the relative error is only 0.2%.



Table 4: Average absolute error of SSVS-1 with respect to l ,

under 1Mbit memory

Flow size range l = 1 l = 2 l = 4 l = 8 l = 16 l = 32

[1,10] 132.6 237.2 380.2 534.4 624.8 667.0

[11,100] 134.8 242.9 389.8 536.4 637.7 670.8

[101,1000] 157.2 311.4 470.4 627.4 753.4 794.9

[1001,10000] 224.0 393.9 675.8 963.9 1126.5 1202.7

≥ 10001 217.3 639.5 1021.7 1055.8 1186.6 1418.9

Table 5: Average absolute error of SSVS-2 with respect to l ,

under 1Mbit memory

Flow size range l = 1 l = 2 l = 4 l = 8 l = 16 l = 32

[1,10] 132.6 237.2 60.8 80.2 142.7 195.9

[11,100] 134.8 242.9 68.5 90.3 153.6 211.9

[101,1000] 157.2 311.4 108.8 130.0 229.9 359.5

[1001,10000] 224.0 393.9 188.2 319.7 510.9 854.1

≥ 10001 217.3 639.5 241.8 420.1 833.7 1865.5

Recording overhead is evaluated by the average processing time

of data item recording, the recording throughput in millions of data

items per second, the number of memory accesses per data item, the

number of hashes per data item, and the number of counter updates

per data item during recording. The latter three metrics can be

obtained from the algorithm designs. The average processing time

will be obtained through experiments. The recording throughput is

the inverse of the average processing time. An average processing

time of 100 ns corresponds to a recording throughput of 10 thousand

packets per second.

We use three data sets: (1) A real Internet tra�c trace down-

loaded from CAIDA [43]. It consists of 18,215,144 packets (data

items). We designate the source-destination IP address pair as the

�ow ID and there are 438,163 di�erent �ows. To record the size

of each �ow, we could assign a 32-bit regular counter per �ow,

which would require 42Mb memory without considering the in-

dexing overhead. In contrast, the sketches used in our evaluation

only require 1Mb memory. (2) A collection of web html documents

downloaded from [33]. We set the �ow ID to be the web document’s

unique number in the database. Each data item is a URL reference

from other documents to the �ow ID (i.e. a given document). There

are 997,800 �ows and 36,680,934 data items. (3) We generate seven

synthetic data sets, each of them following the power-law (Zipf)

distribution [37] with di�erent degrees of skewness. Each synthetic

data set contains 32 million items and a varying number of �ows

depending on the skewness. We gradually increase the skewness

from 0.0 to 1.5. As the skewness increases, there will be a fewer

number of �ows that are larger. Beyond 1.5, the number of �ows

becomes too small for sketches to be useful. With too few �ows, we

can simply use a hash table and assign each �ow a counter, instead

of using a sketch.

To show the distribution of the data sets, we segregate the �ows

into �ve size ranges: [1-10], [11-100], [101-1000], [1001-10000] and

larger than 10001. Tables 2 and 3 show the number of �ows and the

average �ow size for each size range for the CAIDA data set and the

web data set, respectively. Our experimental results in estimation

accuracy will also be given for each range separately.

The experiments are performed on a desktop computer equipped

with an AMD 5950X CPU with 16 cores at 3.4 GHz and 64 GB of

RAM. We have uploaded our implementation on github [45].

4.2 Comparison between SSVS-1 and SSVS-2

We compare SSVS-1 and SSVS-2 on the CAIDA data set in terms

of accuracy by varying the value of l from 1, 2, 4, 8, 16 to 32. The

memory allocated is 1Mbit. The noise level is set to ±w/4. The ex-

periment �rst records the tra�c trace, then queries the size of each

�ow, and �nally measures the errors in the �ow size estimations.

Table 4 presents the average absolute errors in size estimations

by SSVS-1 for �ows in di�erent ranges (rows) under di�erent l

values. It shows that the errors are minimized at l = 1, which is

consistent with Theorem 1. Table 5 presents the average absolute

errors by SSVS-2. It shows a di�erent behavior. The errors in SSVS-2

decrease at �rst as l increases, bottom at l = 4, and then increase as

l further increases. The value of l has direct impact on two factors

that contribute to the errors. First, as l increases, every �ow f is

split into more pieces (each piece recorded in a counter that f is

mapped to). It is therefore less likely to create noise outliers, which

helps reduce the estimation error. Second, each counter carries a

certain amount of noise from other �ows. The more counters that

f uses for its size estimation, the more aggregate noise it will have

in its estimation. For SSVS-1, the second factor dominates, but for

SSVS-2, it’s a balancing game, with the �rst factor winning for small

l values and the second factor dominating for larger l values.

Comparing the best results in Table 4, i.e., the column of l = 1,

with the best results in Table 5, i.e., the column of l = 4, SSVS-

2 clearly outperforms SSVS-1 in estimation accuracy. While the

average absolute error increases with �ow size, as we show in

Table 9, the average relative error actually decreases rapidly with

�ow size, suggesting good accuracy for large �ows as well.

Next we evaluate the impact of the noise interval on estimation

accuracy of SSVS-2. We vary the noise interval from ±2w , ±w ,

±w
2
, ±w

4
, to ±w

8
. Table 10 shows that the errors �rst decrease as

the noise interval decreases, bottom at ±w
4
, and then increase as

the noise interval further increases. This is the aggregate result of

two factors. With a smaller noise interval, noise outliers are less

likely to be included in the interval for size estimation, which helps

improve accuracy. But in the meantime there are fewer counters

in the interval and thus fewer data from the �ow under query are

included in the estimation, which reduces accuracy.

4.3 Accuracy Comparison between SSVS-2 and
Prior Work

We now compare our best sketch SSVS-2 with the prior work in

terms of estimation accuracy. For SSVS-2, l = 4 and the noise

interval is set to±w/4. The parameter settings for the prior work are

discussed in Section 4.1. Table 6 presents the absolute errors of the

size estimations by various sketches in di�erent �ow size ranges.We

do not include the results for CM, CS and CU because they perform

worst than their variants in the table that use e�cient counter

designs. The most relevant work is the single update sketches,

RCS and RCS-AC, which were designed to minimize per-packet

processing overhead, but have much lower accuracy, compared to

multi-update sketches. SSVS-2 achieves far better accuracy than



Table 6: Comparison of various sketches on average absolute error, on the CAIDA data set, under 1Mbit memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

[1,10] 165.8 105.4 81.6 166.3 91.9 108.0 112.3 65.2 61.5 208.8 92.3 107.7 731.4 626.2 60.8

[11,100] 172.9 113.4 70.2 173.1 101.5 93.1 111.9 75.0 47.0 209.0 103.7 93.5 751.3 638.3 68.5

[101,1000] 209.2 161.5 43.5 209.7 143.8 27.1 105.6 107.4 105.2 212.3 147.4 27.46 907.7 754.4 108.8

[1001,10000] 206.5 206.1 14.2 205.8 190.4 782.8 186.8 203.7 1371.4 210.8 172.2 12.1 1405.0 1013.8 188.2

≥ 10001 265.2 376.2 14.3 231.4 322.7 9285.0 1693.9 873.0 10215.0 192.4 185.1 2204.3 1560.9 1036.1 241.8

Table 7: Comparison of various sketches on average relative error, on the CAIDA data set, under 1Mbit memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

[1,10] 95.7 61.1 47.3 101.4 52.6 62.9 64.9 37.3 36.0 122.6 52.7 62.8 421.3 364.5 35.0

[11,100] 9.3 6.0 4.0 9.6 5.4 5.3 6.12 4.0 2.81 11.4 5.5 5.4 40.4 34.4 3.6

[101,1000] 0.97 0.72 0.24 0.82 0.64 0.16 0.50 0.47 0.28 1.00 0.65 0.16 4.0 3.4 0.42

[1001,10000] 0.10 0.10 0.0090 0.10 0.09 0.20 0.07 0.087 0.47 0.11 0.084 0.0069 0.71 0.51 0.096

≥ 10001 0.013 0.026 0.00047 0.017 0.017 0.46 0.083 0.043 0.51 0.012 0.010 0.064 0.085 0.062 0.016

Table 8: Comparison of various sketches on average absolute error, on the CAIDA data set, under 256Kbits memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

[1,10] 1565.3 478.5 937.0 1330.3 438.3 776.2 878.0 324.6 467.9 1327.5 444.5 791.1 1827.7 1335.0 465.1

[11,100] 1569.0 488.7 931.0 1332.7 439.4 772.7 877.4 331.3 450.2 1324.2 454.4 773.0 1843.6 1352.1 478.2

[101,1000] 1572.1 494.1 919.4 1331.0 450.0 757.8 876.9 439.1 260.8 1319.8 565.4 564.7 2009.5 1341.9 560.4

[1001,10000] 1581.4 586.3 704.5 1320.7 550.4 551.6 799.8 616.7 1197.6 1336.9 761.4 124.6 2749.4 1490.4 867.9

≥10001 1584.9 1009.7 163.4 1327.5 793.8 715.2 1236.1 1272.7 10098.9 1320.0 849.2 2214.8 3971.7 2139.4 915.2

Table 9: Average relative error of SSVS-2 with respect to l ,

under 1Mbit of memory

Flow size range l = 1 l = 2 l = 4 l = 8 l = 16 l = 32

[1,10] 77.0 136.2 35.0 45.8 81.6 111.7

[11,100] 7.4 13.1 3.6 4.7 8.1 11.2

[101,1000] 0.72 1.5 0.43 0.57 1.0 1.5

[1001,10000] 0.11 0.20 0.097 0.15 0.22 0.37

≥ 10001 0.013 0.037 0.015 0.024 0.048 0.11

Table 10: Average absolute error of SSVS-2 with respect to

noise interval, under 1Mbit memory

Flow size range ±2w ±w ±w/2 ±w/4 ±w/8 ±w/16

[1,10] 77.9 65.2 61.6 60.8 61.7 62.2

[11,100] 86.7 74.2 68.8 68.5 69.6 70.1

[101,1000] 132.3 115.4 112.4 108.8 109.8 108.5

[1001,10000] 185.9 187.6 177.7 188.2 196.6 190.5

≥ 10001 237.9 239.3 257.2 241.8 267.4 232.2

RCS and RCS-AC. Its absolute errors are even smaller than most

multi-update sketches except for CU-SC and CS-CE. Comparing

with CU-SC, SSVS-2 has lower errors for small �ows and comparing

with CS-CE, SSVS-2 has lower errors for large �ows. Although its

errors are higher than CU-SC for large �ows, if we consider the

average relative errors in Table 7, which are more relevant for large

�ows, they remain small (in the last two rows). Figure 1 shows that

our new sketch (SSVS-2) has a smaller average (absolute) error than

CU-SC over all �ows; that is because there are many more small

�ows than large ones.

From Table 6, the average absolute errors of RCS-AC are 626.2

on �ows of size [1,10] and 1036.1 on �ows of size ≥ 10001. When it

comes to SSVS-2, the average absolute errors are 60.8 on �ows of

size [1,10] and 241.8 on �ows of size ≥ 10001. The errors of SSVS-2

are less than one tenth and one fourth of RCS-AC’s, respectively.

The advantage of SSVS-2 is more pronounced for small �ows. The

reason is due to the variable counter structure in Section 3.1. Recall

that each counter in SSVS counts precisely until its 16 bits over�ow.

After that, it counts probabilistically. Because the counters of a small

�ow are likely to have small values, SSVS records the �ow’s packets

more precisely than RCS-AC. As the counters of a large �ow are

likely to over�ow into probabilistic counting, SSVS records packets

less precisely than its small-�ow case, but still more precisely than

RCS-AC because it counts precisely up to ±215 and then counts

probabilistically, whereas RCS-AC always counts probabilistically.

We continue comparing SSVS-2 to the prior work by varying the

amount of memory allocated to the sketches from 256Kb, 512Kb,

to 2Mb. The average absolute errors are presented in Tables 8, 11,

and 12. When the memory is very tight, such as 256Kb in Table 8,

CS-CE performs the best for small �ows, CU-SC performs the best

for large �ows, while SSVS-2 is in between, whose errors are larger

than CS-CE but smaller than CU-SC for small �ows, while being

smaller than CS-CE but larger than CU-SC for large �ows. As we

increase the memory, the performance of CU-SC and SSVS-2 is

improved faster and outperforms CS-CE. Note that CU-SC and

CS-CE are multi-update sketches that are optimized for accuracy,

whereas SSVS-2 is designed to perform well both in accuracy and

in overhead. Its overhead is much smaller than those of CU-SC and

CS-CE, as we will show next.

4.4 Overhead Comparison between SSVS-2 and
Prior Work

We compare SSVS-2 with the prior work on the CAIDA data set in

terms of per-packet processing overheadwith the same experiments



Table 11: Comparison of various sketches on average absolute error, on the CAIDA data set, under 512Kbits memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

[1,10] 584.0 227.2 351.2 491.5 205.6 297.6 318.6 147.7 173.0 491.0 204.4 298.6 1296.5 936.2 183.9

[11,100] 583.8 233.8 347.7 493.3 208.4 293.9 318.7 157.2 156.6 490.9 217.2 282.4 1300.1 946.5 194.2

[101,1000] 584.7 237.0 337.3 492.7 220.9 280.9 313.2 218.0 99.6 491.0 300.0 139.3 1423.8 957.4 261.4

[1001,10000] 580.6 336.0 193.1 491.7 298.8 139.5 304.4 342.4 1326.1 496.3 403.5 37.5 2161.0 1056.3 404.7

≥10001 588.8 514.2 47.9 478.8 421.4 756.3 1372.0 1030.3 10206.4 491.8 330.5 2215.7 2479.6 1639.5 473.4

Table 12: Comparison of various sketches on average absolute error, on the CAIDA data set, under 2Mbits memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

[1,10] 37.1 42.0 21.8 60.8 39.2 37.6 38.1 27.4 20.8 60.7 39.4 37.2 648.4 472.5 19.9

[11,100] 37.0 44.3 18.8 60.7 41.0 34.4 37.7 33.8 12.7 60.7 47.8 26.3 667.3 476.9 25.6

[101,1000] 37.9 49.0 13.8 60.6 47.0 26.2 36.9 53.8 122.0 61.0 66.2 6.0 799.2 480.1 46.2

[1001,10000] 71.7 74.4 10.2 60.7 65.2 6.1 198.1 150.6 1390.5 61.5 79.6 3.8 1208.1 603.2 105.8

≥10001 71.9 88.5 4.3 68.5 90.1 795.2 1633.4 877.3 10250.3 84.5 113.8 2214.0 1300.0 913.6 189.4

Table 13: Comparison of various sketches on per-packet processing overhead, on the CAIDA data set, under 1Mbit memory

and l = 4

Per-packet overhead CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

processing time (ns) 266 268 728 410 409 765 278 289 368 388 399 1937 71 121 73

memory accesses O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(1) O(1) O(1)

hashes l l l l l l l l l l l l 1 1 1

counter updates l l O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) O(l) 1 ≤ 1 ≤ 1

Table 14: Comparison of various sketches on throughput in million packets per second (Mpps), on the CAIDA data set, under

1Mbit memory and l = 4

Sketch CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

Throughput (Mpps) 3.76 3.73 1.37 2.44 2.44 1.31 3.59 3.46 2.71 2.57 2.51 0.52 14.08 8.26 13.70

as in the previous subsection. Table 13 presents the average per-

packet processing times of various sketches; see the second row. The

single update sketches, RCS and SSVS-2, have similar processing

times, which are less than the processing time of RCS-AC, which

are in turn far less than the times of the multi-update sketches. In

particular, when we compare SSVS-2 with CS-CE and CU-SC, their

processing times are 73ns, 289ns and 728ns, respectively, almost ten-

fold di�erence between SSVS-2 and CU-SC. The reason for CU-SC,

the best in overall accuracy among the prior work, to have much

larger processing time is because it has to decode l self-adjusting

counters before �nding the smallest counter(s) for update. Generally

speaking, the overhead comparison between a multi-update sketch

and a single update sketch is O(l) v.s. O(1) in terms of number of

memory accesses, number of hash computations, and number of

counter updates. One interesting observation is that SSVS-2 incurs

less than one counter update per packet on average. That is because

its active counters are updated probabilistically; see Section 3.3

for details. Table 14 presents the throughput that each sketch can

handle in millions of packets per second under our experimental

setting. The throughput of SSVS-2 is about 10 times that of CU-SC.

Combining the experimental results on the accuracy of all

sketches presented in Section 4.3, we provide a summary of the

performance of SSVS-2 and the prior work in Figure 1. In this anal-

ysis, we use the average absolute error of all �ows as the overall

accuracy metric, represented by the x-axis. Additionally, we use the

per-packet processing time as the metric for recording overhead,

represented by the y-axis. For consistency, we set the memory allo-

cation to 1Mb. Figure 1 demonstrates that SSVS-2 achieves slightly

better overall accuracy compared to the most accurate existing

method, while signi�cantly reducing recording overhead. Further-

more, in comparison to themost lightweight existing sketch, SSVS-2

incurs similar recording overhead, while improving measurement

accuracy multi-fold.

4.5 Comparison between SSVS-2 and Prior
Work on Web Data Set

We present our evaluation results on the web data set. Table 15

compares SSVS-2 with the prior work in terms of the average abso-

lute error under memory 1Mb. Table 16 gives the average relative

errors. We can draw the same conclusion as those from the CAIDA

data set: CU-SC performs the best for large �ows, CS-CE performs

the best for small �ows, and SSVS-2 performs in between. SSVS-2

is much more accurate than the existing single update sketches,

that is, RCS and RCS-AC. Table 17 compares SSVS-2 with the prior

work in terms of processing time per data item and throughput in

Mpps. Again, the overhead of SSVS-2 is similar to RCS and much

better than multi-update sketches, an order of magnitude better

than CU-SC.



Table 15: Comparison of various sketches on average absolute error, on the web data set, under 1Mbit memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

[1,10] 290.7 234.0 146.4 262.1 189.9 163.7 166.3 128.3 94.9 262.7 190.4 163.6 1475.6 1064.4 135.7

[11,100] 299.3 244.8 132.1 261.5 200.2 143.1 166.4 142.1 74.8 263.8 200.0 144.5 1494.4 1075.4 149.7

[101,1000] 319.8 317.2 81.2 263.4 265.2 44.3 160.9 186.2 99.0 261.5 265.0 46.6 1715.1 1202.6 205.0

[1001,10000] 319.7 403.4 6.7 250.0 365.6 882.2 227.8 328.1 1472.5 263.4 348.2 1.27 2563.9 1735.8 300.6

≥ 10001 352.3 1112.4 0.25 401.7 527.8 10450.8 1709.0 1088.6 11451.3 257.2 364.7 3340.4 2975.4 1970.2 455.3

Table 16: Comparison of various sketches on average relative error, on the web data set, under 1Mbit memory and l = 4.

Size range CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

[1,10] 232.8 187.3 117.6 210.1 152.1 131.5 133.1 102.6 76.4 210.7 151.8 131.4 1181.7 852.6 108.6

[11,100] 14.1 11.4 6.5 12.5 9.4 7.1 7.96 6.62 3.8 12.6 9.6 7.2 71.2 50.9 7.1

[101,1000] 1.5 1.4 0.47 1.2 1.1 0.28 0.78 0.83 0.26 1.2 1.2 0.30 7.7 5.4 0.89

[1001,10000] 0.15 0.19 0.0045 0.12 0.17 0.20 0.08 0.14 0.46 0.13 0.17 0.00094 1.1 0.80 0.14

≥ 10001 0.019 0.044 0.000020 0.019 0.026 0.45 0.07 0.051 0.51 0.014 0.023 0.081 0.16 0.11 0.025

Table 17: Comparison of various sketches on throughput in million packets per second (Mpps), on the web data set, under

1Mbit memory and l = 4

Per-packet overhead CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

processing time (ns) 280 281 756 428 431 796 289 299 386 402 414 2109 75 128 77

Throughput (Mpps) 3.57 3.56 1.32 2.33 2.32 1.25 3.46 3.34 2.59 2.48 2.41 0.47 13.33 7.81 12.90

Table 18: Comparison of various sketches on average absolute error of all �ows, on the Zipf data set with varying skewness,

under 1Mbit memory and l = 4.

Skewness CM-SC CS-SC CU-SC CM-AC CS-AC CU-AC CM-CE CS-CE CU-CE CM-SA CS-SA CU-SA RCS RCS-AC SSVS-2

0 1813.4 108.1 904.6 1590.0 105.5 799.7 1127.4 92.9 566.2 1591.6 104.8 800.0 164.1 210.3 116.1

0.25 1792.7 112.2 900.6 1571.4 108.5 797.1 1112.2 96.2 562.7 1574.0 108.5 797.0 168.0 211.7 120.7

0.50 1661.2 134.7 861.8 1451.1 127.0 763.0 1021.3 110.1 530.6 1450.9 127.4 764.2 234.9 232.2 142.5

0.75 1251.5 159.8 669.9 1086.7 147.3 599.3 754.0 121.2 409.4 1086.1 147.0 596.5 1096.0 788.2 156.1

1 549.3 131.0 292.6 471.9 113.5 278.0 321.2 88.0 193.2 480.2 121.9 275.5 5924.2 4657.3 93.2

1.25 59.6 53.5 26.5 91.0 44.1 87.4 62.4 34.2 72.3 130.4 84.6 97.5 15403.1 13116.2 24.2

1.5 3.6 15.4 1.6 16.9 15.8 150.4 33.7 19.3 155.9 217.2 219.5 226.7 23516.7 21199.8 7.4

4.6 Comparison between SSVS-2 and Prior
Work on the Zipf Data Set

Finally, we present our evaluation results on the synthetic Zipf

dataset under memory 1Mb.We use the average absolute error of all

�ows as the accuracymetric. The results are shown in Table 18. Both

SSVS-2 and CS-CE consistently achieve higher accuracy than others.

CU-SC only achieves superior accuracy when the skewness of the

dataset is very large (greater than 1.25). This discrepancy arises due

to CU’s positively biased estimation, and it works better for large

�ows. When the skewness increases, there are fewer larger �ows.

RCS and RCS-AC exhibit diminishing accuracy as the skewness

level increases. As explained in Section 2.3, this behavior can be

attributed to their utilization of large l values. In particular, the

impact of larger �ows corrupting a greater number of counters is

ampli�ed when confronted with higher levels of skewness. As we

have explained earlier, when the skewness is beyond 1.5, there are

so few �ows that sketches no longer make sense, because we can

use a small hash table.

5 CONCLUSION

This paper designs an accurate and fast sketch called SSVS for

per-�ow size measurement. The design of SSVS contains several

novel components: (1) a new variable counter, (2) a recording oper-

ation that requires only one hash and at most one counter update

for recording each packet, which is key in both noise cancellation

(i.e. accuracy) and e�ciency, and (3) a query method, based on

�ne-tuned noise intervals, which blocks out counters that are heav-

ily impacted by noise. Compared to the most accurate sketches,

i.e., multi-update sketches, SSVS reduces the recording overhead

signi�cantly, while maintaining overall comparable measurement

accuracy. Compared to the most lightweight sketches, i.e., single-

update sketches, SSVS is much more accurate and incurs similar

recording overhead. The experimental results demonstrate that the

proposed sketch achieves both high measurement accuracy and

low recording overhead simultaneously.
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