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ABSTRACT

Per-flow size measurement is key to many streaming applications
and management systems, particularly in high-speed networks. Per-
forming such measurement on the data plane of a network device
at the line rate requires on-chip memory and computing resources
that are shared by other key network functions. It leads to the need
for very compact and fast data structures, called sketches, which
trade off space for accuracy. Such a need also arises in other ap-
plication context for extremely large data sets. The goal of sketch
design is two-fold: to measure flow size as accurately as possible
and to do so as efficiently as possible (for low overhead and thus
high processing throughput). The existing sketches can be broadly
categorized to multi-update sketches and single update sketches.
The former are more accurate but carry larger overhead. The latter
incur small overhead but their accuracy is poor. This paper pro-
poses a Single update Sketch with a Variable counter Structure
(SSVS), a new sketch design which is several times faster than the
existing multi-update sketches with comparable accuracy, and is
several times more accurate than the existing single update sketches
with comparable overhead. The new sketch design embodies sev-
eral technical contributions that integrate the enabling properties
from both multi-update sketches and single update sketches in a
novel structure that effectively controls the measurement error
with minimum processing overhead.
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1 INTRODUCTION

Streaming algorithms process a continuous sequence of data items
at high rate by scanning the items once for useful statistics. One
typical example of high-rate data streams are the packet streams on
the Internet, where each packet carries a flow ID, all packets with
the same ID form a flow, and a classic measurement is per-flow size
(i.e., number of packets in each flow), as a key function of NetFlow
[10], which is in turn the key tool for numerous network manage-
ment systems. Measuring per-flow size on a high-speed network
has applications in billing, traffic engineering, load balancing, anom-
aly detection, heavy hitter detection, etc.[6, 12, 20, 29, 47, 48, 58].
While we will use packet streams to motivate for our work in this
paper, it should be stressed that data streaming and its algorithms
have broad applications in web services, e-commerce, stock trading,
social networks, in-game player experience, geospatial services, dis-
tributed sensing, and network monitoring [7, 17, 19, 24, 25, 34, 41].
Its practical importance is evident from industrial pushes such as
Amazon Kinesis Streams [44].

Implementing per-flow size measurement on the data plane of
a modern router or switch is a challenging task [4, 9, 11, 26, 27,
58] because it competes for limited on-chip resources on network
processors that process and forward packets at extremely high
speeds in the order of tens or hundreds of millions of packets
per second. Because the on-chip memory (e.g., SRAM) and the
processing unit have to be committed to the key network functions
such as routing-table lookup, traffic shaping, access control, and
deep packet inspection, the resources that can be allocated to a
measurement function are often limited, especially when there are
multiple co-existing measurement functions, each for a different
purpose. Compact and efficient data structures, called sketches, have
been the preferred choice to provide per-flow size estimations with
limited memory allocation [4, 8, 9, 11, 15, 26, 27, 30, 32, 50, 52, 53, 59].
Beyond networks, in the broader context of applications, even with
datacenter resources, resource contention (including memory) can
still be a challenge for very large datasets, which makes sketches
useful [28]. That is more true if one wants to process large datasets
by using ordinary computing resources (such as desktops) for cost
Or convenience reasons.

Given a certain amount of allocated memory, there are two
key performance metrics to consider in sketch design, flow-size
estimation accuracy and per-packet processing overhead. Accuracy
is critical to supporting the applications that are built on flow size



information. Overhead is critical to ensuring that the measurement
function does not cause a bottleneck that constrains the streaming
throughput. The existing work can be classified into two categories,
multi-update sketches [4, 8, 11, 15] and single update sketches [26,
27, 59]. The former focuses on estimation accuracy, whereas the
latter focuses on processing overhead.

When the number of counters in an allocated memory is far
fewer than the number of flows to be measured, each counter has
to record the data items (e.g., packets) from multiple flows, causing
inter-flow noise. An interesting approach is to instead record each
flow in multiple counters, mixing with different flows for noise
control or reduction. These multi-update sketches have to visit mul-
tiple counters for each arrival data item and update one or multiple
counters, resulting in higher overhead. They include CountMin
(CM) [11], Count Sketch (CS) [8], Counter Update (CU) [15], and
their numerous variants, including those that replace regular coun-
ters with self-adjusting counters (SC) [4], active counters (AC) [39]
or Counter Pyramid [52] (which incurs more updates in the worse
case).

To minimize per-item processing time, the single update sketches
still record each flow in multiple counters, but only update one of
these counters for each data item. They include randomized counter
sharing (RCS) [26, 27] and its variant using active counters (RCS-
AC) [59]. It has another variant that uses counter tree [9], which
has higher processing time and incurs multiple counter updates
for some data items while making one counter update for other
items. The problem of the existing single update sketches is that
their accuracy is very poor.

The state of the art is illustrated in Figure 1, where the x-
axis is the average error in flow size estimation and the y-axis
is the per-packet processing time. The existing sketches are placed
in the figures based on the experimental results that will be ex-
plained later. For example, CU-SC is Counter Update [15] with
self-adjusting counters [4]; it achieves the best accuracy among
multi-update sketches but has high processing overhead. The figure
shows that multi-update sketches are clustered in the upper-left
portion, whereas the single update sketches are clustered in the
lower-right portion, making tradeoff between estimation accuracy
and processing overhead.

Can we design a novel sketch that fills the empty lower-left
portion of the figure, with both high accuracy and low overhead?
This has been an unanswered question, without a proof on the
hard limitation of accuracy-overhead tradeoff or a new sketch that
demonstrates the feasibility of achieving both. This paper proposes
a new sketch called SSVS, which fits in that void, with an average
error in the rank of the best multi-update sketch and a processing
overhead in the rank of the best single update sketch. We have
three technical contributions. The first contribution is to integrate
self-adjusting counters and active counters in a variable counter
structure where the counters expand first in size and then in expo-
nent, creating a very large range and a dynamically adjusting small
error, with a maximum counter size of just 16 bits. The second
contribution is to integrate positive/negative noise cancellation
with single counter update, which is key to achieve both accuracy
and efficiency. The third contribution is to introduce the concept of
noise interval that blocks out large noise component in flow size es-
timation and thus improve estimation accuracy. Our experimental
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Figure 1: Comparison of sketches in the overhead-accuracy
space for the CAIDA data set. The horizontal axis is the aver-
age error of all flows. The vertical axis is per-packet process-
ing time. Each sketch is placed based on the experimental
results (discussed later in the paper).

results show that (1) the new sketch achieves accuracy comparable
to the most-accurate existing sketch, CU-SC [4], with one-tenth
of its overhead, and (2) the new sketch achieves overhead similar
to the most-efficient existing sketch, RCS [26, 27], with multi-fold
better accuracy.

2 PRELIMINARIES
2.1 System Model

Consider a data stream measurement module that processes a large
sequence of data items at a high rate. Each data item carries a flow
ID, all items with the same ID form a flow, and the module measures
the size of each flow, i.e., the number of items in each flow. As an
example, it can be a traffic measurement module implemented on
the data plane of a high-speed network device, where one of its
functions is to measure the number of packets (i.e., data items) in
each flow, under limited available on-chip resources in memory and
processing. The flow ID is defined based on the application need.
It may be source address, destination address, source-destination
address pair, TCP five-element tuple, or any combination of header
fields carried by the packet. The measurement happens in epochs
of a certain length. The module records statistics into a sketch data
structure as it processes the data items. At the end of each epoch,
the sketch with its recorded statistics is offloaded to a server where
queries on flow sizes are answered. The module then resets its data
structure to start the next epoch. For offline query, given a flow ID,
the server can estimate the size of the flow in any past epoch from
the stored sketches. For online query, given a flow ID, the module
can estimate the size of the flow in the current epoch.



2.2 Related Work

To enhance accuracy and efficiency, the prior work has pursued two
orthogonal directions: improving sketch structure and designing
efficient counters. Table 1 provides a summary of existing work.

2.2.1 Sketch Structures. There are broadly two sketch structures
for per-flow size measurement: multi-update sketches and single
update sketches. The multi-update sketches include CountMin (CM)
[11], Counter Update (CU) [15], Count Sketch (CS) [8] and their
variants. CM hashes each flow f to d counters in a two-dimensional
counter array, and increases all the d counters by one for each
arrival packet of the flow. To estimate the size of the flow, it returns
the minimum value of the d counters. CU differs from CM by only
increasing the smallest one(s) of the d counters by one for each
arrival packet of the flow. However, it still has to perform d memory
accesses to retrieve the current values of the counters. CS either
increases or decreases all the d counters by one, based on a pseudo-
random hash flag of the flow. Each counter provides an unbiased
estimate of the flow size. CS uses the median value of the d counters
as the final estimate. CM/CU/CS and their variants are widely used
in network traffic measurement research [18, 30, 50, 54-58].

The most notable single update sketch is Randomized Counter
Sharing (RCS) [26, 27]. RCS also maps each flow f to I counters,
but only randomly selects one of the I counters to increase for each
arrival item of flow f. Because the counters are shared by all flows,
each counter of flow f carries noise from other flows. To estimate
the size of flow f, RCS returns the sum of its [ counters subtracted by
an average noise measured across all counters. RCS adopts a large
value for [ (such as 50 in [26, 27]) to ensure sufficiently randomized
noise distribution, but the total noise present in a flow’s counters
is proportional to /.

There are layered sketch structures, including Counter Braids
[32] and Pyramid Sketch [52], built on top of CM/CU, and Counter
Tree [9], built on top of RCS. They use small counters at the bottom
layer, and these counters will overflow into higher layers recursively.
They are more memory efficient, thanks to small counters, but
they have variable processing time due to the need to operate
on multiple layers of CM/CU/RCS when overflow happens. Their
worst-case processing time is determined by the number of layers.
Recent research shows that using more efficient counter designs
outperforms multiple layers of small counters [4, 51].

The Bucketized Rank Indexed Counter (Brick) [22] partitions a
counter array into groups of k counters each, called bricks. Each
brick is multi-layered, with k small counters at the bottom, which
overflows recursively to higher layers. Different from Counter
Braids where each counter overflows into multiple higher-layer
counters, each counter in Brick overflows into a single higher-layer
counter. However, each layer requires an index array to keep in-
formation about where each of its counters overflows into. It thus
has higher memory overhead than Counter Braids under the same
counting range.

CM, CU, CS and RCS are generic sketch structures that can adopt
different counter designs, which will be elaborated next.

2.2.2 Efficient Counters. A regular counter of r bits has a range
of [0, 2"). To expand the range, DIScount COunting (DISCO) [21]
sacrifices counting accuracy by mapping the counter values to a
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sequence of integers with increasing gaps, {0, 1, 5=, ..., 75—},

where b > 1, which spans a much wider range but has a much
coarser counting granularity. DISCO increments its counter proba-
bilistically, where the exact probability is determined by the current
counter value. Its range is O(b?"), but its counting is highly in-
accurate. Counter Estimation Decoupling for Approximate Rates
(CEDAR) [42] improves over DISCO with a mapping function that
minimizes the maximum relative error in counting. The Indepen-
dent Counter Estimation Buckets (ICE-Buckets) [13] partitions a
counter array into buckets of k counters each. Each bucket be-
gins with a small-ranged mapping function. Whenever a counter
overflows, it switches to a larger-ranged mapping function.

Self-adjusting counters (SCs) in [4] begin as 8-bit regular coun-
ters. When counters overflow, they will merge with neighboring
counters in the array to create larger-sized counters. Self-Adjusting
Lean Streaming Analytics (SALSA) implement SCs in various sketch
structures such as CM, CU, and CS to measure per-flow size; they
are denoted as CM-SC, CU-SC, and CS-SC, respectively.

Another approach to expand counter range is through sampling.
Additive error counter [3] begins with a sampling probability of
1. Each time overflow occurs, the sampling probability is halved.
CM with additive error counters is called Additive Error Estimator
(AEE) [3]. All counters in AEE share the same sampling probabil-
ity, which is determined by the counter that overflows the most.
This approach is efficient in tracking the sizes of large flows, but
aggressive sampling across all counters may result in poor size
estimation for small and medium flows or even completely miss
some small flows [23, 28, 31], which is undesirable for per-flow size
measurement, as is considered in this paper.

Active counter (ACs) [39] splits its bits in two parts: a number
part v and an exponent part e. Its value is v X 2¢. To increase the
counter by one, we must do so probabilistically, with a probability
of 2% Combining RCS [26, 27] and active counters produce a sketch
denoted as RCS-AC [59].

Self-adaptive counters [51] also have a number part and an ex-
ponent part. The exponent part has a variable length, its bits must
be all ones, and the number of ones is the exponent value. The two
parts are separated by a bit zero. Its range is limited, comparing with
AC [39]. For example, for a 16-bit counter, if we want at least 10
bits in the number part for resolution (i.e., counting accuracy), the
exponent for a self-adaptive counter can only be up to 5, whereas
the exponent for AC can be up to 31, with a range 22° times larger.

2.2.3 Hash Table, Flow Spread and Heavy Hitters. Hash tables [14,
16] can be used to keep track of the size of each flow. However, if
the number of flows exceeds the number of hash entries (such that
sketches become necessary), hash tables can only keep the large
flows for heavy hitter detection [38]. Sketches for a different task
of measuring per-flow spread [46, 49, 58], i.e., number of distinct
data items in each flow, may also be used for estimating per-flow
size. But their performance is generally much worse [58]. Sketches
for detecting heavy hitters [2, 5, 30] do not perform per-flow size
measurement.

2.3 Motivation

We want to explore a new sketch design that possesses the benefits
from both worlds: the accuracy of the multi-update sketches and



Table 1: Performance comparison of the proposed SSVS sketch and existing solutions. SSVS is the only one that performs single-
update (low processing time for recording) and high-accuracy per-flow size measurement. Layered sketches need additional
processing overhead to update possibly a chain of counters at the upper layers when counters at the bottom layer overflow.

Solutions with bold font are considered as the state of the art.

Group of Solutions Solutions Counters Used Measure Per-flow? Counter Updates per Item Accuracy
CM [11] Regular counters Yes Multi-update Medium
Generic sketch structures CU [15] Regular counters Yes Multi-update Medium
CS [8] Regular counters Yes Multi-update Medium
RCS [26, 27] Regular counters Yes Single-update Low
Counter Braids [32] Small-size regular counters Yes Multi-update and recursive update | Low
Brick [22] Small-size regular counters No Multi-update and recursive update | High
Layered sketches - - - - -
Pyramid Sketch [52] Small-size regular counters Yes Multi-update and recursive update | Medium
Counter Tree [9] Small-size regular counters Yes Recursive update Low
AEE [3] Small-size regular counters No Multi-update High
DISCO [21] Small-size counters Yes Multi-update Low
CEDAR [42] Small-size counters Yes Multi-update Medium
Efficient counter designs |ICE-buckets [13] Small-size counters No Multi-update High
Self-adaptive counters [51] | Small-size counters Yes Multi-update High
SC/SALSA [4] Small to large counters Yes Multi-update High
AC [39] Small-size counters Yes Multi-update High
Hash tables C}lckoo filter [16] Regular counters No S?ngle—update High
Tinytable [14] Regular counters No Single-update High
This paper SSvs Small-size variable counters Yes Single-update High

the efficiency of the single-update sketches. For that, we have to
integrate the enabling properties from both multi-update sketches
and single-update sketches in a novel structure that resolves their
incompatibility.

First, to minimize the processing overhead, we prefer a single
update sketch, which means the multi-update sketch structures
and their variants (including the generic sketch structures and the
layered sketches in Table 1) [4, 8, 9, 11, 15, 22, 32, 52] are out of
consideration. The existing single-update sketches, RCS [26, 27]
and its variant RCS-AC [59], have very poor accuracy, as shown
in Figure 1. They map each flow to I counters and record each
data item of the flow by increasing one of the [ counters by one.
The expectation of the noise (from other flows) in each counter is
estimated as the average value of all counters. This approach is valid
only if noise is about randomly distributed in all counters, which
requires the value of [ to be large (e.g., 50 in [27] and 512 in [59]).
However, because the overall noise level in a flow’s size estimate
increases with [, the large value of I causes the poor accuracy of
RCS-AC. Now the question is how to reduce I. Our single-update
sketch design will use noise cancelation to ensure that each of the
I counters has a noise expectation of zero and [ can be any small
value. Moreover, it eliminates the overhead in RCS/RCS-AC to scan
the whole counter array for an estimate of the noise expectation
per counter (as it is zero in our design).

Second, by increasing the number of counters, we can further im-
prove the accuracy of a single-update sketch. With a given amount
of memory, more counters mean fewer bits per counter. We have a
three-way tradeoff to play: number of counters, range, and count-
ing accuracy. The existing work has their limitations in this space
of tradeoff. Some counter designs in Table 1 such as DISCO [21]
and CEDAR [42] achieve large range by sacrificing counting accu-
racy, particularly in the low end of its range. They are suitable for
large flows, but not for small flows or medium flows (depending on
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the counter configuration). Other designs are adaptive to ensure
more accurate counting for small flows at cost of limited range [51],
expansion in counter size [4], or processing overhead [13, 39]. To
address these issues, we integrate self-adjusting counters [4] and
active counters [39] in an efficient variable counter structure that
expands the range to very large values, ensures precise counting
up to 2!, bounds the relative counting error beyond 2!° to a small
value, and limits the counter size to 16 bits in the worst case.

3 SINGLE UPDATE SKETCH WITH VARIABLE
COUNTER STRUCTURE (SSVS)

In this section, we propose a new single update sketch, denoted
as SSVS, with a variable counter structure. The performance gap
between our new sketch and the existing single update sketches,
RCS/RCS-AC, is significant, as shown in Figure 1. To achieve such
a performance boost, its design differs from the existing work in
counter structure, sketch design, data recording, and query opera-
tion.

3.1 Variable Counter Structure

Our idea of variable counter structure is motivated from the limita-
tions of the counters used in RCS/RCS-AC. For a range of 232, RCS
will need 32-bit regular counters; observing the byte boundary, RCS-
AC will need 16-bit active counters (ACs), each with 5-bit exponent.
From Figure 1, RCS-AC is more accurate than RCS. The reason is
that it has twice the number of counters. However, active counters
perform probabilistic counting and thus incur counting errors. Can
we create even more counters, nearly twice as many as RCS-AC has
at least initially, yet count precisely until it becomes infeasible with
16 bits per counter? Our insight is that each counter should be made
dynamic, counting precisely up to 16 bits and then switching to
probabilistic counting with progressively increasing error. Because
we do not know beforehand how many data items each counter will
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Figure 2: Variable Counter Structure. A 64-bit block of SRAM, divided into 4 intervals of 16 bits each. The interpretation of the
counters in the counter array C depends on the values of the indicator array I. In this example, each 16-bit interval has the same
bit value of 0001001011001100. The first bit of each counter is the sign. Since I[0]=0, the first 16 bits of memory are interpreted
as two 8-bit counters, b[0] and b[1]. The value of the first 8-bit counter, with its sign being 0, is C[0].5[0] = 00100102 = 18;¢. The
value of the second 8-bit counter, with its sign being 1, is C[0].b[1] = —10011002 = —761¢. For the second counter we have I[1]=1,
so the second 16-bit interval is a short counter. With the sign being 0, its value is C[1].s = 0010010110011002 = 48121¢. For the third
counter we have I[2]=2, so we interpret the first bit as the sign, the next 12 bits as the value and the last 3 bits as the exponent.
The value part is C[2].al.v = 0010010110013 = 60119 and the exponent part is C[2].al.e = 1002 = 419. Therefore, the counter’s value
is C[2].al.v - 2€[2-al-e = 01 . 24 = 9616. For the last counter we have I[3] = 3, so its value part is C[3].a2.v = 00100101102 = 15019
and its exponent part is C[3].a2.e = 011003 = 1219. Therefore, the counter’s value is C[3].a2.v - 2C[3l-a2.e — 150 . 212 = 614400.

record, the counters must individually adapt from exact counting as C[j].al.v, and the remaining « bits as the exponent part,
to probabilistic counting on the fly. None of the existing counter denoted as C[j].al.e, where « is a small integer parameter,
designs, including active counters, can do this well.! In comparison, such as 3 used in our experiments. We abbreviate Active
our variable counter design is structured specifically with such Counter as AC. With 3 bits of exponent, the range of a small-
a goal in mind. Observing the byte boundary, it begins with byte ranged AC is (-21%, 21%). With 12 bits of value, the rounding
counters in order to maximize the number of counters; note that the error is less than 2%
accuracy of all sketches improves with a larger number of counters. e When I[j] = 3, we treat C[j] as a large-ranged active counter
Each byte counter will overflow into a 16-bit counter, still for exact of two bytes, denoted as C[j].a2, with its first bit as the sign,
counting, which will then overflow into a 16-bit active counter with the next (15 — ) bits as the value part, denoted as C[j].a2.v,
3-bit exponent, which will expand to 5-bit exponent upon over- and the remaining f bits as the exponent part, denoted as
flow.? This design of dynamic adaptation from exact counting to Clj].a2.e, where f is another integer parameter, such as 5
probabilistic counting progressively in a variable counter structure used in our experiments. Its range is (=241, 2%1), with its
has advantage over the existing designs in maximizing the number rounding error less than Zig
of counters and minimizing the counting error at the small end. We will adopt « = 3 and § = 5 in the rest of the paper. These
SSVS uses an array C of m words, each of 16 bits or two bytes,’ parameter values cover a broad range, while the user can certainly
and an array I of m indicators, each of 2 bits. I is the indicator change them to other values based on application need.
for C, specifying how C should be interpreted, as explained below. The array C has a variable counter structure, defined by the
Consider any j € [0, m). indicator array I, which initially sets all indicators to zero and
e When I[j] = 0, we treat C[j] as two byte counters, referred to evolves as the data items of the flows are recorded. C is initialized
as C[j].b[0] and C[j].b[1], each of 8 bits. The first bit is the with 2m small byte counters, aligning with our goal of maximizing
sign and the remaining 7 bits are the value of the counter. the number of counters to enhance accuracy. Each byte counter
e When I[j] = 1, we treat C[j] as a short counter of two bytes, counts precisely until overflow. When that happens, we expand
denoted as C[j].s. The first bit is the sign and the remaining the counting range by merging two adjacent byte counters into a
15 bits are the value of the counter. short counter to continue exact counting. When a short counter
e When I[j] = 2, we treat C[j] as a small-ranged active counter overflows, it becomes a small-ranged active counter and then a
of two bytes, denoted as C[j].al, with its first bit as the sign, large-ranged active counter, which is controlled by the counter’s
the next (15 — ) bits as the value part, together denoted indicator. We illustrate how arrays C and I work with an example
in Figure 2, in which each 16-bit segment has the same bit value,
Paper [47] is a variant of active counter, with a less efficient exponent design. For but the content of C is interpreted differently’ depending on I.

example, it uses 1010011111, to represent 10102 X 25, where the five trailing ones rep-

resent an exponent of 5. In contrast, our design uses five-bit exponent for a multiplying .
factor of 20 through 2% 3.2 Mapping Flows to Counters

2Given 16 bits in total, with 2 more bits in exponent, there are two fewer bits in the Each flow f is mapped to I counters in C using 1 hash functions
value part, which increases probabilistic counting error. ; .

3 A word is typically 32 or 64 bits long. One may refer to 16 bits as a short word, but hi(')’ 0 <i<I wherelisa system parameter that controls the
we refer to it as word for simplicity. estimation error, which we will analyze later. For a single update
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Figure 3: Examples illustrating how we handle overflows in C[A]*(f)]: Example (a): The byte counter C[A[*(f)].b[0] is on the
verge of overflowing, with a pending increase. We merge C[h)"(f)].b[0] and C[h}*(f)].b[1] to create the short counter C[h)*(f)].s.
The resulting value is the sum of the two byte counters plus 1, which equals 127 + 3 + 1 = 131. I[A]*(f)] is updated from 0 to 1.
Example (b): The short counter C[h(f)].s = 2!° — 1 is approaching its overflow point. When faced with a pending increase to
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, we convert it into a small-ranged active counter by setting the value part (12 bits) to 2!! and the exponent part (3 bits) to

4. I[h™(f)] is accordingly incremented to 2. Example (c): The small-ranged active counter C[h(f)].al = (2!? — 1) x 27 is nearing
its overflow threshold. When confronted with a pending increase in the value part to 2!2, we transform it into a large-ranged
active counter by setting the value part (10 bits) to 2° and the exponent part (5 bits) to 10. I[k7*(f)] is updated to 3. By following
this approach, we ensure that counter transformations are performed without incurring any errors.

sketch, each data item of flow f will be recorded by one of its [ coun-
ters. According to [58] and [46], practically, one may implement /
hash functions from a master hash function H as h;(x) = H(x & i),
0 < i < I, where & is the XOR operator.

The hash value of flow f is an integer, denoted as h;(f), 0 <
i<l Let h(i)(f) and h%(f) be the the first and second bits of k;(f),
respectively. Let h?+( f) be the remaining bits. Suppose that the
range of h?+(f) is larger that the range of m. We define h]"(f) =
h?*( f) mod m.

We use hi"(f), 0 < i < [, as an index to map f to a word in
C,ie, C[h[*(f)], and to an indicator in I, i.e., I[A]*(f)]. We use
I[R]*(f)] to interpret the counter(s) in C[A]"(f)]. If there are two
byte counters in case of I[A*(f)] = 0, we use h}(f) to further map
f to one of the two byte counters. The details are given below.

o IfI[AI*(f)] = 0, we map f to C[hl’.”(f)].b[h}(f)], which is a
byte counter.

o If I[RM(f)] 1, 2, or 3, we map f to C[A[*(f)]s,
C[h]"(f)].al, or C[h*(f)].a2, respectively, which are the
same two bytes but interpreted differently.

We haven’t used h?( f) yet, which is left for the data recording
operation below.

3.3 Recording Data Items

Each data item of a flow will be recorded by one of the I counters
that the flow is mapped to. Which counter to use is randomly
selected, and the counter is either increased or decreased by one,
pseudo-randomly determined based on the flow ID. As the counter
may be shared by other flows (noise), some of those flows will
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increase the counter and others will decrease the counter, resulting
in noise cancelation and lowering the residual noise, which may be
positive or negative, with an expectation of zero. Such a technique
was used in CS [8], a multi-update sketch. Below we adopt it in a
single update sketch with a variable counter structure.

At the beginning of each measurement period, all bits in C and I
are set to zeros. When processing the next arrival data item, which
carries a flow ID f, we generate a random number r in the range of
[0,]). We compute the hash h,(f) = H(f @ r), compute the index
h*(f) and record the data item in the counter C[A]*(f)]. The exact
recording operation is based on the value of h2(f). If K2(f) = 0, we
increase C[h*(f)] by one; if h%(f) = 1, we decrease C[h™(f)] by
one.

The increase (or decrease) of an AC is different from a byte/short
counter. The AC increase (or decrease) is done probabilisti-
cally: Depending on the value of h%(f), for a small-ranged AC,
C[h*(f)]).al.v is increased (or decreased) by one with probability

ST are for a large-ranged AC, C[h*(f)].a2.v is increased (or

decreased) by one with probability m

If C[h*(f)] is a byte counter and it overflows, we need to expand
its size to a short counter. If C[A]*(f)] is a short counter and it
overflows, we need to turn it into a small-ranged AC. When that
counter overflows, we turn it into a large-ranged AC. We do not
expect a large-ranged AC to overflow, since its range is (241, 241),
But if it does, it is easy to redefine the size of its exponent part
from 5 bits, to 6 bits or more. Below we explain how exactly to
handle the problem that a pending increase (or decrease) would
cause C[h]*(f)] to overflow.



Algorithm 1 Data-Item Recording

Input: flow ID f, a master hash function H, counter array C and
indicator array [
Output: single counter update to C and I

r = random.nextInt(0, [-1);

he(f) = H(f ®r);

R = BEA(P) mod ms

- if I[h*(f)] = 0 then

run Algorithm 2 Update byte counter;

. else if I[A*(f)] = 1 then

run Algorithm 3 Update short counter;

. else if I[A*(f)] = 2 then

if random.nextInt(0, 2Clh(f)).al.e _ 1) = 0 then
run Algorithm 4 Update small-ranged AC;

N RN B T I~ V- CR

-
4

else
if random.nextInt(0, 2€1A7 (F)l-a2-¢ _ 1) — ¢ then
run Algorithm 5 Update large-ranged AC;

11:
12:
13:

return updated C and I;

Algorithm 2 Update byte counter

Input: bit h2(f), bit h1(f), counter C[(f)], and indicator
1R (f)]
Output: updated counter C[A]*(f)] and indicator I[A]*(f)]

1 if h%(f) = 0 then

2 if C[W(f)].b[hL(f)] = 127 then

3 1AM (A = TRT(P)] + 1

4 ClR" ()]s = Ch;*(f)]-b[0] + C[RT*(f)].b[1];
5 CIR(f)).s = CIAT ()]s + 13

6: else

7 CIRT(FBIRL(] = CIRT (IR + 1
8: else

9: if C[h™(f)].b[hL(f)] = —127 then

10: IR ()] = IR ()] + 1

1 ClR" ()]s = C[h;*(f)]-b[0] + C[R*(f)].b[1];
12: Clh* ()]s = C[R ()]s - 1

13: else

14 CTRT(FBIRL()] = CIRM (LR - 1

return updated C[h}*(f)] and I[A]*(f)];

o Case 0:I[h]*(f)] = 0.
C[h*(f)] is either C[AT*(f)].b[0] or C[A*(f)].b[1]. We need
to combine the two byte counters into a short counter.
We set I[A*(f)] 1, add the values of C[A[*(f)].b[0]
and C[AT'(f)].b[1] to C[A(f)].s, ie. C[A(f)].s
C[R*(f)].b[0] + C[A*(f)].b[1]. Then, we increase (or de-
crease) C[h(f)].s by one, based on the value of h0(f). We
give an example for this case in Figure 3 (a).

o Case I: I[W*(f)] = 1.
We need to turn a short counter into a small-ranged AC.
We set I[h]*(f)] = 2 and turn C[h]*(f)].s into C[AJ*(f)].al
by right-shifting the counter by 4 bits and then setting
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C[h*(f)].al.e (i.e., the right-most 3 bits) to 4. Then, we in-
crease (or decrease) C[h[*(f)].al by one, based on the value
of h2(f). We give an example for this case in Figure 3 (b).
Case 2: I[W*(f)] = 2.

We need to turn a small-ranged AC to a large-ranged AC.
We set I[A*(f)] = 3 and turn C[A*(f)].al into C[A*(f)].a2
by right-shifting the counter by 3 bits and then setting
C[h*(f)].a2.e (i.e., the right-most 5 bits) to 10. Then, we in-
crease (or decrease) C[h[*(f)].a2 by one, based on the value
of h2(f). We give an example for this case in Figure 3 (c).
Case 3: I[W*(f)] = 3.

If a large-ranged AC overflows, it means that the exponent
part requires more than 5 bits. We have to increase the size
of the exponent part for all large-ranged ACs, which may
be done by right-shifting the value part for one bit and thus
allowing the expansion of the exponent part by one bit.

The detailed recording operations are given in Algorithm 1. The
update operations of byte counters are given in Algorithm 2, and
of other counters are provided in Github [36]. For each arrival
data item, at most one counter in C will be updated. Because an
active counter is updated probabilistically, there is a chance that
no counter update is actually needed. Occasionally, we may also
need to update an indicator, but that is rare.

3.4 Size Query and SSVS-1

To answer a query for the size of flow f, we retrieve the flow’s [
indicators, I[A]*(f)], 0 < i <[, and [ counters, C[A]"(f)]. A simple
method is to estimate the flow size iy as

fip = > SCIR ()

where § = 1 when h?(f) =0and § = —1 when h(i)(f) =1.

Each of the [ counters carries noise from other flows. But those
noises come randomly as positive or negative, and they statistically
cancel out each other. Let ns be the true size of flow f. We have
the following theorem. Its proof can be found in the supplementary
material and in GitHub [36].

1)

THEOREM 1. For any flow f, the expectation and variance of fig
produced by SSVS-1 follow:

By i= ifvo < i < LI[A™(f)] € {0,1}; @
e [(1-0.01)np, (1+40.01)nr], otherwise;
Var(iif) < 2.04021*(n/m — n/(2m?)). A3)

We refer to our sketch design, the recording operations and the
query method (1) together as SSVS-1.

Modified Size Estimation Method and
SSVS-2

From Theorem 3, the standard error in ﬂf is minimized when [ = 1,
which is confirmed by our experiments discussed later. As explained
in Section 2.3, a small value of [ will help SSVS-1 be more accurate
than RCS/RCS-AC, which is also confirmed by our experiments. It
is well known that network traffic traces follow power-law distri-
butions [1, 35, 40], with most flows being small or medium, and
very few flows being very large. For such data sets, as each flow is

3.5



split among few counters (small [), the sizes of large flows are con-
centrated in a small number of counters, causing big noise (called
noise outlier) to other flows that share these counters. To further
improve accuracy, we need a way to block out the noise outliers.
We attempt to exclude the noise outliers from the estimation for-
mula by establishing a so-called noise interval and only the counters
within the noise interval are used for flow size computation.
Before any query, we generate a large set F of fake flow IDs
(corresponding to flows of size zero). We use (1) to estimate their

flow sizes, which are in fact the residual noises after cancellation.
) f'eF |”f [

, which is a
[F]

Let w be the average residual noise, i.e., w =
measure of overall residual noise level.
Given a query on flow f, we sort its [ counters, C[h]"(f)], 0 <
i < I, and find the closest two counters, denoted as ¢ and ¢’ with
¢ < ¢’, which tend to locate at the center of the distribution. We
define a noise interval for flow f as [c — 3, ¢’ + ¥ ], where k is a
parameter that controls the width of the interval. We will study
this parameter experimentally. We abbreviate the noise interval as
+¥. The purpose of noise interval is to keep out the noise outliers.
We estimate the size of flow f based on the subset Ny of counters

that fall within the interval.

Nf = {5CIRP ()] | ¢ - % < SCIRM(f)] < ¢ + %,0 <i<l)
4

Ak

)
TN erfo’

where § = 1 when h(l.)(f) =0and § = —1 when h(l.)(f) =1.

We refer to the version of our sketch using (4) as SSVS-2. The
only difference between SSVS-1 and SSVS-2 is their estimation
formulas. We know that SSVS-1 is optimized at [ = 1. That is not
the case for SSVS-2. In fact, because the noise interval contains at
least two counters, SSVS-1 and SSVS-2 will be identical if they use
the same number of counters per flow at I = 1 or 2. Our experiments
will show that SSVS-2 with | = 4 consistently outperforms SSVS-1
with [ = 1.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setting

We have implemented the following sketches for per-flow size mea-
surement: (1) the proposed SSVS-1 and SSVS-2, which have the
same recording operations but different query methods; (2) ran-
domized counter sharing (RCS) [27], which is the best single update
sketch in terms of low processing overhead (note that its Counter
Tree variant [9] sometimes has to update multiple counters in a
hierarchical structure and thus has higher overhead); (3) Random-
ized Counter Sharing with active counters (RCS-AC) [59], which
is also a single update sketch; (4) a group of widely used multi-
update sketches that employ regular counters as building blocks,
including CountMin (CM) [11], Count Sketch (CS) [8], and Counter
Update (CU) [15]; (5) their variants that use self-adjusting coun-
ters [4], including CountMin with self-adjusting counters (CM-SC),
Count Sketch with self-adjusting counter (CS-SC), and Counter Up-
date with self-adjusting counter (CU-SC); (6) their variants that use
active counters [39], including CountMin with active counter (CM-
AC), Count Sketch with active counter (CS-AC), and Counter Update
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with active counter (CU-AC); (7) their variants that use CEDAR
counters [42], including CountMin with CEDAR (CM-CE), Count
Sketch with CEDAR (CS-CE), and Counter Update with CEDAR
(CU-CE); and (8) their variants that use self-adaptive counters [51],
including CountMin with self-adaptive counter (CM-SA), Count
Sketch with self-adaptive counter (CS-SA), and Counter Update
with self-adaptive counter (CU-SA). Layered sketches have higher
processing overhead due to counter updates across layers, and it is
shown in [4] that CM-SC also outperforms Pyramid sketch in accu-
racy and shown in [51] that CM-SA, CS-SA and SU-SA outperform
Counter Tree in accuracy.

The self-adjusting counters used in CM-SC, CS-SC and CU-SC are
up to 32 bits, with a maximum range of 232. The active counters used
in CM-AC, CS-AC and CU-AC are 16 bits with the same structure
as our large-ranged ACs, with a maximum range of 2!, To have a
range of up to 232, we allocate each CEDAR counter 12 bits, which
is recommended in its original experiments. Self-adaptive counters
have two versions: static and dynamic. We use the dynamic one,
because it is more accurate, as demonstrated in the original paper.
Each self-adaptive counter is 16 bits, which is the same parameter
setting as the original paper. We set [ = 50 for RCS [26, 27], ] = 512
for RCS-AC [59], as in the original papers, and d = 4 for CM, CS, CU,
CM-SC, CS-SC, CU-SC, CM-AC, CS-AC and CU-AC. See Section 2.2
for their definitions. For SSVS-1 and SSVS-2, we will experimentally
study how they react to different [ values.

Table 2: Statistics of the traffic trace from CAIDA used in our
experiments

Flow size range | Avg flow Size | No. of flows
[1,10] 31 355580
[11,100] 25.7 68057
[101,1000] 308.7 12034
[1001,10000] 2805.2 2218
> 10001 19370.7 274

Table 3: Statistics of the web data set in our experiments
Flow size range | Avg flow Size | No. of flows
[1,10] 18 913742
[11,100] 30.1 65053
[101,1000] 3159 14393
[1001,10000] 3072.7 3860
> 10001 22209.3 751

Our evaluation uses two sets of performance metrics, one set
for estimation accuracy and the other set for recording overhead.
Estimation accuracy is evaluated by the average absolute error and
the average relative error. Consider a set F of flows. Vf € F, let fif
and ny be the flow size estimate and the true flow size, respectively.
The average absolute error is defined as 3, rep(|fif — nyl)/|F|. The

I —ny| /|F|. The absolute

n
error is more useful for small flows, whereas the relative error is
more useful for large flows. For example, we consider flf =5 to be
a good estimation for ny = 1 because it is off only by 4 although
= 100200 to be a good
estimation for ny = 100000 although the absolute error 200 is much
worse, but the relative error is only 0.2%.

average relative error is defined as Y rcp

the relative error is 400%. We consider 7



Table 4: Average absolute error of SSVS-1 with respect to |,
under 1Mbit memory

Flow sizerange| [ =1|1=2| [=4| [ =8|l =16|]=32
[1,10] 132.6|237.2| 380.2| 534.4| 624.8| 667.0
[11,100] 134.8|242.9| 389.8| 536.4| 637.7| 670.8
[101,1000] 157.2(311.4| 470.4| 627.4| 753.4| 794.9
[1001,10000] |224.0(393.9| 675.8| 963.9(1126.5|1202.7
> 10001 217.3|639.5|1021.7|1055.81186.6|1418.9

Table 5: Average absolute error of SSVS-2 with respect to I,
under 1Mbit memory

Flow sizerange|l=1|1=2|1=4|1=8|l=16|1 =32
[1,10] 132.6(237.2| 60.8| 80.2| 142.7| 195.9
[11,100] 134.81242.9| 68.5| 90.3| 153.6| 211.9
[101,1000] 157.2(311.4|108.8(130.0| 229.9| 359.5
[1001,10000] |224.0{393.9|188.2|319.7| 510.9| 854.1
> 10001 217.3|639.5|241.8(420.1| 833.7|1865.5

Recording overhead is evaluated by the average processing time
of data item recording, the recording throughput in millions of data
items per second, the number of memory accesses per data item, the
number of hashes per data item, and the number of counter updates
per data item during recording. The latter three metrics can be
obtained from the algorithm designs. The average processing time
will be obtained through experiments. The recording throughput is
the inverse of the average processing time. An average processing
time of 100 ns corresponds to a recording throughput of 10 thousand
packets per second.

We use three data sets: (1) A real Internet traffic trace down-
loaded from CAIDA [43]. It consists of 18,215,144 packets (data
items). We designate the source-destination IP address pair as the
flow ID and there are 438,163 different flows. To record the size
of each flow, we could assign a 32-bit regular counter per flow,
which would require 42Mb memory without considering the in-
dexing overhead. In contrast, the sketches used in our evaluation
only require 1Mb memory. (2) A collection of web html documents
downloaded from [33]. We set the flow ID to be the web document’s
unique number in the database. Each data item is a URL reference
from other documents to the flow ID (i.e. a given document). There
are 997,800 flows and 36,680,934 data items. (3) We generate seven
synthetic data sets, each of them following the power-law (Zipf)
distribution [37] with different degrees of skewness. Each synthetic
data set contains 32 million items and a varying number of flows
depending on the skewness. We gradually increase the skewness
from 0.0 to 1.5. As the skewness increases, there will be a fewer
number of flows that are larger. Beyond 1.5, the number of flows
becomes too small for sketches to be useful. With too few flows, we
can simply use a hash table and assign each flow a counter, instead
of using a sketch.

To show the distribution of the data sets, we segregate the flows
into five size ranges: [1-10], [11-100], [101-1000], [1001-10000] and
larger than 10001. Tables 2 and 3 show the number of flows and the
average flow size for each size range for the CAIDA data set and the
web data set, respectively. Our experimental results in estimation
accuracy will also be given for each range separately.
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The experiments are performed on a desktop computer equipped
with an AMD 5950X CPU with 16 cores at 3.4 GHz and 64 GB of
RAM. We have uploaded our implementation on github [45].

4.2 Comparison between SSVS-1 and SSVS-2

We compare SSVS-1 and SSVS-2 on the CAIDA data set in terms
of accuracy by varying the value of [ from 1, 2, 4, 8, 16 to 32. The
memory allocated is 1Mbit. The noise level is set to +w/4. The ex-
periment first records the traffic trace, then queries the size of each
flow, and finally measures the errors in the flow size estimations.

Table 4 presents the average absolute errors in size estimations
by SSVS-1 for flows in different ranges (rows) under different [
values. It shows that the errors are minimized at [ = 1, which is
consistent with Theorem 1. Table 5 presents the average absolute
errors by SSVS-2. It shows a different behavior. The errors in SSVS-2
decrease at first as [ increases, bottom at [ = 4, and then increase as
I further increases. The value of [ has direct impact on two factors
that contribute to the errors. First, as [ increases, every flow f is
split into more pieces (each piece recorded in a counter that f is
mapped to). It is therefore less likely to create noise outliers, which
helps reduce the estimation error. Second, each counter carries a
certain amount of noise from other flows. The more counters that
f uses for its size estimation, the more aggregate noise it will have
in its estimation. For SSVS-1, the second factor dominates, but for
SSVS-2,it’s a balancing game, with the first factor winning for small
I values and the second factor dominating for larger [ values.

Comparing the best results in Table 4, i.e., the column of I = 1,
with the best results in Table 5, i.e., the column of [ = 4, SSVS-
2 clearly outperforms SSVS-1 in estimation accuracy. While the
average absolute error increases with flow size, as we show in
Table 9, the average relative error actually decreases rapidly with
flow size, suggesting good accuracy for large flows as well.

Next we evaluate the impact of the noise interval on estimation
accuracy of SSVS-2. We vary the noise interval from +2w, +w,
=%, +% to i%. Table 10 shows that the errors first decrease as
the noise interval decreases, bottom at i%, and then increase as
the noise interval further increases. This is the aggregate result of
two factors. With a smaller noise interval, noise outliers are less
likely to be included in the interval for size estimation, which helps
improve accuracy. But in the meantime there are fewer counters
in the interval and thus fewer data from the flow under query are
included in the estimation, which reduces accuracy.

4.3 Accuracy Comparison between SSVS-2 and
Prior Work

We now compare our best sketch SSVS-2 with the prior work in
terms of estimation accuracy. For SSVS-2, I = 4 and the noise
interval is set to +w/4. The parameter settings for the prior work are
discussed in Section 4.1. Table 6 presents the absolute errors of the
size estimations by various sketches in different flow size ranges. We
do not include the results for CM, CS and CU because they perform
worst than their variants in the table that use efficient counter
designs. The most relevant work is the single update sketches,
RCS and RCS-AC, which were designed to minimize per-packet
processing overhead, but have much lower accuracy, compared to
multi-update sketches. SSVS-2 achieves far better accuracy than



Table 6: Comparison of various sketches on average absolute error, on the CAIDA data set, under 1Mbit memory and [ = 4.

Size range |CM-SC|CS-SC|CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE| CU-CE|CM-SA|CS-SA|CU-SA| RCS|RCS-AC|SSVS-2
[1,10] 165.8| 105.4 81.6| 166.3 91.9| 108.0f 112.3| 65.2 61.5| 208.8| 92.3| 107.7| 731.4 626.2 60.8
[11,100] 172.9| 113.4 70.2| 173.1] 1015 93.1] 1119 75.0 47.01 209.0| 103.7 93.5| 751.3 638.3 68.5
[101,1000] 209.2| 161.5 43.5| 209.7| 1438 27.1| 105.6| 107.4| 105.2| 212.3| 147.4| 27.46| 907.7 754.4| 108.8
[1001,10000]| 206.5| 206.1 14.2| 205.8| 190.4| 782.8| 186.8| 203.7| 1371.4| 210.8| 172.2 12.1/1405.0| 1013.8| 188.2
> 10001 265.2| 376.2 14.3| 231.4| 322.7| 9285.0| 1693.9| 873.0|10215.0| 192.4| 185.1| 2204.3/1560.9| 1036.1| 241.8

Table 7: Comparis

on of various sketches on average relative error, on the CAIDA data set, under 1Mbit memory and [ = 4.

Size range |CM-SC|CS-SC| CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE |CU-CE |CM-SA|CS-SA|CU-SA| RCS|RCS-AC |SSVS-2
[1,10] 95.7| 61.1 47.3| 1014 52.6 62.9 64.9| 37.3 36.0| 122.6| 52.7 62.8|421.3 364.5 35.0
[11,100] 9.3 6.0 4.0 9.6 5.4 5.3 6.12 4.0 2.81 11.4 5.5 54| 40.4 34.4 3.6
[101,1000] 0.97| 0.72 0.24 0.82| 0.64 0.16 0.50| 0.47 0.28 1.00| 0.65 0.16| 4.0 3.4 0.42
[1001,10000] 0.10{ 0.10| 0.0090 0.10{ 0.09 0.20 0.07| 0.087 0.47 0.11| 0.084| 0.0069| 0.71 0.51| 0.096
> 10001 0.013| 0.026|0.00047| 0.017| 0.017 0.46| 0.083| 0.043 0.51] 0.012| 0.010| 0.064|0.085 0.062| 0.016

Table 8: Comparison of various sketches on average absolute error, on the CAIDA data set, under 256Kbits memory and [ = 4.

Size range |CM-SC|CS-SC|CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE| CU-CE |CM-SA|CS-SA|CU-SA| RCS|RCS-AC|SSVS-2
[1,10] 1565.3| 478.5| 937.0| 1330.3| 438.3| 776.2| 878.0| 324.6| 467.9| 1327.5| 444.5| 791.1|1827.7| 1335.0| 465.1
[11,100] 1569.0| 488.7| 931.0| 1332.7| 439.4| 772.7| 877.4| 331.3| 450.2| 1324.2| 454.4| 773.0/1843.6| 1352.1| 478.2
[101,1000] | 1572.1| 494.1| 919.4| 1331.0| 450.0| 757.8| 876.9| 439.1| 260.8| 1319.8| 565.4| 564.7|2009.5| 1341.9| 560.4
[1001,10000]| 1581.4| 586.3| 704.5| 1320.7| 550.4| 551.6| 799.8| 616.7| 1197.6| 1336.9| 761.4| 124.6(2749.4| 1490.4| 867.9
>10001 1584.9/1009.7| 163.4| 1327.5| 793.8| 715.2| 1236.1|1272.7(10098.9| 1320.0| 849.2| 2214.8|3971.7| 2139.4| 915.2

Table 9: Average relative error of SSVS-2 with respect to I,
under 1Mbit of memory

Flow sizerange|l =1|1=2|1=4|]1=8|l =16|] =32
[1,10] 77.0|136.2| 35.0| 45.8| 81.6| 111.7
[11,100] 7.4| 13.1| 3.6| 4.7 8.1 11.2
[101,1000] 0.72] 1.5 0.43| 0.57 1.0 1.5
[1001,10000] 0.11} 0.20{0.097| 0.15| 0.22| 0.37
> 10001 0.013]0.037{0.015(0.024| 0.048| 0.11

Table 10: Average absolute error of SSVS-2 with respect to
noise interval, under 1Mbit memory

Flow size range| £2w| +w|+w/2|xw/4|xw/8|+w/16
[1,10] 77.9| 65.2| 61.6| 60.8| 61.7 62.2
[11,100] 86.7| 74.2| 68.8| 68.5| 69.6 70.1
[101,1000] 132.3|115.4| 112.4| 108.8| 109.8| 108.5
[1001,10000] |185.9]187.6| 177.7| 188.2| 196.6| 190.5
> 10001 237.91239.3| 257.2| 241.8| 267.4| 232.2

RCS and RCS-AC. Its absolute errors are even smaller than most
multi-update sketches except for CU-SC and CS-CE. Comparing
with CU-SC, SSVS-2 has lower errors for small flows and comparing
with CS-CE, SSVS-2 has lower errors for large flows. Although its
errors are higher than CU-SC for large flows, if we consider the
average relative errors in Table 7, which are more relevant for large
flows, they remain small (in the last two rows). Figure 1 shows that
our new sketch (SSVS-2) has a smaller average (absolute) error than
CU-SC over all flows; that is because there are many more small
flows than large ones.

From Table 6, the average absolute errors of RCS-AC are 626.2
on flows of size [1,10] and 1036.1 on flows of size > 10001. When it
comes to SSVS-2, the average absolute errors are 60.8 on flows of
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size [1,10] and 241.8 on flows of size > 10001. The errors of SSVS-2
are less than one tenth and one fourth of RCS-AC’s, respectively.
The advantage of SSVS-2 is more pronounced for small flows. The
reason is due to the variable counter structure in Section 3.1. Recall
that each counter in SSVS counts precisely until its 16 bits overflow.
After that, it counts probabilistically. Because the counters of a small
flow are likely to have small values, SSVS records the flow’s packets
more precisely than RCS-AC. As the counters of a large flow are
likely to overflow into probabilistic counting, SSVS records packets
less precisely than its small-flow case, but still more precisely than
RCS-AC because it counts precisely up to +2!° and then counts
probabilistically, whereas RCS-AC always counts probabilistically.

We continue comparing SSVS-2 to the prior work by varying the
amount of memory allocated to the sketches from 256Kb, 512Kb,
to 2Mb. The average absolute errors are presented in Tables 8, 11,
and 12. When the memory is very tight, such as 256Kb in Table 8,
CS-CE performs the best for small flows, CU-SC performs the best
for large flows, while SSVS-2 is in between, whose errors are larger
than CS-CE but smaller than CU-SC for small flows, while being
smaller than CS-CE but larger than CU-SC for large flows. As we
increase the memory, the performance of CU-SC and SSVS-2 is
improved faster and outperforms CS-CE. Note that CU-SC and
CS-CE are multi-update sketches that are optimized for accuracy,
whereas SSVS-2 is designed to perform well both in accuracy and
in overhead. Its overhead is much smaller than those of CU-SC and
CS-CE, as we will show next.

4.4 Overhead Comparison between SSVS-2 and
Prior Work

We compare SSVS-2 with the prior work on the CAIDA data set in
terms of per-packet processing overhead with the same experiments




Table 11: Comparison of various sketches on average absolute error, on the CAIDA data set, under 512Kbits memory and [ = 4.

Size range |CM-SC|CS-SC|CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE | CU-CE|CM-SA|CS-SA|CU-SA| RCS|RCS-AC|SSVS-2
[1,10] 584.0 227.2| 351.2| 491.5| 205.6| 297.6| 318.6| 147.7| 173.0( 491.0| 204.4| 298.6/1296.5 936.2| 183.9
[11,100] 583.8| 233.8| 347.7| 493.3| 208.4| 2939| 318.7| 157.2| 156.6| 490.9| 217.2| 282.4/1300.1 946.5| 194.2
[101,1000] 584.7| 237.0| 337.3| 492.7| 220.9| 280.9| 313.2| 218.0 99.6| 491.0| 300.0| 139.3/1423.8 957.4| 2614
[1001,10000]| 580.6| 336.0| 193.1| 491.7| 298.8| 139.5| 304.4| 342.4| 1326.1| 496.3| 403.5 37.5/2161.0| 1056.3| 404.7
>10001 588.8| 514.2 47.9| 478.8| 421.4| 756.3| 1372.0/1030.3|10206.4| 491.8| 330.5| 2215.7|2479.6| 1639.5| 473.4
Table 12: Comparison of various sketches on average absolute error, on the CAIDA data set, under 2Mbits memory and [ = 4.
Size range |CM-SC|CS-SC|CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE | CU-CE|CM-SA|CS-SA|CU-SA| RCS|RCS-AC|SSVS-2
[1,10] 37.1| 420 21.8 60.8| 39.2 37.6 38.1 27.4 20.8 60.7| 39.4 37.2| 648.4 472.5 19.9
[11,100] 37.0| 443 18.8 60.7| 41.0 34.4 37.7| 33.8 12.7 60.7| 47.8 26.3| 667.3 476.9 25.6
[101,1000] 3791 49.0 13.8 60.6| 47.0 26.2 3691 53.8| 122.0 61.0| 66.2 6.0 799.2 480.1 46.2
[1001,10000] 71.7| 744 10.2 60.7| 65.2 6.1/ 198.1| 150.6| 1390.5 61.5| 79.6 3.8/1208.1 603.2| 105.8
>10001 71.9| 88.5 4.3 68.5| 90.1] 795.2| 1633.4| 877.3|10250.3 84.5| 113.8| 2214.0/1300.0 913.6| 189.4

Table 13: Comparison of various sketches on per-packet processing overhead, on the CAIDA data set, under 1Mbit memory

and !/ =4
Per-packet overhead|CM-SC|CS-SC|CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE|CU-CE|CM-SA|CS-SA|CU-SA|RCS|RCS-AC|SSVS-2
processing time (ns)| 266 268 728 410 409 765 278 289 368 388 399 | 1937 | 71 121 73
memory accesses | O() | O() | O(I) | o) | o) | o) | o) | o) | o) | o) | O() | o) |0(1)] O() | O(1)
hashes l l 1 l 1 1 l 1 l l l l 1 1 1
counter updates l l ol | o o | ol | ol |lody|on| o loh|lobh| 1 <1 <1

1Mbit memory and [ = 4

Table 14: Comparison of various sketches on throughput in million packets per second (Mpps), on the CAIDA data set, under

Sketch CM-SC|CS-SC|CU-SC|CM-AC|CS-AC|CU-AC

CM-CE

CS-CE|CU-CE[CM-SA|CS-SA|CU-SA| RCS |[RCS-AC|(SSVS-2

Throughput (Mpps)| 3.76 | 3.73 | 1.37 | 244 | 244 | 131

3.59

3.46 | 2.71 | 257 | 251 | 0.52 (14.08| 8.26 | 13.70

as in the previous subsection. Table 13 presents the average per-
packet processing times of various sketches; see the second row. The
single update sketches, RCS and SSVS-2, have similar processing
times, which are less than the processing time of RCS-AC, which
are in turn far less than the times of the multi-update sketches. In
particular, when we compare SSVS-2 with CS-CE and CU-SC, their
processing times are 73ns, 289ns and 728ns, respectively, almost ten-
fold difference between SSVS-2 and CU-SC. The reason for CU-SC,
the best in overall accuracy among the prior work, to have much
larger processing time is because it has to decode [ self-adjusting
counters before finding the smallest counter(s) for update. Generally
speaking, the overhead comparison between a multi-update sketch
and a single update sketch is O(l) v.s. O(1) in terms of number of
memory accesses, number of hash computations, and number of
counter updates. One interesting observation is that SSVS-2 incurs
less than one counter update per packet on average. That is because
its active counters are updated probabilistically; see Section 3.3
for details. Table 14 presents the throughput that each sketch can
handle in millions of packets per second under our experimental
setting. The throughput of SSVS-2 is about 10 times that of CU-SC.

Combining the experimental results on the accuracy of all
sketches presented in Section 4.3, we provide a summary of the
performance of SSVS-2 and the prior work in Figure 1. In this anal-
ysis, we use the average absolute error of all flows as the overall
accuracy metric, represented by the x-axis. Additionally, we use the
per-packet processing time as the metric for recording overhead,
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represented by the y-axis. For consistency, we set the memory allo-
cation to 1Mb. Figure 1 demonstrates that SSVS-2 achieves slightly
better overall accuracy compared to the most accurate existing
method, while significantly reducing recording overhead. Further-
more, in comparison to the most lightweight existing sketch, SSVS-2
incurs similar recording overhead, while improving measurement
accuracy multi-fold.

4.5 Comparison between SSVS-2 and Prior
Work on Web Data Set

We present our evaluation results on the web data set. Table 15
compares SSVS-2 with the prior work in terms of the average abso-
lute error under memory 1Mb. Table 16 gives the average relative
errors. We can draw the same conclusion as those from the CAIDA
data set: CU-SC performs the best for large flows, CS-CE performs
the best for small flows, and SSVS-2 performs in between. SSVS-2
is much more accurate than the existing single update sketches,
that is, RCS and RCS-AC. Table 17 compares SSVS-2 with the prior
work in terms of processing time per data item and throughput in
Mpps. Again, the overhead of SSVS-2 is similar to RCS and much
better than multi-update sketches, an order of magnitude better
than CU-SC.

6




Table 15: Comparison of various sketches on average absolute error, on the web data set, under 1Mbit memory and [ = 4.

Size range |CM-SC|CS-SC|CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE| CU-CE|CM-SA|CS-SA|CU-SA| RCS|RCS-AC|SSVS-2
[1,10] 290.7| 234.0| 146.4| 262.1| 189.9| 163.7| 166.3| 128.3 94.9| 262.7| 190.4| 163.6|1475.6| 1064.4| 135.7
[11,100] 299.3| 244.8| 132.1| 261.5| 200.2| 143.1| 166.4| 142.1 74.8| 263.8| 200.0| 144.5(1494.4| 1075.4| 149.7
[101,1000] 319.8| 317.2 81.2| 263.4| 265.2 44.3| 160.9| 186.2 99.0| 261.5| 265.0 46.6/1715.1| 1202.6| 205.0
[1001,10000]| 319.7| 403.4 6.7| 250.0| 365.6| 882.2| 227.8| 328.1| 1472.5| 263.4| 348.2 1.27(2563.9| 1735.8| 300.6
> 10001 352.3|1112.4 0.25| 401.7| 527.8{10450.8| 1709.0|1088.6|11451.3| 257.2| 364.7| 3340.4|2975.4| 1970.2| 455.3

Table 16: Comparison of various sketches on average relative error, on the web data set, under 1Mbit memory and [ = 4.

Size range |CM-SC|CS-SC| CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE|CU-CE|CM-SA|CS-SA| CU-SA| RCS|RCS-AC|SSVS-2
[1,10] 232.8| 187.3 117.6| 210.1| 152.1| 131.5| 133.1] 102.6 76.4| 210.7| 151.8] 131.4|1181.7 852.6| 108.6
[11,100] 14.1| 114 6.5 12.5 9.4 7.1 7.96| 6.62 3.8 12.6 9.6 7.2 71.2 50.9 7.1
[101,1000] 1.5 1.4 0.47 1.2 1.1 0.28 0.78| 0.83 0.26 1.2 1.2 0.30 7.7 54 0.89
[1001,10000] 0.15| 0.19| 0.0045 0.12| 0.17 0.20 0.08| 0.14 0.46 0.13| 0.17(0.00094 1.1 0.80 0.14
> 10001 0.019| 0.044{0.000020| 0.019| 0.026 0.45 0.07| 0.051 0.51| 0.014| 0.023| 0.081| 0.16 0.11] 0.025

Table 17: Comparison of various sketches on throughput in million packets per second (Mpps), on the web data set, under

1Mbit memory and [ = 4

Per-packet overhead|CM-SC|CS-SC|CU-SC|CM-AC|CS-AC|CU-AC|CM-CE|CS-CE|CU-CE|CM-SA|CS-SA|CU-SA| RCS |RCS-AC|SSVS-2

processing time (ns)| 280 281 756 428 431 796

289

299 386 402 414 | 2109 | 75 128 77

Throughput (Mpps)| 3.57 | 3.56 | 1.32 | 233 | 232 | 1.25

3.46

3.34 | 2.59 | 248 | 2.41 | 047 |13.33] 7.81 12.90

Table 18: Comparison of various sketches on average absolute error of all flows, on the Zipf data set with varying skewness,

under 1Mbit memory and [ = 4.

Skewness | CM-SC|CS-SC |CU-SC |CM-AC | CS-AC|CU-AC|CM-CE |CS-CE |CU-CE |CM-SA|CS-SA|CU-SA RCS |RCS-AC SSVS-2
0 1813.4| 108.1| 904.6| 1590.0| 105.5| 799.7| 1127.4| 92.9| 566.2| 1591.6| 104.8| 800.0| 164.1 210.3| 116.1
0.25 1792.7| 112.2| 900.6| 1571.4| 108.5| 797.1| 1112.2| 96.2| 562.7| 1574.0| 108.5| 797.0/ 168.0 211.7| 120.7
0.50 1661.2| 134.7| 861.8| 1451.1| 127.0| 763.0f 1021.3| 110.1| 530.6| 1450.9| 127.4| 764.2| 234.9 232.2| 1425
0.75 1251.5| 159.8| 669.9| 1086.7| 147.3| 599.3| 754.0f 121.2| 409.4| 1086.1| 147.0| 596.5| 1096.0 788.2| 156.1

1 549.3| 131.0| 292.6| 471.9| 113.5| 278.0| 321.2| 88.0| 193.2| 480.2| 121.9| 275.5| 5924.2| 4657.3 93.2
1.25 59.6| 535 26.5 91.0| 441 87.4 62.4| 34.2 72.3| 130.4| 84.6 97.5|15403.1| 13116.2 24.2
1.5 36| 154 1.6 16.9 15.8| 150.4 33.7 19.3| 155.9| 217.2| 219.5| 226.7|23516.7| 21199.8 7.4

4.6 Comparison between SSVS-2 and Prior
Work on the Zipf Data Set

Finally, we present our evaluation results on the synthetic Zipf
dataset under memory 1 Mb. We use the average absolute error of all
flows as the accuracy metric. The results are shown in Table 18. Both
SSVS-2 and CS-CE consistently achieve higher accuracy than others.
CU-SC only achieves superior accuracy when the skewness of the
dataset is very large (greater than 1.25). This discrepancy arises due
to CU’s positively biased estimation, and it works better for large
flows. When the skewness increases, there are fewer larger flows.
RCS and RCS-AC exhibit diminishing accuracy as the skewness
level increases. As explained in Section 2.3, this behavior can be
attributed to their utilization of large [ values. In particular, the
impact of larger flows corrupting a greater number of counters is
amplified when confronted with higher levels of skewness. As we
have explained earlier, when the skewness is beyond 1.5, there are
so few flows that sketches no longer make sense, because we can
use a small hash table.

5 CONCLUSION

This paper designs an accurate and fast sketch called SSVS for
per-flow size measurement. The design of SSVS contains several
novel components: (1) a new variable counter, (2) a recording oper-
ation that requires only one hash and at most one counter update
for recording each packet, which is key in both noise cancellation
(i.e. accuracy) and efficiency, and (3) a query method, based on
fine-tuned noise intervals, which blocks out counters that are heav-
ily impacted by noise. Compared to the most accurate sketches,
i.e., multi-update sketches, SSVS reduces the recording overhead
significantly, while maintaining overall comparable measurement
accuracy. Compared to the most lightweight sketches, i.e., single-
update sketches, SSVS is much more accurate and incurs similar
recording overhead. The experimental results demonstrate that the
proposed sketch achieves both high measurement accuracy and
low recording overhead simultaneously.
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