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ABSTRACT
Broadening participation in computer science (CS) for elementary
students is a growing movement, spurred by computing workforce
demands and the need for younger students to develop skills in prob-
lem solving and critical/computational thinking. However, o�ering
computer science instruction at this level is directly related to the
availability of teachers prepared to teach the subject. Unfortunately,
there are relatively few primary/elementary school teachers who
have received formal training in computer science, and they often
self-report a lack of CS subject matter expertise. Teacher develop-
ment is a key factor to address these issues, and this paper describes
professional development strategies and empirical impacts of a sum-
mer institute that included two graduate courses and a series of
Saturday workshops during the subsequent academic year. Key
elements included teaching a high-level programming language
(Python and JavaScript), integrating CS content and pedagogy in-
struction, and involving both experienced K-12 CS teachers and
University faculty as instructors. Empirical results showed that this
carefully structured PD that incorporated evidence-based elements
of su�cient duration, teacher active learning and collaboration,
modeling, practice, and feedback can successfully impact teacher
outcomes. Results showed signi�cant gains in teacher CS knowl-
edge (both pedagogy and content), self-e�cacy, and perception
of CS value. Moderating results – examining possible di�erential
e�ects depending on teacher gender, years of teaching CS, and
geographic locale – showed that the PD was successful with experi-
enced and less experienced teachers, with teachers from both rural
and urban locales, and with both males and females.

CCS CONCEPTS
• Social and professional topics ! K-12 education.
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1 INTRODUCTION
The push for CS in younger grades is accelerating. In 2020, the
number of states with K–12 computer science standards increased
from 34 to 37, with an additional states developing standards in-
formed by the CSTA K-12 standards[5]. This growth is supported
by a recent survey indicating that 90% of parents want their chil-
dren to study computer science[22], as well as a Microsoft study
showing that 88% of teachers believe computer science is critical to
future workplace success. Teachers reported that beyond simply
coding, computer science can teach students problem solving and
reasoning. Additionally, 83% of teachers surveyed believe coding
builds students’ creativity[23].

Elementary and middle schools’ capacity for o�ering computer
science courses is directly related to the availability of teachers
prepared to teach the subject[17]. Despite the fact that 40 states
have adopted computer science teacher certi�cations[5], there are
relatively few elementary school teachers who have received for-
mal training in computer science[36, 41]; and elementary teachers
self-report a lack of CS subject matter expertise[19]. Professional de-
velopment is key; a comprehensive survey of pre-college computer
science education conducted by Google concluded that “teacher
development is a key factor in the success of CSEd”[4]. Today there
are growing numbers of professional development opportunities
for teachers (see csteachers.org/page/quality-pd); but a comprehen-
sive review of published CS PD studies[26] showed that programs
serving high schools were most prevalent. There remains a critical
need for more K-8 educators trained in teaching computer science.
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Adding to this teacher scarcity is the lack of empirical research
as to what constitutes e�ective CS K-8 instruction and what peda-
gogies and instructional strategies are most appropriate to foster
student learning for this age group[12, 35]. Although growing, the
research base and availability of appropriate teacher instruments
for K-8 CS instruction is also clearly de�cient in comparison to
mathematics or science[13]. Research on factors that moderate
teacher CS knowledge, attitudes and self-e�cacy are also lacking.
Research on moderating e�ects has focused on students, with con-
siderable work looking at gender di�erences[21, 39, 42], and some
work examining ethnicity[25]. This research tends to be limited
to descriptive statistics describing the CS teacher force, e.g., 64%
female, 75% white, 56% teaching at the high school level[19].

To help address such de�ciencies, the CS for All Initiative was
introduced by the U.S. O�ce of Science and Technology Policy[15].
This e�ort seeks to accelerate e�orts to expand CS in K-12 schools
and bring together federal agencies to support CS teacher profes-
sional development. This paper presents professional development
strategies and empirical impact from one of this e�ort, focusing on
teacher professional development for K-8 CS.

2 MATERIALS AND METHODS
2.1 Evidence-based Professional Development
The project’s professional development (PD) was developed using
strategies from theory and empirical research, including deepening
teachers’ knowledge of both content and pedagogy, active teacher
engagement in learning opportunities, teacher collaboration[7, 9,
20], as well as use of didactic instruction, modeling, practice, and
feedback strategies to achieve desired experiential and learning
outcomes [28, 32].

The professional development was conducted in two separate
years (2019 and 2020), with two separate cohorts of teachers. An
integration of pedagogy and content was accomplished through
two one-week summer graduate-level courses for K-8 teachers fo-
cusing on CS content (CS course) and CS pedagogy (Education
course). In 2019 the content course highlighted the importance of
providing the teachers with CT concepts instruction[44]. It was
taught by a university computer science professor and dealt with
fundamental CS topics (i.e., simple Input/Output, data structures,
arrays, functions, search and sort) and computational thinking (CT)
topics (i.e., decomposition, pattern recognition, abstraction, general-
ization, algorithm design, and evaluation). The class was supported
by graduate and undergraduate students in computer science. The
course used python-involved lectures, hands-on group activities,
re�ections, and homework assignments. The use of a higher level
programming language was chosen to provide teachers with a more
in-depth understanding of CS concepts and skills. However, there
were also group activities based on Computational Creativity Ex-
ercises (CCE), designed to develop the teachers’ CT skills through
collaboration[30]. These exercises are akin to “CS Unplugged” exer-
cises for open-ended problem solving using computational thinking
and creative thinking skills[24]. The end-of-course project allowed
teachers to pick one CS concept and CT topic and create a lesson
for their targeted grade level.

In 2020, because of school and university closures due to COVID-
19, the course was taught remotely by a high school computer

science teacher using Zoom technology. The instructor had an
undergraduate degree in computer science and a master’s in math-
ematics teaching. Javascript replaced Python as the programming
language. Otherwise, the content remained the same across the two
years, but the 2019 course included more in-depth explanation of
key CS concepts. Cohort two was supported by the CS college-level
students involved in the previous year; assistance also included
an elementary and middle school teacher from the 2019 cohort.
Instructors set up a separate communication channel on Slack to
coordinate activities in real-time and made use of the chat function
to o�er additional explanations and resources to complement in-
struction by the on-camera instructor. The course continued group
activities and discussions by using Zoom breakout groups, with
each group facilitated by an instructor or a teaching assistant.

The Education course in both years was taught bymaster elemen-
tary and middle school CS teachers and focused on CS pedagogy
and how to teach the CS concepts of loops, variables, condition-
als, and functions at the elementary and middle school levels. The
instruction concentrated on giving teachers experiences with in-
structional strategies they could use in their classrooms. In 2019
the course was taught immediately after completion of the content
course; in the following year the two courses were taught simul-
taneously, with the CS course in the morning and the education
course in the afternoon to allow more content-pedagogy integra-
tion. Another signi�cant change was moving all the computational
thinking teaching from the programming class to the pedagogy
class. The changes made for Zoom delivery included moving in-
class activities to the discussion board on Canvas. Participants were
asked to complete an activity, post a re�ection, and reply to class-
mate re�ections. This process allowed participants to take breaks
from synchronous online learning throughout the day. Robots were
sent to participants so they could explore and program them at
home. Teachers also utilized online robot tutorials and simulations
in place of having participants use robots in person.

All teachers met throughout the year as a part of a continuous
improvement process to ensure that instruction was improved and
adapted to new technological opportunities. These communities
of practice or professional learning communities built avenues for
exchanging information and strategies. This approach has been
shown to be an e�ective method of supporting CS teachers[26, 27,
38], breaking the isolation for CS teachers who are often the only
computer science teacher in their school and changing teachers’
attitudes and self-e�cacy[6, 37]. These were Saturday meetings,
held initially face-to-face and then virtually and led by the computer
science public school teachers who served as facilitators in the
summer courses.

In total our teachers attended approximately 100 hours of PD for
which their time was paid. This duration is in line with previous
research showing that more than 45 hours is needed to show a
signi�cant e�ect[43].

2.2 Research Questions
The goal of the research was to determine the impact of the PD
on key teacher outcomes. The study investigated two research
questions:
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(1) What is the impact of the PD on teacher’s a) knowledge of
computer science concepts and computational thinking, b)
CS self-e�cacy, and c) CS attitudes?

(2) Are there di�erential e�ects depending on teacher demo-
graphics (gender, years of teaching CS, geographic locale)
and cohort?

2.3 Participants
Twenty-nine teachers participated in 2019 (cohort 1); 24 teachers
participated in year two (cohort 2). The two cohorts were similar
in terms of basic demographics (see Table 1). Most of the teachers
did not have college STEM majors (57%), and 62% had not studied
a programming language prior to participating in the PD. The
majority of participants were female. Teachers in cohort 1 had 16
years of teaching experience and 5 years of teaching CS; cohort two
had 17 years teaching experience with 7 years teaching CS. Both
groups had a high percentage of master’s degrees. Cohort 2 average
percent of free and reduced lunch per school was slightly higher
than that of cohort 1. Themajor di�erences between the two cohorts
were in rural/urban and grade level distribution. Participants in
2019 were primarily from an urban district with an established K-8
CS curriculum. The remaining 11 were predominantly from rural
districts in the same state. In cohort 2, most came from rural districts
(38%) or towns (42%). Cohort 1 had a fairly even split between
elementary and middle school teachers; cohort 2 was primarily
middle school.

2.4 Instruments
Teacher knowledge of computer science was measured by two
previously validated instruments that had been used in beginning
undergraduate CS courses. One instrument focused on CS concepts
such as selection statements, functions, and sorting[29]; the second
focused on computational thinking [CTCAST: [31]]. The alpha for
the computational thinking test with undergraduates was .73; for
the CS concepts test it was .77. For use with the K-8 teachers in
this project, alphas were .60 (CS concepts) and .51 (computational
thinking).

Computer science self-e�cacywas determined through a project-
developed 22-item instrument measuring two constructs: a) self-
e�cacy in teaching computer science (16 items, e.g., I can assist
all students who are having trouble mastering speci�c program-
ming/computer science skills) and b) self-e�cacy in their CS content
and skills (6 items; e.g., I can design and iteratively develop/re�ne
CS programs). Self-e�cacy refers to an individual’s belief in his or
her capacity to execute behaviors necessary to produce speci�c
performance attainments[2, 3]. This construct has been shown to
be related to educational performance for a variety of outcomes[33],
including computer science[36]. Items were rated on a 0–100% self-
e�cacy scale and were developed to align with objectives of each
of the summer courses. Overall alpha for the instrument was .92,
with alpha = .94 for self-e�cacy in CS pedagogy and .91 for self-
e�cacy in CS content. Correlations of these two constructs was .49
providing evidence that they are related, but separate constructs.

The attitudinal items used a Likert scale (1: strongly disagree,
2: disagree, 3: neutral, 4: agree, 5: strongly agree) to measure two

constructs a) personal interest in CS and b) the perceived value/real-
world connections of CS. Sample interest questions included “I am
interested in learning more about CS” and “I enjoy solving CS
problems.” Sample value questions included “Tools and techniques
from CS can be useful in the study of other subjects” and “Having
background knowledge and understanding of computer science is
valuable in and of itself.” The instrument was developed by adapt-
ing the Computing Attitudes Survey[8], which was validated with
CS undergraduates. Overall alpha for both cohorts of teachers for
this project was .83, with personal interest .86 and CS value .60.
Correlations of these two constructs was .60, showing that they are
related but separate constructs.

2.5 Research Design and Data Analysis
Following the IRB approved procedures, data were collected at
three time points: pre-PD (Time 1), post PD (Time 2, average 3.26
weeks after Time 1) and end of the school year (Time 3, average
51.63 weeks after Time 1). Pre-PD represented a baseline measure
taken early summer prior to the professional development; post-PD
occurred on the last day of the summer PD; and time 3 was in late
spring of the following school year. Research question 1 focusing
on overall teacher impacts utilized a piece-wise repeated measures
model looking at e�ects for speci�c time segments: pre to post
summer PD (e�ects of summer PD) and post summer PD to end
of year (e�ect of Saturday meetings and experience teaching CS
throughout the school year). Hierarchical linear modeling[34] was
performed to analyze repeated measures of teacher outcomes while
accounting for nested data structure (i.e., repeated measures nested
within teachers and teachers nested within districts). Separate slope
terms across pre-PD to post-PD period and post-PD to follow-up
period were included and estimated in the model using piecewise
coding scheme suggested by Raudenbush & Byrk[34]. In addition,
individually varying time points were used to account for variation
in the time between assessments across teachers. Teacher cohort
(2019-2020 vs 2020-2021), years of teaching (continuous), gender
(male vs female), locale (urban/city vs rural/town) variables were
included as covariates at timepoints for all outcomes. Then, modera-
tion e�ects of each variable were examined separately by including
interaction terms for only one moderator and slope term at a time.

To address the research question 2, which dealt with the moder-
ating e�ects of each identi�ed variable on the teacher outcomes,
we conducted a priori planned comparisons between moderator
groups (for continuous variable, scores for +.5 sd and -.5 sd group
were computed for grouped comparison) for speci�c time segments:
e�ects during pre-PD to post-PD period and e�ects during post-PD
to follow-up period. Long-term (pre-PD to follow-up) e�ects are
reported as the sum of short-term (pre-PD to post-PD) and post-
PD e�ects. P-values were adjusted using Šidák correction method
for multiple comparison to control for family-wise type-I error
rates[40]. All data analysis procedures were done using SAS ver-
sion 9.4 software.
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Figure 1: CS Knowledge Subscores Figure 2: CS Self-e�cacy Subscores Figure 3: CS Attitudinal Subscores

3 RESULTS
3.1 Impact of Professional Development: Main

E�ects
3.1.1 CS Knowledge. Scores for both the computational thinking
and computer science concepts assessments at all three timepoints
were low (below 70%; see Figure 1). The low scores for the CS
concepts test re�ect the fact that it was designed to separate high
performers from low performers, so instead of a C average being
around 70%-80%, the average test scores were intended to be around
50%. Figure 1 shows that that the computational thinking scores
were higher than those for the CS concepts test at all time points,
which was con�rmed by statistical tests: T1: t (200) = 9.81, p < .001,
Hedges g = 1.43); T2: t (200) = 8.34, p < .001, g = 1.16; and T3: t (200)
= 7.77, p < .001), g = 1.02).

Both knowledge sub scores followed similar trajectories across
the three time point (Figure 1). As shown in Figure 4, there were
signi�cant gains in teachers’ knowledge of both computer science
concepts and computational thinking from participation in the
summer PD. The computational thinking scores, however, showed
a signi�cant decrease from the end of the summer PD to the end
of the school year (t (100) = -2,75, p <.05, g = -0.42). However, this
�nal score was still signi�cantly higher than baseline. (t (100) = 2.75,
p < .05, g = 0.38). The similar decrease for the computer science
concepts scores was not statistically signi�cant.

3.1.2 Self-e�icacy. As shown in Figure 2 the two self-e�cacy sub-
constructs had similar trajectories, with signi�cant T1-T2 gains
(content: t (100) = 4.57, p < .001, g = 0.50; pedagogy: t (100) = 6.39,
p < .001, g = 0.69). The teachers came into the professional devel-
opment (T1) with signi�cantly higher self-e�cacy in pedagogy
than content (t (186) = 7.83, p <.001, g = 0.68). This di�erence was
maintained for the two subsequent time points (T2: t (186) = 7.84,
p<.001, g = 1.05; T3: t (186) = 4.4, p <.001, g = 0.66).

3.1.3 CS A�itudes. In contrast to the results for CS knowledge and
self-e�cacy, the teachers’ attitudes towards CS showed di�erent
pattern of results (Figure 3). Teachers had very high attitudinal
ratings coming into the PD (which resulted in a ceiling e�ect that
limited signi�cant increases), and scores between teachers’ interest
in CS and their perception of CS value were not signi�cantly di�er-
ent at T1 (t (186) = 1.28, p = .74). However, their perception of the
value of CS was signi�cantly higher than their interest in CS at T2

(t (186) = 4.94, p < .001, g =.61). This di�erence was accentuated by
a decrease (nonsigni�cant) from T1 to T2.

3.2 Moderating E�ects
Research question 2 dealt with identifying moderating e�ects of
cohort and teacher demographics (gender, years of teaching CS,
and geographic locale). Locale was de�ned as rural versus urban by
using locale categories established by the U.S. Department of Edu-
cation (https://nces.ed.gov/surveys/ruraled/de�nitions.asp). Years
of teaching experience was divided into two groups:.5 standard de-
viations above the mean (more teaching experience) and .5 standard
deviations below the mean (less experience).

3.2.1 Cohort. There were signi�cant cohort moderating e�ects
for knowledge of computational thinking and self-e�cacy (both CS
content and pedagogy skills). Figure 4 shows that although there
was no T1 di�erence in computational thinking, cohort 2 increased
at a signi�cantly higher rate than cohort 1 from T1 to T2 (t (98) =
3.11, p < .05). Both cohorts showed decreases from T2 to T3; but
the rate of decrease was not signi�cantly di�erent (t (98) = -1.79, p
= .38).

Although there was no T1 cohort di�erence for self-e�cacy
(Figures 5 and 6), cohort 2 reported higher T2 scores (pedagogy:
t (91) = 3.38, p < .01, g = 1.91); content/skills: t (91) = 2.63, p =
.058). Cohort 2 gained self-e�cacy at a higher rate from T1 to T2
(pedagogy: t (91) = 5.03, p <.001, g = 2.56; content/skills (t (91) =
-1.36, p = .688.

3.2.2 Locale. There was a moderating locale e�ect for self-e�cacy
(Figures 7 and 8). Teachers from urban/city were more con�dent in
CS than teachers from rural/town at T1 (pedagogy: t (91) = 4.1, p
< .001, g = 1.05; concepts: t (91) = 3.02, p < .001, g = .86). However,
rural/town teachers gained at a higher rate from T1 to T2 (pedagogy
(t (91) = 3.83, p < .001. g = 1.71; concepts/skills: t (91) = 2.51, p =
.08), thus reducing the di�erence in scores at T2 (non-signi�cant
di�erence). There were no signi�cant e�ects in the change rate from
T2 to T3, with results showing maintenance or slight increases.

3.2.3 Gender and Years of Teaching Computer Science. There were
no signi�cant moderating e�ects for gender or years of teaching
experience; however, males had consistently higher baseline scores.
In addition, teachers with less experience expressed greater interest
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and perception of CS value at T1 than those with more experience
(interest: t (91) = 1.97, p =.27; value: t (91) = 2.69, p = .05).

4 DISCUSSION AND SIGNIFICANCE
Results of this study show that carefully structured PD that incor-
porates evidence-based elements (su�cient duration, teacher active
learning and collaboration, modeling, practice, and feedback) can
successfully impact teacher CS knowledge, self-e�cacy, and per-
ception of CS value. With the exception of CS interest, all teacher
outcomes showed a signi�cant increase due to the summer PD. The
only outcome that was not positively impacted was CS interest.

The signi�cantly higher knowledge scores for computational
thinking versus computer science concepts can be expected given
teachers’ CS teaching experience and background knowledge. Com-
putational thinking is a broad construct supporting many disci-
plines, and teachers may have been introduced to this construct
in undergraduate STEM courses or PD. In contrast, the CS con-
cepts test covered higher-level concepts that were new and di�cult
for the teachers. The summer CS content course, with a focus on
learning a high-level programming language, was challenging to
teachers. Their lack of initial knowledge (baseline average scores of
28%) contributed to the challenge of trying to learn coding. There
was a strong desire on the part of teachers to see the relevance of
what they were learning to how they could teach their students.
For many, there was a disconnect, since Python/JavaScript would
be too di�cult for their students. Research on CS PD programs has
found that text-based programming tools are mainly used at the
high school level[26].

Despite these di�erences, the signi�cant knowledge increases
from baseline to post-PD provide evidence of the e�ectiveness of
the summer PD in increasing teacher CS knowledge. This result is
in line with other research showing that PD can prepare teachers
to teach computational thinking and computer science concepts[14,
18, 44]. In contrast, the decrease in scores after the summer PD is
in line with research that cognitive retention of new material is
di�cult even for highly motivated learners.

It is clear, however, that teachers need more than knowledge
about computer science; they need skills and self-e�cacy that they
can successfully deliver CS instruction. Results showed signi�-
cant increases in teacher self-e�cacy in CS content and pedagogy
skills after attending the PD, which aligns with previous CS self-
e�cacy research[16, 36]. Providing hands-on, concepts-based ac-
tivities that can be utilized in the classroom appears to bolster
teacher self-e�cacy. The maintenance of CS knowledge and self-
e�cacy throughout the school year is hypothesized to be related
to the ongoing professional development provided by the Saturday
meetings. Focusing on classroom activities relevant to the concepts
and grade levels teachers were teaching and providing avenues for
teacher collaboration appears to solidify their CS knowledge and
self-e�cacy.

In contrast to the knowledge and self-e�cacy results, the only
decrease from pre- to post-PD in this study was teachers’ interest
in computer science, which we hypothesize was caused by teach-
ers’ reaction to the di�cult and unfamiliar programming concepts
presented in the CS content course. Teachers struggled with under-
standing a high level programming language, and this frustration

likely decreased their personal interest in CS. They reported less
motivation in solving Cs problems and less interest in additional
learning in CS. However, this decrease was o�set by an increase in
interest from post PD to the end of the year. This result may be due
to the Saturday meetings, which focused on classroom CS activities
which teachers found more relevant than studying a programming
language they did not teach at K-8.

Despite the negative impact on teacher CS personal interest, the
PD increased teacher perception of the value of computer science in
K-8 education. Teachers were committed to the value of CS for their
students, even if they did not see CS as a discipline they personally
wanted to pursue.

Overall, results show a continuing pattern of higher scores for
CS pedagogy than content. Computational thinking scores were
higher than CS concept scores; teacher pedagogical self-e�cacy
was higher than self-e�cacy in content skills. In addition, interest
in CS as a discipline decreased or remained static. These results
suggest that teachers responded more positively to the pedagogy
instruction rather than content.

In addition to these overall e�ects of the summer courses and
follow-up Saturday meetings the research also examined moder-
ating e�ects related to cohort and demographics. There were sig-
ni�cant moderating e�ects for cohort and locale, but not gender
and CS teaching experience. Cohort moderating e�ects were found
for computational thinking and self-e�cacy. There was no compu-
tational thinking di�erence at baseline, but cohort 2 had a greater
rate of increase as a result of the summer PD than cohort 1. This
result may be related to switching from Python to JavaScript and
the change in the lead instructor for the content course from a
University Professor to K-12 computer science teacher for Cohort 2.
It may also be due to direct e�ort in teaching content and pedagogy
together, with content in the morning and pedagogy in afternoon.
The self-e�cacy cohort moderating e�ect also showed no baseline
di�erences but steeper increases in Cohort 2’s self-e�cacy as a re-
sult of the PD. The result could again be related to the pedagogical
changes in the course. In addition, since cohort 2 experienced the
courses in a remote format, these results show that CS PD can be
e�ective when delivered virtually.

There were also di�erential e�ects depending on teachers’ lo-
cation of urban versus rural. This project made a concerted e�ort
to recruit rural teachers, since rural areas are less likely to have
CS classes or clubs in their schools and parents are less comfort-
able with computers and technology[11]. Rural districts also face
unique challenges in �nding quali�ed teachers. Urban teachers
scored higher than rural at baseline in computational thinking,
self-e�cacy and perception of CS value. This result is likely due to
the greater access of urban teachers to CS resources and learning
opportunities. However, results show that with e�ective PD this
rural/urban gap can be closed. In addition, it appears that the Satur-
day meetings helped maintain or slightly increase urban and rural
teachers’ self-e�cacy level.

Although there were no signi�cant gender moderating e�ects,
males had higher baseline scores, which mirrors results showing
that boys are more likely to express interest in CS and learn pro-
gramming to create software, apps, games, websites[10]. What is
important, however, is that the baseline gender knowledge gap was
reduced through carefully designed PD.
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Figure 4: Computational Thinking Figure 5: Content Self-e�cacy Figure 6: Pedagogy Self-e�cacy

Figure 7: Content self-e�cacy Figure 8: Pedagogy self-e�cacy

There were also no signi�cant moderating e�ects for experience
in teaching CS. The baseline di�erence in favor of those with less
experience and exposure to CS suggests that they were perhaps
more excited and interested in CS as a new teaching venture, and
thus ascribed more value and interest at baseline. The T2 and T3
results followed trends of the main e�ects, with decreases in T2
and maintenance or increases in scores at T3.

Overall, the moderating results showed that the PD was success-
ful with experienced and less experienced teachers, with teachers
from both rural and urban locales, and with both males and females.
Of note is that these e�ects were obtained over two separate years
of summer professional development sessions – one using face-to-
face delivery and one using remote delivery via Zoom. The PD was
successful in in-person as well as virtual delivery environments,
showing that, with careful planning, CS PD can be delivered re-
motely. Maintenance of the self-e�cacy and attitudinal scores was
fostered by the Saturday meetings, which focused on CS classroom
activities and resources at the various grade levels. The one excep-
tion to this trend was the cognitive knowledge outcomes, which
was not the emphasis of the Saturday meetings, and which research
has shown tends to decline with time without periodical review or
rehearsal[1].

This study provides insight regarding earlier research which
concluded that traditional college-level practices should not auto-
matically be used in K-8 environments and that the �eld has not
yet achieved a solid body of K-8 CSEd research[4]. Our research
supports this conclusion in several ways; �rst, it was critically im-
portant to have experienced CS K-12 teachers, as well as University

CS faculty, supporting the PD. The cadre of undergraduate CS stu-
dents was also helpful for teachers who were struggling with the
CS content and needed one-on-one help.

Results also suggest that the three instruments used in this
project that were developed and validated with college-level audi-
ences (both knowledge tests and the personal interest items) may
not be appropriate for K-8 teachers. The alpha levels for the knowl-
edge assessments used in this study were low (.60 and .51), and the
low scores across all three time points may have contributed to
teacher anxiety, negatively impacting their attitude towards CS. In
addition, while the personal interest questions in the CS attitude
scale may be appropriate for CS undergraduates, their usefulness
in K-8 appears to be a�ected by level of the CS content covered in
the PD.

Nevertheless, since CS represents a new subject in public schools
and requires new pedagogical approaches, research studies that
focus on elements of e�ective PD, explore di�erential e�ects de-
pending on context and teacher demographics, and test new and
adapted instruments for use in K-8 are critical. This study con-
tributes to the current research base on K-8 CS by (a) determining
speci�c e�ects of summer PD and follow-up Saturday meetings,
(b) isolating critical moderating e�ects, and (c) development and
utilization of new and adapted instrumentation.
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