

SWOT Analysis of Two Different Designs of Summer

Professional Development Institutes for K-8 CS
Teachers

Patrick Morrow

Dept. Computer Science & Engineering
University of Nebraska-Lincoln

Lincoln, USA
pmorrow@cse.unl.edu

Wendy Smith

Center of Mathematics, Science, and
Computer Education

University of Nebraska-Lincoln
Lincoln, USA

wsmith5@unl.edu

Leen-Kiat Soh
Dept. Computer Science & Engineering

University of Nebraska-Lincoln
Lincoln, USA

lksoh@cse.unl.edu

Guy Trainin
Dept. Teaching, Learning, and Teacher

Education
University of Nebraska-Lincoln

Lincoln, USA
gtrainin2@unl.edu

Gwen Nugent
Nebraska Research Center for Children,

Youth, Families and Schools
University of Nebraska-Lincoln

Lincoln, USA
gnugent1@unl.edu

Kent Steen

Lincoln Public Schools
Lincoln, USA

ksteen@lps.org

Abstract—Increasingly professional development (PD) pro-
grams have been designed and implemented for pre-service and
in-service teachers to acquire CS content knowledge and CS ped-
agogy and instructional strategies for K-12 students. This paper
reports on our adaptation, implementation and research program
for K-8 CS teachers across a Midwestern state. More specifically,
its PD program for K-8 CS teachers consists of a summer institute
with two graduate courses and a series of Saturday workshops
during the subsequent academic year. This paper focuses on the
two summer courses: one on CS knowledge content including com-
putational thinking, variables, conditionals, loops, arrays, func-
tions, and algorithms, and one instructional strategies, student
pedagogy, computer-aided education resources, and community
building. We report our SWOT (Strengths, Weaknesses, Opportu-
nities, Threats) analysis of the two summer institutes involving the
two courses to identify what went well and what needed improve-
ment. This paper also reviews best practices for summer PD.

Keywords—professional development, computer science, teach-
ers, SWOT analysis

I. INTRODUCTION

The need for K-12 computer science (CS) instruction has
become of great importance throughout the world as more and
more career paths rely heavily on CS literacy. As a result, we
have increasingly seen professional development (PD) pro-
grams designed and implemented for pre-service and in-service
teachers to acquire both the CS content knowledge and peda-
gogy and instructional strategies in teaching K-12 CS. This pa-
per reports on our adaptation, implementation and research pro-
gram for K-8 CS teachers across a Midwestern state. More
specifically, its PD program for K-8 CS teachers consists of a
summer institute with two graduate courses and a series of Sat-
urday workshops during the subsequent academic year. This
paper focuses on the two summer courses: one on CS knowledge

content including computational thinking, variables, condition-
als, loops, arrays, functions, and algorithms, and one on instruc-
tional strategies including addressing issues in student peda-
gogy, computer-aided education resources, and community
building.

This paper starts with a review of summer PD workshops or
institutes that have been reported and evaluated in the literature,
including short and longer courses, use of programming lan-
guage and environment, the incorporation of which subsets of
CS content, and other issues pertinent to prepare teachers in
confidently and effectively teach K-12 teachers. Based on this
review, we will also highlight best practices for summer PD.

This paper also reports on two iterations of the summer in-
stitutes designed in alignment with best practices. The first in-
stitute was held in Summer 2019 over a two-week period, teach-
ing two courses to a cohort of 29 teachers. The second institute
was held in Summer 2020, also over a two-week period, with
the same two courses, to a cohort of 24 teachers. We report our
SWOT (Strengths, Weaknesses, Opportunities, Threats) analy-
sis, a proven analysis tool [13] of the two summer institutes to
identify strengths and challenges to implementation. The
strengths focus on the successes. The weaknesses pinpoint areas
where that need to improve. The opportunities focus on possible
improvements based on feedback, insights, and experiences.
The threats highlight potential challenges to the success of the
program. We used the SWOT analysis of the first summer in-
stitute in revising the program design of the second summer in-
stitute.

Moreover, due to the disruptions caused by the Covid-19
pandemic, the second summer institute was conducted entirely
online. The PD had to be re-designed to meet relevant con-
straints such as the lack of in-person team building, the absence
of physical instructional resources—instructional robots, and at-

home distractions. Along with our evaluation data, our SWOT
analysis of the second summer institute thus also includes rec-
ommendations for effective online PD.

II. RELATED WORK AND BACKGROUND

The National Science Foundation has been targeting CS par-
ticipation in K-12 through the CS for All [8,25,27] and CS10K
[5,29] initiatives. Qualified CS teachers are vital to creating an
infrastructure for integrating CS into K-12. The shortage of
qualified teachers at all levels (e.g., per reports by Code.org)
has led to efforts to develop PD programs that effectively pre-
pare current teachers to teach CS. Teachers are still going into
their classrooms under-prepared to teach CS. Ericson et al.
found such deficiencies in two of their CS PD workshops [7].
The first workshop was for teachers with little or no CS teach-
ing experience, and the second was for teachers of a CS-AP
high school course. After the first course, 70.37% of teachers
felt more capable in programming, 96.03% had a better idea of
what to teach, and 88.89% got a better idea of how to teach CS.
However, only 44.44% of the teachers felt ready to teach CS.
Of the 17 teachers from the CS-AP workshop, 94.12% reported
feeling more capable in programming, 88.24% has a better idea
of what to teach, and 94.12% had a better idea of how to teach
CS. 76.47% of the CS-AP teachers felt ready to teach CS in the
next school year. Overall, in their summer PD workshop for CS
teachers, they found, post-workshop, that 56.82% of the teach-
ers felt ready to teach CS in the next semester [7]. Even with an
increase in programming and pedagogy knowledge, many
teachers are still preparing to teach students with little confi-
dence in their ability to do so. Ericson et al. also found that 29%
of all teachers wanted the workshop to go at a slower pace. Go-
ing forward, they suggested that creating a program that caters
to the new introductory CS teachers needs a slower pace to im-
prove PD outcomes [7].

Research has identified ways to increase self-efficacy and
use of computers in classrooms. Hatlevik et al. found there was
a strong positive correlation between the amount of home com-
puter use and ICT self-efficacy, which is vital to learning CS
and learning to teach CS [12]. Wozney et al. also saw teachers
with personal computers and access to “play with” potential
classroom tools were more likely to integrate technology in the
classroom [28]. However, most PD programs (e.g., [1,21]) do
not explore the impact of differences between teachers with ex-
perience teaching CS (or experience using CS tools to teach
other subjects) and teachers without CS education backgrounds.
The study detailed in this paper makes such comparisons to pro-
vide insight into the relationship between teacher CS experience
and their CS knowledge, attitudes, and skills.

A valuable PD approach is the Exploring Computer Science
(ECS) PD program used by McGee et al. [18]. The ECS curric-
ulum was designed for teachers to teach high school students
CS through equity, inquiry, and CS concepts. The curriculum
introduces CS through real-world examples, such as making
games that encourage learning about healthy eating [18]. The
PD program’s workshop had five key components. The first two
components focus on active learning [6], the third focuses on
equity in CS education, and the last two focus on making the
teachers successful in the long term. McGee et al. used an Ex-
pectancy-Value-Cost (EVC) survey to measure the attitudes of

the high school ECS students. They compared the EVC survey
results to the students’ course experience—in the courses taught
by the participating teachers—and to a Teaching Quality Index
(TQI) based on a combination of two teacher practice quality
instruments to measure the teachers’ ability to “foster equity,
inquiry, and development of CS concepts” [18]. The students
took the survey to determine the teachers’ TQI scores. The au-
thors found the TQI had a direct effect on the students’ post-
EVC scores, which in turn influences student outcomes. This
finding shows that better-equipped teachers are having a direct
impact on students’ attitudes and their engagement in CS. Ad-
ditionally, the more experience the teachers had in teaching
ECS, the more the students’ ECS scores improved from the pre-
test [18]. McGee et al.’s method of measuring teacher perfor-
mance and student learning outcomes could help in creating a
universal measure for K-12 CS educators. In our project, we
also adopt this approach to measure teacher performance that
also includes impact on student learning and performance.

A. CS Content of CS PD Programs
One of the goals of CS PD programs is to balance depth and

breadth of CS knowledge in preparing pre- and in-service CS
teachers. Program designers use two general approaches to
achieve this goal. The first approach is through programming
language training, where the teachers learn CS concepts
through programming in high-level CS languages. The second
approach is through CS unplugged activities. These activities
can include CS concepts but focus on computational thinking
(CT) to introduce teachers to CS. CT draws on skills and pro-
fessional practices that are fundamental to computer science
without focusing on the specific syntax and practices of com-
puter language that can become an obstacle [26]. The CS un-
plugged approach allows teachers from all CS backgrounds to
understand CS concepts without needing to learn a program-
ming language or use any devices [2]. Furthermore, the extent
to which CS or C content are covered also depends on the dura-
tion of PD programs.

Short PD programs are one week or less. This is often done
out of practical concerns about teacher time (e.g. teacher sum-
mer schedules) and funding. Some programs are as short as 1-
3 days [3,21]. During such a short time, there is not enough
time to cover substantial CS concepts. The 1-3-day programs
have been successful by focusing on training teachers to use
high quality curriculum and tools that they can apply to their
classrooms right away. This type of program makes sense to
improve the preparedness of teachers already equipped with ad-
equate CS backgrounds. For example, Morreale et al.’s two 1-
day workshops helped introduce teachers to CT by providing
them sessions on curriculum materials, current university pro-
jects, internships, post-grad opportunities, and the importance
of CS locally and nationally [21]. Bower et al. held four sepa-
rate 1-day workshops for teachers of grades K-2, 3-4, 5-6, and
7-8 [3]. The teachers were taught CT concepts, and strategies
and technologies used to teach them. These two short PD pro-
grams reported significant self-efficacy improvements made in
a short amount of time. While this improvement is encouraging,
given the growing need for CS teachers, we argue that introduc-
ing teachers to the CT concepts over a 1-3-day workshop might
not be enough to prepare teachers for providing quality CS in-
struction.

Medium length PD programs should be able to expand on
the successes of the short PD programs by going more in-depth.
Liu et al. used a 5-day game-centered development approach
and a drag-and-drop programming language called Stencyl to
prepare their teachers [17]. Each of the five days contained two
sessions, and each session contained one or two CS concepts.
The concepts covered were classes, variables, methods, condi-
tionals, Booleans, loops, and lists. In the mornings, the teachers
worked on existing Stencyl projects that covered the concept of
the day. In the afternoons, the teachers created their curriculum
for the concept using Stencyl to take back to their classrooms.
Liu et al.’s team reported a 61% increase in concept knowledge
[17]. In another example, Pollock et al. designed their 4.5-day
PD program with a focus on CS content, pedagogical strategies
for teaching CS, and strategies for broadening participation in
CS [24]. Both programs reported increases in knowledge, alt-
hough the two programs had slightly different goals. Pollock et
al. focused on connecting CS and CS pedagogy while Liu et al.
focused on content knowledge and mastery of a programming
language (namely, Stencyl). One interesting thing to note in the
medium-length programs is that the extended length of the pro-
gram allows for more creativity in the program design.

With more time and added program flexibility, long PD pro-
grams allow for added depth and breadth of knowledge. There
was an increase in variety in the design of PD programs as the
programs went from short to medium, so the long PD programs
are expected to introduce even more range in goals, instruc-
tional strategies, and workshop tools. Milliken et al. found suc-
cess with their reworked two-week PD program. The program
focused less on purely CS content, and more on a Lead Learner
model where one group of teachers acts as the instructors, and
the other groups act as the learners. The Lead Learner model
helps all teachers participate as both instructors and students
throughout the program [20]. Goode et al. found success using
the ECS model for PD and curriculum design in their two-year
PD program. In the first year, the authors held a one-week PD
program with quarterly follow-up sessions post-program. In
year two, the authors held a second one-week program [9].
Scratch, Lego Mindstorms, and CS Unplugged activities are
typically used in ECS classes to deliver concepts of CS without
having to spend much time learning a programming language,
[9]. The ECS model also strives to form long-term relationships
with teachers. These two PD programs achieved high-levels of
teacher preparedness by teaching about CS concepts and linking
them to the classroom and the pedagogy that teaches the teach-
ers how to deliver a specific curriculum. With the added length
of the program, the designers can follow a specific curriculum
that helps the teachers understand what they will need to teach
in their classroom and how they will need to teach it.

When designing PD, it is necessary first to identify the goals
and identify any limitations. Examples of limitations could be
duration, participant prior CS knowledge, and school system re-
strictions. After reviewing the limitations, PD leaders can de-
sign the program structure including the PD length, intensity,
sequence of topics, and assessments. For programs of all
lengths, it is necessary to provide support for the teachers
throughout their journey of implementing CS in their class-
rooms. The initial PD preparation can only take the teachers so

far, and questions will inevitably arise as the teachers begin im-
plementing the learned materials in their classrooms. Bower et
al. found that participants indicated the need for “peer mentor-
ing networks,” and Pollock et al.’s participants expressed a need
for collaboration and communication amongst peers [3, 24].
The long-term projects by Milliken et al. and Goode et al. had
long-term facilitator/participant relationship embedded as part
of their program [9, 20]. A support-network post-program is a
theme throughout successful professional development pro-
grams.

B. Types of Programming of CS PD Programs
CS PD programs teaches programming to teachers to use

and implement CS concepts and expose them to the process of
developing programs to solve problems. Several programs in-
corporate programming languages such as Python, JavaScript,
Java, or other high-level languages to introduce CS concepts. In
contrast, others use more CS-unplugged (no technology
needed) approaches paired with visual programming languages
such as Blockly, Scratch. The programs reviewed in this section
will uncover the differences between using text-based program-
ming languages vs. visual programming languages to teach CS
concepts to K-12 teachers.

PD programs that used visual programming language in-
clude the ECS curriculum [9,18,19] and block-based program-
ming languages [4,14]. In these visual programming language-
centered programs, we observe that there was more emphasis
on CT concepts, compared to PD programs that used high-level
programming languages. Noone and Mooney (2018) noted that
researchers tend to agree that visual programming languages
fall short when facing complex CS [23]. While this may be true,
visual programming languages have been a successful tool
when introducing teachers to CT concepts, as verified by Bren-
nan and Resnick [4].

Text-based programming languages encourage a deeper un-
derstanding of CS concepts to solve many problems compared
to visual-based programming languages. Lee et al. held a year-
long PD program for 66 in-service high school STEM teachers
[15]. The goal of the program was to teach content and scientific
practices in the spring and pedagogy and recruitment techniques
during the summer. The outcomes from this program show that
the program did an excellent job of engaging the teachers in CS
practice and exposing teachers to new ways of adopting CS.
Desmoine and Garet have found that PD is more successful
when it is explicitly linked to classroom lessons [6]. This link
can be challenging to make when facilitating a PD program us-
ing a text-based programming language especially if the pro-
gramming language is not an instructional tool used by the
teachers in their classrooms. Another program that was heavily
content-focused using text-based programming languages was
designed by Leyzberg and Moretti [16]. Their goal was to offer
a content-focused PD opportunity for teachers that lack strong
CS backgrounds. The program was adapted from a college CS
course to cover a week worth of content each day. The lectures
provided hands-on experience with CS concepts, practice ap-
plying the concepts, and first steps towards creating assign-
ments. The concepts taught during the PD were advanced: in-
put/output, recursion, algorithm, data structure analysis, key-

value data structures, Boolean logic, decimal/hexadecimal/bi-
nary conversions, machine learning, intractability (P vs. NP and
NP-completeness), and circuit design [16]. This program was
fast-paced and covered some advanced CS concepts. Overall, in
the text-based programming language programs, we see more
difficult concepts being covered during the programs. Addition-
ally, these programs are typically longer (one week or longer).
Any shorter than one week, and the teachers likely will not have
time to gain deep understanding of concepts and the program-
ming language. Both PD programs [15, 16] were found to be
beneficial to the participants and well-received.

In both text-based and visual programming language pro-
grams, researchers report significant increases in content
knowledge scores [e.g., 15, 16, 18, 19]. Both program types also
saw similar positive feedback about the program design. In
terms of a content knowledge advantage, it is difficult to find
one between the two program types because each program uses
a different measure. There seem to be two determinants for us-
ing one design over the other. This first is the allotted program
length; any program under one weeklong will have a harder
time introducing a text-based programming language. The other
determinant is the goal of the participants and the program de-
signers. Grades 6-8 teachers may require text-based program-
ming experience to effectively teach their classrooms, whereas
grade K-5 teachers may only need visual programming experi-
ence.

III. THE TWO SUMMER PD INSTITUTES

In this paper, we review two summer professional develop-
ment institutes, one for each cohort: summer 2019 and summer
2020. Each summer institute lasted for 2 weeks, thus making
each a long PD program as outlined in Section II. The Cohort
1 PD design decisions were experimental relying on best prac-
tices known at the time and the expectation that the results of
the first cohort will help guide the cohort 2 redesign. Thus, we
anticipated to make changes in our PD design from the Cohort
1 PD program to the Cohort 2 PD program. Furthermore, we
planned to make only a small number of changes from Cohort
1 to Cohort 2, so comparisons could be evaluated. However,
due to the COVID-19 pandemic, our design changed drasti-
cally. Arguably the most significant change from Cohort 1 to
Cohort 2 was the change from in-person to online instruction.

One of the key non-pandemic-related changes was in se-
quencing. In the first summer institute, the CS content course
was held during the first week and the CS pedagogy course was
held in the second week. For the second summer institute, both
courses were held for half-days over two weeks: The CS content
course was held in the morning, and the CS pedagogy course
was held in the afternoon.

A second change was in the lead instructors. In the first sum-
mer institute, the lead instructor was a university CS professor
with four teaching assistants who were CS university students.
In the second summer institute, we replaced the lead instructor
with a high school teacher from Cohort 1’s CS pedagogy in-
struction team with two top-performing teachers from Cohort 1
and 3 student teaching assistants.

Finally, in the first summer institute, we taught Python using
the PyCharm Integrated Development Environment (IDE). We

chose Python because the syntax is simple and is widely dis-
cussed as a first programming language for beginners. How-
ever, our teachers had challenges with PyCharm and Python
versions on the teachers’ local computers due to installation dif-
ferences. Additionally, at the beginning of the program, the lead
instructor and the teachers were using two separate IDEs for
Python development. This caused confusion during lectures and
coding examples. This issue was mitigated early in the CS con-
tent course as the lead instructor switched to using the same IDE
when demonstrating and testing code. In the second summer in-
stitute, the new lead instructor chose to change the language to
JavaScript and use the internet tool, JSFiddle, as an IDE. The
new language and IDE worked great for several reasons. First,
JSFiddle is widely available, and once a free account is created,
all the work is saved on the site. JSFiddle did not require any
set-up instructions nor installation, which made the introduction
to coding near-seamless. Quickly onboarding the teachers with
JSFiddle was a crucial step to engage teachers right away, es-
pecially those coming into the PD program with high apprehen-
sion. Lastly, JavaScript, like Python, is regarded as another
good programming language for beginners.

All teachers in our summer institutes taught at the K-8 grade
levels, with a significant majority in the elementary levels. Ta-
ble I shows the demographic information about Cohort 1 and
Cohort 2 teachers.

TABLE I. DEMOGRAPHIC INFORMATION ABOUT COHORT 1 AND COHORT 2
TEACHERS

 GENDER GRADE LEVEL OF
INSTRUCTION

DISTRICT

COHORT M F K-5 6-12 URBAN RURAL
1 (N=28) 7 21 14* 14* 18 10

2 (N=24) 4 20 19* 12* 0 24
* THERE WERE TEACHERS WHO TAUGHT IN BOTH K-5 AND 6-12 GRADE LEVELS.

IV. SWOT ANALYSIS OF THE FIRST SUMMER INSTITUTE

This section reports on the SWOT (Strengths, Weaknesses,
Opportunities, Threats) analysis of the first summer institute, a
proven analysis tool [13], used to identify what went well and
what needed improvement. The strengths section of SWOT fo-
cuses on the successes. The weaknesses section pinpoints areas
that need to improve. The opportunities section focuses on pos-
sible improvements based on feedback, insights, and experi-
ences. The threats section highlights potential threats to the suc-
cess of the program. SWOT analysis was used to help inform
decisions made about the next PD program delivery. Figures I-
II show a summary of the topics and activities covered in the
first summer institute.

A. Strengths
The instructional teams were large enough to support learn-

ing expectations. Instructional teams included one faculty in-
structor, one graduate TA, and three undergraduate TAs for the
first-week course (CS), and four master teachers as instructors
for the week-2 course (CS pedagogy) to help all teachers
promptly. The instructional team was adaptive to the teachers’
needs throughout the two courses. They created new examples
and altered course content using a just-in-time teaching ap-
proach [22] to fit learners’ needs.

FIGURE I. SCHEDULE OF WEEK 1 OF THE FIRST SUMMER INSTITUTE:
FOCUSING ON CS AND CT TOPICS AND ACTIVITIES

FIGURE II. SCHEDULE OF WEEK 2 OF THE FIRST SUMMER INSTITUTE:
FOCUSING ON PEDOGIGAL TOPICS AND ACTIVITIES. NOTE THAT THE
SCHEDULING OF WEEK 2 OF THE FIRST SUMMER INSTITUTE WAS LESS

PRESCRIBED AND DETAILED COMPARED TO OTHER SCHEDULES PRESENTED IN
THIS PAPER.

The 28 teachers from a local school district took the same
pre- and post-program test over CT and CS concepts to measure
their knowledge gained. The teachers who took the test had CS
experience before the course. An earlier report showed that the
summer CS PD program had a positive impact on the teachers’
CT and CS concept knowledge [10].

The program continued during the academic year and into
the following summer, which gave the teachers more resources
and time to learn the CT and CS concepts. A Virtual Commu-
nity was set up through Listserv so the teachers could collabo-
rate, share ideas, and ask each other for help after the course
ended. During the subsequent academic year, the teachers met
five times to reinforce the PD learning. The teachers reviewed
CT and CS concepts learned over the summer, shared class ma-
terials, and connected with other teachers.

Observations and feedback from the professional develop-
ment showed that teachers were able to help each other under-
stand difficult concepts. K-8 teachers became experts at break-
ing down difficult concepts into terms that were understood by
their peers.

B. Weaknesses
The first-week course used lecture-based learning mixed

with hands-on group activities and programming tasks, but the

lecture aspect did not engage the teachers. Teachers learned best
when short, brief lectures were followed by learning activities.
Using the just in time teaching we incorporated more learning
activities than initially planned.

The goals of the instructor and the goals of the teachers did
not align during this course. The instructor hoped the teachers
would become capable programmers while learning CS and CT
concepts. The teachers hoped to learn how to teach CS concepts
to their students. The teachers were not prepared to learn the
concepts through programming and had a difficult time with the
programming language. Syntax and abstraction aspects made
the language an impractical approach for engaging K-8 teachers
learning about CS and CT concepts. Teachers missed the op-
portunity to link the concepts learned each day to future CS
classroom instruction since the CS concepts and the CS peda-
gogy were taught separately.

We created a Slack channel, a Cloud-based instant messag-
ing software, as a virtual community after the program, but the
teachers did not make use of the site. We hypothesized that the
lack of engagement was due to the teachers’ unfamiliarity with
Slack. As a result, the virtual community was moved to
Listserv, a more accessible service that connects groups of peo-
ple through their email. Both attempts to create a virtual learn-
ing community have fostered little to no communication. Since
active virtual learning community is an important component
that needs to be developed for future PD programs.

The first-week CS content course covered basic concepts
like strings, variables, conditions, and loops before progressing
to more complicated concepts like functions, recursion, sorting,
and searching. After covering the basic concepts, the teachers
still had difficulty with loops and conditionals. Therefore, the
teachers were not prepared for the transition to the more diffi-
cult concepts.

C. Opportunities
Data collection tools could be restructured for the next co-

hort for smoother data analysis to support in-class intervention.
For example, services such as Google Forms can be used to col-
lect teacher responses for their assignments and store them all
in one place and the same format so that the data analysis pro-
cess would be efficient and provide more efficient in-time feed-
back during the summer institutes.

All elementary and middle school teachers received funding
to purchase CS instructional hardware and software as part of
participating in the PD program. The first cohort used the avail-
able funds to purchase educational robots and tablets. The mul-
tiple feedback opportunities would show how new educational
tools had been utilized and how the feedback could then be used
in future programs to better familiarize others teachers with
tools they could be using.

D. Threats
Over the two weeks, material covered needed to be reduced

to accommodate the speed the teachers were learning. Thus, the
material may have been altered to the point that not all the CS
concepts specified in the course requirement were taught in-
depth or at the intended level of rigor, though all basic CS con-
cepts were covered. For example, at the beginning of the course,
basic concepts (variables, Boolean logic, conditionals, loops,

functions) and some advanced concepts (recursion, file I/O)
were planned, but after just in time feedback the advanced con-
cepts, recursion, and file I/O, were only briefly covered.

The teachers collaborated effectively on most assignments,
preferred to continue to work together on their assignments. The
teachers’ collaboration made it challenging to design and facil-
itate individual work and collect comprehensive individual
measures of CS and CT knowledge (e.g., assignments on reflec-
tion, analysis, and programming) in addition to the individual
end-of-course knowledge tests.

The teachers had varying levels of experience with CS and
taught different grade levels. Catering materials to each grade
level and experience level was a challenge.

V. SWOT ANALYSIS OF THE SECOND SUMMER INSTITUTE

This section reports on the SWOT analysis on the second
summer institute. Note that as discussed in Section III, the sec-
ond summer institute was carried out via a virtual platform
(Zoom) due to the pandemic. Figures III-VI show a summary
of the topics and activities covered in the second summer insti-
tute. Similarly, an earlier report showed that the PD program
had a positive impact on the teachers’ CT and CS concept
knowledge [11].

A. Strengths
JavaScript and JSFiddle.com made programming more ap-

proachable as opposed to Python and the IDE used for the first
cohort. There was minimal setup to begin coding and made it
easier for teachers to start coding. Using JavaScript allowed
many of the Cohort 2 participants to feel comfortable program-
ming in just two weeks.

The facilitators of the program used breakout rooms through
Zoom to allow the teachers to work in groups on daily activities.
The breakout rooms always had at least one facilitator and no
more than five teachers to a room. These breakout rooms helped
alleviate the awkwardness of video instruction and yielded val-
uable discussions and collaboration throughout the course.
These breakouts also broke up the lectures where teachers could
practice hands-on learning and reinforce each lecture topic
promptly.

Another unforeseen benefit of online instruction was the
ease of collaboration through screen sharing. Problem-solving
through observation of other’s code helped each teacher to un-
derstand better where their problem areas. In a traditional class-
room, the facilitators would go to each teacher’s desk and look
at their code with them. With the online instructional format, all
discussion participants can view the screen at the same time
without having to move seats or leave their work.

The 2-week of half-day schedule was adequate for the facil-
itators to cover all CS concepts and CS pedagogy without rush-
ing through any of the concepts. The program duration also al-
lowed for the concepts to be linked with the pedagogy in the
afternoon, which allowed the teachers to think about how they
might apply the concepts they just learned into their classrooms.
The duration also allowed for more robust programming assign-
ments to be administered since the teachers were well-ac-
quainted with each concept during the day.

FIGURE III. MORNING SCHEDULE OF WEEK 1 OF THE SECOND SUMMER
INSTITUTE: FOCUSING ON CS AND CT TOPICS AND ACTIVITIES

FIGURE V. MORNING SCHEDULE OF WEEK 2 OF THE SECOND SUMMER
INSTITUTE: FOCUSING ON CS AND CT TOPICS AND ACTIVITIES

Coupling the two courses each day, programming was
learned in the morning and could be reinforced in the afternoon
of each day as a practice in computational thinking: algorithmic
(being methodical, creating a flowchart), problem decomposi-
tion (functions, creating a flowchart), evaluation (debugging,
analysis of correctness), pattern recognition (connecting the

dots, leveraging what has been learned syntax-wise, assimilat-
ing similar bugs), generalization (seeing similar problems in
syntax errors, learning useful debugging approaches), and ab-
straction (the use of variables, the use of arrays to store values,
the use of functions, the representation of mathematical equa-
tions using variables). Coupling the courses together also
helped motivate teachers to appreciate and recognize the need
to learn how to program to teach with more confidence and
readiness, even when they are only teaching CS to grades K-5
and especially for teachers teaching CS to grades 6-8.

FIGURE IV. AFTERNOON SCHEDULE OF WEEK 1 OF THE SECOND SUMMER
INSTITUTE: FOCUSING ON PEDAGOGY TOPICS, INSTRUCTIONAL RESOURCES,

AND ACTIVITIES

B. Weaknesses
Explaining more intricate concepts was made increasingly

difficult, without the ability to draw on a whiteboard. Many
times, a visual representation of a concept is easier to under-
stand, and providing that was made more difficult through
online instruction. The facilitators were forced to find new ways
to explain concepts in detail. Though Zoom provided annota-
tions on-screen, it was not easy or efficient to draw using a
touchpad.

During the breakout rooms, there were times when one of
the facilitators was unable to answer a teacher’s question. In a
traditional classroom, the facilitator might call over another fa-
cilitator to try to explain the answer in a different way to assist
the teacher. With the breakout rooms, that facilitator-to-facili-
tator interaction did not occur. The facilitators instead used a
back channel (on Slack) to interact.

No virtual community was established for the teachers to
share ideas post-program and collaborate as they started creat-
ing lesson plans for the upcoming school years. We suspect that
it might due to the nature of the online summer institute pre-
venting the teachers from bonding as closely as they would in-
person. We expected that some of the teachers exchanged

emails or phone numbers, but we also expected that some teach-
ers did not and would therefore need to communicate with the
facilitators for help throughout the year.

FIGURE VI. MORNING SCHEDULE OF WEEK 1 OF THE SECOND SUMMER
INSTITUTE: FOCUSING ON PEDAGOGY TOPICS, INSTRUCTIONAL RESOURCES,

AND ACTIVITIES

Many of the teachers expressed confusion as to the goal of
the PD program, which might have been exacerbated by the
online summer institute as teachers did not have a chance to
meet in-person with the instructor or the instruction team to
clarify their confusion. The initial confusion was the expecta-
tion that the teachers would learn to program in addition to
learning about CS concepts. Elementary teachers especially
were surprised by this since they would not likely be teaching
their students to program. The expectations must be made clear
right away, so the teachers come into the program with the right
mindset to approach the challenge of learning CS and program-
ming concepts. This is especially important if the summer insti-
tute is held online.

C. Opportunities

Many of the participants in this cohort did not have experi-
ence teaching CS and thus did not have lesson plans specific to
their classes to which they could refer as an anchor for them to
incorporate changes. It was intriguing to see how they adapted
what they learned in the program to their classrooms. Through-
out the subsequent academic year, there were opportunities for
the teachers to share their successes and failures, especially con-
sidering the disruptions caused by the pandemic. This oppor-
tunity will provide insight into the teachers’ process of creating
curriculum material from the PD program instruction and the
validity of teaching CS through online tools, like Zoom and
Canvas.

D. Threats
Since the program was delivered online, there is no way to

know if the teachers used outside sources to aid them during the

individual assessments at the end of the program. Measures
were taken to combat collaboration between teachers during the
assessments (muting all teachers and disabling chat features).
Though the team did not observe any such activities during the
individual assessments, this would remain as a validity concern
going forward.

Due to the pandemic, the summer institute was moved to
online delivery. The online instruction was a significant change
to the format of the program and made it difficult to compare
the outcomes of the two programs since the presentation for-
mats are vastly different.

One challenge was that with the online format many of the
teachers participated in the program from their own homes.
With the ability to turn off the video, teachers might have been
stepping away during lectures to deal with family issues. We
have no way of knowing the amount of time the teachers were
away from the screen during the lecture, and what content that
they might have missed as a result.

Another challenge was that only one person in a small group
could talk at any time in an online platform. Teachers who were
more willing to let others talk would stay silent for long periods.
The ability to mute the camera and microphone in Zoom made
it challenging to gauge teachers’ level of engagement within
each group. (Note that in an in-person classroom, it would be
easier for instructor team members to observe whether members
of a team participated or whether pairs of members of the same
team engaged in conversations.) While the groups were sharing
code, the facilitators assumed that all teachers were following
along. To check each teacher's code during the small group ses-
sion would have taken too much time, but some teachers might
not have followed along with the code. Therefore, it would have
been easy for a teacher to skip practice sessions, which would
yield lower confidence and knowledge scores.

VI. DISCUSSION

In many ways, our SWOT analysis of the first summer insti-
tute helped us improve the second summer institute, as well as
prepare us for the previously unanticipated changes caused by
the pandemic disruptions. The most significant changes were
the use of experienced teachers as the lead instructors, instead
of using a university professor, and the course sequencing that
taught both content knowledge and pedagogy topics daily, al-
lowing teachers to reinforce the CS and CT topics that they
learned in the morning in the afternoon through pedagogy.
Moreover, our transition from an on-site, in-person to an en-
tirely virtual experience was made easier due to the teacher
leaders whom we recruited to teach, the use of a programming
IDE that had a much smaller barrier to getting things started,
and the redesign of collaborative activities put in place. Figure
VII summarizes our SWOT analysis of the summer institutes.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we first reviewed professional development
(PD) programs for teachers in teaching computer science and
computational thinking. Our review focused on the length of
PD programs, their topics, and the programming languages
used. We then presented our summer institutes, which are part
of yearlong on-going PD programs. Our summer institutes are
considered a type of long PD program, covering both CS and

CT topics, as well as pedagogy. Finally, we carried out a
SWOT analysis of the two summer institutes to identify
strengths, weaknesses, opportunities, and threats. These in-
sights have been valuable in helping us refine our summer in-
stitutes. We showed that our designs and summer institutes
were viable and effective. Our future work includes extensive
data analysis pertaining to our research investigations into how
to better deliver PD programs for K-8 teachers, and how to bet-
ter assess teacher learning and performance in PD and also in
their classrooms. We are also currently recruiting a third cohort
and in the process of planning for another summer institute,
building on this SWOT analysis to further refine our plans. The
third cohort’s summer 2021 institute will again be all online.

FIGURE VII. SUMMARY OF SWOT ANALYSIS OF THE TWO SUMMER

INSTITUTES

VIII. ACKNOWLEDGEMENTS

This was supported by the National Science Foundation un-
der grant no. 1837476. All findings and opinions are those of
the authors and not necessarily of the funding agency. The au-
thors would like to acknowledge the instructors and teaching
assistants and the teachers of the two summer institutes.

REFERENCES
[1] Ahamed, Sheikh Iqbal, et al. Computational Thinking for the Sciences: A

Three Day Workshop for High School Science Teachers. ACM, 2010, pp.
42–46. dl.acm.org, doi:10.1145/1734263.1734277.

[2] Bell, Tim, and Jan Vahrenhold. “CS Unplugged—How Is It Used, and
Does It Work?” Adventures Between Lower Bounds and Higher Altitudes:
Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th
Birthday, edited by Hans-Joachim Böckenhauer et al., Springer
International Publishing, 2018, pp. 497–521. Springer Link,
doi:10.1007/978-3-319-98355-4_29.

[3] Bower, Matt, et al. “Improving the Computational Thinking Pedagogical
Capabilities of School Teachers.” Australian Journal of Teacher
Education, vol. 42, no. 3, Mar. 2017, pp. 53–72.

[4] Brennan, Karen, and Mitchel Resnick. “New Frameworks for Studying
and Assessing the Development of Computational Thinking.”
Proceedings of the 2012 Annual Meeting of the American Educational
Research Association, Vancouver, Canada, vol. 1, 2012, p. 25.

[5] Brown, Quincy, and Amy Briggs. “The CS10K Initiative: Progress in K-
12 through ‘Exploring Computer Science’ Part 1.” Inroads, vol. 6, 2015,
pp. 52–53. Semantic Scholar, doi:10.1145/2803178.

[6] Desimone, Laura M., and Michael S. Garet. “Best Practices in Teachers’
Professional Development in the United States.” Psychology, Society, &
Education, vol. 7, no. 3, Apr. 2015, p. 252. DOI.org (Crossref),
doi:10.25115/psye.v7i3.515.

[7] Ericson, Barbara, et al. “A Model for Improving Secondary CS
Education.” ACM SIGCSE Bulletin, vol. 37, ACM, 2005, pp. 332–336.

[8] Fancsali, Cheri, et al. “A Landscape Study of Computer Science
Education in NYC: Early Findings and Implications for Policy and
Practice.” Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, ACM, 2018, pp. 44–49. ACM Digital
Library, doi:10.1145/3159450.3159467.

[9] Goode, Joanna, et al. “Curriculum Is Not Enough: The Educational
Theory and Research Foundation of the Exploring Computer Science
Professional Development Model.” Proceedings of the 45th ACM
Technical Symposium on Computer Science Education - SIGCSE ’14,
ACM Press, 2014, pp. 493–98. DOI.org (Crossref),
doi:10.1145/2538862.2538948.

[10] Gwen, Nugent, et al. “The Effectiveness of Summer Professional
Development for K-8 Computer Science Teachers.” Proceedings of
Society for Information Technology & Teacher Education International
Conference, AACE, 2020, pp. 77-81.

[11] Gwen, Nugent, et al. “Impact of Summer Professional Development on
K-8 Computer Science Teachers’ Computer Science Knowledge and
Attitudes”, AERA Annual Meeting, Orlando, FL, 2021, April 9-22.
[roundtable session]

[12] Hatlevik, Ove Edvard, et al. “Students’ ICT Self-Efficacy and Computer
and Information Literacy: Determinants and Relationships.” Computers
& Education, vol. 118, Mar. 2018, pp. 107–19. DOI.org (Crossref),
doi:10.1016/j.compedu.2017.11.011.

[13] Hill, Terry, and Roy Westbrook. “SWOT Analysis: It’s Time for a
Product Recall.” Long Range Planning, vol. 30, no. 1, Feb. 1997, pp. 46–
52. ScienceDirect, doi:10.1016/S0024-6301(96)00095-7.

[14] Kong, Siu-Cheung, and Andrew Chan-Chio Lao. Assessing In-Service
Teachers’ Development of Computational Thinking Practices in Teacher
Development Courses. ACM, 2019, pp. 976–82. dl.acm.org,
doi:10.1145/3287324.3287470.

[15] Lee, Irene A., et al. “Preparing STEM Teachers to Offer New Mexico
Computer Science for All.” Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, ACM, 2017, pp.
363–368. ACM Digital Library, doi:10.1145/3017680.3017719.

[16] Leyzberg, Dan, and Christopher Moretti. “Teaching CS to CS Teachers:
Addressing the Need for Advanced Content in K-12 Professional
Development.” Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, ACM, 2017, pp. 369–374.
ACM Digital Library, doi:10.1145/3017680.3017798.

[17] Liu, Jiangjiang, et al. “Making Games a ‘Snap’ with Stencyl: A Summer
Computing Workshop for K-12 Teachers.” Proceedings of the 45th ACM
Technical Symposium on Computer Science Education - SIGCSE ’14,

ACM Press, 2014, pp. 169–74. DOI.org (Crossref),
doi:10.1145/2538862.2538978.

[18] McGee, Steven, et al. “Equal Outcomes 4 All: A Study of Student
Learning in ECS.” SIGCSE ’18 Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, Feb. 2018,
https://ecommons.luc.edu/cs_facpubs/194.

[19] McGee, Steven, et al. “An Examination of the Correlation of Exploring
Computer Science Course Performance and the Development of
Programming Expertise.” Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ACM, 2019, pp. 1067–1073.
ACM Digital Library, doi:10.1145/3287324.3287415.

[20] Milliken, Alexandra, et al. “Effective Computer Science Teacher
Professional Development: Beauty and Joy of Computing 2018.”
Proceedings of the 2019 ACM Conference on Innovation and Technology
in Computer Science Education, ACM, 2019, pp. 271–277. ACM Digital
Library, doi:10.1145/3304221.3319779.

[21] Morreale, Patricia, et al. "Measuring the impact of computational thinking
workshops on high school teachers." Journal of Computing Sciences in
Colleges, vol. 27 no. 6, 2012, pp. 151-157.

[22] Novak, G.M., 2011. Just‐in‐time teaching. New directions for teaching
and learning, 2011(128), pp.63-73.

[23] Noone, Mark, and Aidan Mooney. “Visual and Textual Programming
Languages: A Systematic Review of the Literature.” Journal of
Computers in Education, vol. 5, no. 2, June 2018, pp. 149–74. Springer
Link, doi:10.1007/s40692-018-0101-5.

[24] Pollock, Lori, et al. “From Professional Development to the Classroom:
Findings from CS K-12 Teachers.” Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, ACM,
2017, pp. 477–482. ACM Digital Library, doi:10.1145/3017680.3017739.

[25] Salac, Jean, et al. “An Analysis Through an Equity Lens of the
Implementation of Computer Science in K-8 Classrooms in a Large,
Urban School District.” Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ACM, 2019, pp. 1150–1156.
ACM Digital Library, doi:10.1145/3287324.3287353.

[26] Sengupta, Pratim, et al. “Integrating Computational Thinking with K-12
Science Education Using Agent-Based Computation: A Theoretical
Framework.” Education and Information Technologies, vol. 18, June
2013, pp. 351–80. ResearchGate, doi:10.1007/s10639-012-9240-x.

[27] Vogel, Sara, et al. “Visions of Computer Science Education: Unpacking
Arguments for and Projected Impacts of Cs4all Initiatives.” Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, ACM, 2017, pp. 609–614. ACM Digital Library,
doi:10.1145/3017680.3017755.

[28] Wozney, Lori, et al. “Implementing Computer Technologies: Teachers’
Perceptions and Practices.” Journal of Technology and Teacher
Education, vol. 14, no. 1, 2006, pp. 173–207.

[29] Yadav, Aman, et al. “Professional Development for CS Teachers: A
Framework and Its Implementation.” Future Directions in Computing
Education Summit, 2013.

