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Abstract
Living systems, from cells to superorganismic insect colonies, have an organizational
boundary between inside and outside and allocate resources to defend it. Whereas the
micro-scale dynamics of cell walls can be difficult to study, the adaptive allocation
of workers to defense in social-insect colonies is more conspicuous. This is partic-
ularly the case for Tetragonisca angustula stingless bees, which combine different
defensivemechanisms found across other colonial animals: (1)morphological special-
ization (distinct soldiers (majors) are produced over weeks); (2) age-based polyethism
(young majors transition to guarding tasks over days); and (3) task switching (small
workers (minors) replace soldiers within minutes under crisis). To better understand
how these timescales of reproduction, development, and behavior integrate to balance
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defensive demands with other colony needs, we developed a demographic Filippov
ODE system to study the effect of these processes on task allocation and colony size.
Our results show that colony size peaks at low proportions ofmajors, but colonies die if
minors are too plastic or defensive demands are too high or if there is a high proportion
of quickly developing majors. For fast maturation, increasing major production may
decrease defenses. This model elucidates the demographic factors constraining col-
lective defense regulation in social insects while also suggesting new explanations for
variation in defensive allocation at smaller scales where the mechanisms underlying
defensive processes are not easily observable. Moreover, our work helps to establish
social insects as model organisms for understanding other systems where the trans-
action costs for component turnover are nontrivial, as in manufacturing systems and
just-in-time supply chains.

Keywords Mathematical biology · Social insects · Task allocation · Collective
behavior · Collective defense

Mathematics Subject Classification 92-10

1 Introduction

Efficiently allocating resources to tasks is an important function for any biological
organism. At a fundamental level, resources necessary for biological function are both
limited and have a bounded replenishment rate (Caetano-Anollés et al. 2021). Conse-
quently, there are significant opportunity costs concomitant with any over-supply of
resources to a task. Furthermore, resource deficits can spontaneously occur with previ-
ously balanced allocations if surrounding conditions suddenly change. These potential
problems are amplified when allocated resources are inflexible or unable to be quickly
reallocated from one task to another. Eusocial-insect colonies are valuable models to
study these fundamental problems as their size (relative to other biological collectives)
allows individuals to be directly observed and they can exhibit high degrees of diver-
sity in worker specialization and must shape worker demographics in a completely
decentralizedmanner (Camazine et al. 2003; Gordon 2002; Beshers and Fewell 2001).
Intricate adaptive colony dynamics and sophisticated division of labor emerge exclu-
sively from local interactions between individuals without global information and
result in a highly complex, distributed organization that is in certain ways superior to
hierarchical organizations with central control (Fewell 2003; Holbrook et al. 2009).

The efficient allocation of finite resources to the task of colony defense is
an important problem to eusocial insects, which accumulate resources internally
that can become targets for kleptoparasitic robbing and raiding behavior by other
insects (Baudier et al. 2019). Insect societies in general often exhibit some degree of
specialization; for example, tasks are commonly determined by age, which is known as
age-based polyethism and corresponds to specialization inside an age group (Baudier
et al. 2019; Seeley 1982). As with any other task, increased use of specialized work-
ers for defense is subject to a flexibility–specialization trade-off. On the one hand,
specialization can increase group-level energetic efficiency in the long term (Jeanne
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1986), but it also slows reactions to sudden changes (Dornhaus 2008), like unexpected
threats (e.g., large raids from other colonies). For the case of social insects, extreme
specialization takes the form of morphologically distinct individuals that perform a
narrow range of tasks very efficiently but can be costly to produce. On the other
hand, individuals that can flexibly switch between tasks according to demand allow
a colony to quickly adapt to emergency needs, manifested in acute changes in task
demand (Dornhaus 2008; Jongepier and Foitzik 2016), but these flexible generalists
are individually less capable for some or all of the tasks in their repertoire. In this
work, we examine how a hierarchy of mechanisms in eusocial-insect colonies can
regulate task allocation to maintain colony growth and reproduction while dedicating
sufficient workforce to group defense in response to emergent threats posed by their
dynamic environment.

The stingless bee Tetragonisca angustula is an ideal model organism to study the
flexibility–specialization trade-off in collective defense as colonies employ multiple
task-allocation mechanisms ranging over different timescales and degrees of flexi-
bility (Baudier et al. 2019). Although worker morphological specialization is very
rare among bees, T. angustula colonies produce a minority of large-bodied work-
ers (majors) that aremore efficient at nest defense than their smaller nestmates (minors)
but also require more resources to be produced (Grüter et al. 2012; Jones et al. 2012;
van Zweden et al. 2011). The size and future developmental trajectory of adult bees
at eclosion (i.e., emerging in adult form from the pupal case) depends on their earlier
feeding schedule while larval brood, which in turn is determined by their rearing loca-
tion and the feeding behavior of nurse bees (Segers et al. 2015). Moreover, colonies
exposed to a higher frequency of threats produce a larger proportion of majors (Segers
et al. 2016), likely due to adaptive changes in how those brood are reared in response to
the increased threat. In addition tomorphological specialization, age-based polyethism
is also present in the form of age-dependent task allocation. Young workers of all sizes
performmostly brood care and nest maintenance whereas older bees (about twoweeks
old) tend to work outside the nest, either foraging in the case of minors or guarding
in the case of majors (Hammel et al. 2016). While age-based polyethism provides
the colony some degree of flexibility, crisis situations that require a fast response are
addressed through a third mechanism involving behavioral plasticity of minors. In
response to guard loss, minor workers replace guards within minutes (Baudier et al.
2019), which provides a temporary defensive reinforcement to the colony during the
relatively longer developmental period while new major guards are produced.

Several quantitative models of task allocation have been studied for eusocial
insects (Beshers and Fewell 2001), but very little work has focused on the balance
between colony growth and defense mechanisms. Kang and Theraulaz (2016) devel-
oped a multi-compartment differential-equation model for division of labor in social
insect colonies that, although not focusing on defense, included age-based polyethism
and task switching as mechanisms regulating worker allocation. Their model does not
account for morphological specialization and assumes that all tasks contribute equally
to the eclosion of new adults. In a different study, Aoki and Kurosu (2003) explicitly
modeled the production of morphologically distinct, non-reproductive soldiers based
on their productivity for the colony. That model does focus on the balance between
defense and reproduction, but the chosen organism has no allocation flexibility in
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terms of age-based polyethism or task switching. Recent work by Strickland et al.
(2019) uses stingless bees as inspiration to develop an algorithm for allocation of
guarding tasks in robots. Their study explores the value of a heterogeneous guarding
force with different defense tasks for both robotic swarms and stingless bees in terms
of performance, but it is not concerned with group growth or reproduction.

In order to better understand how social insects regulate colony growth and defense
efficiently, we have designed a demographic model of task allocation in T. angustula
colonies. Our proposed model uses a system of differential equations that explicitly
reflects processes occurring at three distinct timescales (i.e., morphological special-
ization, age-based polyethism, and behavioral plasticity) in relation to colony defense
and growth. We use the model to study plausible conditions under which the studied
defense mechanisms work in tandem to improve collective defense. Specifically, we
address the following questions:

1. How do the parameters regulating morphological specialization, age-based
polyethism, and behavioral plasticity impact the colony size and task allocation
within the colony?

2. What degree of behavioral plasticity allows the colony to transiently compensate
for loss of defenses without maintaining an unnecessary population of inefficient
minor guards?

The remainder of the paper is organized as follows. In Sect. 2, we derive an ordinary-
differential-equation model to describe the population dynamics and task allocation
within T. angustula stingless bee colonies. In Sect. 3, we provide a theoretical analysis
of the model’s dynamical properties. In Sect. 4, we study the interaction between mor-
phological specialization, age-based polyethism, and behavioral plasticity for colony
survival, growth and task allocation through bifurcation analysis and simulations in
biologically realistic scenarios. Lastly, we include concluding remarks and futurework
in Sect. 5.

2 Model derivation

In this section, we derive a dynamical model of task allocation in stingless bee colonies
that includes: (1) morphological specialization, (2) age-based polyethism, and (3) task
switching.

2.1 Worker types and task types

We assume that all adult bees in a colony are either large-bodied majors (i.e., special-
ized for defense tasks) or smaller minors according to their body size at eclosion. This
accounts for the morphological specialization observed by Grüter et al. (2012) and
Segers et al. (2015). Because our focus is defense regulation, we consider only two
types of tasks that majors and minors may perform: guarding or non-guarding. Both
majors andminors begin their lives doing non-guarding tasks, but majors mature twice
as fast as minors and spend the last half of their lives as defensive “soldiers” in guard-
ing tasks (guards herein). However, minors only transition to guarding when there are
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Fig. 1 Model diagram. Eggs are laid at a constant rate ! by the queen and a fraction of those, dependent
on the non-guarding population, successfully eclose as adults (see text for more details). A percent ρ of
the newborns are majors, the rest are minors. Young majors are workers inside the nest and transition to
guarding tasks after a maturation time τ . Then they die at a rate µG . Minors usually perform non-guarding
tasks and die at a rate µw , but if the proportion of guards in the colony drops below a threshold θ , they
replace them as guards at a rate δ. Minor guards die at a rate µg . The Iverson (1962) bracket [·] is 1 when
its predicate argument is true and 0 otherwise

sudden deficits in guarding and otherwise perform only non-guarding tasks. Thus, at
any time, all adult individuals can be divided among four possible compartments:

• Major Non-guard (W ): large-bodied bee performing non-guarding tasks
• Major Guard (G): large-bodied bee performing guarding tasks
• Minor Non-guard (w): smaller-bodied bee performing non-guarding tasks
• Minor Guard (g) smaller-bodied bee performing guarding tasks

Based on context, the variables (W ,G, w, g) will refer to either the number of adult
bees in each compartment or the name of the compartment itself. With this nomen-
clature, the population size P , subject to demographic changes, can be written as

P := W + G + w + g.

Next, we describe the dynamic fluxes into and out of these four compartments, which
are summarized in Fig. 1.

2.2 Production of newmajor andminor workers

The queen lays eggs at an average rate !; however, we assume that the G + g adult
bees performing guarding tasks do not contribute to brood care. This assumption is
based on the experimental observation that guards (G and g) mainly patrol, hover,
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or stand near the nest entrance (Hammel et al. 2016). So the fraction of eggs that
successfully eclose to adults depends on the size of the working non-guard population,
W + w. Consequently, a colony consisting entirely of guards (i.e., P = G + g) and
no workers (i.e., W = w = 0) will not have a positive growth rate in this model, and
so there is a trade-off between growth and defense that manifests through devoting
resources to guards or workers. To describe the production of new adults, we choose
the commonly used Hill form (Goutelle et al. 2008):

!
(W + w)2

(W + w)2 + b2
= !

1

1+
(

b
W + w

)2 (1)

where the half-saturation constant b represents the number of non-guarding work-
ers (W + w) required for the eclosion rate to be half of the egg-laying rate ! (Kang
and Theraulaz 2016; Kang et al. 2011, 2016; Eberl et al. 2010; Ratti et al. 2012; Brit-
ton and White 2021). The Hill exponent of 2 provides a type-III functional response
where eclosion rate accelerates at low numbers of non-guard workers (i.e., when there
is a high demand for nurses and foragers) but then has diminishing marginal returns
at high numbers of workers (i.e., as brood-rearing demand is met). The value of the
exponent is positively correlated with the number of tasks or sets of tasks required to
maintain the brood; in this case, it represents the interaction between the two broad
sets of in-nest (e.g. brood care) and outside (e.g. foraging) tasks (Kang and Theraulaz
2016; Kang et al. 2011).

Experimental studies have shown that the size of the adult bees is determined before
eclosion by the feeding schedule that they experience as larvae (Segers et al. 2015)
and that colonies exhibit two distinct body sizes corresponding to major and minor
bees (Grüter et al. 2012). Guided by these facts, we assign a proportion ρ ∈ (0, 1)
of the newly emerged adults to be majors (large-bodied bees, specialized for defense)
and the remaining 1 − ρ to be minors (smaller-bodied bees, primarily taking part in
non-guarding tasks).

Evidence suggests that colonies can regulate the proportion of majors produced in
the long term according to environmental threats (Segers et al. 2016). However, bees
need approximately 5–6 weeks from egg to eclosion plus an additional 2 weeks of
maturation to become guards, which means that rearing a new generation of guards
requires 7–8weeks (Segers et al. 2016). Thus, changes in the proportion ofmajors take
approximately 2 bee lifespans to have an effect. In this model, we assume a constant
proportion ρ andmanipulate this parameter to observe its effect on system trajectories.

2.3 Developmental dynamics of majors

Majors perform in-nest tasks or foraging when they are young and transition to guard-
ing when they reach middle age (Hammel et al. 2016). Once they start guarding, going
back to non-guarding tasks is rare (Baudier et al. 2019). Recall thatW andG represent
the number of majors performing non-guarding and guarding tasks, respectively; we
let τ be the averageW -to-Gmaturation time formajors to start guarding after eclosion.
Because majors transition into guarding at a relatively young age, we have omitted a

123



A modeling framework for adaptive collective defense… Page 7 of 56 87

mortality rate for major non-guards for simplicity. Mature major guards (G) die at a
rate µG (see Fig. 1). Thus, the life of majors is modeled by the system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dW
dt

= !
(W + w)2

b2 + (W + w)2
ρ

︸ ︷︷ ︸
eclosion

−1
τ
W

︸ ︷︷ ︸
maturation

dG
dt

= 1
τ
W

︸︷︷︸
maturation

−µGG︸ ︷︷ ︸
death

(2)

The time-constant parameter τ implements age-based polyethism in the model, which
is the correlation of age and task within insect colonies. It represents the average time
needed for a worker to develop into a guard, and thus it delays the effect of changing
the proportion ρ of majors produced on colony defense. We will study how τ interacts
with ρ in determining the availability of guards for the colony and how these two
parameters relate to the process of guard replacement by minors in case of emergency.

2.4 Developmental dynamics of minors with behavioral switching

Under normal conditions, minor workers perform in-nest tasks during young and
middle age and switch to foraging when they reach old age (Hammel et al. 2016). We
denote by w the number of working minors in all of those tasks and µw their average
mortality rate. The nominal life of a minor worker is therefore represented by:

dw
dt

= !
(W + w)2

b2 + (W + w)2
(1 − ρ)

︸ ︷︷ ︸
eclosion

−µww︸ ︷︷ ︸
death

. (3)

However, in the absence of guards G (e.g., due to a crisis where guards are lost
after a raid by an invading colony), minors adopt guarding behavior. When guards
were removed from a natural colony by Baudier et al. (2019), tracked minors were
observed replacing guards just a few hours later. Thus, non-guarding minors w can
transition to guarding minors g under the right conditions. To model this behavioral
switch in minors, we assume that replacement occurs only when the total number of
guards G + g in the colony drops below a fraction θ of the total population P (i.e.,
when (G + g)/P < θ ). This characteristic models the scaling of guard demand with
colony size. Furthermore, eusocial insects are known to exhibit density-dependent
behaviors that are responsive to changes in local encounter rate (Gordon et al. 1993;
Gordon andMehdiabadi 1999; Pratt 2005; Gordon et al. 2008; Farji-Brener et al. 2010;
Baudier and Pavlic 2020). Consequently, the guard density (G + g)/P may be able
to be inferred by individual workers using only local encounter information. Thus,
we assume that the rate of replacement is a function of the per-capita probability of
finding a guard among all nestmates ((G + g)/P). Based on the typical fraction of
guards in wild colonies (Grüter et al. 2012; Hammel et al. 2016), the nominal value
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of this ratio is between 1 and 6%; we assume that workers have the ability to detect
drops in guard ratio to below this value.

For simplicity, and to emphasize the difference of timescales between the behavioral
replacement and developmental maturation processes, we also assume that replace-

ment is binary and instantaneous: it is non-existent while
G + g
P

> θ and happens at

a rate δ when
G + g
P

≤ θ . So the behavioral w-to-g replacement rate is:

δ

[
G + g
P

≤ θ

]
=

⎧
⎨

⎩
δ,

G + g
P

≤ θ

0, otherwise
. (4)

where [·] : {T , F} $→ {0, 1} denotes the Iverson bracket (Iverson 1962). Note that
replacement itself is not instantaneous for all minors, but rather occurs at a continuous
rate δ. The assumption here is that minors can instantly sense a loss of guards below a
critical threshold and become available for replacement only during the crisis. Thus,
we model replacement not only as a "faster" process than maturation in the sense that
δ > 1/τ , but also as a faster response to crisis in the sense that sudden guard loss
triggers an immediate change in behavior (modeled by the Heaviside function), but
not in development.

Combining (3) and (4), the general population dynamics ofminorworkers (guarding
and non-guarding) facing potential crisis situations is the Variable Structure Sys-
tem (VSS) (Young and Özgüner 1999):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw
dt

= !
(W + w)2

b2 + (W + w)2
(1 − ρ) − µww−

[
G + g
P

≤ θ

]
δw

︸ ︷︷ ︸
replacement

dg
dt

=
[
G + g
P

≤ θ

]
δw

︸ ︷︷ ︸
replacement

−µgg︸ ︷︷ ︸
death

. (5)

In this system, the switching behavior acts as a bang–bang control (Bellman et al.
1956) on w-to-g replacement so as to regulate the guard ratio (G + g)/P toward
threshold parameter θ ∈ (0, 1). The magnitude of this threshold parameter represents
how tolerant minors are to guard loss. In the ecologically relevant case where minor
workers are responsible formost in-nest non-guardingwork, the value of θ corresponds
to an inherent trade-off in task allocation. If minors are too tolerant to guard loss (low
θ ), their failure to replace lost guards may leave the colony vulnerable for a long
time before the next generation of guards is mature. However, for high values of θ ,
minors switch to guarding tasks even when a relatively high proportion of the colony
is already guarding, and so they will not contribute much to defense and will instead
fail to fulfill other tasks needed by the colony. In the coming sections, we will study
how the replacement threshold (θ ) interacts with the slower processes of maturation
and production of majors to keep colony defense and growth balanced.

123



A modeling framework for adaptive collective defense… Page 9 of 56 87

2.5 Full model

Combining (2) and (5) results in an autonomous ODE VSS that governs the general
population dynamics of the colony:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dW
dt

= !
(W + w)2

b2 + (W + w)2
ρ − 1

τ
W

dG
dt

= 1
τ
W − µGG

dw
dt

= !
(W + w)2

b2 + (W + w)2
(1 − ρ) − µww −

[
G + g
P

≤ θ

]
δw

dg
dt

=
[
G + g
P

≤ θ

]
δw − µgg,

(6)

where a complete list of variables and parameters is summarized in Table1. The
reference parameter values that will be used throughout the analysis are in Table2.
Most values are taken from the literature from T. angustula stingless be colonies, but
some are not found directly and must therefore be assumed. More details can be found
in Appendix C. The proposed model incorporates all three mechanisms involved in
colony defense by T. angustula stingless bees: production of major guards, adjustable
over generations and mediated by the fraction ρ; maturation of such majors from
non-guarding tasks to defensive guarding tasks (age-based polyethism), reflected in
the maturation time τ ; and quick replacement of guards by minor bees in case of

Table 1 Variable and parameter definition

Name Definition Units

State variables

W Number of non-guarding majors individuals

G Number of guard majors individuals

w Number of non-guarding minors individuals

g Number of guard minors individuals

P Total population size individuals

Parameters

! Egg-laying rate of queen individuals/day

b Number of non-guarding workers for !/2 eclosion rate individuals

ρ Fraction of newborn majors –

τ Maturation time of bees days

µG Death rate of guarding majors 1/days

µg Death rate of guarding minors 1/days

µw Death rate of non-guarding minors 1/days

δ Guard replacement rate for minors 1/days

θ Replacement threshold for fraction of guards -
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Table 2 Parameter values for T. angustula stingless bees

Name Value/range Source

Parameters

! 154 individuals/day Koedam et al. (1997)

b 700–1300 Assumed

ρ 1–6% Hammel et al. (2016)

τ 20 days Hammel et al. (2016)

µG

[
1
6.9

,
1
2.9

]
days−1 Grüter et al. (2011)

µg

[
1
6.9

,
1
2.9

]
days−1 Grüter et al. (2011)

µw

[
1
35

,
1
20

]
days−1 Grüter et al. (2011); Hammel et al. (2016)

δ ≥ 4 days−1 Baudier et al. (2019)

θ 0.2–1.2% Assumed

For !, we use the average value of 6.41 eggs laid per hour reported by Koedam et al. (1997) and multiply
by 24h to get an approximate daily rate. For b, we know that newly founded colonies have about 500–1000
workers (Van Veen and Sommeijer 2000) and we assume the Allee threshold Eb

− must be well below this
range. We take an interval around b=1000, which, for ! = 154, τ = 20, µG = 1/5.4, µg = 1/3, µw =
1/28, δ = 4, ρ = 0.06, yields an Allee threshold of 250 individuals. For θ , we assume that it must be below
γb for natural colonies because they have no minor guards. With the same parameter values, we calculated
the range for θ corresponding to ρ between 0.01 and 0.06

emergency, where replacement rate δ is triggered when the guard ratio falls below
threshold θ . To our knowledge, this is the first mathematical model to include all
three mechanisms in relation to colony defense in polymorphic eusocial insects, and
specifically in bees, where morphological castes (Grüter et al. 2012) and replacement
behavior (Baudier et al. 2019) have been described only recently.

3 Mathematical analysis

We now analyze the model described in Sect. 2.5 to study how stingless bee colonies
regulate colony growth and defense through mechanisms acting on three different
timescales. Specifically, we will study how the maturation time of majors and replace-
ment behavior of minors affects the impact of major production on guard availability
and colony size.

3.1 Filippov system description

The full model (6) is a Filippov system (Filippov 1988; Meza et al. 2005; da Sil-
veira Costa and Meza 2006; Boukal and Kivan 1999) which can be converted to a
generalized form. Let H(Z) := (G + g) − θ P with vector Z = (W ,G, w, g)T , and
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FSc (Z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

!
(W + w)2

b2 + (W + w)2
ρ − 1

τ
W

1
τ
W − µGG

!
(W + w)2

b2 + (W + w)2
(1 − ρ) − µww − δw

δw − µgg,

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

FSb (Z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

!
(W + w)2

b2 + (W + w)2
ρ − 1

τ
W

1
τ
W − µGG

!
(W + w)2

b2 + (W + w)2
(1 − ρ) − µww

−µgg

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

Then System (6) can be rewritten as the following generalized Filippov system

Ż =
{
FSc(Z), Z ∈ Sc,
FSb (Z), Z ∈ Sb,

(9)

where Sc =
{
Z ∈ R+

4 | H(Z) < 0
}
, Sb =

{
Z ∈ R+

4 | H(Z) > 0
}
are two regions

divided by the discontinuity manifold

' =
{
Z ∈ R+

4 | H(Z) = 0
}
.

We denote System (6) defined in region Sc as Crisis Mode with Replacement and
System (6) defined in region Sb as Non-Crisis Mode without Replacement. System
(9) is piecewise smooth with a discontinuity boundary where each point Z ∈ ' can
be associated with two vectors, FSc (Z) and FSb (Z). Orbits of System (9) cross the
boundary when the transversal components of FSc (Z) and FSb (Z) have the same sign,
and in that case they have a discontinuity in their tangent vector. Conversely, when the
transversal components have opposite signs, orbits slide on the boundary. Filippov’s
Convex Method is widely used to describe this sliding motion, and we will implement
it in Sect. 3.5. Thus, the state portrait of System (6) consists of the standard state
portaits in regions Sc and Sb and the sliding state portait on the discontinuity boundary
' (Kuznetsov et al. 2003).

Definition3.1 introduces two types of equilibria relevant to this context (DiBernardo
et al. 2008; Kuznetsov et al. 2003).

Definition 3.1 A point Z∗ is called a regular equilibrium of System (6) iff

FSc(Z
∗) = 0, H(Z∗) < 0 or FSb(Z

∗) = 0, H(Z∗) > 0.
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Alternatively, a point Z∗ is called a virtual equilibrium of System (6) iff

FSc(Z
∗) = 0, H(Z∗) > 0 or FSb(Z

∗) = 0, H(Z∗) < 0.

Virtual equilibria are fixed points of FSi , i = {c, b}, that lie outside Si . Because
System (9) follows FSi only within Si , system trajectories cannot not converge to
virtual equilibria. Thus, only regular equilibria represent biologicallymeaningful states
of System (6).

In the following sections, we will show that trajectories of System (6) are positive
and bounded for positive initial conditions (Sect. 3.2).Wewill then prove the existence
of a trivial extinction equilibrium (Sect. 3.3) and, lastly, we will use the definitions
above to analyze the model dynamics in each mode, with and without replacement
(Sect. 3.4).

3.2 Positive invariance

Toward validating the biological plausibility of (6), we first prove Theorem 3.1 (in
Appendix B.1), which states that none of the population variables become negative
over trajectories of the system.

Theorem 3.1 (Basic dynamical properties) There exists a unique forward solution
for System (6) starting form each initial condition in domain R4

+. Moreover, R4
+ is

positively invariant with respect to System (6) and System (6) is bounded inR4
+. [Proof

in Appendix B.1]

3.3 Stability of the extinction equilibrium

The Full System (6) has a trivial extinction equilibrium at the origin; that is:

Ee := (W ∗,G∗, w∗, g∗) = (0, 0, 0, 0).

The extinction equilibrium is always an equilibrium of both FSc and FSb . It may be
approached from Sb or Sc, that is, from G + g > θ(G + g + W + w) or G + g <

θ(G + g + W + w). In fact, a positive neighborhood of the origin contains both
points in Sc and Sb. By linearizing FSc and FSb around the origin, we can study the
stability of Ee in Sc and Sb (i.e., whether a small population would grow and persist or
instead decline back to extinction). Theorem 3.2 states that the extinction equilibrium
is locally attractive both when approached from Sc and when approached form Sb and
also gives sufficient conditions for when Ee is globally stable.

Theorem 3.2 (Extinction equilibrium)Model (6)always has the extinction equilibrium
Ee := (W ∗,G∗, w∗, g∗) = (0, 0, 0, 0). which is always locally stable. Let µu =
min{1/τ, µw} and ! < 2µub. Then Ee is globally stable. [Proof in Appendix B.2]

The condition for global stability of Ee is not dependent upon the initial population
size; it only depends on model parameters. In particular, the condition of an upper
bound on egg-laying rate (! < 2µub) is equivalently a condition that the outflow
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of workers from the non-guarding compartments W and w must be greater than the
inflow into these compartments at the half-saturation population b; that is:

!

2
< µub.

In words, by definition of half-saturation population b, when there are b non-guarding
workers, the eclosion rate that generates new non-guarding workers is !/2. However,
each of those workers either dies (at rate µw) or transitions to guarding (at rate 1/τ )
out of non-guarding work at a rate of at least µu . Consequently, if the inflow !/2 of
new workers into w and W is dominated by the outflow µub from these groups, then
the incipient population will decline over time.

However, even when the conditions for global stability of the extinction equilib-
rium Ee are not met, Ee is always locally stable by Theorem 3.2. Consequently, if an
incipient population is not sufficiently large to escape the basin of attraction of Ee, the
population will always go extinct. In fact, in the following sections, we will show that
the system exhibits a strong Allee Effect (Stephens and Sutherland 1999); the system
has both an upper, stable equilibrium as well as a lower, unstable equilibrium akin
to a minimum-population threshold below which population growth is negative and
ultimately evolves toward extinction.

3.4 Interior equilibria

Now we analyze the system in search for positive attractors of FSc and FSb , that
is, demographic equilibria towards which the population evolves when it does not go
extinct. Note that FSb can be studied as a special case of FSc where the replacement rate
is zero (δ = 0). Thus, we start our analysis with the Crisis Mode with Replacement,
governed by FSc , and then draw analogous conclusions for the Non-Crisis Mode
without Replacement (FSb ).

In the case when there is an insufficient number of guards (i.e., H(Z) ≤ 0, or
(G + g)/P ≤ θ ), the minor-worker w-to-g replacement mechanism activates. In this
state, the Full Model (6) behaves as the system Ż = FSc defined in Eq. (7). Any
equilibrium Ec = (W ∗,G∗, w∗, g∗) of FSc must satisfy the following relations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µGG∗ = 1
τ
W ∗

ρ(µw + δ)w∗ = 1 − ρ

τ
W ∗

µgg∗ = δw∗

(10)

The relations in System (10) allow us to establish the condition for an equilibrium
point to lay in the region of the state space where replacement occurs (Sc), that is, in
order to be a regular equilibrium of the Full System (6). Define γc as the guard ratio
(G∗ + g∗)/P∗ at Ec, that is

γc :=
ρ(µw + δ)+ µGδ(1 − ρ)/µg

ρ(µw + δ)(1+ τµG)+ (1 − ρ)(1+ δ/µg)µG
. (11)
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Then Ec is a regular equilibrium of Full System (6) if and only if H(Ec) ≤ 0 or,
equivalently, γc ≤ θ .

Furthermore, the equilibrium number of major workers W ∗ must satisfy:

!

⎛

⎜⎜⎜⎝
W ∗ +

w∗
︷ ︸︸ ︷
(1 − ρ)W ∗

τρ(µw + δ)

⎞

⎟⎟⎟⎠

2

b2 +

⎛

⎜⎜⎝W ∗ + (1 − ρ)W ∗

τρ(µw + δ)︸ ︷︷ ︸
w∗

⎞

⎟⎟⎠

2 ρ = 1
τ
W ∗.

which simplifies to the quadratic equation

!W ∗
(
1+ (1 − ρ)

τρ(µw + δ)

)2

ρ = 1
τ
b2 + 1

τ
(W ∗)2

(
1+ (1 − ρ)

τρ(µw + δ)

)2

. (12)

The roots of Eq. (12) are the non-trivial, interior equilibria of FSc (7), whose stability
follows from Theorem 3.3.

Theorem 3.3 (Existence and Stability of the crisis interior equilibria)Define condition

Cc :
!

2b

(
ρτ + (1 − ρ)

1
µw + δ

)
≥ 1. (13)

Then the Crisis System defined by FSc (7) has two interior equilibria, E
c
+ and Ec

−, if
and only if Cc holds. Both have the form

(W ∗,G∗, w∗, g∗) = (W ∗,
1

τµG
W ∗,

1 − ρ

ρτ (µw + δ)
W ∗,

δ

µg

1 − ρ

ρτ (µw + δ)
W ∗)

where

W ∗ = 1
2

⎛

⎜⎜⎜⎝
!ρτ ±

√√√√√√√(!ρτ )2 −

⎛

⎜⎜⎝
2b(µw + δ)τ

1 − ρ

ρ
+ (µw + δ)τ

⎞

⎟⎟⎠

2
⎞

⎟⎟⎟⎠
(14)

Moreover,

1. The interior equilibrium Ec
+ is Locally Asymptotically Stable, and Ec

− is unstable.
2. Both Ec

+ and Ec
− are regular equilibria of the Full System (6) if and only if

γc < θ
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for γc defined in Eq. (11).

[Proof in Appendix B.3]

In the special case when replacement rate δ = 0, the vector field FSc (7) reduces to
FSb (8). This allows us to analyze theNon-CrisisModewithout Replacement governed
by FSb (8). Define Cb := Cc|δ=0 and

γb := γc|δ=0 =
ρµw

µG(1 − ρ)+ ρµw(1+ µGτ )
, (15)

which can also be written as

γb =

fraction
of majors︷︸︸︷

ρ

guarding time
for majors︷ ︸︸ ︷
1/µG

(1 − ρ)/µw + ρ(1/µG + τ )︸ ︷︷ ︸
average bee lifespan

Now we provide conditions for the existence and stability of interior equilibria in the
Non-Crisis System FSb (8).

Theorem 3.4 (Existence and stability of the non-crisis interior equilibria)
Define condition

Cb : !

2b

(
ρτ + (1 − ρ)

1
µw

)
≥ 1. (16)

Then the Non-Crisis System defined by FSb (8) has two interior equilibria Eb
+ =

Ec
+|δ=0 and Eb

− = Ec
−|δ=0 if and only if Cb holds.

Moreover,

1. The interior equilibrium Eb
+ is LocallyAsymptotically Stable,while Eb

− is unstable.
2. Both Eb

+ and Eb
− are regular equilibria of the Full System (6) if and only if

γb > θ

for γb defined in Eq. (15).

[Proof in Appendix B.4]

As with Theorem 3.3 in the crisis mode, Theorem 3.4 (in the non-crisis mode)
provides a sufficient condition for the existence of an interior regular attractor Eb

+
when the proportion of guards (G + g)/P in the colony is above the replacement
threshold θ (see Table 3 for a summary of the results from Theorems 3.3–3.4).

By Theorem 3.2, the extinction equilibrium Ee is always a local attractor of the
full System (6). Theorem 3.4 provides a sufficient condition when the no-replacement
Model (8) has a second attractor, Eb

+, separated from Ee by an unstable node Eb
−.
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Fig. 2 The system exhibits an Allee Effect. Thick blue lines represent trajectories with the same parameter
values but different initial conditions. If the initial population is below the unstable equilibrium (dashed
horizontal line) the population collapses. Otherwise, it establishes at the stable equilibrium (solid horizontal
line). Parameter values:! = 154, b = 1000, ρ = 0.06, τ = 20, µG = 1/5.4, µg = 1/3, µw = 1/28, θ =
0.01, δ = 4,W (0) = G(0) = g(0) = 0.w(0) = 200, 500, 4500, respectively

Figure2 illustrates such an example where the colony can survive if: (1) Condition Cb
is satisfied, and (2) the initial population is above certain threshold related to Eb

− (see
figure caption for parameter values).

From condition Cb of Theorem 3.4 for non-crisis System (8) without replacement,
the non-trivial stable equilibrium Eb

+ can only existwhen!/2 ≥ b/(ρτ+(1−ρ)/µw);
otherwise, the colony will collapse. That is, when there are bworkers, the spontaneous
regeneration rate due to eclosion (!/2) must be at least the average rate of attrition
due to guard maturation or worker death (b/(ρτ + (1 − ρ)/µw)) in order to allow
for the colony to grow to the non-trivial, stable equilibrium Eb

+ from a sufficiently
large initial population size is sufficiently large. Furthermore, because of the ever-
present local stability of the extinction equilibrium Ee, even when Cb is satisfied, if
the population suddenly drops below a critical number (related to Eb

−), the colony can
still go extinct.

Assuming that Cb is satisfied and the initial population size is sufficiently large, the
colony population will arrive at the stable equilibrium Eb

+, and the total population
size will be:

W ∗
(
1+ 1 − ρ

ρµwτ
+ 1

τµG

)
. (17)

At Ec
+ and Eb

+, the value ofW
∗ given in (14) (with δ = 0 for Eb

+) is increasing with!,
the egg-laying rate, and decreasing with b, the non-guarding population for eclosion
half-saturation. This means that the higher the queen’s egg-laying rate and the smaller
the number of non-guarding workers needed to ensure brood survival to eclosion, the
larger a mature colony can become. However, if the population suddenly falls, the
colony may move into the basin of attraction of extinction equilibrium Ee (discussed
above); alternatively, the colony may move into crisis, guard-replacement mode if the
guard ratio falls below threshold θ .
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Remark 3.1 Note that, when δ > 0, condition Cc automatically satisfies condition Cb
because

ρτ + (1 − ρ)
1

µw + δ︸ ︷︷ ︸
∗

≤ ρτ + (1 − ρ)
1
µw︸ ︷︷ ︸

†

.

That is, the average time for a non-guarding worker to transition to guarding in the
crisis mode (∗ above) is less than in the non-crisis mode († above). Consequently, by
Theorem 3.3, persistence of the colony in crisis mode requires a faster egg-laying rate
! or a reduction in the number of non-guarding workers necessary to ensure a high
probability of development of eggs to eclosion.

3.4.1 Virtual and regular equilibria

As noted in Theorems 3.3 and 3.4, the fraction (G + g)/P of guards in the colony
determineswhether the equilibria are virtual or regular. Because only regular equilibria
can be approached by the system’s trajectories, a complete analysis of the system’s
dynamics requires further characterizing the guard ratios γc and γb.

Theorem 3.5 (Characterization of the equilibrium guard ratios)
Consider the ratios

γb = ρµw

µG(1 − ρ)+ ρµw(1+ µGτ )

defined in Eq. (15) and

γc =
ρ (µw + δ)+ µG(1 − ρ) δ

µg

µG(1 − ρ)
(

δ
µg

+ 1
)
+ ρ (µw + δ) (1+ τµG)

.

defined in Eq. (11). Then the following are true:

1. The ratio γb is monotonically increasing with respect to ρ.
2. The ratio γc is monotonically decreasing with respect to ρ if µg ≤ δτµG while it

is monotonically increasing otherwise.
3. Moreover, we always have

γb ≤ γc,

which implies that two positive, stable, regular equilibria cannot coexist in the
Full System (6).

[Proof in Appendix B.5]

The fact that the base ratio of guardsγb is increasingwith respect toρ is natural given
that, without replacement, all guards are majors and therefore increasing ρ directly
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increases the proportion of guards in the colony. However, in the crisis system, the
effect of increasing ρ on the guard proportion depends on the parameter values because
the guard population is a mix of both minors and majors. The condition µg ≤ δτµG
or, equivalently,

1/τ
µG

≤ δ

µg

can be interpreted as follows: majors mature at a rate 1/τ into the guard group
G and perform defense tasks for an average time 1/µG . Analogously, minors are
recruited into the guard group g at a rate δ and perform the task for 1/µg time units.
If (1/τ )/µG ≤ δ/µg , this means that there are more recruitment events in a guard’s
lifespan forminors than formajors, and therefore increasing the proportion ofmajors ρ

ultimately decreases the total proportion of guards in the colony (γc is decreasing with
respect to ρ). Conversely, if (1/τ )/µG > δ/µg , then the majors have more recruit-
ment events per guard lifespan, and thus increasing major production (ρ) increases
the fraction of guards in the colony γc.

3.5 Dynamics on the switching boundary6

We have studied the dynamics of the crisis mode FSc (7), where minors adopt guarding
tasks in response to a lack of soldiers, and the non-crisis mode FSb (8) (without
replacement by minors). Each of these systems has two interior equilibrium points,
one stable and one unstable, which may both be virtual or regular according to the
value of the replacement threshold θ . It remains to analyze the system behavior on
the switching boundary '. Trajectories of the Full System (6) may remain in one
of the regions Sc and Sb, cross the switching surface ' or slide along it. In order to
investigate the crossing and sliding dynamics, we first determine the existence of a
crossing set and a sliding set on ' (Filippov 1988; da Silveira Costa and Meza 2006;
Boukal and Kivan 1999; Tang et al. 2012a, b; Xiao et al. 2013).

Let

σ (Z) := ⟨Hz(Z), FSc (Z)⟩⟨Hz(Z), FSb (Z)⟩, (18)

where ⟨·⟩ denotes the standard scalar product and Hz(Z) is the non-vanishing gradient
of smooth function H on '. Define the crossing set 'C ⊂ ' as

'C = {Z ∈ ' | σ (Z) > 0} ,

and the sliding set 'S ⊂ ' as

'S = {Z ∈ ' | σ (Z) ≤ 0} ,
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where 'S = ' \ 'C . For System (6), we can obtain that

σ (Z) = θ2
(

!(W+w)2ρ
(b2+(W+w)2)

− W/τ
)2

+ (1 − θ)2(W/τ − µGG)2

+θ2
(

!(W+w)2(1−ρ)
(b2+(W+w)2)

− µww
)2

+ (1 − θ)2(gµg)
2

+δw
(
−θ2

(
!(W+w)2(1−ρ)
(b2+(W+w)2)

− µww
)

− (1 − θ)2gµg

)

for all Z ∈ ', that is, for

{
Z ∈ R+

4 | H(Z) = 0
}
=
{
Z ∈ R+

4 | (G + g) − θ(G + g +W + w) = 0
}
.

The boundary ' may also contain particular points, called “pseudoequilib-
ria” (Di Bernardo et al. 2008), that act as equilibria within the sliding set 'S . In
order to characterize them, we follow Filippov’s Convex Method to define sliding
motions on 'S as the solutions to the continuous ODE Ż = F0(Z) on 'S , where
Z ∈ 'S and F0(Z) is a convex combination of FSc(Z) and FSb (Z) tangent to ' at Z
(Kuznetsov et al. 2003). The vector field F0(Z) thus has the form

F0(Z) = λ(Z)FSc (Z)+ (1 − λ(Z))FSb(Z) (19)

where λ : ' → [0, 1] is a function of Z defined so that F0(Z) is tangent to 'S , that
is,

λ(Z) = ⟨Hz(Z), FSb (Z)⟩
⟨Hz(Z), FSb (Z) − FSc(Z)⟩

Definition 3.2 A point Z ∈ 'S is a pseudoequilibrium if F0(Z) = 0.

The vector field F0(Z) can be expressed as below:

F0(Z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

!
(W + w)2

b2 + (W + w)2
ρ − 1

τ
W

1
τ
W − µGG

!
(W + w)2

b2 + (W + w)2
(1 − ρ) − µww − (1 − λ)δw

(1 − λ)δw − µgg.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)
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It follows that a pseudoequilibrium E p = (W ∗,G∗, g∗, w∗)must satisfy the relations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

G∗ = 1
τµG

W ∗,

g∗ = 1 − ρ

ρτ (µw + δ(1 − λ∗))
W ∗, and

w∗ = δ(1 − λ∗)
µg

1 − ρ

ρτ (µw + δ(1 − λ∗))
W ∗,

(21)

where λ∗ = λ(E p). From this relations, we can find the ratio of guards at pseudoe-
quilibria. Define γp as the ratio

G∗+g∗
P∗ for G∗, g∗ and P∗ = W ∗ +w∗ + G∗ + g∗ as

in Eq. (21) above, that is,

γp := ρ(µw + δ(1 − λ∗))+ µGδ(1 − λ∗)(1 − ρ)/µg

ρ(µw + δ(1 − λ∗))(1+ τµG)+ (1 − ρ)(1+ δ(1 − λ∗)/µg)µG
. (22)

Note that, to be contained in ', the pseudoequilibrium must satisfy the condition

γp = θ .

From this equality we can find the value of λ∗ = λ(E p) as

λ∗ = µGµgθ(δτρ + 1 − ρ + µwρτ ) − (1 − θ)(δ(µG(1 − ρ)+ µgρ)+ µgµwρ)

δ(µGµgρτθ − (1 − θ)(µG(1 − ρ)+ µgρ))

(23)

These relations yield the following Theorem 3.6, which establishes the existence
of two pseudoequilibria on ' when the Full System (6) has no regular equilibria.

Theorem 3.6 (Existence of pseudoequilibria) Define condition

Cp : !

2b
(1 − θ)(µgρ + µG(1 − ρ)+ µGµwτρ)

µG(θµg + µw(1 − θ))
≥ 1. (24)

Then System (6) has two pseudoequilibria E p
+ and E p

− on the switching surface ' if
and only if Cp holds and γb ≤ θ < γc. The pseudoequilibria have the form

(W ∗,G∗, g∗, w∗) =
(
W ∗,

1
τµG

W ∗,
(1 − θ)(µG(1 − ρ) − µgρ)+ θµGµgρτ )

µGρτ (θµg + µw(1 − θ))
W ∗,

−µwρ + θ(µG(1 − ρ)+ µwρ(1+ µGτ ))

µGρτ (θµg + µw(1 − θ))
W ∗

)
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with

W ∗|E p
±
= 1

2
ρτ

⎛

⎝! ±
√

!2 −
(

2bµG(θµg + (1 − θ)µw)

(1 − θ)(µG(1 − ρ)+ µgρ + µGµwρτ )

)2
⎞

⎠

[Proof in Appendix B.6]

The pseudoequilibrium existence condition Cp can be derived from the crisis exis-
tence condition Cc (3.4) by substituting the value of δ for δ(1 − λ∗). Indeed, Cp can
be written as

!

2b

(
ρτ + (1 − ρ)

1
µw + δ(1 − λ∗)

)
≥ 1

which, like Cc and Cb, sets a minimum egg-laying rate ! to ensure that there are
enough individuals contributing to egg eclosion (W and w compartments) despite
major maturation and worker death (see discussion of Theorems 3.3–3.4). For γb ≤
θ ≤ γc, condition Cp is met automatically when

Cc :
!

2b

(
ρτ + (1 − ρ)

1
µw + δ

)
≥ 1

holds, because λ∗ takes values between 0 and 1 and thus

!

2b

(
ρτ + (1 − ρ)

1
µw + δ(1 − λ∗)

)
≥ !

2b

(
ρτ + (1 − ρ)

1
µw + δ

)
.

Similarly, condition Cp implies condition Cb from Theorem 3.4 because

!

2b

(
ρτ + (1 − ρ)

1
µw

)
≥ !

2b

(
ρτ + (1 − ρ)

1
µw + δ(1 − λ∗)

)
.

Therefore, we have

Cc +⇒ Cp +⇒ Cb.

4 Interacting defensemechanisms

Nowwe study the interaction between the threemechanisms determining guard alloca-
tion, namely the major production regulated by ρ, the age-based polyethism regulated
by the maturation time τ , and the replacement by minors that occurs when the guard
proportion drops below θ . In particular, we are interested in determining

1. The effect of these three parameters on colony size and task allocation
2. The parameter combinations keep the system out of crisis, that is, governed by the

Non-Crisis System (8).
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Fig. 3 Model behavior with respect to ρ and θ . Top panels: In different regions of the ρ vs θ space, the
system may have a crisis attractor, a pseudoequilibrium, a non-crisis attractor (with no minor guards), or
only an extinction equilibrium. The crisis and non-crisis guard ratios, γc and γb , separate the regions. By
Theorem 3.5, γc might be increasing (top left panel) or decreasing (top right panel). Bottom panels: Below
each of the top panels, the corresponding bifurcation diagram for colony size with respect to ρ is shown for
a fixed value of θ . In the bottom left panel, θ = 0.25 and as ρ increases, the system transitions from crisis
to pseudoequilibrium, to non-crisis, where the population decreases until it suddenly drops to extinction.
In the bottom right panel, θ = 0.01 and the system transitions from pseudoequilibrium, with an increasing
population, to non-crisis, where the colony size decreases but does not reach an extinction state. Parameter
values: (left panels) ! = 50, b = 300, τ = 10, µG = 1/15, µg = 1/7, µw = 1/28, δ = 0.03; (right
panels) ! = 154, b = 1000, τ = 20, µG = 1/5.4, µg = 1/3, µw = 1/28, δ = 4. The parameters in the
right panels are approximated values for real T. angustula colonies (see Table2 and Appendix C)

4.1 Behavioral plasticity

The parameter θ is the threshold fraction of guards in the colony below which minors
will adopt guarding tasks. It can be interpreted as the colony demand for guards
(the higher θ , the higher the demand), or as the degree of plasticity of minors (the
higher θ , the more likely minors are to switch to guarding tasks). Because, as noted in
Theorem 3.5, the equilibrium ratio of guards γc in the crisis regime (with replacement)
is always greater than the corresponding ratio γb in the non-crisis regime (without
replacement), there are only three possible alternatives for the threshold ratio θ and
they determine the system’s behavior, as illustrated in Fig. 3.

1. γb ≤ γc ≤ θ

By Theorem 3.6, there are no pseudoequilibria. Then we have the following cases
based on condition Cc:

(a) Cc holds: Crisis (Ec
+)

• Condition Cc implies the existence of the Crisis Attractor Ec
+, which is a

regular equilibrium of the Full System (6) because γc ≤ θ (Theorem 3.3);
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• Condition Cc +⇒ Cb, so the Non-Crisis Attractor Eb
+ exists, but as a

virtual equilibrium of the Full System (6) because γb ≤ θ (Theorem 3.4);
Thus, because of the Allee Effect, trajectories either converge to Ec

+ or col-
lapse to Ee if the population drops below a critical size.

(b) Cc does not hold (¬Cc): Extinction (Ee)
• There is no Crisis Attractor Ec

+;
• The Non-Crisis Attractor Eb

+ exists as a virtual equilibrium of the Full
System (6) if Cb holds and does not exist otherwise;

It follows that the only attractor is the extinction equilibrium Ee.

The ratio of guards at equilibrium, even with replacement, is less than θ . Then the
model converges to the Crisis Attractor Ec

+ (like the orange “Crisis” trajectories in
Fig. 4) or extinction Ee. Biologically, this would represent a situation where minors
keep transitioning to guarding even when all the major and replacement guards that
the colony can produce are defending the nest. This is typically not observed in real
colonies, where the guarding population consists mainly of major bees.

2. θ < γb ≤ γc
By Theorem 3.6, there are no pseudoequilibria. Then we have the following cases
based on condition Cb:

(a) Cb holds: Non-crisis (Eb
+)

• ConditionCb implies the existence of the Non-Crisis Attractor Eb
+, which

is a regular equilibrium of the Full System (6) because θ ≤ γb (Theo-
rem 3.4);

• The Crisis Attractor Ec
+ exists as a virtual equilibrium of the Full System

(6) if Cc holds and does not exist otherwise;
Thus, trajectories either converge to Eb

+ or collapse to Ee if the population
drops below the Allee threshold.

(b) Cb does not hold (¬Cb): Extinction (Ee)
• The Non-Crisis Attractor Eb

+ does not exist;
• Because ¬Cb +⇒ ¬Cc, there is no Crisis Attractor Ec

+;
It follows that the only attractor is the extinction equilibrium Ee and the pop-
ulation collapses.

The ratio of guards at equilibrium is greater than θ , even without replacement. Then
the model converges to the Non-Crisis Attractor Eb

+ (like the blue “Non-crisis” trajec-
tories in Fig. 4) or extinction Ee. This is the typical situation for colonies in the field:
enough guards are produced such that minor replacement is not required. Replacement
would be activated upon guard removal, and would accelerate the recovery of the base
guard proportion in the colony, γb. However, even without replacement, the original
proportion of guards would be eventually reached.

3. γb ≤ θ < γc
The Crisis and Non-crisis Attractors Ec

+ and Eb
+ exist as virtual equilibria of the

Full System (6) if their respective existence conditions Cc and Cb are met, and do
not exist otherwise. Then we have the following cases based on condition Cp:
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(a) Cp: Regulating (E p
+)

• Condition Cp implies the existence of pseudoequilibrium E p
+ ∈ 's

because γb ≤ θ < γc (Theorem 3.6);
Thus, trajectories either converge to the pseudoequilibrium E p

+ or collapse to
Ee if the population drops below a critical size.

(b) Cp does not hold (¬Cp): Extinction (Ee)
• No pseudoequilibria exist.

It follows that the only attractor is the extinction equilibrium Ee and the pop-
ulation collapses.

This would represent a colony where the natural production of major guards is too low,
which triggers replacement by minors, but the mixed guarding population resulting
from replacement is large enough to prevent further replacements. If the existence
condition is not satisfied, the population collapses to extinction, like in the previous
cases (see gray “Extinction” trajectories in Fig. 4). However, convergence to a pseu-
doequilibrium in this case implies a persistent population of minor guards (see purple
“Pseudoequilibrium” trajectories in Fig. 4), which is not typically observed in real
colonies.

The simulations in Fig. 4 illustrate system trajectories converging to the “Crisis”,
“Pseudoequilibrium”, “Non-crisis”, and “Extinction” attractors. The parameter values
are typical values for Tetragonisca angustula stingless bee colonies (see Table2), the
same values used in the top right panel of Fig. 3. Note how there are no minor guards
at equilibrium in the “Non-crisis” attractor, but there is a persistent population of them
for the “Crisis” and “Pseudoequilibrium” attractors. This is not efficient becauseminor
guards have a lower performance at defense tasks and thus are meant to be a back-
up for exceptional situations where major guards are missing. In fact, although real
colonies in the field present a mixed guard population after guard removal (Baudier
et al. 2019), they usually have major bees defending the nest.

The value of θ must be less than γb in order for the system to operate in non-crisis
mode. The maximum value of γb, the fraction of guards without replacement, is at
ρ = 1, with an all-major colony. Thus, θ must be less than γb|ρ=1 = 1/(1+µGτ ) =
(1µG)/(τ + 1/µG), which is the fraction of their lives that majors spend as guards.
If θ is greater than this proportion, then the colony is guaranteed to either go extinct
or maintain a persistent population of minor inefficiently allocated to guarding tasks.
Moreover, if the colony is in a crisis state (orange regions in Fig. 3), decreasing θ will
always lead the system to a non-crisismode (blue regions in Fig. 3) but increasing θ will
not force the colony into extinction. However, increasing θ from a non-crisis state may
lead to either crisis mode, with a persistent population of minor guards, or directly to
extinction, without ever transitioning to a crisis mode. That is, a colony that can sustain
itself in the crisis attractor, with a stable population of minors dedicated to guarding,
will not collapse because of demographic factors if the demand for guards increases
or minors become exceedingly plastic (meaning that they would adopt guarding tasks
even if the whole population was already guarding). This is because, in crisis, the
colony is simply unable to meet its demand for guards (γc < θ ), so increasing this
demand makes no difference for task allocating or colony size (the colony is already

123



A modeling framework for adaptive collective defense… Page 25 of 56 87

Fig. 4 System trajectories illustrating the “Non-crisis”(ρ = 0.06, θ = 0.01), “Pseudoequilibrium” (ρ =
0.01, θ = 0.01) and “Crisis” (ρ = 0.8, θ = 0.3) and “Extinction”(ρ = 0.06, θ = 0.2) attractors. Each
trajectory has a different combination of ρ and θ corresponding to one of the four regions in the 2-parameter
bifurcation in the top right panel of Fig. 3. Note the persistent population of minor (replacement) guards
in the “Crisis” and “Regulating” cases. (! = 154, b = 1000, τ = 20, µG = 1/5.4, µg = 1/3, µw =
1/28, δ = 4)

producing all the major and replacement guards it can). However, it may become
exposed to higher environmental risks, like robbery and attacks.

4.2 Morphological specialization

The fraction ρ represents the proportion of eggs that eclose into majors, which mature
into soldiers. As seen in Fig. 3, for sufficiently small values of θ , increasing ρ can
keep the system in non-crisis mode, without replacement guards. However, as shown
in the bottom panels of Fig. 3, increasing ρ may also reduce colony size and even
lead to colony extinction. The effect of modifying the production of majors ρ depends
on the value of θ and whether γc is increasing or decreasing. There are six possible
cases illustrated in Fig. 5. Define ρC as the value of ρ, if any, such that γc|ρ=ρC = θ .
Correspondingly, define ρB as the value of ρ, if any, such that γb|ρ=ρB = θ .

1. Increasing γc (γb|ρ=0 < γc|ρ=0 < γc|ρ=1 = γb|ρ=1)

(a) High value of θ :

θ ≥ γc|ρ=1 =
1

1+ µGτ

The system is in the “Crisis” state for all values of ρ, but increasing ρ increases
the proportion of guards at equilibrium.
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Fig. 5 Proportion of guards at equilibrium for different combinations of ρ and θ . The system converges to
the “Crisis” mode (7), “Sliding” mode (20) or “Non-Crisis” mode (8) as the proportion of majors ρ changes.
ρC and ρB are the values of ρ, if any, such that γc|ρ=ρC = θ and γb|ρ=ρB = θ , respectively. In all panels,
b = 100, µg = 1/10, µw = 1/28,! = 100, δ = 1/14. In the left column γc is increasing, with τ = 10
and µG = 1/(28 − τ ) so that majors and minors have an average lifespan of 28 days, and the θ values are
0.7 in the first row, 0.5 in the second and 0.08 in the third. The right column shows decreasing γc , with
τ = 20, µG = 1/(28 − τ ). The θ values are 0.7 in the first row, 0.35 in the second and 0.08 in the third

(b) Intermediate value of θ :

δ

δ + µg
= γc|ρ=0 < θ < γb|ρ=1 =

1
1+ µGτ

As ρ increases, the system transitions from the “Crisis” state (0 < ρ < ρC ) to
the “Regulating” state ( ρC < ρ < ρB) and the “Base” state (ρ > ρB). In this
case, increasing the production of majors is a long-term solution for keeping
the system out of crisis.

(c) Low value of θ :

0 < θ < γc|ρ=0

As ρ increases, the system transitions from the “Regulating” state (0 < ρ <

ρB) to the “Base” state ( ρB < ρ < 1). In this case, increasing the production
of majors is a long-term solution for increasing the guard proportion.

2. Decreasing γc (γb|ρ=0 < γc|ρ=1 = γb|ρ=1 < γc|ρ=0)

(a) High value of θ :

θ ≥ γc|ρ=1
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The system is in the “Crisis” state for all values of ρ, but increasing the pro-
portion of majors ρ decreases the proportion of guards in the long term.

(b) Intermediate value of θ :

γc|ρ=1 < θ < γc|ρ=0

As ρ increases, the system transitions from the “Regulating” state (0 ≤ ρ ≤
ρC ) to the “Crisis” state ( ρC < ρ ≤ 1). In this case, increasing the production
of majors decreases the guard proportion in the long term.

(c) Low value of θ :

0 < θ < γc|ρ=1

As ρ increases, the system transitions from the “Regulating” state (0 ≤ ρ <

ρB) to the “Base” state ( ρB ≤ ρ ≤ 1). In this case, increasing the production
of majors is a long-term solution for increasing the guard proportion.

These cases reveal the situations where the colony can function normally, in the
“Non-Crisis” regime, and where an increment in the major production is actually
beneficial for colony defense. For example, if major and minor guards live equally
long on average and replacement happens at a faster rate than maturation (decreasing
γc), then increasing the production of majors enhances colony defense only if the
proportion of guards can drop very low without triggering replacement (case 2c). In
fact, cases 2a-2c show that the minimum proportion of guards required to defend
the colony without replacement (θ ) must be less than γb|ρ=1, that is the equilibrium
proportion of guards if all bees aremajors. If θ is greater than this value, then increasing
the production of majors ρ actually decreases the fraction the population dedicated to
guarding.

The colony size bifurcation diagrams in the left and right bottom panels of Fig. 3 are
examples of cases 1b and 2c, respectively. They have the same parameters as the top
panels directly above them, and shows colony size with respect to ρ for a fixed θ value
of 0.25 (left) and 0.01 (right).While the parameters on the right panels are biologically
realistic for T. angustula stingless be colonies, the parameters on the left panels were
chosen to produce a representative diagramwith the four possible dynamical outcomes
and are not based on these reference values. Theywould represent an analogous system
(like a different species or an artificial system) where γc is increasing, so µg > δτµG
by Theorem 3.5. Thus, the ratio between the death rates of minor and major guards
must be greater than the ratio between replacement andmaturation rates. In this bottom
left panel of Fig. 3, corresponding to case 1b, ρC and ρB are well defined. For ρ values
below ρC , the colony size is dictated by the crisis model (7) because the parameters
satisfy condition (11) but not (15). Similarly, for ρ values above ρB the system follows
the non-crisis model (8) because only condition (15) holds. However, higher ρ values
violate theExistenceCondition (3.4) for theBaseModel, so the only stable equilibrium
is extinction. However, the fraction of guards in the colony increases with ρ in case
1b. Thus, increasing the production of majors in this scenario may reinforce colony
defense by increasing the fraction of the population allocated to guarding, but may
also reduce the colony size or even cause extinction.
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On the other hand, the bottom right panel of Fig. 3, which falls under case 2c, repre-
sents a realistic situation for stingless bee colonies. Because the death rates for major
and minor guards are similar and replacement happens much faster than maturation,
we have µg ≤ δτµG and γc is increasing by Theorem 3.5. Thus, the system cannot
transition between crisis and non-crisis states by changing the production of majors.
As seen in the top right panel of Fig. 3, for high values of θ , the colony will go extinct
for low ρ values and persist in a crisis state for high enough ρ values. However, for
the small θ values that presumably exist in real colonies, the system transitions from a
pseudoequilibrium to the non-crisis attractor as ρ increases, with the population size
peaking at ρB , where the transition happens. This might suggest why such a small
proportion of majors exists in real colonies: the production is enough to supply the
demand indicated by θ but not much greater because this would decrease colony size.

4.3 Maturation time !

We have mentioned the role of the maturation rate in determining whether the fraction
of guards at the crisis attractor, γc, is increasing or decreasing with respect to ρ. In
real stingless-bee colonies, the maturation rate that is considerably slower than the
replacement rate, δ, and so γc is increasing like in the right panels of Figs. 3 and 5.
However, the maturation rate also has an important role in defining the existence
conditions Cb,Cp and Cc. As seen in Fig. 6, decreasing the maturation time constant
τ also reduces the region in the θ–ρ spacewhere the colony can survive. Thus, a colony
where majors mature faster will be able to sustain less majors because high values
of ρ lead to extinction. Also note that the colony size peaks at a smaller value of ρ

for faster maturation times. If colonies regulate their major production to be near this
peak, then this result suggests that colonies where the transition of majors to guarding
happens faster are expected to produce a lower number of majors.

Figure7 shows the equilibrium task allocation as ρ varies for the same values of τ

(10 days and 20 days). For τ = 20, which is a biologically realistic value, increasing ρ

produces an increment in the non-guarding and guardingmajor populations (W andG,
respectively, represented by darker lines). There are nominor guards g in the non-crisis
case, which constitutes most ρ values (except for the shaded areas, corresponding to
a pseudoequilibrium). While there are still no minor guards for τ = 10, the major
population does not simply increase with ρ. In fact, both guarding and non-guarding
populations peak at a high value of ρ and then decrease before collapsing drastically
to extinction. Thus, for very fast maturation rates, increasing the production of majors
may, perhaps counterintuitively, decrease the number of guards in the colony.

5 Discussion

In this work, we developed a framework for modeling task allocation for collective
defense motivated by the stingless bee T. angustula. We studied morphological spe-
cialization, age-based polyethism and behavioral plasticity as mechanisms regulating
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Fig. 6 Effect of τ on colony size bifurcationwith respect toρ (top) and system sybamicswith respect toρ and
θ (bottom). Parameter values: ! = 154, b = 1000, τ = 20, µG = 1/5.4, µg = 1/3, µw = 1/28, δ = 4.
In top panels, θ = 0.01

Fig. 7 Bifurcation diagram for all population groups with respect to ρ for τ = 10 and τ = 20. Only stable
interior attractors are shown, although extinction is always a stable equilibrium
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group defense at different timescales and interacting to maintain colony growth while
responding efficiently to crisis situations.

5.1 Colony growth and survival

Our analysis provides basic conditions for colony survival: a non-guarding worker
must spend enough time rearing brood to ensure that at least one new adult is recruited
before she dies or switches to a guarding task (see Theorem 3.2). Even if this condition
is satisfied, the colony may still inevitably collapse if it reaches low numbers, which
is known as strong Allee Effect (see Theorems 3.2, 3.4) (Stephens and Sutherland
1999). The need for collective brood care in hives is known to induce Allee effects
(Dennis and Kemp 2016). This is the case with stingless-bee colonies, which must
assemble swarms of a minimum size in order to produce offspring colonies (Van Veen
and Sommeijer 2000). The eclosion term in Eq. (1) has been used to incorporate
this critical population size in models of honey bees (Kang et al. 2016; Ratti et al.
2012, 2017; Eberl et al. 2010; Britton and White 2021), leaf-cutter ants (Kang et al.
2011) and eusocial insects in general (Kang and Theraulaz 2016). In our model, it
produces a strong Allee effect within each of the subsystems defined by FSc (7) and
FSb (8). Furthermore, the property extends to the full Filippov system (6) because of
the particular shape of the boundary ', which is a hyperplane crossing the origin,
including all points where G + g − (W + w + G + g)θ = 0. Because each pair
{Ec

+, E
c
−}, {Eb

+, E
b
−} and {E p

+, E
p
−} of equilibria shares the same fraction of guards

(G + g)/(W + w + G + g) (namely γc, γb, γp), each pair lies on the same side of
the hyperplane ' (or on ', in the case of pseudoequilibria {E p

+, E
p
−}). Moreover,

due to the relative position of the equilibria given by γb < γc (Theorem 3.5), there
are two possibilities described in Sect. 4.1: if the pairs {Ec

+, E
c
−} and {Eb

+, E
b
−} exist,

they either lie on the same side of ' and one of them is regular while the other is
virtual (not approached by trajectories, see Definition 3.1), or they lie on different
sides of ' and they are both virtual, but there are two pseudoequilibria {E p

+, E
p
−} on

'. In either case, the global structure typical of strong Allee Effects is maintained
for trajectories of the Full System (6): one locally stable extinction equilibrium and,
under some existence conditions, a lower, unstable equilibrium and an upper, locally
stable equilibrium.

The critical population size in this model is a condition on the non-guarding sub-
population (W+w): guards (G and g) do not contribute toworker production (Hammel
et al. 2016), and therefore the colony cannot persist without a minimum number
of non-guarding workers regardless of the number of guards. Continued replace-
ment in this case effectively acts as an increased mortality rate or harvesting of the
minor non-guarding workers, which are known to make Allee effects more severe
and colonies less resilient to worker loss (Dennis and Kemp 2016). In fact, a colony
unable to escape the crisis mode not only can sustain less non-guarding workers
((W + w) |Ec

+< (W + w) |Eb
+
) but also requires a higher minimum population of

them to persist ((W + w) |Ec
−> (W + w) |Eb

−
). Thus, the crisis mode has ampli-

fied Allee effects with respect to the non-crisis mode. This further illustrates the
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trade-off in allocating resources to defense at the expense of colony growth or persis-
tence.

5.2 Heterogeneity and adaptive defense

There are known trade-offs associated with heterogeneity in social-insect colonies.
For example, modularity in group interactions causes information loss, but may also
improve collective decision in complex environments and reduce the transmission of
pathogens (Kao and Couzin 2019; Guo et al. 2020). Stingless-bee colonies maintain
a heterogeneous population that varies in morphology, age, and behavioral plasticity
(Segers et al. 2015; Grüter et al. 2012; Baudier et al. 2019). Tuning each of these
factors enables colonies to navigate the trade-off between the efficiency of producing
specialized soldiers and the flexibility required to handle unpredictable changes in the
environment. We asked how the parameters regulating morphological specialization,
age-based polyethism, and behavioral plasticity impact the colony size and task allo-
cation within the colony. Our results show that a heterogeneous colony composition
along each of these three axes is beneficial only in a certain range that depends on
the other two. Outside of these ranges, colony function and survival may be compro-
mised.

This is consistent with the idea that certain degrees of diversity can be adaptive
for colonies. For example, the mix of cognitive phenotypes among honey-bee for-
agers allows colonies to balance exploration and exploitation of resources (Cook et al.
2020). Mathematical and computational models show that certain mixtures of these
phenotypes maximize resource collection, but the optimal proportion depends on the
individual task fidelity of workers (Mosqueiro et al. 2017). Similarly, our model shows
that changes in the ratio ρ of fixed morphological types (majors and minors) affect
the colony’s demographics differently according to the individual task flexibility of
minors (replacement), as shown by the interaction between ρ and θ in Figs. 3 and
5.

Colonies can increase their major production through changes in larval feed-
ing, and they do if exposed to frequent threats (Segers et al. 2016). However, the
fraction of majors in the colony is usually very small (≈ 1–6%) (Grüter et al.
2012; Hammel et al. 2016). Aside from the additional resources required to produce
and maintain majors, our results further illustrate demographic trade-offs associ-
ated with major production that may contribute to keeping this proportion low.
For instance, with realistic parameters, colony size peaks at low proportions of
majors (ρ ≈ 5%) and then decreases (but not to extinction) when more majors
are produced (see Fig. 6, right panel). The peak is a consequence of using a dis-
continuous model and might not be evident if using continuous equations, but
the inverse relation between colony size and major soldier production (after some
proportion) should hold in general because guards do not contribute to brood
care. If majors mature into guards at a faster rate, then the colony size peaks
at a lower proportion of majors, and high major proportions do cause extinc-
tion (Fig. 6, left panel). These effects favor short-term emergency replacement by
minors, as opposed to the potential negative long-term demographic consequences of
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producing more or faster-maturing majors, unless there are chronic, sustained pres-
sures.

Our theoretical results also show the interaction between individual plasticity and
morphological specialization in the colony’s worker allocation to defense. Figure5
shows that increasing the production of majors, who later specialize in defense, can
actually have a negative impact on the fraction of the colony dedicated to guarding
(see Theorem 3.5). This is the case if the colony relies on replacement minor guards
to satisfy a minimum required guard proportion (due to either large major death rates
or slow maturation of majors), and reduces the available pool of minors by increasing
the production of majors. This means that a shift in the ratio of morphological types
favoring the production of large soldiers, as observed experimentally for chronically
threatened colonies (Segers et al. 2016), is only beneficial if guarding by minors is
a transient process and not a long-term requirement for colony defense, which is the
case in natural colonies (Baudier et al. 2019).

We also asked how plastic minors should be to allow for a transient recovery from
guard loss without maintaining an inefficient body of minor guards. As shown in
Fig. 3, for the reference parameter values, if minors were more plastic or the colony
demand for guards were to increase (higher θ value), the colony could even go extinct.
Thus, minors must be flexible enough to cover the temporary demand for guards in a
crisis (see “Non-crisis” trajectory in Fig. 4), but not so sensitive to guard loss that they
become a permanent inefficient guarding force (“Crisis” trajectory in Fig. 4, which
is not observed in natural colonies) or, in an extreme case, that there are not enough
workers taking care of brood and the colony goes extinct (see “Extinction” trajectory
in Fig. 4).

5.3 A discontinuous framework

The Filippov framework is certainly not the only alternative for modeling emergency
task switches during crisis response in this system or similar ones. Task allocation is
modulated by social interactions in social insects (Beshers and Fewell 2001; Beshers
et al. 2001; Kang and Theraulaz 2016; Naug and Gadagkar 1999), which can use
information from local encounters to implement density-dependent changes in behav-
ior (Gordon et al. 1993; Gordon andMehdiabadi 1999; Pratt 2005; Gordon et al. 2008;
Farji-Brener et al. 2010; Baudier and Pavlic 2020). Thus, it is reasonable to assume
that the net replacement rate is a decreasing function of the per-capita probability
of minors encountering guards (which could be used to infer the colony demand for
defensive tasks), with a threshold below which replacement becomes more likely than
not. Response thresholds may vary across individuals and even change with time or
experience (Beshers and Fewell 2001; Theraulaz et al. 1998), but we do not model
this here except for the difference between majors and minors in performing guard-
ing tasks. Although several continuous functions could approximate the decreasing
probability of replacement, we have simplified it to a binary step: all minors are either
available for replacement or they are not. Note, however, that the change in behavior
modeled by the step function is not replacement itself (which occurs at rate δ, not
instantly and simultaneously for all minors) but the availability of minors for replace-
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ment. In any case, the assumption that all minors switch their behavior in response to
a trigger (guard loss below a threshold) instantly and at the same ‘trigger intensity’
(θ ) represents a limitation of the model.

Although using a discrete replacement function is a strong assumption about the
behavior of minors, we believe that a discrete framework can be a valuable lens for
systems that have distinct modes of operation. Guard replacement is a crisis response
that minor workers only engage in under very specific circumstances. It is different
from task switching between routine tasks that are normally included in the worker’s
repertoire. Thus, we have chosen to model this system’s crisis mode and non-crisis
mode as two different ways of functioning, with one of them activated only in emer-
gency cases. However, continuous alternatives for the replacement activation could be
considered.

A well known continuous function for task switching is given by the Fixed Thresh-
old Model (FTM) (Bonabeau et al. 1996) (reviewed in (Beshers and Fewell 2001) ).
It proposes a Hill function (analogous to one used for the eclosion term in Eq. (1)) to
represent the probability of an individual of cast i switching to a task per unit time as
Pi = s2/(s2 + θ2i ). Here s is the magnitude of the stimulus level corresponding to the
task, θi is the cast-specific response threshold for the task, and the cast i may corre-
spond to genetic or morphological types, like the “majors” and “minors” in our model.
The authors describe the choice of this particular functional form as arbitrary, given
that any threshold function should produce similar qualitative results (Bonabeau et al.
1996). We choose the simplest possible threshold function for our model, representing
the stimulus level s as the probability of encountering a guard and a minor-specific
task threshold of θ . Note that, while the switching probability in the FTM increases
with s, our switching probability decreases with the fraction of guards in the colony.
This follows the rationale of social inhibition (Beshers et al. 2001), where encounters
signal the lack of need for a task, as opposed to models where interactions with a task
group increase the switching probability to that task (Kang and Theraulaz 2016).

While using a discontinuous derivative requires additional definitions with respect
to continuous dynamical system’s analysis, piecewise smooth systems are relatively
well understood and used in engineering applications and control theory (Cortes 2008;
Di Bernardo et al. 2008; Wang et al. 2019; da Silveira Costa and Meza 2006). A
continuous form like the FTM in the derivative would eliminate some mathemati-
cal complexities associated with discontinuous derivatives, but would also produce
considerably more complex analytical forms for the system’s equilibria. Moreover,
the exponent in the Hill function proposed by the FTM and similar models would
introduce an additional parameter to be estimated.

Recentwork has compared the use ofHill functions andHeaviside step functions for
a threshold-dependent behavior in social insects (Wang et al. 2022). In that study, one
of the key findings is that the continuous model’s steady state always has persistence
of all the population compartments, unlike the discontinuous model. Although we
have not analyzed a continuous version of our model in detail, we have included a
preliminary numerical simulation using a Hill function instead of a Heaviside function
in Appendix D. Figure8 illustrates that a continuous replacement function would
produce a persistent population of minor guards under non-crisis conditions. This is
not what is observed in real colonies, where minors do not perform guarding tasks
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except for crisis situations (Baudier et al. 2019). A thorough comparison of a discrete
and continuous version of this model would constitute informative future work in
order to determine the impact of the degree of response nonlinearity on the colony’s
demographics and task allocation.

5.4 Future work and broader impact

This work provided a theoretical exploration regarding how morphological special-
ization, age-based polyethism and behavioral plasticity interact at different timescales
to regulate group defense and colony growth. To model each of these processes, we
havemade simplifying assumptions that could be relaxed to producemore biologically
realistic models. For instance, we have assumed that there are two distinct morpho-
logical types (majors and minors) based on the bimodal distribution of body sizes in
stingless bees (Grüter et al. 2012), but this distribution could be explicitly incorporated
into a future model to include a range of body sizes. We have also modeled age-based
polyethism only formajors, when in realityminors also switch from in-nest to foraging
tasks as they mature. If guard replacement is limited to mature minors, which would
be consistent with the transition to outside tasks with age (Hammel et al. 2016), then
modeling minor aging could elucidate additional interactions between development
and behavioral plasticity. Furthermore, as discussed in the previous section, we have
not included individual variation in response thresholds for different tasks (Beshers
and Fewell 2001) besides the fact that majors always become guards and minors only
do so in crisis.

Another set of limitations arises from the availability of data to calibrate the param-
eter values in the model. In particular, the values of b (the number of brood-caring
workers required for half of the eggs laid by the queen to eclose as adults) and θ

(the proportion of guards under which minors engage in replacement) were unavail-
able from the literature (see Table2). We indirectly computed the former from reports
about the number of workers in newly founded colonies (Van Veen and Sommeijer
2000), but no formal estimation was performed. For the latter, we varied θ across its
range and analyzed each resulting scenario, but further research into the detection of
guard loss by minors would provide a valuable reference for modeling the plasticity
of their behavior.

Lastly, we have focused exclusively on task allocation and colony size, but a richer
analysis of the balance between reproduction and defense could be obtained by con-
ducting a study of the risks that the colony engages in for being unprotected. This
includes quantifying the cost of reducing the guard population in terms of potential
attacks or robbing, which are common for stingless bees (Baudier et al. 2019; Segers
et al. 2016). Moreover, the indirect contribution of guards to reproduction could be
modeled by making the mortality of non-guards inversely proportional to the guard
population, as in the aphid soldier-production model by Aoki and Kurosu (2003).

We have presented a mathematical framework for understanding the demographic
factors constraining collective defense regulation at different timescales and special-
ization degrees in social insect colonies. The scenarios shown here shed light on the
regulation of specialization and crisis response in colonies, but these results can also
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be adapted to understand variation at different timescales in the defensive dynamics of
other biological systems that are harder to observe. For example, immune systems are
also collective distributed systems that must deploy fast responses to crisis situations,
and for which some parallels with social-insect colonies have already been drawn
(Moses et al. 2019).

Furthermore, efficient resource allocation and effective defense against threats are
problems relevant to human societies as well as social-insect colonies. Understanding
how social systems with such ecological success address these challenges has the
potential to inspire solutions in the human domain. For example, studying the role of
heterogeneity of workers within coloniesmay shed light on the importance of diversity
in teams for group problem solving in humans. On the other hand, the dynamics of
defensive allocation in stingless bees have already inspired algorithms for robots with
guarding tasks (Strickland et al. 2019). In line with this, our work helps to establish
social insects as model organisms to understand other systems where the transaction
costs for component turnover are nontrivial, as in manufacturing systems and just-in-
time supply chains, and thus guide the design of solutions in the human domain.
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Appendix A Summary of system dynamics

Table 3 summarizes the dynamics of Full System (6).
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Appendix BMathematical Proofs

B.1 Proof of Theorem 3.1 (Basic dynamical properties)

Theorem (Basic dynamical properties) There exists a unique forward solution for Sys-
tem (6) starting form each initial condition in domain R4

+. Moreover, R4
+ is positively

invariant with respect to System (6) and System (6) is bounded in R4
+.

Proof First, we show the existence and uniqueness of forward solutions for System
(6) in R4

+, following Filippov (1988) (Theorem 2, section 10).
Consider the vector field F : R4

+ → R4
+ defined by Eq. (9):

F(Z) =
{
FSc (Z), Z ∈ Sc,
FSb (Z), Z ∈ Sb,

(B1)

where Sc =
{
Z ∈ R+

4 | H(Z) < 0
}
, Sb =

{
Z ∈ R4

+ | H(Z) > 0
}
for

H(Z) = (G + g) − θ(W + G + w + g).

F is piecewise continuous with continuous derivatives with respect toW ,G, w and g
in Sc and Sb up to the boundary, which is defined by smooth surface

' =
{
Z ∈ R4

+ | H(Z) = 0
}

∈ C∞.

Moreover,

FSc − FSb = {0, 0,−δw, δw}

is continuously differentiable on '.
Now we show that, for any point Z ∈ ', either FSb (Z) points in the direction of

Sc or FSc(Z) points in the direction of Sb. For Z ∈ ', define FN
c (Z) and FN

b (Z) as
the projections of FSc(Z) and FSb (Z) onto the normal to ' in the direction of region
Sb, namely

Hz := {−θ, 1 − θ,−θ, 1 − θ}.

We must show that, for each Z ∈ ', either FN
c (Z) > 0 or FN

b (Z) < 0. Note that

FN
c − FN

b = ⟨Hz, Fc⟩ − ⟨Hz, Fb⟩ = δw ≥ 0

so FN
c ≥ FN

b , and thus we never have FN
c ≤ 0 ≤ FN

b unless FN
c = FN

b = 0,
which is only true for the origin. However, there exists a unique solution starting from
the origin: the equilibrium solution. Therefore, by Theorem 2, section 10, of Filippov
(1988), there exists a unique forward solution for System (6) starting form each initial
condition in domain R4

+.
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Nowwe show that trajectories with initial conditions inR4
+ do not become negative

or unbounded. Suppose (W ,G, w, g) ∈ R4
+ is the initial condition for a trajectory.

Without loss of generality, assume that W reaches 0 while w,G, g > 0. Then

dW
dt

∣∣∣
W=0

= !
w2

b2 + w2 ρ ≥ 0

so the trajectory cannot escape to a region whereW < 0. The same holds forG = 0
while W , w, g > 0, since

dG
dt

∣∣∣
G=0

= 1
τ
W ≥ 0

and for w = 0 while W ,G, g > 0, because

dw
dt

∣∣∣
w=0

= !
W 2

b2 +W 2 (1 − ρ) ≥ 0.

Lastly, for g = 0 and W , w,G > 0,

dg
dt

∣∣∣
g=0

=
[
G
P

≤ θ

]
δw =

{
0 , G

P > θ,

δw , G
P ≤ θ

≥ 0

so g cannot become negative.
We can follow a similar procedure for two variables reaching 0 at the time. If W =

G = 0 and w, g > 0, then
dW
dt

≥ 0 and
dG
dt

= 0, so W and G remain nonnegative.

Other combinations can be checked in an analogous manner, as well as cases where
three variables reach 0 at the same time. In the case that W = G = w = g = 0, then
dW
dt

= dG
dt

= dw
dt

= dg
dt

= 0, so no trajectories can escape R4
+ through the origin.

It follows that R4
+ is positively invariant with respect to System (6).

To show boundedness, we first prove that W is bounded:

dW
dt

= !
(W + w)2

b2 + (W + w)2
ρ − 1

τ
W ≤ !ρ − 1

τ
W .

This yields

lim sup
t→∞

W ≤ !ρτ.

Now let V = W + G + w + g and µ = min{µG, µw,µg}. Then we have

dV
dt

= !
(W + w)2

b2 + (W + w)2
− (µGG + µww + µgg)

≤ ! − µV + µW ≤ ! + µ!ρτ − µV ,
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which gives lim supt→∞ V ≤ !/µ+ !ρτ. ⊓⊔

B.2 Proof of Theorem 3.2 (extinction equilibrium)

Theorem Model (6) always has the extinction equilibrium

Ee := (W ∗,G∗, w∗, g∗) = (0, 0, 0, 0),

which is locally stable. If µu = min{1/τ, µw} and ! < 2µub, then Ee is globally
stable.

Proof When the population is zero, W = w = G = g = 0 and

dW
dt

= dw
dt

= dG
dt

= dg
dt

= 0.

This means that the system has an extinction equilibrium

Ee := (W ∗,G∗, w∗, g∗) = (0, 0, 0, 0).

We can analyze the stability of this point by studying the linearized system near
the origin. It is necessary to evaluate two cases of the Jacobian matrix, one for each
case of [G+g

P ≤ θ ]. The Jacobian matrix of the system can be reduced to

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2b2W ∗

τ
− 1

τ
0

2b2W ∗

τ
0

1
τ

−µG 0 0

2b2(1 − ρ)W ∗

ρτ
0

2b2(1 − ρ)W ∗

ρτ
− µw 0

0 0 0 −µg

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

when G+g
P ≤ θ , and

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2b2W ∗

τ
− 1

τ
0

2b2W ∗

τ
0

1
τ

−µG 0 0

2b2(1 − ρ)W ∗

ρτ
0

2b2(1 − ρ)W ∗

ρτ
− µw − δ 0

0 0 δ −µg

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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when G+g
P > θ . Evaluating at Ee, we get

⎛

⎜⎜⎜⎜⎜⎝

−1
τ

0 0 0
1
τ

−µG 0 0

0 0 −µw 0
0 0 0 −µg

⎞

⎟⎟⎟⎟⎟⎠
and

⎛

⎜⎜⎜⎜⎜⎝

−1
τ

0 0 0
1
τ

−µG 0 0

0 0 −µw − δ 0
0 0 δ −µg

⎞

⎟⎟⎟⎟⎟⎠

respectively. The eigenvalues of these matrices are

{
−1

τ
,−µg,−µG ,−µw

}
and

{
−1

τ
,−µg,−µG ,−µw − δ

}

which are all negative values. This means that the zero equilibrium is locally stable,
regardless of the value of G+g

P in its vicinity.
Now assume that ! < 2µub for µu = min{1/τ, µw}. We will show that Ee is

globally asymptotically stable.
Let

u = W + w.

Then

du
dt

= !
(W + w)2

b2 + (W + w)2
− W/τ − µww

< !
u2

b2 + u2
− µuu = u

!u − µu(b2 + u2)
b2 + u2

= µuu
φ

b2 + u2

for

φ = −
(
u − !

2µu

)2

+

(
!

µu

)2

− 4b2

4
.

Because !/µu < 2b, φ is negative. Therefore, both W and w collapse to zero if
!/µu < 2b. In this case,

dG
dt

= −µGG and
dg
dt

= −µgg.

Therefore, G and g also collapse to extinction. This completes the proof. ⊓⊔
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B.3 Proof of Theorem 3.3 (existence and stability of the crisis interior equilibria)

Theorem Define condition

Cc :
!

2b

(
ρτ + (1 − ρ)

1
µw + δ

)
≥ 1.

Then the Crisis System defined by FSc (7) has two interior equilibria, Ec
+ and Ec

−, if
and only if Cc holds. Both have the form

(W ∗,G∗, w∗, g∗) = (W ∗,
1

τµG
W ∗,

1 − ρ

ρτ (µw + δ)
W ∗,

δ

µg

1 − ρ

ρτ (µw + δ)
W ∗)

where

W ∗ = 1
2

⎛

⎜⎜⎜⎝
!ρτ ±

√√√√√√√(!ρτ )2 −

⎛

⎜⎜⎝
2b(µw + δ)τ

1 − ρ

ρ
+ (µw + δ)τ

⎞

⎟⎟⎠

2
⎞

⎟⎟⎟⎠
(B2)

Moreover,

1. The interior equilibrium Ec
+ is Locally Asymptotically Stable, and Ec

− is unstable.
2. Both Ec

+ and Ec
− are regular equilibria of the Full System (6) if and only if

γc < θ

for γc defined in Eq. (11).

Proof From relations (10), each equilibrium of System (7) takes the form:

(W ∗,G∗, w∗, g∗) = (W ∗,
1

τµG
W ∗,

1 − ρ

ρτ (µw + δ)
W ∗,

δ

µg

1 − ρ

ρτ (µw + δ)
W ∗).

Furthermore, the value of W ∗ in an interior equilibrium of the System (7) must be
a root of Eq. (12), which can be rearranged as:

f (W ∗) = W ∗2 − !τρW ∗ + (
b(µw + δ)τ

1 − ρ

ρ
+ (µw + δ)τ

)2.

with all parameters being positive and finite, and that root must be positive by Theo-
rem 3.1. It follows that there are at most two interior equilibria, Ec

+ and Ec
−, and those

equilibria are such that:
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W ∗ = 1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

!ρτ ±
√√√√√√√

(!ρτ )2 − (
2b(µw + δ)τ

1 − ρ

ρ
+ (µw + δ)τ

)2

︸ ︷︷ ︸
∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

Thus condition Cc of this theorem, equivalent to the discriminant (∗ above) being
positive, holds if and only if the two positive, real roots described by (B4) exist.

1. We study the local stability of the equilibrium points using the Jacobian matrix J
of the linearized system in their vicinity. From System (7), we get

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2b2!ρ(w +W )
(
b2 + (w +W )2

)2 − 1
τ

0
2b2!ρ(w +W )

(
b2 + (w +W∗)2

)2 0

1
τ

−µG 0 0

−2b2!(ρ − 1)(w∗ +W∗)
(
b2 + (w∗ +W∗)2

)2 0 −2b2!(ρ − 1)(w +W )
(
b2 + (w +W )2

)2 − µw − δ 0

0 0 δ −µg

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From the characteristic polynomial, and using Eqs. (7) to obtain an equation in
terms of W , it follows that the eigenvalues of J satisfy the equation

(µg + λ)(µG + λ)
(
λ2 + λB + C

)

where

B := 1
τ
+ µw + δ − h,

= W

(W + w)
(
b2 + (W + w)2

)
τρ

(
ρ
w

W

(
b2 + (W + w)2

)

+ (1 − ρ)
W
w

(
b2 + (W + w)2

)
+ (W + w + b)(W + w − b)

)
,

C := 1
τ
(µw + δ) − ρh(µw + δ) − 1

τ
(1 − ρ)h,

=
(µw+δ)

τ W

b2 + (W + w)2
f ′(W ),

where h := (2b2!(W + w))/(b2 + (W + w)2)2. This yields the two negative
eigenvalues −µg and −µG , and two additional ones, λ+ and λ−, that satisfy a
quadratic equation. Define the sum and product of λ+ and λ− as

+ := λ+λ− = C
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' := λ+ + λ− = −B.

With this terminology, we analyze the sign of λ+ and λ− for each of the interior
equilibria Ec

+ and Ec
−.

From the existence condition of equilibrium we have that

W + w − b = 1
2

(
1+ 1 − ρ

τρ(µw + δ)

)
√√√√√√√(!ρτ )2 −

⎛

⎜⎜⎝
2b(µw + δ)τ

1 − ρ

ρ
+ (µw + δ)τ

⎞

⎟⎟⎠

2

+ 1
2

(
1+ 1 − ρ

τρ(µw + δ)

)
τρ! − b > 0.

Thus, we have B > 0. Because g′(W ) < 0 at equilibrium Ec
− and g′(W ) > 0

at equilibrium Ec
+, then we have C |Ec

− < 0 and C |Ec
+ > 0. According to the

Routh–Hurwitz condition, we can get that Ec
− is always unstable and Ec

+ is locally
asymptotically stable.

2. By Definition 3.1, Z∗ is a regular equilibrium of System (6) iff FSc (Z
∗) = 0,

H(Z∗) < 0 or FSb (Z
∗) = 0, H(Z∗) > 0, with FSc and FSb defined in Eqs. (7)

and (8), and H(Z) = (G + g) − θ P . By construction,

FSc(E
c
+) = FSc(E

c
−) = 0.

Moreover, note that both Ec
− and Ec

+ have the same guard ratio (G∗ + g∗)/P∗,
defined as γc in Eq. (11). It follows that

H(Ec
−) < 0 ⇐⇒ H(Ec

+) < 0 ⇐⇒ γc < 0.

Thus, both Ec
− and Ec

+ are regular equilibria of System (6) iff γc < θ .

⊓⊔

B.4 Proof of Theorem 3.4 (existence and stability of the non-crisis interior
equilibria)

Theorem Define condition

Cb : !

2b

(
ρτ + (1 − ρ)

1
µw

)
≥ 1. (B3)

Then the Non-Crisis System defined by FSb (8) has two interior equilibria Eb
+ =

Ec
+|δ=0 and Eb

− = Ec
−|δ=0 if and only if Cb holds.

Moreover,

1. The interior equilibrium Eb
+ is LocallyAsymptotically Stable,while Eb

− is unstable.
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2. Both Eb
+ and Eb

− are regular equilibria of the Full System (6) if and only if

γb > θ

for γb defined in Eq. (15).

Proof The Non-Crisis System FSb (8) is identical to the Crisis System FSc (7) when
δ = 0. Thus, following the same analysis as the previous proof in Sect.B.3 in the
special case δ = 0, we get that FSb (8) has two positive, real equilibria Eb

+ and Eb
−,

of the form

(W ∗,G∗, w∗, g∗) = (W ∗,
1

τµG
W ∗,

1 − ρ

ρτµw
W ∗, 0)

with

W ∗ = 1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

!ρτ ±

√√√√√√√√√√

(!ρτ )2 −

⎛

⎜⎜⎝
2bµwτ

1 − ρ

ρ
+ µwτ

⎞

⎟⎟⎠

2

︸ ︷︷ ︸
∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

if and only if the discriminant (∗ above) is guaranteed to be positive or, equivalently,
condition Cb of this theorem holds.

1. We study the local stability of the equilibrium points using the Jacobian matrix J
of the linearized system in their vicinity. From System (8), we get

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2b2!ρ(w +W )
(
b2 + (w +W )2

)2 − 1
τ

0
2b2!ρ(w +W )

(
b2 + (w +W∗)2

)2 0

1
τ

−µG 0 0

−2b2!(ρ − 1)(w∗ +W∗)
(
b2 + (w∗ +W∗)2

)2 0 −2b2!(ρ − 1)(w +W )
(
b2 + (w +W )2

)2 − µw 0

0 0 0 −µg

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From the characteristic polynomial, it follows that the eigenvalues of J are roots
of

(µg + λ)(µG + λ)
(
λ2 + λB + C

)
= 0

where

B := 1
τ
+ µw − h,
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= W

(W + w)
(
b2 + (W + w)2

)
τρ

(
ρ
w

W

(
b2 + (W + w)2

)

+ (1 − ρ)
W
w

(
b2 + (W + w)2

)
+ (W + w + b)(W + w − b)

)
,

C := µw

τ
− µwρh − 1

τ
(1 − ρ)h,

=
µw
τ W

b2 + (W + w)2
f ′(W ),

and h := (2b2!(W+w))/(b2+(W+w)2)2. Consequently, there are two negative
eigenvalues −µg and −µG , and two additional ones, λ+ and λ−, that satisfy a
quadratic equation. Define the sum and product of λ+ and λ− as

+ := λ+λ− = C

' := λ+ + λ− = −B.

With this terminology, we analyze the sign of λ+ and λ− for each of the interior
equilibria Eb

+ and Eb
−.

From the existence condition Cb, we have that

W + w − b = 1
2

(
1+ 1 − ρ

τρµw

)
√√√√√√√(!ρτ )2 −

⎛

⎜⎜⎝
2bµwτ

1 − ρ

ρ
+ µwτ

⎞

⎟⎟⎠

2

+1
2

(
1+ 1 − ρ

τρµw

)
τρ! − b > 0.

Thus, we have B > 0. Because f ′(W ) < 0 at equilibrium Eb
− and f ′(W ) >

0 at equilibrium Eb
+, then we have C |Eb

−
< 0 and C |Eb

+
> 0. According to

Routh–Hurwitz condition, we get that Eb
− is always unstable and Eb

+ is locally
asymptotically stable. This completes this proof.

2. By Definition 3.1, Z∗ is a regular equilibrium of System (6) iff FSc (Z
∗) = 0,

H(Z∗) < 0 or FSb (Z
∗) = 0, H(Z∗) > 0, with FSc and FSb defined in Eqs. (7)

and (8), and H(Z) = (G + g) − θ P . By construction,

FSb (E
b
+) = FSb(E

b
−) = 0.

Moreover, note that both Eb
− and Eb

+ have the same guard ratio
G∗ + g∗

P∗ , defined

as γb in Eq. (15). It follows that

H(Eb
−) < 0 ⇐⇒ H(Eb

+) < 0 ⇐⇒ γb < 0.

Thus, both Eb
− and Eb

+ are regular equilibria of System (6) iff γb > θ . ⊓⊔
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B.5 Proof of Theorem 3.5 (characterization of the equilibrium guard ratios)

Theorem Consider the ratios

γb = ρµw

µG(1 − ρ)+ ρµw(1+ µGτ )

defined in Eq. (15) and

γc =
ρ (µw + δ)+ µG(1 − ρ) δ

µg

µG(1 − ρ)
(

δ
µg

+ 1
)
+ ρ (µw + δ) (1+ τµG)

.

defined in Eq. (11). Then the following are true:

1. The ratio γb is monotonically increasing with respect to ρ.
2. The ratio γc is monotonically decreasing with respect to ρ if µg ≤ δτµG while it

is monotonically increasing otherwise.
3. Moreover, we always have

γb ≤ γc,

which implies that two positive, stable, regular equilibria cannot coexist in the
Full System (6).

Proof 1. Consider the derivative of γb with respect to ρ:

∂γb

∂ρ
= µGµw

(µG(1 − ρ)+ ρµw(1+ µGτ ))2
> 0

Thus, γb is a monotonically increasing function of ρ.
2. Similarly, consider the derivative of γc with respect to ρ:

∂γc

∂ρ
= µgµG (δ + µw)

(
µg − δτµG

)

(
µG(1 − ρ)

(
δ
µg

+ 1
)
+ ρ (µw + δ) (1+ τµG)

)2

It follows that

⎧
⎪⎨

⎪⎩

∂γc

∂ρ
≤ 0 , µg ≤ δτµG

∂γc

∂ρ
> 0 , otherwise

.

3. Moreover,

ρµw

µG(1 − ρ)+ ρµw(1+ µGτ )
≤ ρ(µw + δ)+ µG(1 − ρ)δ/µg

µG(1 − ρ)(1+ δ/µg)+ ρ(µw + δ)(1+ τµG)
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⇐⇒ ρµwµG(1 − ρ)(1+ δ/µg)+ µwρ2(µw + δ)(1+ µGτ )

≤ (ρ(µw + δ)+ µG(1 − ρ)δ/µg)(µG(1 − ρ)+ ρµw(1+ µGτ ))

After some manipulation, the last inequality can be reduced to

−ρµwµGτδ/µg − ρδ − µG(1 − ρ)δ/µg ≤ 0

which is always true. Thus, γb ≤ γc. By the conditions on θ from Theorems 3.3–
3.4, two regular stable equilibria Ec

+ and Eb
+ can coexist only if γc < θ < γb,

which we just proved impossible. It follows that the Full System (6) can have at
most one positive, stable, regular equilibrium.
This completes the proof. ⊓⊔

B.6 Proof of Theorem 3.6 (existence of pseudoequilibria)

Theorem Define condition

Cp : !

2b
(1 − θ)(µgρ + µG(1 − ρ)+ µGµwτρ)

µG(θµg + µw(1 − θ))
≥ 1.

Then System (6) has two pseudoequilibria E p
+ and E p

− on the switching surface ' if
and only if Cp holds and γb ≤ θ < γc. The pseudoequilibria have the form

(W ∗,G∗, g∗, w∗) =
(
W ∗,

1
τµG

W ∗,
(1 − θ)(µG(1 − ρ) − µgρ)+ θµGµgρτ )

µGρτ (θµg + µw(1 − θ))
W ∗,

−µwρ + θ(µG(1 − ρ)+ µwρ(1+ µGτ ))

µGρτ (θµg + µw(1 − θ))
W ∗

)

with

W ∗|E p
±
= 1

2
ρτ

⎛

⎝! ±
√

!2 −
(

2bµG(θµg + (1 − θ)µw)

(1 − θ)(µG(1 − ρ)+ µgρ + µGµwρτ )

)2
⎞

⎠

Proof From relations (21), any pseudoequilibrium of System (6) must take the form:

(W ∗,G∗, g∗, w∗) = (W ∗,
1

τµG
W ∗,

1 − ρ

ρτ (µw + δ(1 − λ∗))
W ∗,

δ(1 − λ∗)(1 − ρ)

µgρτ (µw + δ(1 − λ∗))
W ∗)

Recall the value of λ∗ in Eq. (23)

λ∗ = µGµgθ(δτρ + 1 − ρ + µwρτ ) − (1 − θ)(δ(µG(1 − ρ)+ µgρ)+ µgµwρ)

δ(µGµgρτθ − (1 − θ)(µG(1 − ρ)+ µgρ))

(B5)

123



87 Page 50 of 56 M. G. Navas-Zuloaga et al.

First, note that λ∗ ∈ [0, 1] ⇐⇒ γb ≤ θ ≤ γc. In fact, the equation for λ∗ can be
rearranged as a function of θ as

λ∗(θ) = −A + θB
δ (C + θD)

(B6)

with

A = δ(µG(1 − ρ)+ µgρ)+ µgµwρ

B = δ(µG(1 − ρ)+ µgρ(1+ µGτ ))+ µg(µG(1 − ρ)+ µwρ(1+ µGτ ))

C = −µG(1 − ρ)+ µgρ

D = µG(1 − ρ)+ µgρ(1+ µGτ ).

This is a monotonically decreasing hyperbola, as the derivative

∂λ∗

∂θ
= −µgµG(1 − ρ)

(
µG(1 − ρ)+ µgρ + µGµwρτ

)

δ2
(
−(1 − θ)µgρ + µG(−(1 − ρ)+ θ(1 − ρ + µgρτ ))

)2

is negative for all θ except at the vertical asymptote,where it is undefined. Furthermore,
the hyperbola has a horizontal asymptote at

1+ µg (µG(1 − ρ)+ µwρ(1+ µGτ ))

δ
(
µG(1 − ρ)+ µgρ(1+ µGτ )

) > 1.

Moreover, θ = γb +⇒ λ∗ = 1 and θ = γc +⇒ λ∗ = 0. Thus,

λ∗ ∈ [0, 1] ⇐⇒ γb ≤ θ ≤ γc

By substituting the value of λ∗ from Eq. (23), we get the form

(W ∗,G∗, g∗, w∗) =
(
W ∗,

1
τµG

W ∗,
(1 − θ)(µG(1 − ρ) − µgρ)+ θµGµgρτ )

µGρτ (θµg + µw(1 − θ))
W ∗,

−µwρ + θ(µG(1 − ρ)+ µwρ(1+ µGτ ))

µGρτ (θµg + µw(1 − θ))
W ∗

)

Furthermore, the value of W ∗ must be a root of

f (W ∗) = W ∗2 − !τρW ∗ + (
b(µw + δ(1 − λ∗))τ

1 − ρ

ρ
+ (µw + δ(1 − λ∗))τ

)2
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with all parameters being positive and finite, and that root must be positive by
Theorem 3.1. This yields the existence condition

Cp : !

2b
(ρτ + (1 − ρ)

1
µw + δ(1 − λ∗)

) ≥ 1

Substituting λ∗ again from (23), it follows that there are at most two pseudoequi-
libria, E p

+ and E p
−, such that

W ∗|E p
±
= 1

2
ρτ

⎛

⎝! ±
√

!2 −
(

2bµG(θµg + (1 − θ)µw)

(1 − θ)(µG(1 − ρ)+ µgρ + µGµwρτ )

)2
⎞

⎠

Now assume that γb ≤ θ < γc. We will show that E p
+ and E p

− lay on the sliding
set 's ⊆ '. That is, we will demonstrate σ (E p

±) ≤ 0, for the function σ defined in
(18). In fact,

σ (E p
±) = φ

⎛

⎝! ±
√

!2 −
(

2bµG(θ(µg − µw)+ µw)

(1 − θ)(µG + µgρ + µGρ(−1+ µwτ )

)2
⎞

⎠
2

4µ2
G(θ(µg − µw)+ µw)2

with

φ := θ2
(
δρµg (µG + ρµG (τµw − 1)+ ρµw)

+ δρµG
(
τµg − 1

)
(µG + ρµG (τµw − 1)+ ρµw)

+ µg (µG + ρµG (τµw − 1)+ ρµw)
2 + δµG (µG + ρµG (τµw − 1)+ ρµw)

)

+ θ
(
−δρ2µGµw

(
τµg − 1

)
− δρµg

(
µG + ρµG (τµw − 1)+ ρµw

)

− 2ρµgµw (µG + ρµG (τµw − 1)+ ρµw) − δρ2µgµw

+ δρµG (µG + ρµG (τµw − 1)+ ρµw)

− δµG (µG + ρµG (τµw − 1)+ ρµw) − δρµGµw

)

+ δρ2µgµw + ρ2µgµ
2
w − δρ2µGµw + δρµGµw

It follows that σ (E p
±) ≤ 0 ⇐⇒ φ ≤ 0. Therefore, we examine the sign of φ. As

a function of θ , φ(θ) is a parabola with two positive roots γb and γc. Moreover,

φ(0) = δρ2µgµw + ρ2µgµ
2
w + δρµGµw(1 − ρ) ≥ 0

so the parabola has a positive intercept and two positive roots. Then it must be negative
between its roots, that is, φ(θ) ≤ 0 for γb ≤ θ ≤ γc. Therefore, E

p
− and E p

+ belong
to the sliding set 's .

We have shown that E p
− and E p

+ are indeed pseudoequilibria when γb ≤ θ ≤ γc
and condition Cp holds. We can also see that, should any of these conditions fail to
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hold, there are no pseudoequilibria. In fact, if θ < γb or θ > γc, then λ∗ /∈ [0, 1] and
E p

− and E p
+ do not lay on the sliding segment 's , and if Cp is false then E p

− and E p
+

are not real values. This completes the proof. ⊓⊔

Appendix C Parameter values for T. angustula stingless bees

General assumptions for stingless bee colonies:

• δ ≫ 1/τ : replacement by minors is a fast response mechanism and occurs at a
faster rate than the natural maturation of majors into guards

• τ < 1/µw: maturation of majors is shorter than the average lifespan of minors
• µg > µG : minors are worst at defense, so they die sooner thank major guards
• ρ ≪ 1: majors are the minority of the colony

Specific values found in literature, summarized in Table2:

• The average guarding duration was estimated to be 5.4± 1.5 days (Hammel et al.
2016; Grüter et al. 2011)

• The average age of guarding workers was 26.3± 3.3 days, and bees started guard-
ing at 20 days of age (Hammel et al. 2016)

• Replacement guards are observed 5h after removing guards (Baudier et al. 2019).
That is, replacement occurs within 5h (δ is at least 4/day)

• The final age (last day a bee was seen in the hive) between the two size classes
(majors: 27.85± 5.6 days; minors: 27.0± 8.4 days) does not differ (Hammel et al.
2016). In another study, the average lifespan of bees was estimated to be 21 days
(Grüter et al. 2011)

• In a swarming colony estimated to have around 10,000 adults, the recently founded
offspring colonies had between 500 and 1000 workers (Van Veen and Sommeijer
2000)

• The egg-laying rate by the queen was on average 6.41 eggs per hour in an obser-
vation period of 18h per day (Koedam et al. 1997)

Appendix D Example comparison to continuousmodel

Although the analysis of alternative continuous functions for the replacement of guards
by minors was not performed in this work, we have included preliminary simulations
comparing the use of the step function in Eq. (5) with a Hill function as suggested by
the Fixed Threshold Model (Bonabeau et al. 1996) and derivatives thereof. Namely,
instead of

[
G + g
P

≤ θ

]
(D1)
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Fig. 8 Simulations comparing the use of a discrete (step) function and a continuous (Hill) function for
response of minors to guard loss

we use

1 −
(
G + g
P

)2

(
G + g
P

)2 + θ2
(D2)

for the behavior of minors. In Fig. 8 reproduce the ”Non-crisis” simulation in Fig. 4
comparing the two models: The steady state in the continuous model presents a per-
sistent population of minor guards for realistic parameters, whereas experimental
observations of T. angustula stingless bees report no minors in guarding tasks unless
major guards are removed (Baudier et al. 2019).
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