
Bulletin of Mathematical Biology (2024) 86:50
https://doi.org/10.1007/s11538-024-01280-6

ORIG INAL ART ICLE

Dynamics of Information Flow and Task Allocation of Social
Insect Colonies: Impacts of Spatial Interactions and Task
Switching

Jun Chen1 · Xiaohui Guo2 · Daniel Charbonneau3 · Asma Azizi4 ·
Jennifer Fewell2 · Yun Kang5

Received: 21 December 2022 / Accepted: 3 March 2024 / Published online: 6 April 2024
© The Author(s), under exclusive licence to Society for Mathematical Biology 2024

Abstract
Models of social interaction dynamics have been powerful tools for understanding
the efficiency of information spread and the robustness of task allocation in social
insect colonies. How workers spatially distribute within the colony, or spatial hetero-
geneity degree (SHD), plays a vital role in contact dynamics, influencing information
spread and task allocation. We used agent-based models to explore factors affecting
spatial heterogeneity and information flow, including the number of task groups, vari-
ation in spatial arrangements, and levels of task switching, to study: (1) the impact
of multiple task groups on SHD, contact dynamics, and information spread, and (2)
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the impact of task switching on SHD and contact dynamics. Both models show a
strong linear relationship between the dynamics of SHD and contact dynamics, which
exists for different initial conditions. The multiple-task-group model without task
switching reveals the impacts of the number and spatial arrangements of task loca-
tions on information transmission. The task-switching model allows task-switching
with a probability through contact between individuals. The model indicates that the
task-switching mechanism enables a dynamical state of task-related spatial fidelity at
the individual level. This spatial fidelity can assist the colony in redistributing their
workforce, with consequent effects on the dynamics of spatial heterogeneity degree.
The spatial fidelity of a task group is the proportion of workers who perform that task
and have preferential walking styles toward their task location. Our analysis shows that
the task switching rate between two tasks is an exponentially decreasing function of
the spatial fidelity and contact rate. Higher spatial fidelity leads to more agents aggre-
gating to task location, reducing contact between groups, thus making task switching
more difficult. Our results provide important insights into the mechanisms that gener-
ate spatial heterogeneity and deepen our understanding of how spatial heterogeneity
impacts task allocation, social interaction, and information spread.

Keywords Social insects · Task switching · Spatial fidelity · Social network

1 Introduction

Eusocial insects live in highly cooperative and cohesive societies with complex orga-
nizational structures (Class 2000). These societies are organized around the work of
raising new individuals for colony growth and reproduction and maintaining condi-
tions for colony function. These goals involve a series of differentiable tasks. Their
systems of task allocation and division of labor allow the diverse members of these
societies to perform multiple different tasks in parallel. At the same time, the colony
as a whole regulates the allocation of effort to different tasks as needs and oppor-
tunities change. In fact, task allocation is a problem across most complex systems,
such as multicellular organisms (Navlakha and Bar-Joseph 2014; Yanni et al. 2020),
collective robotics (Gerkey and Matarić 2004). The distributed information systems
provided by their social networks allow colonies to regulate work homeostatically and
dynamically around current needs (Robinson et al. 2009; Charbonneau et al. 2017;
Leitner and Dornhaus 2019; Beshers and Fewell 2001; Gordon 1996).

Many, although not all, tasks take place in specific locations in the nest of social
insects, and workers performing the same task tend to aggregate around those loca-
tions, which are described as spatial fidelity zones (SFZ) (Mersch et al. 2013). Spatial
fidelity adds an important spatial component to task regulation that likely influences
task communication networks. The locations inwhichworkers perform tasks, or spatial
fidelity zones (SFZ), can reinforce communication among individuals within the cor-
responding task group and, in so doing, potentially enhance communication efficiency
for elongating their fidelities toward that task location (Sendova-Franks and Franks
1994, 1995). Conversely, communication between task groups across SFZs may be
less frequent, potentially limiting coordinating tasks across the colony. Cross-colony
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communication is necessary for the function of these distributed systems. Thus, we
would expect more flexibility in task choice, spatial preferences, and communication
strategies than would be provided with strictly delineated task zones. Flexible spatial
strategies can providemultiple functionalities beyond task regulation, including facili-
tating information transmission or inhibiting the spread of pathogens (Sendova-Franks
et al. 2010; Feigenbaum and Naug 2010; Naug 2008; Quevillon et al. 2015; Regnier
and Wilson 1968; Wilson and Regnier 1971). These make it critical to understand the
inter-dependency between social communication among individuals in the same or
different task groups and the formulation or decomposition of task groups.

As decentralized distributed systems, social insect colonies rely heavily on the
capability of individual workers to acquire information from the environment inde-
pendently and on the ability to receive or send information via local inter-individual
communications (Feinerman and Korman 2017). The specific information and
resources acquired by workers can, in turn, influence individual spatial preferences
and, in doing so, assist the whole colony to re-establish the spatial distribution of work-
ers to cope with various challenges (Theraulaz et al. 2003). This interplay between
information acquisition andworker spatial movement patterns has beenwidely studied
in various ant species, for example, nest-site choice and famine relief of T. albipennis
(Pratt et al. 2002a; Sendova-Franks et al. 2010), alarm propagation of P. californicus
(Guo et al. 2022), social immunity of L. niger (Stroeymeyt et al. 2018) and nutritional
balance of C. sanctus (Baltiansky et al. 2021). Although an ideal model for studying
this interplay, the processes and mechanisms by which task-related information and
social contact mediate workforce re-allocation within colonies are still understudied.

One way to study the dynamics of task regulation within a colony is to examine
how internal factors, such as genotype (Oldroyd and Fewell 2007), physiological
states (Robinson 1987), and environmental stimulus (Page andMitchell 1998), induce
workers to switch their tasks from one to another. Alternatively, it is worth considering
the task allocation as a product of task recruitment via social interactions (Pacala et al.
1996). The task-related cuticular hydrocarbons of red harvester ant (Pogonomyrmex
barbatus) have been found to assist workers’ decision on task performances (Gordon
1989), and their encounter rate informs the possibility of task switching (Gordon and
Mehdiabadi 1999).Models incorporating components of tasks, social interactions, and
spatial behavior of individual workers are needed to better understand the dynamic
task allocation in social insect colonies.

Previous models incorporating subsets of these components have revealed several
potential mechanisms of how individuals acquire local information by spatial coin-
cidence (Richardson and Gorochowski 2015), how task allocation is mediated by
individual movement (Johnson 2009), and how the encounter rate of individuals con-
tributes to collective patterns of task allocation (Pacala et al. 1996; Chen et al. 2020).
However, these models do not provide an integrative view of task re-allocation as indi-
vidual spatial behavior associated with task-related interactions changes dynamically.
For example, the algorithm proposed by Johnson (2009) relying on a self-organizing
model of task-quitting, patrolling, task-searching, and task-working, serves the ran-
dom location of individuals throughout the colony without considering task demand.
This model showed the dynamics of workers switching between tasks and locations.
Pacala et al. (1996) demonstrated that responses to demand a task could arise from the
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interactions among individuals, environmental stimuli, and local densities. Therefore,
a model that simultaneously integrates task fidelity, the spatial distribution of indi-
viduals, and task-related interactions would facilitate our understanding of relations
among those three components in social insect colonies and further our understanding
of mechanisms of adaptive task allocations.

In recent modeling work (Guo et al. 2020), we investigated the information trans-
mission through physical contact in several realistic scenarios involving three task
groups of ants. We assumed that the performance of each task group is tied to pre-
defined spatial fidelities, which reflect the proportion of ants that prefer to drift back
to the task location compared to those that move randomly. With this assumption
in place, we revealed the contributions of ants with different spatial fidelities, e.g.,
random-walking and drifted-walking, to the information transmission. To explore fur-
ther, in this study, we focused on how the number of task groups (ranging from 2 to 5)
and the spatial distribution of task locations impact information transmission. Addi-
tionally, we investigate how the task switching associated with the spatial coincidence
of ants is formulated by ants’ spatial distribution and, in turn, affects task allocations,
physical contact, and information transmission. Therefore, we propose two discrete-
time Markov chain models: 1. Multiple-task-group model, which assumes that each
task group (consisting of 2–5 tasks) has a fixed and pre-defined spatial fidelity (i.e.,
the proportion of drifted-walker within each task group); 2. Task-switching model
assumes that individuals can be recruited to another task that is different from their
original tasks by their neighboring ants via physical interactions, and after switching
the task, they may change their task spatial fidelities with a certain probability. Our
models address the following: (1) How do multiple task groups and related spatial dis-
tribution of workers affect social contact dynamics and information transmission; (2)
How may task-switching lead to changes in spatial fidelity and therefore impact task
allocation.; and (3) How may spatial fidelity dynamics affect contact and information
dynamics after task switching.

Themodels and discussion are organized as follows. In Sect. 2, we derive our agent-
based model with associated information and task-switching scenarios. We introduce
two different modeling approaches: The multiple-task-group model, which includes
various task groups while keeping spatial fidelity constant, and the Task-switching
model, which provides for only a two-task group but dynamic spatial fidelity. In
Sect. 3, we perform our simulations and analysis for those two models and compare
their dynamics. In Sect. 4, we discuss the finding and conclude our study.

2 Model Derivation

Our model extends the agent-based discrete-time Markov chain model developed in
Guo et al. (2020) by including various task groups and task-switching procedures.
Unlike conducting experiments in such contexts that can be very challenging, our
model is an easy while effective tool that can shed some light on dynamics in real
social insect colonies.

We assume that the colony has N workers living on X = K × K =
{(i, j) : 1 ≤ i ≤ K , 1 ≤ j ≤ K } grids for some K ∈ Z. We also assume that
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N ≤ K 2. At any given time t , a worker A is characterized by ηA(t) =
(lA(t), pA(t), wA(t), fA(t)) with four attributes explained below. The lA ∈ X is the
location of worker, and pA ∈ {1, 2, . . . , P} is its task group. The walking style of
the worker is represented by wA ∈ {Random (R), Drifted (D)}. Based on previous
work and literature (Charbonneau and Dornhaus 2015a; Mersch et al. 2013; Guo et al.
2020), we set two walking styles for Worker A: Some workers do not wander inside
during each task; they randomly select one of the neighboring cells and moves toward
that Charbonneau and Dornhaus (2015a). We set the walking style of such an ant to be
wA = R. This random walking behavior provides the chance of task switching. In the
drifted walking style, whenwA = D, the worker has a preferential direction toward its
task location (Sp) (Mersch et al. 2013). Finally, fA ∈ {0 (not informed) , 1 (informed)}
represents its information state. Informedworkers have the ability to disseminate infor-
mation to their uninformed workers.

Let Np(t) be the number of workers performing task p at time t , then we have
N = ∑P

p=1 Np(t) ≤ K 2. The notation SFp(t) is dynamical spatial fidelity (SF) of
task p at time t , and it is calculated by the fraction of workers performing task p at
time t who have drifted walking style (D). That is,

SFp(t) =
|{A : pA(t) = p&wA = D}|

Np(t)
. (1)

We adopt notations in Guo et al. (2020). Each worker A with lA(t) = (i, j) has
up to four neighbors that are located at {(i ± 1, j), (i, j ± 1) }. If workers are on the
edge or in the corner of the colony, the size of these neighboring cells will reduce to
three and two, respectively. For convenience, we use NCA(t) to denote its neighbor
sites which could have four, three, or two depending on its location lA(t) = (i, j). We
define |NA(t)| as the number of nonempty neighbors of worker A.

We develop models to address two questions: (1) How do multiple task groups
with associated spatial fidelity affect social contact dynamics and information spread
through a colony when tasks are located in different zones? and (2) How does task
switching affect dynamical spatial fidelity and social interactions? We use a multiple-
task model to explore the first question by allowing information to spread over the
whole colony with different numbers of tasks, and we use the task-switching model
to explore the second question.

Initially, workers are located randomly in the colony, and the population of task
groups and initial spatial fidelity are the same (i.e., N1(0) = N2(0) = · · · = NP (0)&
SF1(0) = SF2(0) = · · · = SFP (0)).We set the population of driftedwalkingworkers
in each task group by Np(0) ∗ SFp(0), and other workers are random walking. Then,
we randomly choose oneworkerA in themultiple-task-groupmodel, make it informed
ant, fA(0) = 1, and set its location at the center of the colony, lA(0) = ( K−1

2 , K−1
2 )

with K is odd number.
For each update "t = 1 (each update corresponding to 0.001s in real colonies)

(Guo et al. 2020; Hurlbert et al. 2008), we randomly select a worker A to do the
following steps:
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1. Based on the neighbors of worker A, it has a probability of |NA(t)|
|NCA(t)| to make a

contact with one of its neighbors and then switch its location with the neighbor.
And it has a probability of 1− |NA(t)|

|NCA(t)| to move into its neighborhood sites in next
step 2 based on its walking style:

2. (a) If the walking style ofA is random (wA(t) = R),A randomly selects an empty
neighboring cell lĀ ∈ NCA(t) to move in the new location lĀ: lA(t + 1) = lĀ,

(b) If thewalking style ofA is drifted (wA(t) = D),A selects an empty neighboring
cell lĀ ∈ NCA(t) closest to SFZ (Sp) to move in new location lĀ: lA(t + 1) =
lĀ. To determine the distance between task SFZ and all neighboring empty
lattices, we utilized Euclidean distance. In the event that two empty lattices are
equidistant from SFZ, the worker will randomly select one to move to.

We repeat the process for the next randomly selected worker.
3. Makes contact with one of its neighbors by randomly selecting a neighbor worker

B ∈ NA(t) and switches its location with this neighbor worker B, and lA(t + 1) =
lB(t) and lB(t + 1) = lA(t).
Workers can sense and communicatewith neighbors located in adjacent gridswithin
the length of the antenna (2mm) (Guo et al. 2020). Each grid can occupy atmost one
worker; therefore, the physical contact of two workers results in their movement.
Because of their proximity, these motions cause them to switch locations, which
is biologically and mathematically reasonable. Now we have the following two
scenarios:

(a) In multiple-task-group model: if two contact agents have different statuses in
information, i.e., fA(t) ̸= fB(t), we define fA(t + 1) = fB(t + 1) = 1,

(b) In the task-switching model: worker A is randomly chosen from population,
without loss of generality, we assume that neighbor B will switch its task to
worker A’s with probability βA when worker A and B have different tasks (i.e.,
pA(t) ̸= pB(t)), thus the task of B at time t + 1 is pB(t + 1) = pA(t). Based
on task-switching mechanisms in ant colonies (Wilson 1985; Robinson 1992),
individuals in our model are assumed to update their walking style in a negative
feedback manner via sensing the demand/supply of task activities.After task
switching, the worker B updates its walking style (wB) to be drifted (D), i.e.,
wB(t+1) = D, with probability 1−SFpA (t); and to be randomwith probability
SFpA (t). The assumptions of how the worker B updating its walking style
follow from the “balancing," which means if more workers stay at the task
location, then the new workers who join this task group will be more inclined
to do a random walk.

We repeat the process for the next randomly selected worker.

The model flowchart for a single time-step is shown in Fig. 1, and the left of Fig.
2 shows the walking style of a typical worker, and the right of the Fig. 2 shows the
location of the different number of groups, and the right bottom of the Fig. 2 shows
different spatial arrangement of four task-groups.

To continue our study, we define the followingmeasurements. Spatial heterogeneity
degree (SHD) measures the distribution of workers in the colony (Myers 1978) and is
defined as
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Fig. 1 (Color figure online) The dynamics process for each update "t . ui indicates random numbers in
(0, 1) generated to compare with SFA(t), i = 1, 2, 3

SHD(t) =
∑K 2

l=1

(
Pl(t) − N

K 2

)2

K 2 , (2)

where Pl(t) indicates the probability that location l is occupied by a worker at time t ,
N
K 2 is the probability of location occupation when all workers do symmetric random
walks. The function SHD(t) is bounded from the above by its maximum SHDmax =
N (K 2−N )

K 4 . We assume one lattice has 1 or 0 workers at any given time t , and we
calculate the approximation of SHD following the method in Guo et al. (2020).

Let Cpq(t) be the total number of contacts that occurred between two different task
workers of a social insects colony in the time interval (0, t). If p = q, then Cpp(t) is
the total number of contacts within a task group p, and Rpp is the contact rate within
a task group p; if p ̸= q then Cpq(t) is the total number of contacts task group p and
task group q over time (0, t) and Rpq is the contact rate between task group p and task
group q. Therefore,

Rpq(i) =
Cpq(im) − Cpq(1+ (i − 1)m)

m
, i ∈ Z ∩ [1, total time

m
] (3)

Similarly, we define Rpp(i) to be the contact rate within the task groups p. Then
we set the total contact rate within the group across all task groups p = 1, . . . , P as
Rw = ∑P

p=1 Rpp(i), and the total contact rate between two different task groups as

Rbt =
∑P

p=1
∑P

q=1 Rpq(i), where p ̸= q.
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The task switching rate perm updates shown by T Spq is the total number ofworkers
that change their task from task p to task q through contacts overm−1 updates divided
by m updates (Guo et al. 2020):

T Spq (i) =
The total number of workers who switch task p to q from time 1+(i-1)m to time im

m
. (4)

Finally, let I (t) as the total number of informed workers ( fA(t) = 1) in the time
interval (0, t). We denote Itrans(i) as the information transfer rate perm updates. This
implies the following formulation:

Itrans(i) =
I (im) − I (1+ (i − 1)m)

m
, (5)

Those definitions above allow us to ask the following questions:

1. What are the main differences between the two models, multiple-task-group and
task-switching, in effects on spatial heterogeneity degree (SHD) and contact
dynamics?

2. Howdoes the presence ofmultiple task groupswith their associated spatial arrange-
ment influence the dynamics of spatial heterogeneity degree (SHD) and contact
dynamics, and how does this consequently impact information spread and/or task
switching rates?

3. What are the relationships between spatial fidelity (SF), spatial heterogeneity
degree (SHD), and contact dynamics in the task-switching model, and how do
they affect the dynamics of task population for a task group of p workers (Np(t))?

In the following section, we implemented 2–5 groups in our simulations, given that
social insects exhibit various task allocations in response to their environment (Guo
et al. 2020; O’Donnell and Bulova 2007; Pinter-Wollman et al. 2012) with associated
SFZs as shown in Fig. 2, because Charbonneau et al. (2015) observed that workers’
tasks and associated movement areas are not fixed, to answer these three questions.

Agent-based model simulations, based on three major tasks (brood-caring, food-
processing, and trash-maintaining) observed in P. californicus ant colonies (Holbrook
et al. 2011), revealed the relation between individual spatial distribution and spreading
agents transmission (Guo et al. 2020). To incorporate more possible scenarios, such
as more than 3 tasks in the nest (Charbonneau and Dornhaus 2015a), and spatial
arrangements of tasks beyond the triangular structure of task locations described in
other species of social insects (Richardson et al. 2022), we simulate scenarios where
colonies consist of 2–5 task groups in 6 different spatial arrangement of task locations.

3 Results

In this Section,we performour simulations and analyses on the twomodels provided in
Sect. 2. Spatial fidelity (SF) of taskgroup p denotedby SFp(t) is the fractionofworkers
performing task p that does preferential walking to their own task location at time t .
Spatial heterogeneity degree (SHD(t)) defined as in Eqt. (2) measures how workers
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Fig. 2 Schematic illustrations of walking style and the SFZ geometry when the colony has two, three, four,
five, six and seven task groups: A worker performing task p moves to its random adjacent neighboring cell
if its walking style is random (w = R) or moves to its adjacent neighboring cell that is the closest to its SFZ
Sp if its walking style is drifted (w = D). The SFZ for two, three, four, five, six, and seven task groups are
shown as the big solid dark dots in the grid worlds of the b–g

are distributed in the colony at time t . Our recent work (Guo et al. 2020) indicates
that SHD(t) can be affected by task-associated spatial fidelity SFp in a significant
way. We aim to use the multi-task-group model, we set different numbers of groups.
Because there is no task switching in this model, spatial fidelity remains constant.
Due to the different number of groups, the model has different spatial arrangements
of these groups (see Fig. 2). After these settings, we aim to explore how the number
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Table 1 Parameters used in the simulations for the multiple-task-group and task-switching models

Parameter Description Baseline

K × K Colony size 69 × 69

N Total number of workers 180

p Workers task p ∈ {1, 2, 3, 4, 5, 6, 7}
βp Task switching probability 0.5

SFp(0) The initial spatial fidelity in task groups 0.4–0.8

m Per m updates 1000

I Initial informed workers 1

of task groups may impact their related spatial distribution (SHD) and thus influence
social contact dynamics and information spread through a colony. In the task-switching
model, workers can switch tasks. Due to task switching, spatial fidelity has changed.
After these settings, we aim to study how the task-switching dynamics may impact
spatial heterogeneity degree (SHD) and therefore impact social contact dynamics and
task allocation.

All simulations start with the same initial condition and use the same baseline
parameters listed in Table 1 unless stated otherwise. Our initial setting values are from
previous work (Guo et al. 2020). We can also roughly calculate the colony size and
population of workers by some information fromWaters et al. (2017) to be equivalent
to our settings. However, our model is not only for this species. Our model serves
more general species. The purpose of our model is to learn the dynamic changes of
the internal space and information of the system. In this study, we did not incorporate
the influence of the external environment into our model. To ensure the competition
of two task switching is equal, we assigned an equal and unbiased probability of 50%
for task switching between the two tasks we have set.

3.1 Dynamics of theMultiple-Task-GroupModel

We adopted the modeling approach of Guo et al. (2020) to inform our multiple-task-
group model. The number of task groups in our previous model (Guo et al. 2020) is
three. This model expands to scenarios of 2, 3, 4, 5, 6, and 7 task groups while the
total population of 180 is fixed for all cases, and we assume that the same population
size of each task group in each case. Thus, for the two task groups model, each task
group has 90 agents; for the three task groups model, each task group has 60 agents;
for the four task groups model, each task group has 45 agents; for the five task groups
model, each task group has 36 agents; for the six task groups model, each task group
has 30 agents; and for the seven task groups model, each task group has 26 agents.
We also assume that spatial fidelity (SF) for each task is the same for all cases, i.e.,
SFp(t) = SFp(0) = SF .
Dynamics of Spatial Heterogeneity Degree (SHD): Figures3 and 4 provide us
insights on how the number of task groups and spatial fidelity affect SHD. In Fig. 3,
we varied spatial fidelity (SF) SF = 0.4 (circle), 0.6 (cross), and 0.8 (dot) for colonies
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Fig. 3 The impact of spatial fidelity (SF) on spatial heterogeneity degree (SHD) across 2, 3, 4, 5, 6 and 7
task groups: SF = 0.4(circle), 0.6(cross), 0.8(dot). The position of each case are in Fig.2. The plateau
of SHD increases with its fixed SF SF = SFp(0). The curves represent the dynamic of the average of
all replicates of all positions in each case. Each case has 40 replicates. The error bars show the standard
deviation of the data

Fig. 4 (Color figure online) The impact of multiple task groups on spatial heterogeneity degree (SHD):
Different numbers of task groups (2, 3, 4, 5, 6 and 7 task groups) for SF = 0.4, 0.6, 0.8 respectively. d is
the plateau value of SHD and fitting by linear equation (SHD = a ∗ x + b, x is the number of task groups).
The curves represent the dynamic of the average of all replicates of all positions in each case. Each case
has 40 replicates

with 2 task groups (see Fig. 3a), 3 task groups (see Fig. 3b), 4 task groups (see Fig. 3c), 5
task groups (see Fig. 3d), 6 task groups (see Fig. 3e), and 7 task groups (see Fig. 3f).We
calculate the average for all cases with the same number of groups; for example, 2
task groups have 3 location cases, then we calculate the mean of these three cases,
and the error bar (standard deviation) is calculated by all three cases data. Our results
show that SHD increases with its SF for all numbers of task groups. This observa-
tion is in line with results observed in Guo et al. (2020), Lloyd (1967). The potential
explanations are that with larger SF, more workers aggregate to their task location
after large enough time, thus larger SHD, which measures the spatial distribution of
workers in the colony. However, the increasing rate of SHD with respect to SF varies
with multiple task groups.

Figure 4 reorganizes the presentation of results in Fig. 3, comparing how the number
of task groups impacts spatial heterogeneity degree (SHD) when the spatial fidelity
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Table 2 The first equation
shows the plateau of SHD has a
negative linear relationship with
the number of task groups (x):
SHD = a ∗ x + b (see Fig. 4d)

SHD = a ∗ x + b

SF a (×10−3) b (×10−3)

0.4 −0.601 14.7

0.6 −0.945 21.2

0.8 −1.19 27.6

Table 3 The mean of plateaus of
the contact dynamics between
groups and with-in group for
colonies having two, three, four,
and five task groups when the
spatial fidelity is 0.6, i.e.,
SF = 0.6

Groups Between groups With-in group

2 0.0155 0.500

3 0.0230 0.463

4 0.0234 0.457

5 0.0237 0.414

The plateau of contact dynamics within task groups decreases with the
number of task groups, and the plateau of contact dynamics between
task groups increaseswith the number of task groups, samewith Fig. 11

(SF) is SF = 0.4, 0.6, 0.8 respectively. After analyzing the data (see Fig. 4d), the
dynamics shown in Fig. 4 suggest that the plateau of SHD decreases as the number of
task groups increases, but someplateau differences are very small.Weperformed linear
fitting. The dynamics shown in Fig. 4 suggest that (1) the plateau of SHD decreases
as the number of task groups increases and (2) The plateau of SHD drops faster as
SF increases (see Fig. 4d and the value of a in Table 2). To determine the quantified
relationship between SF, SHD, and multiple task groups, The best-fit outcomes are
provided in Table 2.
Effects of the number of task groups on the contact dynamics: Figure5 shows the
contact dynamics within groups (Fig. 5a) and between groups (Fig. 5b) for a colony
with two, three, four, and five task groups when the spatial fidelity (SF) is 0.6. The
dynamics shown in Fig. 5b suggest that with a higher number of task groups within the
colony, the plateau of the contact dynamics within task groups is lower. Through the
Welch ANOVA test (Table 5 in “Appendix”), Fig. 5b and Table 3 observe the number
of task groups impacts on the plateau of the contact dynamics between groups. Among
them, the t-test shows that 2-group, 3-group, and 5-group have significant differences;
the plateau of the contact dynamics between groups increases as the number of task
groups increases. However, the t-test shows 3-group compared with the 4-group and
the 4-group compared with the 5-group have no significant difference. In other words,
when the number of groups increases, the difference between adjacent cases is not
significant and shrinks as the number of groups increases.

From Fig. 3, we find that higher spatial fidelity (SF) leads to a higher spatial hetero-
geneity degree (SHD) because of more agent clustering. We find the contact dynamics
(R = R1+R2) have a strong positive linear relationshipwith SHD, i.e., themore agents
gathering, the more contact that occurs. For example, R(t) = 63.46SHD(t) − 0.06
when SF = 0.6 with two task groups in the colony. The contact dynamics includes
contact rate between groups (R12+R21) and within group (R11+R22). Figure3 shows
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Fig. 5 (Color figure online) Impacts of multiple task groups on the contact dynamics: Colony has two,
three, four, and five task groups when the spatial fidelity (SF) is 0.6. 4-task groups are four groups at the
corner shown in the bottom left corner of Fig. 2b. a The plateau of contact dynamics within task groups
seems to decrease with multiple task groups increasing. b The plateau of contact dynamics between task
groups is increasing with multiple task groups increasing. The curves represent the dynamic of the average
of 40 replicates

Fig. 6 (Color figure online) Spatial fidelity affects the plateau of contact dynamics. The error bar shows
standard deviation. The curves represent the dynamic of the average of 40 replicates

that the colony with more task groups has smaller SHD; then it leads to lower contact
dynamics.
Effects of different SF on contact dynamics: Figure6 shows that (1) the plateau of
contact dynamics within the group increases with spatial fidelity (SF), (2) the plateau
of contact dynamics between groups decreases as SF increases, and (3) the highest
value of contact rate between groups is higher as SF increases.

When SF increases, more agents prefer walking to their task location. After a spe-
cific time, more agents aggregated in their task location, which led to the increased
density for increased contacts within their task group. When SF reduces, more agents
would prefer doing the random walk, and then they will move out of the task fidelity
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Table 4 The equation shows the
proportion of informed workers
(y) has a positive linear
relationship with time:
y = c ∗ time + d (see Fig. 7
yellow lines)

SF y = c ∗ time + d
c d

0.4 2.806 × 10−5 5.933 × 10−2

0.6 3.644 × 10−5 7.13 × 10−2

0.8 4.77 × 10−5 8.602 × 10−2

zone, which increases the density of the contact between task groups (higher con-
tact between groups). In the beginning, a larger SF will cause more agents to walk
toward their task zone location, and this movement will inevitably lead tomore contact
dynamics between and within groups during this process.
Effects of the number of task groups and task location on spreading information:
Our model focuses on the case when information spreads through physical contact
between workers, with higher contact rates leading to faster information spread. Fig-
ure7 shows the dynamics of information spread in the colony for different values of
spatial fidelity (SF) and the number of task groups. From this Figure, we observe that:
(1) In Fig. 7a–f, there exists some special time (horizontal red line) before which all
cases have similar trends. (2) Our fitting (equation in Table 4) explores that information
spread speed rises when SF increases. (3) After the special time (horizontal red line),
information continues to be transmitted at a slower speed. (4) In Fig. 7a–c, 3-group
(asymmetric)’ information transfer process is slower than 2-group and 5-group. We
defined the spatial arrangement of 2 and 5 groups case as Symmetric". Therefore,
symmetry may be a positive influence on information spreading. The greater number
of groups may take less time to make all workers get the information. (5) Fig. 7d–f
are all four groups of information transmission, and the difference is that the task
locations are different (see Fig. 2). The corner case (green dots) has the largest aver-
age distance between locations, and information spreading is slowest, and the center
case (blue dots) has the lowest average distance, then information spreading is fastest.
Therefore, the lower average distance between locations may lead to the information
spreading faster. And the larger the SF, has more significant the result. (6) In Fig. 7g–i,
SF=0.8 is always lower than others, and 2 task groups case and 3 task groups case show
that the number of task groups is the same but with lower SF , information is faster
delivered to all workers. Therefore, the symmetrical distribution of task locations may
help information transfer faster.

3.2 Dynamics of Task-SwitchingModel

The task-switching model has dynamical spatial fidelity (SF) shown by SFp(t). In
this model, we assume that our simulations have only any two task groups that differ
in the population and focus on task switching, in which the selected agent contacts its
neighbor with a different task, and then this neighbor switches its task to that of the
selected agent via some probability.
Spatial dynamics: Figure8 shows the time-series of spatial heterogeneity degree
(SHD) and spatial fidelity (SF)with varied initial SF. Figure8 suggests that (1) dynamic
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Fig. 7 (Color figure online) Impacts of multiple task groups and task location on information spread with
varied fixed spatial fidelity (SF): a–f are different numbers of task groups (2, 3, 4 and 5 task groups) for
SF = 0.4, 0.6, 0.8. The task locations in the 2-task-group and 5-task-group are symmetric with respect
to the colony’s center, while the task locations in the 3-task-group are asymmetric with respect to the
central location. Horizontal red lines (all lines are t = 20,000) are the special time value for speed change
of information spreading. Before this time, the spatial arrangement of task location does not affect the
information spread in the same SF case. The yellow lines are linear regression of the proportion of informed
workers (y) with time before critical values: y = c ∗ t ime + d. In SF = 0.4, c = 2.806 × 10−5 and
d = 5.933× 10−2; in SF = 0.6, c = 3.644× 10−5 and d = 7.13× 10−2; in SF = 0.8, c = 4.77× 10−5

and d = 8.602× 10−2. g–i are the same data from a–c and show same numbers of task groups with varied
SF. The points represent the dynamic of the average of 40 replicates
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Fig. 8 (Color figure online) Dynamics of spatial fidelity (SF) and spatial heterogeneity degree (SHD) with
varied initial spatial fidelity values: The curves represent the average of 40 replicates, and error bars are the
standard deviation. In the task-switching model both SHD(t) and SFp(t) are independent from its initial
value SFp(0)

Fig. 9 (Color figure online) Strong linear relationship in task-switchingmodel: Spatial heterogeneity degree
has a linear relationship with contact rates and spatial fidelity (SF) in the task-switching model. Thus, it can
be deduced that contact rates and SF also have a linear relationship. Both figures use the same simulations.
The red dots are the negative correlation between SF and SHD in b. We keep colors for both figures. The
curves represent the dynamic of the average of 40 replicates
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Fig. 10 The relationship between contact rates and spatial fidelity: The task switching rate is non-linear
decay with spatial fidelity (SF) and contact rate. Among them, contact rate (R1) is the inclusion of between
groups (R12) and within groups (R11), task switching rate is the rate of task 2 agents switch to task 1
(T S21), and SF is SF in task 1 (SF1(t)). a The function of the curve is T S21(t) = e0.60−12.94SF1(t); b The
function of the curve is T S21(t) = e−2.85−18.64R1(t). The curves represent the dynamic of the average of
40 replicates

SF and SHD are not affected by initial spatial value, and 2) SFwith varied initial values
has a similar shape; the shapes of SHD are similar as well.

Figure 9a shows that contact rate positively correlates with spatial heterogeneity
degree (SHD). Physical contact between groups leads to agents switching their tasks.
As spatial fidelity (SF) increases, more agents aggregate at their task locations. There-
fore, when spatial fidelity (SF) is higher, they will have more chance for within-group
contact and less chance to contact other groups’ agents with an increased probabil-
ity of switching their tasks. The data fitting shows that the task switching rate has an
exponential decay by SF (see Fig.10a). Due to the positive linear relationship between
contact rate and SF (see Fig. 9), task switching rate also has an exponential decay in
relation to contact dynamics (see Fig. 10b). Figure9b shows that red points are under
the gray line of

SHD(t) = 0.048SF1(t) − 0.012.

Those points occur at the initial time frame of [0, 10000] and suggest the negative
correlation between spatial fidelity and the spatial heterogeneity degree (Fig. 8a).
Comparison of contacts between the multiple-task-group model and task-
switchingmodel: Figure11 compares the time-series of contacts when the colony has
two task groups in multiple-task-group model and task-switching model. Notice that
spatial fidelity (SF) in the multiple-task-group model is constant while SF in the task-
switching model changes by time (see Fig. 8a). Figure11 in the task-switching model
suggests that (1) the plateau of contacts within and between groups are similar with
different initial SF, (2) the initial increase in speed is faster with higher initial SF (see
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Fig. 11 Task switching leads to dynamic spatial fidelity. Impacts of task switching on contact rates for two
task groups with varied initial spatial fidelity (SF) and fixed SF on contact dynamics for two task groups:
For the model of multiple task groups, spatial fidelity is constant while task switching changes by time. a–c
The plateau of the contact within group Rpp in the multiple-task-group model (dash curve) is increasing
as SF increases, while in the task-switching model, they (solid curves) are similar. d–f The plateau of the
contact between groups Rpq in themultiple-task-groupmodel (dash curve) decreases as SF increases, while
in the task-switching model, they (solid curves) are similar; and the peak of Rpq is higher as SF increasing
in both model. The curves represent the dynamic of the average of 40 replicates

Fig. 11a–c), and (3) the largest value of contacts between groups is higher when initial
SF is higher (see Fig. 11d–f). On the other hand, Fig. 11 suggests that (1) the plateau
of within-group contacts group in the task-switching model is always higher than that
of the multiple-task-group model, and (2) the plateau of contact between groups in
the task-switching model is always lower than that of the multiple-task-group model
when the final result stabilized.
Task groups: Figure12 presents three different dynamics of task populations from
our simulations. The replicate runs of the model with the same parameter values. We
set two task groups with the same population at proportion values of 0.5 for each task
(red baseline) initially. The black curves are the proportion of the task 1 population
size in the colony. We use a histogram to show the frequency of population switching,
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Fig. 12 (Color figure online) Different dynamics of two task group populations.a–c: Individual case for
population changing in task 1 with initial spatial fidelity (SF) being 0.5 (SFp(0) = 0.5). The baseline (red
line) is set at 0.5 because both groups start with the same number of agents, with an associated proportion
of task 1 and task 2 groups of 0.5 (N1(0) = N2(0)). d: Proportion of varied frequency of major-minor task
rotation. There are 11 cases (11.58%) where one task has been the leading task. The total is 95 replications
in SF0 = 0.5. The geometrical distribution fitting probability is 0.1136, mean of the distribution is 7.8, and
the median is 4.7

which is the major task change. The histogram of Fig. 12d shows the proportion of the
major task changing less or equal to 6 is 49.47%, including 11 cases is no-changing.
We used geometric distribution to fit the histogram (red curve) with a probability value
of 0.1136. Themedian of the fitting distribution is 4.7. Half of the simulations changed
the major task 5 times. For example, Fig. 12a has no switching (0 bar), which means
one task is always a major task and needs more agents. Figure12b has fewer switching
(less than 5 times), whichmeans themajor task can switch to another one but not often.
Figure12c has fewer switching (more than 5 times), which means the major task often
switches to another one, and both tasks have equal demand. The simulations can be
classified into those categories that align with the observation of experiments in the
lab and literature (Leighton et al. 2017).
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4 Discussion

We used an agent-based model to explore the factors that generate spatial hetero-
geneity and explore how spatial heterogeneity affects contact dynamics, information
spread, and task switching. We focused on two models based on the consequences
of social contact inside the colony: (1) The first consequence of social contact is that
contact leads to potential information spread. We developed the multiple-task-group
model to understand how the number of task groups and associated constant SFZs
and spatial distributions would affect contact dynamics and information spread. (2)
The task-switching model studies the second consequence of social contacts; the con-
tact between two workers can lead to a change in behavior by increasing the chance
that one worker may decide to switch tasks with associated changes in walking style.
These behavioral changes can generate spatial heterogeneity and dynamical changes
in spatial fidelity and can affect the size of the task group if this leads to task switching.

When few workers are engaged in a task (low spatial fidelity), positive feedback
draws more workers toward their task locations, while a disproportionately high den-
sity of workers at a task results in negative feedback that increases the likelihood
of workers leaving to search for a new task (Page and Mitchell 1990; Gordon et al.
1992). Thus, spatial fidelity allows the colony to balance workers among tasks regard-
less of the initial spatial heterogeneity (see Fig. 8). Spatial fidelity influences physical
interactions among ants, affecting task switching. The findings of this study should
be considered with the following caveats: First, our results are simulation-based, and
there are no experimental data to support the findings. Second, the model is a general
case only. In the future, we could set specific tasks for each group relevant to colony
task organization, for example, by introducing a food source to increase demand for
the task of foraging. This would allow us to further study the impact of space on task
switching in a more specific context. Below we review how insights gained from the
models may be applied to the case of social insect task organizations by discussing
the interaction between spatial effects and mechanisms of task allocation and the role
of interactions in information transfer.

4.1 Group Effects

In the multiple-task-group model, we explored how the different numbers of groups
in the colony influence information spread. We tested groups 2, 3, 4, 5, 6, and 7 in
one colony with varied spatial fidelity (SF). Varied SF and task group location both
affect the information spread speed (see Fig. 7). Different SF and task group locations
influence the spatial heterogeneity degree (Fig. 4).When space is more heterogeneous,
task-related information can bemore quickly communicatedwithin a task group (Naug
2009). In contrast, with lower spatial fidelity, information transmission speed may be
slower locally, but information spreads through the colony more quickly. Spreading
information or transmission elements (i.e., food) is easier between individuals within
a colony (Naug 2008), and information spreads faster at beginning (Sendova-Franks
et al. 2010). We observed from Fig. 7 that the number of task groups could affect
information transmission speed and process. This suggests that geometry is a key to
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information transmission speed and process. This may also be why the organizational
layout of tasks within social insect colonies is often similar. Although the specific
locations and substrates for tasks vary considerably, the organizational relationships
among tasks often follow similar rules (Mersch et al. 2013). Therefore, further explor-
ing the task-switching model, we focus on the dynamics of spatial fidelity rather than
on different numbers of tasks. Additionally, the plateau of within-group contact rates
decreases as the number of task groups increases; there will be more contact between
groups conversely. Therefore, more task groups will disperse the population, reduce
the social interaction within the group, but increase the social interaction between the
groups and create more opportunities for task switching.

4.2 Spatial Effects on Task Switching and Task Allocation

In the task-switching model, individuals use both social (shared task information)
and contextual (density of workers at task location) cues to make decisions about task
allocation. In contrast, in themultiple-task-groupmodel, only contextual cues are used.
Furthermore, the contextual cues in the task-switchingmodel are dynamic, adjusting to
the relative density of workers actively engaged in a task. As such, the task-switching
model more closely resembles cases of flexible task allocation, such as the role of
response thresholds in bee fanning behavior (Weidenmuller 2004; Jones et al. 2004).
Themultiple-task-groupmodel bettermimics cases inwhich tasks aremore fixed, such
as morphologically specialized workers (e.g., soldiers) or more intrinsically directed
temporal polytheism (as in honey bee nursing vs. foraging) (See Charbonneau and
Dornhaus 2015b; Johnson 2003 for a discussion on fixed vs. flexible task allocation
mechanisms).

These two models have different spatial fidelity (SF) settings, one changes by
time and one is constant. Comparison of the model’s performance in SHD to explore
how SF infects spatial heterogeneity. SHD shows faster reaching steady state in the
multiple-task-groupmodel than in the task-switchingmodel, suggesting that fixed task
allocationmechanismsmaybemore efficient (i.e.,workers allocated to their tasksmore
quickly) than flexible task allocation mechanisms. On the other hand, SHD plateaus
in the task-switching model converge on similar numbers regardless of the initial
value of SFp(0). In contrast, the level of the SHD plateaus in the multiple-task-group
model directly depends on the SFp(0) value. This suggests that flexible task allocation
mechanisms may take longer to reach equilibrium but are more robust to perturbation.
Indeed, if these systems suffered large losses of individuals in one task group, thereby
changing the value of spatial fidelity (SFp(t)), the task-switching model would return
to the distribution of workers among tasks (i.e., SHD) comparable to pre-disturbance
levels, while multiple-task-group model would be irreversibly changed and be unable
to return to pre-disturbance SHD levels.

4.3 Social Interaction

We discuss how these elements influence contacts, including the information, in the
following paragraphs. In both models, there are two main processes that influence
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behavior: allocation of workers among spatially segregated tasks and information
transfer among workers. In the multiple-task-group model, task allocation, i.e. task
group in which the population of each group is fixed, affects the contact rate among
workers, which in turn affects the speed with which information is propagated among
workers. However, information in the multiple-task-group model does not affect task
allocation. For the task-switching model, task allocation affects information transfer
via the same process as in the multiple-task-group model (task switching rates and
likelihoods of information transfer), but in the task-switching model, information also
affects task allocation. The result is a growth of informed individuals (vs. uninformed)
in the multiple-task-group model, where propagation speed is determined by constant
SF. In the task-switching model, both bits of information compete with each other, and
no single task can eliminate the otherwithin a certain time, though theymay go through
phases of fluctuation over time (Fig. 12). In our algorithm, we set the task switching
rate (βp) to 50%, which is βA = βB . Although this is not our purpose in this study, we
tried different values of βA and βB during some test simulations. We found that the
results were influenced by the comparing value of βp. If βA = βB , the dynamics of
SF and task switching rate have no significant difference, but if βA ̸= βB , the situation
becomes different. Therefore, task-switching probabilitieswill have different effects to
some extent, as larger βp leads to a higher number of this task (Fig. 13 in “Appendix”).
Therefore, we believe that the random selection of the worker and our setting of task
switching is a process without losing generality.

Interestingly, regardless of the mode of the consequence of social contact (i.e., task
switching or information transfer), the contact dynamics are very similar. This suggests
that the mechanisms allowing increased robustness in task allocation to disturbance
(discussed above) are not necessarily dependent on transmission rate, but rather the
dynamic nature of task allocation in the task-switching model, i.e., feedback between
spatial fidelity and task information. This is particularly interesting because several
behaviors in social insects have been shown to be dependent on interaction rate (e.g.,
foraging Gordon andMehdiabadi 1999; Greene and Gordon 2007, emigration consen-
sus (Pratt et al. 2002a; Mallon et al. 2001)). However, our model shows that spatially
dependent individual feedback mechanisms, as opposed to interactions rates per se,
can also result in collective flexibility.

In bothmodels, contact rates between task groups initially peak at approximately the
samemoment, then decrease and stabilize. Their simultaneous peaking is likely caused
by the initial random location of individuals. Though this may be an artifact of the
initial model setup, it can provide insight into how colonies may react to disturbances
thatwould relocate individuals (e.g., emigration or nest destruction) (Pratt et al. 2002a).
The fact that the same pattern seems to occur in both models suggests that, regardless
of whether task allocation mechanisms are flexible or rigid, both models are capable
of adjusting to disturbances.

After the initial peak in contact rate during which the colony reorganizes, contact
rates between task groups are lower in the task-switching model than in the multiple-
task-group model. Additionally, contact rates within groups rise more slowly in the
task-switching model than in the multiple-task-group model and reach a plateau more
slowly (Fig. 11). This suggests that in the multiple-task-group model, workers can
resume their set distribution among tasks more rapidly after disturbance than in the
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task-switching model. However, in the event of a disturbance where workers are lost
(e.g., forager loss or nest defense) (Tschinkel and Hanley 2017), the task-switching
model should be more robust, and with the colony re-equilibrating according to the
relative densities of workers per tasks (i.e., reach similar plateaus of SHD), In contrast,
in the multiple-task-group model, workers will attempt to reach there and thus may
not reach optimal task allocation.

4.4 FutureWorks

Our previous models (Guo et al. 2020) have studied information transmission with
three task groups and fixed spatial fidelity to indicate that information spreads faster
within groups and slower between task groups, while our study provides important
insights into the number of task groups and task switching. We build the network
model constructed by social insect behavior to analyze the spatial heterogeneity, the
number of task groups, and the process of information spreading and task switching
from individual-level effects to group-level process. But our proposed model does
have its limitations that we should work with. In an actual social insect colony, there
are more complex reasons for workers to change their tasks, such as environmental
stimulus (Page and Mitchell 1998) and task performances (Gordon 1989), not as
straightforward as designed in our model, contact and switch with a fixed probability.
In addition, the location of our task group zone is simply defined from geometry and
is not combined with the task distribution of the social insect colony in reality. In
our future work, we should include setting particular tasks and task-related response
thresholds in our model. As a basis for future work, our current research is of great
help to the understanding of social contact processes with spatial distribution.
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A Appendix

See Fig. 13 and Table 5.
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Fig. 13 Black and red curves which are βA = βB = 0.5 and βA = βB = 1, separately. The blue curve is
task switching probability to task A is βA = 0.75; however, to task B is βA = 0.25. a: Black, red, and blue
shadows are standard deviations

Table 5 P values of the Welch ANOVA test and T-test

Test P value Test P value

ANOVA for all groups * < 2.2e−16 3 groups versus 4 groups * 0.1409

2 groups versus 3 groups * < 2.2e−16 3 groups versus 5 groups 0.0051

2 groups versus 4 groups * < 2.2e−16 4 groups versus 5 groups 0.2512

2 groups versus 5 groups * < 2.2e−16

Star * means they have different variances
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