
Short-Term Prediction of Solar Photovoltaic Power 
Generation Using a Digital Twin 

John Yonce,  
IEEE Student Member 

Real-Time Power and Intelligent 
Systems Laboratory 

Holcombe Department of Electrical 
and Computer Engineering 

Clemson University, 
Clemson, SC 29634, USA 

johnyonce@ieee.org 
 
 

Michael Walters,  
IEEE Student Member 

Real-Time Power and Intelligent 
Systems Laboratory 

Holcombe Department of Electrical 
and Computer Engineering 

Clemson University 
Clemson, SC 29634, USA 

mawalters@ieee.org 
 
 

Ganesh K. Venayagamoorthy, 
IEEE Fellow  

Real-Time Power and Intelligent 
Systems Laboratory  

Holcombe Department of Electrical 
and Computer Engineering  

Clemson University  
Clemson, SC 29634, USA 

gkumar@ieee.org

Abstract— Large volumes of distributed energy resources 
(DERs), such as solar photovoltaic (PV) plants are integrated into 
the power distribution system due to increased awareness of 
climate change. These DERs introduce variable and uncertain 
generation sources due to changing weather conditions. This 
makes operations and controls challenging and complex. To 
better understand and manage the dynamic nature of solar PV 
power plants, digital twins (DTs) will be needed. DTs based on 
artificial intelligence (AI) methods can be applied to replicate the 
dynamics of PV plants. This study utilizes a popular paradigm of 
AI - neural networks to create a variety of data-driven DT (DD-
DT) prediction models for a 1 MW solar PV plant located at 
Clemson University in South Carolina, USA. State-of-the-art 
internet of things (IoT) based real-time measurements are used to 
develop the DD-DTs. Typical results for short-term PV power 
prediction for DTs implemented using multilayer perceptron 
neural networks (MLPNNs) and Elman recurrent neural 
networks (ERNNs) are presented in this paper.   

Index Terms—Artificial intelligence, digital twin, neural 
networks, prediction, solar PV 

I. INTRODUCTION 
Conventional electric power generation sources are being 

challenged by their negative global effects on climate, 
worldwide decarbonization legislation and efforts to 
modernize the power grid. These factors have enhanced the 
drive to integrate clean renewable energy sources (RESs). The 
development and increasing level of usage of RESs has further 
ushered in the inclusion of advanced distribution systems, such 
as distributed energy resources (DERs). Solar photovoltaic 
(PV) power production is at the forefront of DER 
development. However, challenges arise in power grid 
operations and controls due to the uncertainty and variability 
of weather conditions. Thus, full utilization of DER generation 
techniques is particularly difficult without the foresight of 
predictive modeling. Predictive modeling of PV plants in 
dynamic and uncertain environmental conditions can reduce 
the complexity in operations and management of the power 

system, improving efficiency and resiliency. Coupled with 
their widespread applications and the rapid growth of solar PV 
generation technology, predictive modeling has become a 
critical topic in research. Multi-timescale predictive modeling 
provides a variety of applications, including optimal energy 
dispatch, system health, monitoring, predictive asset 
maintenance, and planning and expansion of the power system 
[1]. 

Digital twins (DTs) have gained popularity across multiple 
disciplines due to their capability to link components from the 
physical and digital worlds based on physical properties or 
data. A data-driven DT is built on the basis of real time and 
historical data, providing an up-to-date, reliable reproduction 
of attributes and behaviors of physical systems within a virtual 
environment. The foundations of DTs were originally 
introduced in NASA’s Apollo program for product life cycle 
testing when physical components were not available [2]. 
Since then, DTs have made a significant impact in several 
industries, especially in manufacturing by providing a platform 
to virtually represent factories, resources and workforces [2]. 
Due to the increasing complexity of power systems with 
DERs, DT applications are emerging, including for model 
validation, dispatch optimization, outage planning and 
forecasting [3, 4]. 

DT technology can be used for predictive applications such 
as solar power forecasting. The link between physical and 
virtual systems allows the plant model to adapt to changing 
conditions more quickly and accurately than a conventional 
physics-based model. In addition to adaptability, Data-driven 
DTs offer a high degree of system identification with fewer 
parameters [5].  

In this study, a digital twin model of a 1 MW solar PV plant 
located at Clemson University, South Carolina, USA is 
developed utilizing neural networks, a popular paradigm of 
artificial intelligence (AI). The DT is implemented for short-
term solar PV power predictions. State-of-the-art internet of 
things (IoT) based real-time measurements are used to develop 
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the DTs. Typical results for multilayer perceptron neural 
networks (MLPNNs) and Elman recurrent neural networks 
(ERNNs) are presented. The rest of the paper is as follows: 
Section II describes DTs for solar PV power predictions. The 
implementation of DTs using neural networks is described in 
Section III. Section IV presents typical results and discussions. 
Finally, Section V provides the conclusion and future work. 

II. DIGITAL TWIN FOR PV POWER PREDICTION 
Digital twins have gained momentum in both academic 

research and industrial applications due to their modeling 
capabilities. DTs are defined as having a physical component, 
virtual component and an interconnection between the two 
components. They may be built on the basis of physical 
principles and/or measured data [6]. The physical component 
provides a foundation for properties and data collection, on 
which the virtual replica is created and updated, with an 
emphasis on utilizing real-time data. Technology innovations 
in IoT and artificial intelligence have further synthesized 
digital and physical worlds by providing high-volume data 
collection and advanced computational performance 
capabilities, respectively [4]. Since DTs may be used to model 
and simulate a variety of physical processes and/or systems, 
they have been utilized in monitoring, control, predictive 
maintenance, risk management, and decision-support 
applications across multiple industries [7]. Specifically in 
power systems, digital twins offer a platform with the potential 
to revolutionize operations and control. System operators in 
energy control centers are challenged by the evolving 
generation technology landscape, especially with RESs and 
DERs. DTs provide a gateway to address operational 
challenges associated with these generation sources by 
establishing advanced planning and scheduling for energy 
dispatch, thereby increasing situational awareness in these 
centers [8]. 

Renewable energy sources have had an increasing share in 
today’s energy market, providing distributed generation 
opportunities that fuel innovations in the smart grid. More 
specifically, various RESs may be combined to support smart 
cities containing solar PV-powered houses, smart buildings 
and electric vehicles [7]. No matter the size or technology used, 
each of these individual projects have specific properties 
relevant to both location-based weather conditions and 
specifications of generating sources; no two sites are the same 
[8]. Solar PV plants are a common RES utilized at these sites. 
However, the reliance on exterior environmental conditions 
presents a large barrier in large scale distributed 
implementation of these systems in power systems generation 
[8].   

Digital twins are one of the most promising technologies to 
bridge the gap between large scale dynamic solar PV 
generation implementation and optimal decision-making in 
control centers, due to their predictive modeling capability. 
Data-driven DT (DD-DT) modeling is a promising approach, 
since data is a representation of both known and unknown 
physical parameters. The DD-DT model can thereby account 
for the full physical state of the PV plants, without prior 

knowledge of individual characteristics of solar PV plants [7]. 
Furthermore, the use of IoT and AI-based resources will 
further improve DD-DT models. IoT provides data in real-
time, enhancing the quality of data. AI then utilizes this data to 
learn the behaviors and characteristics of the physical system 
within the virtual environment.  

In Fig. 1, a model of the digital twin developed for Clemson 
University’s 1 MW solar PV plant is shown. This model 
consists of three components as follows: Clemson University’s 
R06 site parking lot, Real-Time Power and Intelligent Systems 
Laboratory (RTPIS Lab) and Clemson University’s local area 
network (LAN), corresponding to the physical, virtual and 
communication components, respectively. The R06 parking lot 
contains the 1 MW solar PV plant, and IoT devices (micro-
PMU and weather station), providing real-time data of the 
current physical state. These parameters are streamed via the 
LAN network to the RTPIS Lab, where the DT is implemented 
to carry out prediction utilizing AI algorithms.  

 

Figure 1. Model of Clemson University’s R-06 Site and DT. 

III. IMPLEMENTATION OF DT-PREDICTION USING NEURAL 
NETWORKS 

Neural networks have proven to excel at PV power 
prediction [9]. For the virtual side of the digital twin, two 
neural network algorithms were utilized. The MLPNN 
architecture consists of a feedforward algorithm, depicted in 
Fig. 2. In contrast, the ERNN architecture features a recurrent 
algorithm. With ERNNs, outputs of the hidden layer from the 
previous timestep are used as additional inputs at the current 
timestep, adding a memory component to the network. A 
depiction of ERNN architecture is depicted in Fig. 3. These 
networks are presented with different input vectors, where the 
MLPNN input vector includes temperature (T), solar 
irradiance (SI) and generated PV power (PPV) of the current 
and three previous timesteps. The ERNN only includes present 
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temperature, solar irradiance, and generated PV power. In the 
ERNN, previous values from the decision vector are included 
in the input vector. For both networks, input and output layers 
consist of linear neurons and the hidden layer consists of 25 
sigmoidal neurons. 
 

 
Figure 2. MLPNN architecture diagram. Outputting PV power prediction. No 

context layer or feedback. 
 

 
Figure 3. ERNN architecture diagram. Outputting PV power prediction. 

Context layer loops decision vector back into input. 
 

Both neural networks are trained with a historical dataset 
consisting of 86 days ranging from March 2023 to June 2023. 
Days missing significant windows of data were discarded, but 
other methods such as data interpolation could be used to 
preserve data [10]. The dataset of spring to early summer 
provides a range of solar irradiance and temperature profiles. 
Different seasons offer different ranges of solar irradiance and 
temperature but ultimately different profile categories are 
utilized to better account for differences in weather patterns. 

Alternate sites with different weather conditions will require a 
separate digital twin model, but all required data can be 
obtained through a similar weather station. Input values are 
normalized to the range [0, 1]. The backpropagation algorithm 
discussed in [11] is used as the training method for both types 
of neural networks. The input vector (x) is assembled using T, 
SI, and PPV at time t. Then, the input weights (w) are multiplied 
by the input vector to compute the activation matrix (a), as 
shown in (1).  

 
         (1) 

 
This is directly followed by computing the decision matrix (d) 
using a sigmoid function given in (2). 
 

   (2) 
 
The next step is calculating the predicted PV power ( ). 
This is done by multiplying the output weights (v) by the 
decision matrix as seen in (3). 
 

         (3) 
 Backpropagation uses the error ( ) between actual PV 

plant power (PPV) and its predicted values as shown in (4) to 
calculate the neural network weight changes. The trained 
weights are then used in forward propagation to compute the 
predictions.  

            (4) 
The prediction error is then used to calculate the activation 
error ( ) and the decision error ( ) as seen in (5) and (6), 
respectively. 

               (5) 
    (6) 

 
The activation error and decision error are then used to 
calculate input and output weight updates (Δw and Δv) using 
momentum (  and learning rate (  as seen in (7) and (8). 
 

w(t + ) = w(t) +   (7) 
 v(t + ) = v(t) +   (8) 

 
The weights are then used in forward propagation to compute 
the predictions. 

To better account for the volatility of solar irradiance, each 
day in the historical training dataset is classified into four 
different categories based on its generated PV power: sunny, 
partly cloudy, moderately cloudy, and mostly cloudy. Since 
each category of day has a distinct measured PV profile, an 
optimized network with tuned parameters is developed and 
utilized. In addition to categorizing weather profiles of 
individual days, attention-based training is utilized for further 
parameter fine-tuning during the training stage. Attention-
based training focuses on improving intervals of high error by 
amplifying the error signal by a constant greater than one. 
Therefore, the modified error signal is much larger over these 
intervals, increasing the impact during backpropagation. 
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IV. RESULTS AND DISCUSSION 

 The testing data consists of the final seventeen days of the 
dataset. Four specific days were chosen based on their weather 
profiles. Classifications are as follows: May 25th and 26th as 
partly cloudy, May 27th as moderately cloudy and May 28th 
as mostly cloudy. Each of these days offers a variety of 
temperature, solar irradiance and measured generated PV 
power generation. Figs. 4 and 5 show DT-predictions utilizing 
MLPNNs and Figs. 6 and 7 show DT-predictions utilizing 
ERNNs, both with a 5-minute time horizon. 

 

 
Figure 4. MLPNN 5 Minute DT-Prediction of May 25th-26th, 2023. 

 
Figure 5. MLPNN 5 Minute DT-Prediction of May 27th-28th, 2023. 

 

 

Figure 6. ERNN 5 Minute DT-Prediction of May 25th-26th, 2023. 

 
Figure 7. ERNN 5 Minute DT-Prediction of May 27th-28th, 2023. 

 
  As can be seen in Figs. 4-7, ERNNs appear to outperform 
MLPNNs for predictions on a 5-minute time horizon. Table I 
shows that MLPNNs have lower MAPEs and MSEs than 
ERNNs for partially cloudy days. However, ERNNs perform 
better for mostly cloudy days and perform on par with 
MLPNNs on sunny and moderately cloudy days. This is due to 
the high volatility of the solar irradiance coupled with the 
MLPNN’s ability to adapt more quickly to change. The 
different neural networks can be used in an ensemble to 
generate predictions with higher degrees of accuracy. 

 

 
Figure 8.  MLPNN 20 Minute DT-Prediction of May 25th-26th, 2023. 

 
 

 
Figure 9.  MLPNN 20 Minute DT-Prediction of May 27th-28th, 2023. 
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Figure 10. ERNN 20 Minute DT-Prediction of May 25th-26th, 2023. 

 
Figure 11. ERNN 20 Minute DT-Prediction of May 27th-28th, 2023. 

  
  PERFORMANCES BETWEEN MLPNNS AND ERNNS 
ARE COMPARABLE, AND THEY EXCEL IN DIFFERENT ASPECTS 
OF THE PV PROFILES. IT CAN BE SEEN FROM FIGS. 8-11 THAT 

THE ERNNS WERE ABLE TO MATCH THE SHAPES OF THE 
CURVES BETTER THAN THE MLPNNS, BUT STRUGGLED TO 

REACH THE PEAKS OF THE CURVES. TABLES I AND II SHOW THE 
DAYTIME MEAN SQUARE ERROR (MSE) AND THE DAYTIME 

MEAN ABSOLUTE PERCENT ERROR (MAPE) FOR BOTH 5- AND 
20-MINUTE PREDICTIONS.TABLE I. NEURAL NETWORK 

PERFORMANCE COMPARISON (5 MINUTES) 

5-Minute 
Time 
Horizon 

MLPNN ERNN 

Category Daytime 
MSE 

Daytime 
MAPE 

Daytime 
MSE 

Daytime 
MAPE 

Sunny 4.40 × 10-3 13.90% 7.20 × 10-3 14.12% 

Partly 
Cloudy 

2.29 × 10-2 25.78% 3.41 × 10-2 31.62% 

Moderately 
Cloudy 

2.53 × 10-2 30.63% 1.29 × 10-2 31.22% 

Mostly 
Cloudy 

7.60 × 10-3 23.67% 4.00 × 10-3 14.05% 

 

TABLE II. NEURAL NETWORK PERFORMANCE COMPARISON (20 MINUTES) 

20-Minute 
Time 
Horizon 

MLPNN ERNN 

Category Daytime 
MSE 

Daytime 
MAPE 

Daytime 
MSE 

Daytime 
MAPE 

Sunny 9.00 × 10-3 32.83% 2.95 × 10-2 60.16% 

Partly 
Cloudy 

4.20 × 10-2 52.51% 4.40 × 10-2 55.16% 

Moderately 
Cloudy 

3.15 × 10-2 57.16% 2.23 × 10-2 64.78% 

Mostly 
Cloudy 

1.71 × 10-2 110.06% 1.17 × 10-2 54.51% 

V. CONCLUSION 
 In this paper, digital twins of a 1 MW PV plant at Clemson 
University have been developed for short-term PV power 
predictions.  The DTs are implemented using data from the PV 
plant using artificial intelligence algorithms. The performances 
of static and dynamic neural networks based on weather 
classification and prediction horizon length have been 
compared. MLPNNs and ERNNs excel in different categories 
for prediction. Future work for improving the prediction DTs 
includes investigating distributed neural network architectures 
such as cellular computational networks. Furthermore, 
advanced applications in operations and controls of digital 
twins may be considered as well. 
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