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Abstract— Large volumes of distributed energy resources
(DERs), such as solar photovoltaic (PV) plants are integrated into
the power distribution system due to increased awareness of
climate change. These DERs introduce variable and uncertain
generation sources due to changing weather conditions. This
makes operations and controls challenging and complex. To
better understand and manage the dynamic nature of solar PV
power plants, digital twins (DTs) will be needed. DTs based on
artificial intelligence (AI) methods can be applied to replicate the
dynamics of PV plants. This study utilizes a popular paradigm of
Al - neural networks to create a variety of data-driven DT (DD-
DT) prediction models for a 1 MW solar PV plant located at
Clemson University in South Carolina, USA. State-of-the-art
internet of things (IoT) based real-time measurements are used to
develop the DD-DTs. Typical results for short-term PV power
prediction for DTs implemented using multilayer perceptron
neural networks (MLPNNs) and Elman recurrent neural
networks (ERNNs) are presented in this paper.
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[. INTRODUCTION

Conventional electric power generation sources are being
challenged by their negative global effects on climate,
worldwide decarbonization legislation and efforts to
modernize the power grid. These factors have enhanced the
drive to integrate clean renewable energy sources (RESs). The
development and increasing level of usage of RESs has further
ushered in the inclusion of advanced distribution systems, such
as distributed energy resources (DERs). Solar photovoltaic
(PV) power production is at the forefront of DER
development. However, challenges arise in power grid
operations and controls due to the uncertainty and variability
of weather conditions. Thus, full utilization of DER generation
techniques is particularly difficult without the foresight of
predictive modeling. Predictive modeling of PV plants in
dynamic and uncertain environmental conditions can reduce
the complexity in operations and management of the power
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system, improving efficiency and resiliency. Coupled with
their widespread applications and the rapid growth of solar PV
generation technology, predictive modeling has become a
critical topic in research. Multi-timescale predictive modeling
provides a variety of applications, including optimal energy
dispatch, system health, monitoring, predictive asset
maintenance, and planning and expansion of the power system

[1].

Digital twins (DTs) have gained popularity across multiple
disciplines due to their capability to link components from the
physical and digital worlds based on physical properties or
data. A data-driven DT is built on the basis of real time and
historical data, providing an up-to-date, reliable reproduction
of attributes and behaviors of physical systems within a virtual
environment. The foundations of DTs were originally
introduced in NASA’s Apollo program for product life cycle
testing when physical components were not available [2].
Since then, DTs have made a significant impact in several
industries, especially in manufacturing by providing a platform
to virtually represent factories, resources and workforces [2].
Due to the increasing complexity of power systems with
DERs, DT applications are emerging, including for model
validation, dispatch optimization, outage planning and
forecasting [3, 4].

DT technology can be used for predictive applications such
as solar power forecasting. The link between physical and
virtual systems allows the plant model to adapt to changing
conditions more quickly and accurately than a conventional
physics-based model. In addition to adaptability, Data-driven
DTs offer a high degree of system identification with fewer
parameters [5].

In this study, a digital twin model of a 1 MW solar PV plant
located at Clemson University, South Carolina, USA is
developed utilizing neural networks, a popular paradigm of
artificial intelligence (AI). The DT is implemented for short-
term solar PV power predictions. State-of-the-art internet of
things (IoT) based real-time measurements are used to develop
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the DTs. Typical results for multilayer perceptron neural
networks (MLPNNs) and Elman recurrent neural networks
(ERNNs) are presented. The rest of the paper is as follows:
Section II describes DTs for solar PV power predictions. The
implementation of DTs using neural networks is described in
Section III. Section IV presents typical results and discussions.
Finally, Section V provides the conclusion and future work.

II. DIGITAL TWIN FOR PV POWER PREDICTION

Digital twins have gained momentum in both academic
research and industrial applications due to their modeling
capabilities. DTs are defined as having a physical component,
virtual component and an interconnection between the two
components. They may be built on the basis of physical
principles and/or measured data [6]. The physical component
provides a foundation for properties and data collection, on
which the virtual replica is created and updated, with an
emphasis on utilizing real-time data. Technology innovations
in IoT and artificial intelligence have further synthesized
digital and physical worlds by providing high-volume data
collection and advanced computational performance
capabilities, respectively [4]. Since DTs may be used to model
and simulate a variety of physical processes and/or systems,
they have been utilized in monitoring, control, predictive
maintenance, risk management, and decision-support
applications across multiple industries [7]. Specifically in
power systems, digital twins offer a platform with the potential
to revolutionize operations and control. System operators in
energy control centers are challenged by the evolving
generation technology landscape, especially with RESs and
DERs. DTs provide a gateway to address operational
challenges associated with these generation sources by
establishing advanced planning and scheduling for energy
dispatch, thereby increasing situational awareness in these
centers [8].

Renewable energy sources have had an increasing share in
today’s energy market, providing distributed generation
opportunities that fuel innovations in the smart grid. More
specifically, various RESs may be combined to support smart
cities containing solar PV-powered houses, smart buildings
and electric vehicles [7]. No matter the size or technology used,
each of these individual projects have specific properties
relevant to both location-based weather conditions and
specifications of generating sources; no two sites are the same
[8]. Solar PV plants are a common RES utilized at these sites.
However, the reliance on exterior environmental conditions
presents a large barrier in large scale distributed
implementation of these systems in power systems generation
[8].

Digital twins are one of the most promising technologies to
bridge the gap between large scale dynamic solar PV
generation implementation and optimal decision-making in
control centers, due to their predictive modeling capability.
Data-driven DT (DD-DT) modeling is a promising approach,
since data is a representation of both known and unknown
physical parameters. The DD-DT model can thereby account
for the full physical state of the PV plants, without prior

knowledge of individual characteristics of solar PV plants [7].
Furthermore, the use of IoT and Al-based resources will
further improve DD-DT models. IoT provides data in real-
time, enhancing the quality of data. Al then utilizes this data to
learn the behaviors and characteristics of the physical system
within the virtual environment.

In Fig. 1, a model of the digital twin developed for Clemson
University’s 1 MW solar PV plant is shown. This model
consists of three components as follows: Clemson University’s
RO6 site parking lot, Real-Time Power and Intelligent Systems
Laboratory (RTPIS Lab) and Clemson University’s local arca
network (LAN), corresponding to the physical, virtual and
communication components, respectively. The R06 parking lot
contains the 1 MW solar PV plant, and IoT devices (micro-
PMU and weather station), providing real-time data of the
current physical state. These parameters are streamed via the
LAN network to the RTPIS Lab, where the DT is implemented
to carry out prediction utilizing Al algorithms.

Clemson University RO6 Site Parking Lot
1 MW PV Plant, Weather Station & loTs
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Figure 1. Model of Clemson University’s R-06 Site and DT.

III. IMPLEMENTATION OF DT-PREDICTION USING NEURAL
NETWORKS

Neural networks have proven to excel at PV power
prediction [9]. For the virtual side of the digital twin, two
neural network algorithms were utilized. The MLPNN
architecture consists of a feedforward algorithm, depicted in
Fig. 2. In contrast, the ERNN architecture features a recurrent
algorithm. With ERNNSs, outputs of the hidden layer from the
previous timestep are used as additional inputs at the current
timestep, adding a memory component to the network. A
depiction of ERNN architecture is depicted in Fig. 3. These
networks are presented with different input vectors, where the
MLPNN input vector includes temperature (T), solar
irradiance (SI) and generated PV power (Ppy) of the current
and three previous timesteps. The ERNN only includes present
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temperature, solar irradiance, and generated PV power. In the
ERNN, previous values from the decision vector are included
in the input vector. For both networks, input and output layers
consist of linear neurons and the hidden layer consists of 25
sigmoidal neurons.
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Context layer loops decision vector back into input.

Both neural networks are trained with a historical dataset
consisting of 86 days ranging from March 2023 to June 2023.
Days missing significant windows of data were discarded, but
other methods such as data interpolation could be used to
preserve data [10]. The dataset of spring to early summer
provides a range of solar irradiance and temperature profiles.
Different seasons offer different ranges of solar irradiance and
temperature but ultimately different profile categories are
utilized to better account for differences in weather patterns.

Alternate sites with different weather conditions will require a
separate digital twin model, but all required data can be
obtained through a similar weather station. Input values are
normalized to the range [0, 1]. The backpropagation algorithm
discussed in [11] is used as the training method for both types
of neural networks. The input vector (x) is assembled using 7,
S1, and Ppy at time t. Then, the input weights (w) are multiplied
by the input vector to compute the activation matrix (a), as
shown in (1).

a=w x x(t) (1)
This is directly followed by computing the decision matrix (d)
using a sigmoid function given in (2).

1

d == @
The next step is calculating the predicted PV power (Ppy ).
This is done by multiplying the output weights (v) by the
decision matrix as seen in (3).
Poy(t+ At) =v xd (3)

Backpropagation uses the error (e, ) between actual PV
plant power (Ppy) and its predicted values as shown in (4) to
calculate the neural network weight changes. The trained
weights are then used in forward propagation to compute the
predictions.

ey = Poy(t) — Ppy(2) 4)

The prediction error is then used to calculate the activation

error (e,) and the decision error (e,) as seen in (5) and (6),
respectively.

eq=v"e, Q)

e, =d(1—d)ey (6)

The activation error and decision error are then used to
calculate input and output weight updates (Aw and Av) using
momentum (y,,) and learning rate (y,) as seen in (7) and (8).

W(t+A4t) =w(t) + Y * Aw(t—1) + yyx e, xd"  (7)
VIt A =V(O) + Vi * Av(t—1) + ygxegxx"  (8)

The weights are then used in forward propagation to compute
the predictions.

To better account for the volatility of solar irradiance, each
day in the historical training dataset is classified into four
different categories based on its generated PV power: sunny,
partly cloudy, moderately cloudy, and mostly cloudy. Since
each category of day has a distinct measured PV profile, an
optimized network with tuned parameters is developed and
utilized. In addition to categorizing weather profiles of
individual days, attention-based training is utilized for further
parameter fine-tuning during the training stage. Attention-
based training focuses on improving intervals of high error by
amplifying the error signal by a constant greater than one.
Therefore, the modified error signal is much larger over these
intervals, increasing the impact during backpropagation.
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IV. RESULTS AND DISCUSSION

The testing data consists of the final seventeen days of the
dataset. Four specific days were chosen based on their weather
profiles. Classifications are as follows: May 25th and 26th as
partly cloudy, May 27th as moderately cloudy and May 28th
as mostly cloudy. Each of these days offers a variety of
temperature, solar irradiance and measured generated PV
power generation. Figs. 4 and 5 show DT-predictions utilizing
MLPNNs and Figs. 6 and 7 show DT-predictions utilizing
ERNNS, both with a 5-minute time horizon.
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Figure 4. MLPNN 5 Minute DT-Prediction of May 25th-26th, 2023.
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Figure 5. MLPNN 5 Minute DT-Prediction of May 27th-28th, 2023.

- Measured PV Power
— Predicted PV Power

9.0 & 8 o
» N m  ©
T T

PV Qutput (MW)
o
(4]
:

04
0.3
0.2
0.1F
0 I L L
May 25, 00:00 May 25, 12:00 May 26, 00:00 May 26, 12.00 May 27, 00:00
2023

Figure 6. ERNN 5 Minute DT-Prediction of May 25th-26th, 2023.
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Figure 7. ERNN 5 Minute DT-Prediction of May 27th-28th, 2023.

As can be seen in Figs. 4-7, ERNNs appear to outperform
MLPNNS for predictions on a 5-minute time horizon. Table |
shows that MLPNNs have lower MAPEs and MSEs than
ERNN:Ss for partially cloudy days. However, ERNNs perform
better for mostly cloudy days and perform on par with
MLPNNSs on sunny and moderately cloudy days. This is due to
the high volatility of the solar irradiance coupled with the
MLPNN’s ability to adapt more quickly to change. The
different neural networks can be used in an ensemble to
generate predictions with higher degrees of accuracy.
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Figure 8. MLPNN 20 Minute DT-Prediction of May 25th-26th, 2023.
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Figure 9. MLPNN 20 Minute DT-Prediction of May 27th-28th, 2023.
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Figure 10. ERNN 20 Minute DT-Prediction of May 25th-26th, 2023.
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Figure 11. ERNN 20 Minute DT-Prediction of May 27th-28th, 2023.

PERFORMANCES BETWEEN MLPNNS AND ERNNS
ARE COMPARABLE, AND THEY EXCEL IN DIFFERENT ASPECTS
OF THE PV PROFILES. IT CAN BE SEEN FROM FIGS. 8-11 THAT
THE ERNNS WERE ABLE TO MATCH THE SHAPES OF THE
CURVES BETTER THAN THE MLPNNS, BUT STRUGGLED TO
REACH THE PEAKS OF THE CURVES. TABLES I AND II SHOW THE
DAYTIME MEAN SQUARE ERROR (MSE) AND THE DAYTIME
MEAN ABSOLUTE PERCENT ERROR (MAPE) FOR BOTH 5- AND

20-MINUTE PREDICTIONS.TABLEIL.  NEURAL NETWORK
PERFORMANCE COMPARISON (5 MINUTES)

5-Minute MLPNN ERNN

Time

Horizon

Category Daytime Daytime Daytime Daytime
MSE MAPE MSE MAPE

Sunny 4.40 x 107 13.90% 7.20 x 107 14.12%

Partly 229 %102 25.78% 3.41 %107 31.62%

Cloudy

Moderately | 2.53 x 107 30.63% 1.29 x 10 31.22%

Cloudy

Mostly 7.60 x 107 23.67% 4.00 x 10° 14.05%

Cloudy

TABLE II. NEURAL NETWORK PERFORMANCE COMPARISON (20 MINUTES)

20-Minute MLPNN ERNN

Time

Horizon

Category Daytime Daytime Daytime Daytime
MSE MAPE MSE MAPE

Sunny 9.00 x 1073 32.83% 2.95 %102 60.16%

Partly 4.20 x 102 52.51% 4.40 x 10 55.16%

Cloudy

Moderately | 3.15 % 102 57.16% 2.23 x 102 64.78%

Cloudy

Mostly 1.71 x 102 110.06% 1.17 x 10 54.51%

Cloudy

V. CONCLUSION

In this paper, digital twins of a | MW PV plant at Clemson
University have been developed for short-term PV power
predictions. The DTs are implemented using data from the PV
plant using artificial intelligence algorithms. The performances
of static and dynamic neural networks based on weather
classification and prediction horizon length have been
compared. MLPNNs and ERNNs excel in different categories
for prediction. Future work for improving the prediction DTs
includes investigating distributed neural network architectures
such as cellular computational networks. Furthermore,
advanced applications in operations and controls of digital
twins may be considered as well.
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