Openlris - An Open Source Framework for Video-Based Eye-Tracking Research and
Development
Roksana, Sadeghi*

Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley
Ryan, Ressmeyer

Bioengineering, University of Washington
Jacob, L., Yates

Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley
Jorge, Otero-Millan

Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley

Eye-tracking is an essential tool in many fields, yet existing solutions are often limited for customized applications due to cost or lack of
flexibility. We present Openlris, an adaptable and user-friendly open-source framework for video-based eye-tracking. Openlris is
developed in C# with modular design that allows further extension and customization through plugins for different hardware systems,
tracking, and calibration pipelines. It can be remotely controlled via a network interface from other devices or programs. Eye movements
can be recorded online from camera stream or offline post-processing recorded videos. Example plugins have been developed to track eye
motion in 3-D, including torsion. Currently implemented binocular pupil tracking pipelines can achieve frame rates of more than S00Hz.
With the Openlris framework, we aim to fill a gap in the research tools available for high-precision and high-speed eye-tracking, especially

in environments that require custom solutions that are not currently well-served by commercial eye-trackers.

CCS CONCEPTS ¢ Software and its engineering ¢ Software notations and tools ¢ Development frameworks and

environments * Application specific development environments

Additional Keywords and Phrases: Eye-tracking, eye movement, open-source

1 INTRODUCTION

Eye tracking technology is used in an ever-growing list of fields. In basic science research, the study of eye movements
contributes to a comprehensive understanding of various facets of human brain function, such as vision [7], vestibular
processing [5, 17], attention [13], motor learning [20], and emotions [28]. In clinical settings, eye tracking systems play a
crucial role in medical diagnosis across various disciplines including neurology [15], ophthalmology [8], otology [14],
psychology [24], and psychiatry [23]. The field of human-computer interfaces extensively relies on eye trackers to enhance
communication between humans and computers/robots [1, 6]. Additionally, marketing research harnesses the power of eye

tracking systems to objectively evaluate the efficacy of different advertisements or designs to capture and retain attention.
3]

There is a wide variety of eye tracking technologies developed over the last decades. Each with unique features and
compromises tailored to specific applications. Some are small and can be head mounted [10], others are large taking up
almost entire room [16], some are expensive and high frequency, while others are affordable and low frequency. Eye
tracking systems differ significantly in the range of eye movement amplitudes they can optimally measure with some of
them only being able to measure large eye movements, others only small movements, and very few systems performing
well over small and large movements [22]. Recently, video-based eye tracker systems, in particular, have become the most
common choice in head mounted or desk mounted configurations because they offer valuable features at a potentially
lower cost than other types of eye trackers. A high-quality video-based eye tracker can deliver adequate precision, high-
speed real-time tracking, and a wide detection range for eye movements from less than 0.5 degrees to more than 20
degrees[22]. However, options for commercially available video-based eye trackers are limited, expensive and are often
closed systems and may lack flexibility and customizability for specialized applications (for example EyeLink ®, Tobii,
and Eyegaze Inc.).

As an alternative to commercial eye trackers, many open-source eye tracking solutions have surfaced addressing either
the customization or cost-effectiveness needed in specialized research applications. These solutions are software based but
often include recommendations for commercial hardware components so an eye tracker can be built and used with the
software. The hardware components necessary for video-based eye tracking are typically: a video camera with a lens, an
infrared (IR) illuminator, an IR filter, and a computer to acquire and process the video. Table 1 compares the features of
different open-source software solutions available at the moment for video-based eye trackers. These solutions vary greatly
in the set of features they provide. Only some of can collect data at a high frequency (500Hz or more). Many are
implemented for a particular hardware configuration and will not be compatible with other hardware. Some only process
the camera images online and do not allow for the recording of videos and most do not allow post-processing videos. These
two features are especially useful in the development of new tracking algorithms and pipelines. Finally, not all of them
include a graphical user interface. As shown in Table 1, a comprehensive platform offering high-performance,
customizable features for different applications, along with a user-friendly graphical interface is still missing.

Table 1 Comparing available open-source remote eye tracking systems.

Name Year Frame Hardware Post- Binocular Graphical Software
Rate (Hz) Compatibility =~ Process User- Language
Interface
ITU Gaze Tracker [30] 2010 30 Yes No No Yes C#
GazeParser [21] 2013 500 Yes NA Yes No Python
Pupil [12] 2014 22 No No Yes NA Python and
C
Oculomatic[29] 2016 600 Yes No No Yes C++
EyeRecToo[19] 2017 125 Yes No Yes Yes C++
openEyeTrack [4] 2019 715 No NA NA NA C++
DeepVOG [26] 2019 130 No No No No Python
RemoteEye [9] 2020 500 No Yes Yes Yes C/C++

EyeLoop [2] 2021 1000 Yes No No Yes Python

Using DeepLabCut [27] 2021 30 No No Yes NA Python
A low-cost, high-performance video- 2021 395 No No Yes NA C++
based binocular eye tracker for

psychophysical research [11]

Openlris 2024 500 Yes Yes Yes Yes C#

Here we introduce an open-source, extendable, high-performance, and user-friendly platform for video-based eye
tracker systems that meets the reliability and speed requirements for research. Our framework, Openlris, implements many
features that are commonly required for eye-tracking systems, including multi-threading, data buffering, video and data
recording, logging, graphical interfacing, and network communication. What separates Openlris from other solutions is its
modular design. By leveraging a plugin-based architecture, Openlris enables developers to extend it to work with any
hardware system and develop and deploy custom hardware configurations, tracking pipelines, and calibration routines.
Here, we describe the structure and features of Openlris and explain the options for developing new customizable plugins.
At the end, we report examples of the performance of Openlris with sample plugins for pupil and torsional tracking.

2 OPENIRIS FEATURES

Openlris is written in the C# programming language, and relies on OpenCV [31] and its wrapper for C# emguC to achieve real-time
binocular performance exceeding 500 frames per second. C# provides a good balance between ease of development and performance.
Openlris currently targets .Net Framework 4.8 and is developed as a Windows application, but future versions will be upgraded to target
newer versions of .Net to become cross-platform and run under Windows, Linux and macOS. Openlris is available at:

https://github.com/ocular-motor-lab/Openlris

2.1 Core features

Openlris already implements a set of core features common to most eye-tracking systems. This architecture allows plugin
developers to focus on the image processing techniques for tracking or the hardware integration without the need to
implement the often more tedious requirements involving user interface, real-time multithreading, data storage, error
handling, and configuration.

2.1.1 User Interface:

The graphical interface of Openlris, shown in Figure 1, is designed for user-friendly navigation and control. It features a
setup tab that displays eye images in real-time, in addition to adjustable settings defined by the tracking pipeline plugin
being used. The viewer tab presents eye data traces alongside corresponding videos, offering a comprehensive view of the
tracking output. The calibration tab facilitates straightforward monitoring and adjustment of calibration process, with an

interface defined by the calibration plugin in use. A log tab is also available to display errors or messages. Finally, a

configuration window comprises three columns that allow users to set parameters for Openlris in general or for each of the
three main plugins.

For advanced users and developers, a debug mode can be enabled which offers an additional tab with a detailed view
of tracked objects at different processing stages. This feature aids in debugging the tracking pipeline as well as providing

Horizontal §

Vertical

Torsion

i

15100
o | 150

et P 15306 g B aong i b, o) %) s et iy Geabbing s 1501542 7200450 Srrmes 41208 Drogpecd ittt Tackimg [Frames b, Dropped (59] 11 3me | Nt reconding

Figure 1 Example print-screen of the Openlris a) main window setting tab with adjustable parameters, b) configuration window to
select the plugins, c) view tab that shows online traces, and d) debug tab that can be used for debugging pipeline performance.

insights into the system's performance. The plugin developer does not need to implement the user interface elements, they
just need to indicate that a particular image during any intermediate processing step should be added to the debug tab.

2.1.2 Remote Control:

In addition to its graphical user interface, Openlris offers alternative methods of interaction. Openlris can be utilized purely
as a library, providing an API to incorporate it in any other software. Alternatively, Openlris features network interfaces
to remotely communicate with other pieces of software via UDP, TCP, or HTTP protocols. This enables synchronization
with other programs written in different languages such as Python or Matlab running on different devices. This feature

allows remote control of the eye-tracking system, providing flexibility for experiment designs, such as running experiments
in complete darkness or implementing gaze contingent displays.

2.1.3 Offline / Batch Analysis:

Openlris offers offline and batch analysis features, allowing users to reprocess recorded videos with different parameters

to refine eye traces. To reprocess multiple videos, the user can adjust the parameters for each video and process all videos
in a batch.

2.1.4 Recording:

Data recording includes two primary outputs: a text file containing the results of frame-by-frame tracking, and, optionally,
the raw videos obtained from the cameras. The videos are recorded in raw format to allow for their post processing without
any loss, which is fundamental in the development and optimization of new tracking methods. This option requires storage
solutions capable of the required transfer rates. Openlris will inform the user if not all the frames are being recorded but it
will continue to track.

2.1.5 Buffering and Multithreading:

Openlris natively implements an image buffer which connects the video acquisition and image processing plugins. Due to
the variation in processing time caused by non-constant-time algorithms or CPU usage by other processes, some frames
may take substantially longer to process than the sampling rate of the eye cameras. Openlris can often eliminate frame
drops — which are caused by these spikes in processing time — by storing up to a set number of unprocessed frames in a
first-in-first-out buffer. By reducing the size of this image buffer, it is possible to prioritize real-time latency at the risk of
dropping frames.

Additionally, Openlris runs plugin-defined image processing pipelines in contained threads, which allows for
otherwise single-threaded algorithms to leverage multiple processing cores without special development. The number of

threads can be easily adjusted by the user using the configuration window.

2.1.6 Configuration:

Openlris stores all configurations, including system and plugin settings, as a serializable class. This architecture allows
new plugins to define settings simply by defining their type and default value as properties in a class that inherits from a
base settings class. Openlris then automatically loads and interprets these settings at run time using reflection, provides a
user interface to edit their values, and saves the settings in a text file. All of these features are handled by core structure,
eliminating complexity during plugin development.

2.2 Plugins

The modular structure of Openlris provides the flexibility of building three plugins (Figure 2a) that can be loaded into
Openlris as independent libraries without the need to rebuild the entire platform, and it can be interchanged at run time.
First, it allows for plugins for different video camera hardware and configurations, accepting adjustable camera features
such as frame rate, frame size, orientation, etc., depending on the features available in the user’s camera settings. Second,
plugins to add or modify different tracking methods for measuring pupil movements, iris rotations, reflection movements,

or even head movements. A third type of plugin is used for calibration methods.

A) Q)

17 Eye Tracking Ul —l

. Real-Time
Playback Video Tracking
[L . v T
H io
| Hardware Tracking Calibration e
E Systems Pipelines Pipelines 5
L= e e f—— :
v
Recording
B) D) IR llluminator

Right Eye Camera Left Eye Camera

3D-Printed Base
IR llluminator

_ | Experiment Chair for
Non-Human Primate

Figure 2 a) Simplified structure of Openlris program, b) Example video-based eye tracking setup that used in Openlris desktop system
with two cameras and one IR illuminator ¢) Micromedical head-mounted eye tracking system by Intracoustics [32] and d) setup used for
non-human primate studies

Table 2 List of methods to be implemented by the plugins.

Plugin Abstract / Virtual Method Description
Hardware Systems CreateAndStartCameras Initializes the cameras to start capturing frames for them.
CreateVideos Opens the video files to start capturing frames for them.
PreProcessImages Prepares the images after they are grabbed from the videos or cameras and

before they are processed by the tracking pipeline. This can be used to split,

crop or rotate the images depending on the hardware configuration.
PostProcessImagesAndData Receives the images and also the output eye data from the pipeline for any

additional post processing or any additional data from the system to append.

OpenEyeTrackingSystemUI Opens a custom UI for this eye tracking system.

Tracking Pipelines Process Gets the current image and processes it to obtain the eye data.
UpdatePipelineEyelmage Updates the image of the eye on the setup tab allowing the pipeline to
customize the display of the eye image.

GetQuickSettingsList Get the list of tracking settings that will be shown as sliders in the setup UL

Calibration Pipelines ~ ProcessForEyeModel Process the eye data from the current frame towards setting a new physical
model.
ProcessForReference Process the eye data from the current frame towards setting a new reference
eye position.

GetCalibrationUI Gets the custom user interface of the calibration pipeline

2.2.1 Camera hardware systems

The main function of Openlris’ hardware system plugins is to configure and initialize user-selected camera(s) to capture
raw images. Because different cameras have unique settings associated with their characteristics, developers have the
flexibility to initialize, start, and capture images from their chosen camera(s) by providing specific code snippets. In
addition, the design of the Openlris user interface enables users to create options for camera(s) settings to be dynamically
changed during online tracking.

As an example of a hardware system for a binocular eye tracker, we have developed a plugin to work with two Blackfly
S USB3 04S2M Flir cameras (with a resolution of 720 x 540 and a frequency of up to 500 frames per second; [33]), each
paired with a 50mm focal length lens and an IR filter. A 3D-printed base holds the cameras and an infrared illuminator.
(Figure 2b)

Within the Openlris systems plugin, we take advantage of the camera API to synchronize the capture of the two cameras
via hardware connection. In this case, the left-eye camera is assigned as Primary, which sends a signal to the right eye
camera to indicate when it should open the shutter and capture a new image. This ensures perfect temporal alignment of
the two cameras. Additionally, within the plugin, the user interface was modified to add an option for setting the tracking
frequency as a one-time adjustable parameter at the onset of the tracking process before camera initialization. Moreover,
the gain of the cameras and region of interest is adjustable, allowing real-time modifications during tracking.

Figure 2b, c, and d display some of the different configurations that Openlris has been adapted for. These include
desktop systems with one or two cameras, head mounted goggles, and animal recording rigs.

2.2.2 Tracking pipelines

The main function of tracking pipeline plugins is to process the images and extract from them relevant features about eye
movements. Each camera frame enters the image processing pipeline, which may employ the image processing libraries,
such as "OpenCV" [31] and its wrapper for C# emguC, for locating and extracting objects of interest. Similar to hardware
systems settings, the Openlris allows developers to add features to the user interface for adjusting image processing settings
in real-time during tracking such as brightness thresholds, or minimum and maximum sizes for objects being tracked.
(Table 2)

For instance, a tracking pipeline is already implemented within Openlris to locate the pupil in an infrared camera frame
using different methods including centroid, convex hull or ellipse fitting. In addition to the pupil tracking, the pipeline
includes detecting corneal reflections (also known as glints) for pupil — CR method, and tracks the iris for torsional eye
movements. ([18]; Figure 3b,c)

An example of externally developed plugins is provided by the independent contributor (second author), who has
developed a dual-Purkinje eye tracking pipeline for Openlris that detects reflections of the illuminator from the cornea

surface and the inner surface of the lens ([25]; Figure 3a).

Position (degree)
T

Horizontal

Vertical

LefiEye
RightEye

Torsion

L L L
5 55 6 6.5 7 75 8

Figure 3 Example of detecting a) pl and p4 shown in red circles for digital DPI, b) corneal reflection in green and pupil in yellow
contour for pupil — CR method, and c¢) detecting iris pattern for tracking torsional eye movement. d) Example eye traces in degree for
left eye in blue and right eye in red color.

2.2.3 Calibration pipelines

The main function of calibration pipeline plugins is to establish a mapping between the features extracted by the tracking
pipeline and the actual motion of the eye. This mapping can be achieved either through image and geometric analysis or
by analyzing behavior in interaction with a display. Initially, raw eye-tracking data is represented in units of pixel on the
image. A calibration method translates these pixel values into degrees, corresponding to visual angles.

The calibration pipelines in Openlris facilitate this conversion process by allowing users to define their own
calibration methods. (Table 2) These methods can be based on established eye models or implemented through regression
models that correlate known locations with corresponding eye positions. This modular approach empowers users to
customize the calibration process to their specific experimental needs, ensuring accurate and meaningful conversion of
pixel data to visual angles. The calibration pipeline implemented for behavioral calibration also includes network
communication between a computer presenting the targets and a computer executing Openlris to record the eye positions.

3 EXAMPLE USAGE

The goal of this article is to present the framework and its modular structure and not providing an extensive performance
analysis because it ultimately depends on the specific plugins being used. As a reference we provide some example
performance measurement for processing time and data quality, from tests conducted on a simple configuration for
binocular pupil tracking utilizing two cameras and one illuminator. A participant looked at the central dot for a total of 6
minutes (with 20s intervals and Ss rests). Openlris recorded the data at 500 Hz and was controlled within a Matlab R2021b
program on a PC with processor of i9-11900 at 2.50 GHz, and installed RAM of 64.0 GB.

The study was approved by the University of California, Berkeley Institutions IRB and followed the tenets of the
Declaration of Helsinki. The subject signed an informed consent form to participate after being informed of the goals and
methods of the study.

3.1 Process Time

For images of size 720 x 540 pixels, using a maximum of five processing threads the baseline average time from a frame
arriving at the computer to the completion of data processing, without any image processing, was 0.14 + 0.18 ms (mean +

standard deviation). Introducing a simple pupil tracking, centroid method, the processing time was 0.79 £+ 0.70 ms.

Using more advanced tracking methods for pupil detection, such as Ellipse fitting, the processing time increased to 2.50
+ 1.80 ms, tracking pupil and corneal reflection increased it to 3.70 + 3.20 ms and tracking pupil and torsional eye

movement to 9.70 £ 6.70 ms. The recordings included zero percent dropped frame in all conditions.

3.2 Data Quality

The saved video from one session was post-processed at 500 Hz with pupil detection (using ellipse fitting method) and
torsion detection. Figure 3d shows an example horizontal, vertical and torsional eye positions. The root mean square eye
velocity in horizontal (h) and vertical (v) directions with pupil were: h 18.55 deg/s, v 40.98 deg/s, and the root mean square

eye velocity for torsion was: 19.99 deg/s.

4 SUMMARY

In conclusion, Openlris is a user-friendly and adaptable tool for eye-tracking research. Its modular design allows easy
customization, and key features like the remote control and batch analysis enhance its usability. Looking forward,
expanding the tracking algorithms available and fostering collaborative development could further enhance its utility.
Openlris stands as a valuable and versatile resource for eye-tracking studies, balancing simplicity with the flexibility
needed for various research applications.

ACKNOWLEDGMENTS

This research was supported by the National Eye Institute NEI ROOEY027846 and National Science Foundation NSF
2107049.

REFERENCES

[1] Isayas Berhe Adhanom, Paul MacNeilage, and Eelke Folmer. 2023. Eye Tracking in Virtual Reality: a Broad
Review of Applications and Challenges. Virtual Reality 27, 2 (June 2023), 1481-1505.
https://doi.org/10.1007/s10055-022-00738-z

[2] Simon Arvin, Rune Nguyen Rasmussen, and Keisuke Yonehara. 2021. EyeLoop: An Open-Source System for
High-Speed, Closed-Loop Eye-Tracking. Frontiers in Cellular Neuroscience 15, (2021). Retrieved January 26,
2024 from https://www.frontiersin.org/articles/10.3389/fncel.2021.779628

[3] Luis-Alberto Casado-Aranda, Juan Sanchez-Fernandez, and José-Angel Ibafiez-Zapata. 2023. Evaluating
Communication Effectiveness Through Eye Tracking: Benefits, State of the Art, and Unresolved Questions.
International Journal of Business Communication 60, 1 (January 2023), 24—61.
https://doi.org/10.1177/2329488419893746

[4] Jorge Paolo Casas and Chandramouli Chandrasekaran. 2019. openEyeTrack - A high speed multi-threaded eye
tracker for head-fixed applications. J Open Source Softw 4, 42 (2019), 163 1. https://doi.org/10.21105/joss.01631

[5] Kathleen E. Cullen. 2023. Chapter 3 - Vestibular motor control. In Handbook of Clinical Neurology, David S.
Younger (ed.). Elsevier, 31-54. https://doi.org/10.1016/B978-0-323-98818-6.00022-4

[6] Matthieu Duvinage, Thierry Castermans, and Thierry Dutoit. 2011. Control of a lower limb active prosthesis with
eye movement sequences. In 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind,
and Brain (CCMB), April 2011. 1-7. https://doi.org/10.1109/CCMB.2011.5952116

[7] Agostino Gibaldi and Martin S. Banks. 2019. Binocular Eye Movements Are Adapted to the Natural
Environment. J. Neurosci. 39, 15 (April 2019), 2877-2888. https://doi.org/10.1523/JNEUROSCI.2591-18.2018

[8] Alessandro Grillini, Remco J. Renken, Anne C. L. Vrijling, Joost Heutink, and Frans W. Cornelissen. 2020. Eye
Movement Evaluation in Multiple Sclerosis and Parkinson’s Disease Using a Standardized Oculomotor and
Neuro-Ophthalmic Disorder Assessment (SONDA). Frontiers in Neurology 11, (2020). Retrieved January 26,
2024 from https://www.frontiersin.org/articles/10.3389/fheur.2020.00971

Benedikt Hosp, Shahram Eivazi, Maximilian Maurer, Wolfgang Fuhl, David Geisler, and Enkelejda Kasneci.
2020. RemoteEye: An open-source high-speed remote eye tracker. Behav Res 52, 3 (June 2020), 1387-1401.
https://doi.org/10.3758/s13428-019-01305-2

Zehao Huang, Xiaoting Duan, Gancheng Zhu, Shuai Zhang, Rong Wang, and Zhiguo Wang. 2024. Assessing the
data quality of AdHawk MindLink eye-tracking glasses. Behav Res (January 2024).
https://doi.org/10.3758/s13428-023-02310-2

Daria Ivanchenko, Katharina Rifai, Ziad M. Hafed, and Frank Schaeffel. A low-cost, high-performance video-
based binocular eye tracker for psychophysical research. J Eye Mov Res 14,3, 10.16910/jemr.14.3.3.
https://doi.org/10.16910/jemr.14.3.3

Moritz Kassner, William Patera, and Andreas Bulling. 2014. Pupil: an open source platform for pervasive eye
tracking and mobile gaze-based interaction. In Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct Publication (UbiComp ’14 Adjunct), September 13, 2014.
Association for Computing Machinery, New York, NY, USA, 1151-1160.
https://doi.org/10.1145/2638728.2641695

Todd A. Kelley, John T. Serences, Barry Giesbrecht, and Steven Yantis. 2008. Cortical Mechanisms for Shifting
and Holding Visuospatial Attention. Cerebral Cortex 18, 1 (January 2008), 114-125.
https://doi.org/10.1093/cercor/bhm036

Athanasia Korda, David S. Zee, Thomas Wyss, Ewa Zamaro, Marco D. Caversaccio, Franca Wagner, Roger
Kalla, and Georgios Mantokoudis. 2021. Impaired fixation suppression of horizontal vestibular nystagmus during
smooth pursuit: pathophysiology and clinical implications. European Journal of Neurology 28, 8 (2021), 2614—
2621. https://doi.org/10.1111/ene.14909

R. John Leigh and David S. Zee. 2015. The Neurology of Eye Movements (5th ed.). Oxford University Press.
https://doi.org/10.1093/med/9780199969289.001.0001

Benjamin Moon, Martina Poletti, Austin Roorda, Pavan Tiruveedhula, Soh Hang Liu, Glory Linebach, Michele
Rucci, and Jannick P. Rolland. 2024. Alignment, calibration, and validation of an adaptive optics scanning laser
ophthalmoscope for high-resolution human foveal imaging. Appl. Opt., AO 63, 3 (January 2024), 730-742.
https://doi.org/10.1364/A0.504283

Jorge Otero-Millan and Amir Kheradmand. 2016. Upright Perception and Ocular Torsion Change Independently
during Head Tilt. Front Hum Neurosci 10, (November 2016). https://doi.org/10.3389/fnhum.2016.00573

Jorge Otero-Millan, Dale C. Roberts, Adrian Lasker, David S. Zee, and Amir Kheradmand. 2015. Knowing what
the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for
measuring ocular torsion. Journal of Vision 15, 14 (October 2015), 11. https://doi.org/10.1167/15.14.11

Thiago Santini, Wolfgang Fuhl, David Geisler, and Enkelejda Kasneci. 2017. EyeRecToo: Open-source Software
for Real-time Pervasive Head-mounted Eye Tracking. VISIGRAPP (6: VISAPP) (2017), 96-101.

Ehsan Sedaghat-Nejad and Reza Shadmehr. 2021. The cost of correcting for error during sensorimotor adaptation.
Proceedings of the National Academy of Sciences 118, 40 (October 2021), €2101717118.
https://doi.org/10.1073/pnas.2101717118

Hiroyuki Sogo. 2013. GazeParser: an open-source and multiplatform library for low-cost eye tracking and
analysis. Behav Res 45, 3 (September 2013), 684—695. https://doi.org/10.3758/s13428-012-0286-x

Scott B. Stevenson, Austin Roorda, and Girish Kumar. 2010. Eye tracking with the adaptive optics scanning laser
ophthalmoscope. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (ETRA '10),
March 22, 2010. Association for Computing Machinery, New York, NY, USA, 195-198.
https://doi.org/10.1145/1743666.1743714

Junichi Takahashi, Yoji Hirano, Kenichiro Miura, Kentaro Morita, Michiko Fujimoto, Hidenaga Yamamori, Yuka
Yasuda, Noriko Kudo, Emiko Shishido, Kosuke Okazaki, Tomoko Shiino, Tomohiro Nakao, Kiyoto Kasai, Ryota
Hashimoto, and Toshiaki Onitsuka. 2021. Eye Movement Abnormalities in Major Depressive Disorder. Frontiers
in Psychiatry 12, (2021). Retrieved January 26, 2024 from
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.673443

Gail J Walker-Smith, Alastair G Gale, and John M Findlay. 2013. Eye Movement Strategies Involved in Face
Perception. Perception 42, 11 (November 2013), 1120-1133. https://doi.org/10.1068/p060313n

Ruei-Jr Wu, Ashley M. Clark, Michele A. Cox, Janis Intoy, Paul C. Jolly, Zhetuo Zhao, and Michele Rucci. 2023.
High-resolution eye-tracking via digital imaging of Purkinje reflections. Journal of Vision 23, 5 (May 2023), 4.
https://doi.org/10.1167/jov.23.5.4

[27]

(28]

Yuk-Hoi Yiu, Moustafa Aboulatta, Theresa Raiser, Leoni Ophey, Virginia L. Flanagin, Peter zu Eulenburg, and
Seyed-Ahmad Ahmadi. 2019. DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience
using deep learning. Journal of Neuroscience Methods 324, (August 2019), 108307.
https://doi.org/10.1016/j.jneumeth.2019.05.016

Niklas Zdarsky, Stefan Treue, and Moein Esghaei. 2021. A Deep Learning-Based Approach to Video-Based Eye
Tracking for Human Psychophysics. Frontiers in Human Neuroscience 15, (2021). Retrieved January 26, 2024
from https://www.frontiersin.org/articles/10.3389/fnhum.2021.685830

Xiaoying Zhang, Ruosong Chang, Xue Sui, and Yutong Li. 2022. Influences of Emotion on Driving Decisions at
Different Risk Levels: An Eye Movement Study. Frontiers in Psychology 13, (2022). Retrieved January 26, 2024
from https://www.frontiersin.org/articles/10.3389/fpsyg.2022.788712

Jan Zimmermann, Yuriria Vazquez, Paul W. Glimcher, Bijan Pesaran, and Kenway Louie. 2016. Oculomatic:
High speed, reliable, and accurate open-source eye tracking for humans and non-human primates. Journal of’
Neuroscience Methods 270, (September 2016), 138—146. https://doi.org/10.1016/j.jneumeth.2016.06.016

ITU Gaze Tracker. Retrieved from https://eyecomtec.com/3104-ITU-Gaze-Tracker

OpenCV. Retrieved from https://opencv.org/releases/

Micromedical head-mounted eye tracking system by Intracoustics. Retrieved from
https://www.interacoustics.com/balance-testing-equipment/visualeyes

Blackfly S USB3. Retrieved from https://www.flir.com/products/blackfly-s-usb3/?model=BFS-U3-04S2M-
C&vertical=machine+vision&segment=iis

	1 Introduction
	2 Openiris features
	2.1 Core features
	2.1.1 User Interface:
	2.1.2 Remote Control:
	2.1.3 Offline / Batch Analysis:
	2.1.4 Recording:
	2.1.5 Buffering and Multithreading:
	2.1.6 Configuration:

	2.2 Plugins
	2.2.1 Camera hardware systems
	2.2.2 Tracking pipelines
	2.2.3 Calibration pipelines

	3 Example Usage
	3.1 Process Time
	3.2 Data Quality

	4 Summary

