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Abstract—Renewable energy generation sources (RESs) are 
gaining increased popularity due to global efforts to reduce carbon 
emissions and mitigate effects of climate change. Planning and 
managing increasing levels of RESs, specifically solar photovoltaic 
(PV) generation sources is becoming increasingly challenging. 
Estimations of solar PV power generations provide situational 
awareness in distribution system operations. A digital twin (DT) 
can replicate PV plant behaviors and characteristics in a virtual 
platform, providing realistic solar PV estimations. Furthermore, 
neural networks, a popular paradigm of artificial intelligence may 
be used to adequately learn and replicate the relationship between 
input and output variables for data-driven DTs (DD-DTs).  In this 
paper, DD-DTs are developed for Clemson University’s 1 MW 
solar PV plant located in South Carolina, USA to perform realistic 
solar PV power estimations. The DD-DTs are implemented 
utilizing multilayer perceptron (MLP) and Elman neural 
networks. Typical practical results for two DD-DT architectures 
are presented and validated. 

Keywords—Digital twin, neural network, power estimation, solar 
photovoltaic 

I. INTRODUCTION 
The electric power generation industry is evolving because 

of the ever-rising energy demand, global decarbonization 
legislation, and heightened awareness of the negative effects of 
climate change. Therefore, utility companies are prioritizing the 
development and inclusion of clean renewable energy sources 
(RESs) in their generation technology portfolios. Solar 
photovoltaic (PV) power plants are at the forefront of RES 
technology due to their scalability and distributed energy 
resource (DER) capability. To elaborate, solar PV plants may be 
utilized in rooftop settings supporting localized residential 
loads, campus and community microgrids and industrial farm 
arrays for clean energy generation. In any of these 
configurations, solar PV plants are subject to challenges that 
arise in planning and management of these systems. In this 
context, PV power estimations may be used to improve 
situational awareness in distribution control centers by 
providing insights to the dynamic behaviors of PV plants that 
arise from variable weather conditions. The estimations are 
computed using meteorological data and mathematical 
equations or advanced computational methods. Solar PV power 
estimations can be utilized in a variety of control center 
applications including expected output comparisons, everyday 

system health and degradation monitoring, maintenance 
scheduling, aiding in return on investment (ROI) calculations, 
and future site planning [1]. 

 The concept of ‘twins’ was initially introduced in product 
life cycle testing during NASA’s Apollo space program [2]. 
Digital twins (DTs) were first introduced in the manufacturing 
industry, making a profound impact by enabling the virtual 
representation factories, resources and workforces [2]. Today, 
DTs are gaining progressive popularity in both academia and 
industry settings across multiple disciplines including 
manufacturing, healthcare, aerospace engineering and electrical 
engineering. Within power systems, DTs have been developed 
for applications in utilities, distributed energy management 
systems, operation centers, fault diagnostics and renewable 
energy generators [3]. In each of these disciplines and/or 
applications, DTs have proven to be powerful tools due to their 
ability to represent a physical reality within a virtual 
environment. Data-driven DTs (DD-DTs) are developed and 
implemented based on measured data, providing a reliable 
virtual reproduction of attributes and behaviors of entities in the 
physical world [4]. PV plant DD-DTs offer a platform to 
virtually represent the plant and estimate its power generation. 
Therefore, a reliable, adaptable and up-to-date virtual 
representation of PV plants can be created using DTs to further 
improve understanding of their complex nature and operational 
dynamics in distribution power systems. 

In this paper, the development and implementation of data-
driven digital twins for solar PV power estimations of a 1 MW 
solar PV plant located at Clemson University, South Carolina, 
USA is studied. Two types of neural networks are used to learn 
the relationship between input and output variables from 
measured data, without explicit knowledge of the system. 
Internet of things (IoT) devices provide environmental data 
needed to construct a historical dataset and supply real-time data 
to the DD-DT. Typical results for multilayer perceptron and 
Elman neural networks are presented. 

 The remaining sections of the paper are as follows: Section 
II introduces DTs for solar PV power estimations. Section III 
describes the implementation of DTs. Typical DT results, 
discussions and their applications are presented in Section IV. 
Finally, Section V provides the conclusion and some directions 
for future work. 
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II. DIGITAL TWINS FOR SOLAR PV POWER ESTIMATION

Research and deployment of digital twins are drawing 
attention of the respective communities due to their capabilities
to contribute to efficient operation and management of complex 
systems. DTs are characterized in [4] as consisting of a physical
reality, virtual representation, and interconnection between 
them. Physical realities can be decomposed into the following 
parts: physical system, physical environment and physical 
process. A physical system consists of interacting entities, 
ranging from subcomponents of a single piece of machinery to 
all interconnected systems of a single asset. A physical 
environment refers to the surroundings of which the physical 
system resides and interacts with. Generally, this information is 
sourced with a variety of environmental sensors. Physical 
processes are how the physical system itself interacts with its 
physical environment. In the same manner of the physical 
reality, a virtual representation must include a virtual system, 
environment and process. A virtual system contains data and 
models derived from the physical system. As the name suggests, 
a virtual environment is simply a virtual representation of the 
physical environment. Virtual processes contain computational 
models that accurately characterize a physical process. Finally, 
the data and information are exchanged utilizing the
interconnection component.

Data-driven digital twins (DD-DTs) are built using both 
historical data and real-time data as opposed to using a physics-
based model. DD-DTs provide an up-to-date, reliable virtual 
representation of a physical reality, without explicit knowledge 
of specific physical components [5]. This allows data-driven 
approaches for estimation DTs to be highly adaptable and 
scalable. Through the use of IoT devices, a greater perspective 
of the physical environment may be obtained, further improving 
properties of DD-DTs. The higher the density of these devices, 
the more comprehensive the data will be when building the DD-
DT. Approaches using artificial intelligence (AI) become even 
more adaptable and scalable due to fast learning. AI is able to 
use data captured by IoT sensors to learn the relationships 
between inputs and outputs in the system. The characteristics of 
RESs vary across different locations but can be learned and 
replicated by DD-DTs integrated for these sites.

As DERs continue to increase in volume, their operations 
increase in complexity. RESs such as PV plants wind plants are 
dynamic systems and have variable power output associated 
with weather conditions. Solar PV plants have different 
characteristics and may be similar to others, but no two sites are 
the same [6]. DTs can be implemented at PV sites to gain some
insights to the nonlinear properties, relationships and reactions
in their physical reality. More specifically, a virtual 
representation of these systems may provide increased 
understanding of their components based on the present level of 
abstraction. Furthermore, the progressive penetration of IoT 
devices into power systems simpler methods for DD-DTs to be 
implemented for PV plants with little change to the existing 
infrastructure. This is because IoTs provide an efficient 
approach to data collection, providing real-time environmental 
data for developing a virtual environment. Utilizing AI within
the DTs enables accurate representation of the physical process.
An increased understanding of these qualities introduces a 
source of reliable information, leading to more efficient 

integration, operation, and management of PV plants, in an 
otherwise volatile setting. 

Fig. 1 shows a representation of the implemented DD-DT for 
Clemson University’s R-06 1MW solar PV plant. In Fig. 1, the 
three components characterizing DTs are shown. First, the 
physical reality is shown in the upper portion. Here, the physical 
system consists of the PV plant, weather station and micro-
PMU. Meteorological conditions compose the physical 
environment. Information on the physical environment is 
captured by the IoT devices. These include solar irradiance ( )
and temperature ( ), both measured at the weather station and
PV power measured by the micro-PMU ( ). The physical 
process is additionally represented here with the PV panels and 
corresponding power inverters. Clemson University’s local area 
network (LAN) provides the interconnection between physical 
reality at the R-06 site to the DD-DTs, implemented in the Real-
Time Power and Intelligent Systems (RTPIS) Laboratory. Here, 
the virtual representation comes to life, as the DD-DT 
characterizes the physical system, environment and processes.

Fig. 1. Digital twin of the R-06 parking lot PV plant. The physical reality 
consists of 1 MW PV plant, weatherstation and micro-PMU.

III. IMPLEMENTATION OF ESTIMATION DIGITAL TWIN

To implement a data-driven digital twin, a variety of neural 
networks (NNs) are utilized due to their universal approximation
of nonlinear functions and behaviors capabilities. NNs have 
been shown to model solar PV plants with superior accuracy, as 
concluded in a review study in [7]. NNs do not require 
knowledge of specific mathematics or physics based equations 
to relate various parameters. NNs consist of a network of 
neurons and synaptic weights. The synaptic weights are updated 
through a training procedure until a permissible error and/or 
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iteration limit is reached [8]. On the other hand, traditional 
physics-based models require explicit knowledge of  system
parameters that are often unknown and static. 

In the context of PV plants, a NN-based DD-DT must 
capture properties, characteristics and behaviors of the physical 
process. To elaborate, the physical process for Clemson 
University’s 1 MW PV plant involves conversion of light energy
to electrical energy by solar cells and inversion of DC to AC PV 
power on 17 different solar array canopies. The AC PV power 
is then combined at a junction point and measured by a micro-
PMU, as pictured in Fig. 2. Different approaches would be 
subject to varying levels of abstraction when characterizing the 
physical system. For example, one may choose to virtually 
represent each component of the physical system (canopies, PV 
panels and inverters) separately. However, in our case, a high 
level of abstraction is used to characterize all 17 canopies, 
junction and measurement of AC PV power as the physical 
system. Thus, the virtual process must represent these 
components accordingly. 

Fig. 2. Physical process at R-06 PV plant. The plant consists of 17 canopies 
ranging from 50kW – 60kW, each containing a solar panel array and inverter.  

Specifically for this study, two neural networks are trained 
with meteorological data to learn the input/output relationship 
with generated PV power. The NNs model the solar PV plant as 
a whole entity, thus, in addition to learning an input/output 
relationship, system parameters such as partial shading and 
component degradation due to aging are further included in the 
model. A physics-based model for estimating solar PV power is 
proposed in (1) and represents the input/output relationship both 
NNs are learning( ) = ( ) , 1 + ( )
where is the estimated PV power, SI is solar irradiance, 

is reference solar irradiance, , is the maximum PV 
T is temperature 

and is reference temperature. Note that , ,
and  are strict parameters relating to the properties of a
given solar array.  

The neural network architectures implemented in this study 
include a multilayer perceptron (MLP) NN and an Elman NN. 
Both NNs utilize the same set of meteorological inputs, solar 
irradiance and temperature at time t to estimate PV power.

A. MLP Neural Network
A MLP NN features a feedforward architecture consisting of 

an input layer, hidden layer and output layer represented in Fig. 
2. Each node represents a single neuron and accompanying 
transfer function, linear for input and output layers, and sigmoid 
for the hidden layer. The edges represent synaptic weights (W
and V). between different layers. The input weight matrix, W, 
connects the input layer to the hidden layer, and output weight 
matrix, V, connects the hidden layer with the output layer.
Combining the input matrix containing solar irradiance and 
temperature with synaptic weight matrices forms the 
relationship to estimate PV power, as seen in (2) [8]. With a 
simpler network design, MLP NNs excel in fast paced 
computations due to reduced computational requirements. 15 
hidden layer neurons are determined to be sufficient in capturing 
the nonlinear dynamics of solar PV plants, while balancing 
computational stress. This creates a MLP NN of size 2 × 15 × 1 
with 45 synaptic weights. 

,   ( ) = ( ( ),  ( ), , )                (2) 

Fig. 3. MLP neural network with inputs ( ) and ( ) as implemented to 
characterize the physical process shown in Fig. 2.

B. Elman Neural Network
An Elman NN features a recurrent architecture consisting of 

four layers: input, hidden, context and output which is 
represented in Fig. 3. The neurons, transfer functions and 
synaptic weights are represented in the same manner as the MLP 
NN. The context layer consists of the hidden layer output matrix,
D, featuring linear neurons. This layer is time-delayed and fed 
back to the input matrix, thus memory is introduced in this 
architecture. This creates a relationship to estimate PV power 
based on solar irradiance, temperature, W, V, at time t and at 
the previous instant, seen in (3). However, as more neurons in 
the hidden layer are introduced, the input layer grows to 
incorporate these values, thus computational requirement
increase. An Elman NN is implemented with six hidden layer 
neurons creating a NN size (2 + 6) × 6 × 1 with 56 synaptic 
weights. While a smaller hidden layer can impact performance, 
the computational requirements during training remained 
approximately equivalent for MLP and Elman NNs. 

,   ( ) = ( ),  ( ), , , ( 1)   (3)
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Fig. 4. Elman neural network with inputs ( ), ( ) and ( 1) as
implemented to characterize the physical process shown in Fig. 2.

C. Training Procedure
The collected dataset consists of historical solar irradiance,

temperature PV power data from 86 days ranging from March 
2023 to June 2023 polled every minute (approximately 360,000 
data points) in Clemson, South Carolina, USA. This provides a 
wide variety of weather conditions, solar irradiance profiles, 
temperature profiles and cloud coverage. Collected data 
undergoes a filtering process where outlying data points 
resulting from faulty measurements or lost data are removed to 
further improve correlation. Next, variables are normalized to 
the range [0, 1] based on standard deviation and statistical mean. 

Due to the nature of PV power estimation DTs, a progressive 
time dependency is not present in the data. Rather, solar 
irradiance and temperature are presented at a specific time t, and 
the corresponding PV power estimate for the same instance is 
calculated. Therefore, a batch training algorithm is utilized for 
network training. Batch calculations feature large matrices 
containing input data, intermediate variables and weights, 
further improving computational speed while training. To begin 
training, the synaptic weights are initialized to random values. 
The backpropagation algorithm discussed in [8] is utilized to 
update weights for the NN. This is done over a set number of
iterations where error values between measured and estimated 
PV power are calculated. To further improve computational 
efficiency, an attention-based training approach is implemented 
to fine-tune synaptic weights. This is done by identifying 
intervals of high error and amplifying the calculated error signal, 
increasing the impact during training.

IV. RESULTS, DISCUSSIONS & APPLICATIONS

This section presents DT implementation results and 
discussion in Section IV. A and potential applications in Section 
IV. B.

A. Results & Discussion
Both neural networks are trained until a 1000 iteration limit 

is achieved. Fig. 5 displays the average MSE progression across
100 trials of back propagation training.

After training is completed, the DTs are tested over 21 days 
under highly variable weather conditions. To better understand 
and compare performances of the DTs, the 21-day dataset is 
classified based on cloud coverage and solar irradiance 
variations. This provides the opportunity to further tune NN 
parameters to account for high volatility in weather data. Sample 
results for both NNs based on weather classification are shown
as follows: Figs. 6, 7, 8 and 9 for a clear day, partially cloudy 
day, moderately cloudy day, and mostly cloudy day, 
respectively.

Fig. 5. MSE progression shown for MLP (blue) and Elman (green) NNs with
training for 1000 iterations.

Fig. 6. Sample clear day with measured PV power (red) MLP NN estimated 
PV power (blue) and Elman NN estimated PV power(green).

Fig. 7. Sample partially cloudy day comparing measured PV power (red) with 
(a) MLP NN estimated PV power and (b) Elman NN estimated PV power.
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Fig. 8. Sample moderately cloudy day comparing measured PV power (red) 
with (a) MLP NN estimated PV power and (b) Elman NN estimated PV power.

Fig. 9. Sample mostly cloudy day comparing measured PV power (red) with 
(a) MLP NN estimated PV power and (b) Elman NN estimated PV power.

Training performance displayed in Fig. 5 reveals some 
characteristics of MLP and Elman NNs. Averaging MSE 
training for both networks over 1000 iterations results in nearly 
the same training MSE, 0.0141 for MLP and 0.0147 for Elman
with standard deviations on the order of 10 . However, at 100 
iterations, MSE for MLP is 0.0327 and 0.0279 for Elman, with 
standard deviations on the order of 10 . Evidently, through the 

first potion of training, the Elman NN had significantly lower 
MSE, signifying a faster learning rate, but both architectures 
tended to converge to similar MSE values at 1000 iterations. 
This trend may be contributed to similar network sizes between 
architectures (45 weights for MLP and 56 weights for Elman). 

As seen in Figs. 6 - 9 both DTs are capable of estimating PV 
power with some variations in performances between both DTs. 
The clear day sampled in Fig. 6 proved to be a difficult day for 
the DTs to estimate. While the profile of the measured PV power 
curve is preserved, peak and falling edge information is skewed. 
A sampled partially cloudy day is featured in Fig. 7. Similarly, 
to the clear day, estimates captured the general profile of 
measured PV power, but still struggled to capture variation, peak 
and falling edge information. Shortcomings for these two 
weather conditions may be explained by a lower correlation 
between input weather data and measured PV power. For the 
moderately cloudy and mostly cloudy samples pictured in Figs. 
8 and 9, respectively, the performances of both models are very 
accurate. Rising edge, peak and falling edge information are
accurately captured for these weather conditions. This trend may 
be contributed to a higher correlation between solar irradiance 
and measured PV power for these days.

Table I summarizes performance metrics for both MLP and 
Elman NNs in comparison to a statistical approach utilizing an 
ARIMA model [9]. Calculations for mean absolute percent error 
(MAPE) and mean square error are given for each weather 
classification based on daytime and nighttime intervals.
Comparing both NNs, the Elman NN is slightly more accurate
with daytime clear and partially cloudy weather conditions. On 
the other hand, MLP NN estimations are more accurate with 
daytime moderately cloudy, mostly cloudy and nighttime 
conditions for every classification. These trends may be 
explained by the hidden layer size for each architecture. A 
greater number of neurons increases computational power and 
performance when approximating nonlinear relationships. 
Increasing the number of neurons in either architecture could 
perhaps improve performance at the expense of computational 
burden. Comparing the MAPEs of both NNs to the ARIMA 
model reveals greater estimation accuracy with the NNs for
moderately and mostly cloudy conditions. This can be attributed 
to the highly variable power generation of solar PV plants on 
days with these classifications. However, the ARIMA model 
outperformed both NNs in clear daytime and nighttime
conditions and in partially cloudy nighttime conditions. Overall, 
the NNs outperform the ARIMA model during daytime 
conditions with cloud cover.

The coefficients of determination (R2) shown in Figs. 10 and 
11 shows the accuracy of PV power estimations compared to the 
actual measurement. An ideal 1:1 line is additionally plotted to 

TABLE I. DIGITAL TWIN PERFORMANCE COMPARISON

Weather Profile

MLP Neural Network Elman Neural Network ARIMA
Daytime 

MAPE (%)
Daytime 

MSE
Nighttime

MSE
Daytime 

MAPE (%)
Daytime 

MSE
Nighttime 

MSE
Daytime

MAPE (%)
Daytime 

MSE
Nighttime 

MSE

Clear 28.15 4.84×10-3 5.91×10-6 26.11 4.33×10-3 1.88×10-4 5.12 1.68×10-4 3.99×10-7

Partly Cloudy 31.22 2.11×10-2 5.81×10-7 29.52 2.09×10-2 2.03×10-4 22.2 2.50×10-2 5.41×10-7

Moderately Cloudy 1.93 4.87×10-4 2.93×10-7 7.45 1.14×10-3 8.18×10-4 8.21 1.40×10-3 4.04×10-7

Mostly Cloudy 5.22 6.70×10-5 3.72×10-7 6.41 7.77×10-4 1.91×10-4 13.00 3.13×10-4 7.67×10-7
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show ideal correlation. The coefficient of determination is
calculated using (4), 

= 1 ,   ,   ,   
where ,   is the ith measured power, ,   is the ith 
estimated power and is the mean measured power. In both 
cases, MLP and Elman NNs accounted for over 97% of 
variation.

Fig. 10. MLP estimated PV power vs. measured PV power. 

Fig. 11. Elman estimated PV power vs. measured PV power. 

B. Applications of Estimation Digital Twin
Estimation-based DTs offer a variety of applications for 

solar PV site planning and enhanced situational awareness in 
distribution center operation and management. Comparison of 
measured and estimated PV power enable PV plant performance 
monitoring by alerting operators when sustained discrepancies 
occur. In these instances, PV panels may require cleaning or
repair. In addition to providing these alerts, DTs may be able to 
identify the affected panels [10]. Over time, progressive learning
updates will allow the DT to account for PV plant performance 
degradation. System aging may be tracked by periodically 
recording and comparing DT estimations [11].  Finally,
estimation-based DTs can provide intelligence when planning 
future PV plant sites of any size due to their scalability and 
adaptability. This includes reliable PV power output 
expectations and return-on-investment planning for PV plants 
ranging from rooftop setups to distributed generation [12].  

V. CONCLUSION

In the electric power generation industry with increasing 
levels of distributed renewable energy sources, reliable and 
trustworthy sources of information providing situational 
awareness are necessary in distribution operational control 
centers. In addition to an increased understanding of nonlinear 
PV plant behaviors, data-driven digital twins (DD-DTs) provide 
information for planning and managing PV plant sites in 
distributed networks. In this study, DD-DTs for Clemson 
University’s 1 MW PV plant were developed with PV power 

estimations. These DD-DTs have shown the capability of 
capturing PV plants behaviors and characteristics using static 
and dynamic neural networks. Categorizing days based on 
meteorological conditions enabled the comparison of
performances of DD-DTs. 

In future work, implementing a higher density network of
distributed IoT devices will lead to greater accuracy and 
modularity of DD-DTs. Obtaining data from individual modules 
in the physical process will provide detailed abstraction when 
characterizing the physical system of Clemson University’s R-
06 PV plant. Further tuning of neural network parameters will 
maximize accuracy while minimizing computational expense. 
Lastly, new applications can be explored in order to more fully 
utilize capabilities of DD-DTs. 
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