
Sub-optimal Join Order Identification with L1-error

YESDAULET IZENOV, University of California, Merced, USA

ASOKE DATTA, University of California, Merced, USA

BRIAN TSAN, University of California, Merced, USA

FLORIN RUSU, University of California, Merced, USA

Q-error – the standard metric for quantifying the error of individual cardinality estimates – has been widely

adopted as a surrogate for query plan optimality in recent work on learning-based cardinality estimation.

However, the only result connecting Q-error with plan optimality is an upper-bound on the cost of the worst

possible query plan computed from a set of cardinality estimates—there is no connection between Q-error and

the real plans generated by standard query optimizers. Therefore, in order to identify sub-optimal query plans,

we propose a learning-based method having as its main feature a novel measure called L1-error. Similar to

Q-error, L1-error requires complete knowledge of true cardinalities and estimates for all the sub-plans of a

query plan. Unlike Q-error, which considers the estimates independently, L1-error is defined as a permutation

distance between true cardinalities and estimates for all the sub-plans having the same number of joins.

Moreover, L1-error takes into account errors relative to the magnitude of their cardinalities and gives larger

weight to small multi-way joins. Our experimental results confirm that, when L1-error is integrated into a

standard decision tree classifier, it leads to the accurate identification of sub-optimal plans across four different

benchmarks. This accuracy can be further improved by combining L1-error with Q-error into a composite

feature that can be computed without overhead from the same data.

CCS Concepts: • Information systems→ Query optimization; Query planning.

Additional Key Words and Phrases: join ordering, cardinality estimation, permutation distance, database query

processing, feature engineering, “bad” query plans

ACM Reference Format:

Yesdaulet Izenov, Asoke Datta, Brian Tsan, and Florin Rusu. 2024. Sub-optimal Join Order Identification with

L1-error. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 17 (February 2024), 24 pages. https://doi.org/10.1145/

3639272

1 INTRODUCTION

Q-error is the standard metric for quantifying the error of individual cardinality estimates [33]. It
is defined formally as the maximum quotient between the estimated and true cardinalities, thereby
equally penalizing both overestimations and underestimations. Q-error is widely adopted in recent
work on learning-based cardinality estimation methods [4, 8, 19, 21, 44] as a surrogate for the
quality of query execution plans, which is measured by P-error—the ratio between the cost of the
selected and optimal query plans [11]. However, the only theoretical result connecting the two
is a worst-case upper-bound [33] stating that the cost of a query plan computed with estimates
having a maximum Q-error of& is at most&4 times larger than the cost of the plan computed with
true cardinalities—which is assumed to be optimal. Given only estimated and true cardinalities, the

Authors’ addresses: Yesdaulet Izenov, University of California, Merced, Merced, California, USA, yizenov@ucmerced.edu;

Asoke Datta, University of California, Merced, Merced, California, USA, adatta2@ucmerced.edu; Brian Tsan, University of

California, Merced, Merced, California, USA, btsan@ucmerced.edu; Florin Rusu, University of California, Merced, Merced,

California, USA, frusu@ucmerced.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/2-ART17

https://doi.org/10.1145/3639272

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:2 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

bound provides a rough idea of how bad the worst possible query plan could be. Then, it is obvious
that for small values of the Q-error, the gap between the worst and optimal plan is relatively small.
Since real query optimizers aim to identify the optimal plan – not the worst – we investigate

how useful is the Q-error in assessing the optimality of a query plan based solely on cardinality
estimates. For this, we compute the optimal plan using true cardinalities while the database plan
is derived using PostgreSQL estimates. These two sets of values are fed into an exhaustive plan
enumeration algorithm over a search space consisting of plans with arbitrary structure—including
left-deep and bushy. The cost of a plan is computed using the cost function defined in Eq. (1), which
is introduced in [25]. This cost function considers both hash and index nested loop joins.

Fig. 1. P-error and Q-error are computed for all 113 JOB queries. �eries are grouped by complexity: 45

Simple with 4-9 joins, 53 Moderate with 10-19 joins, and 15 Complex with 20-28 joins.

As shown in Figure 1, which displays P-error as a function of the Q-error for the queries in the
JOB benchmark [26], there is no observable relationship between the two beyond the worst-case
upper bound. First, a large number of simple and moderate queries have optimal plans – P-error
close to 1 – even though they exhibit large variation on the Q-error—more than six orders of
magnitude (1). No matter if the Q-error is 10 or 107, an optimal plan can be selected using the
same cardinality estimates. Second, we intuitively expect that Q-error is somewhat correlated with
P-error—as the Q-error increases, so does the P-error. This happens only for a limited number
of complex queries (2). These cases imply the selection of sub-optimal plans with different join
orders. Third, the results include queries for which the relationship between Q-error and P-error
is reversed (3). The P-error of a query is larger than the P-error of another query even though
its Q-error is smaller. This type of inversion shows that the relationship between the two errors
is not even monotonic. Finally, since the plans selected by the optimizer are far away from the
worst-case, we argue that Q-error falls short as an indicator for the sub-optimality of query plans.
Therefore, we need to consider alternative metrics that focus on the real query plans generated by
an optimizer rather than the worst-case plan.

Problem. Given a query plan generated by an optimizer based on a set of cardinality estimates,
our goal is to determine if it is sub-optimal. Even though we consider general cost functions that
include physical operator details, our understanding of sub-optimality is mostly with respect to the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:3

join order. We define sub-optimality in terms of P-error: a plan with a cost at least 2 times larger
than the cost of the plan computed with true cardinalities, where 2 is a user-defined parameter, is
considered sub-optimal. Therefore, we make the implicit assumption that true cardinalities generate
the optimal plan. Identical to Q-error computation, sub-optimal plans are identified outside of the
runtime query optimization process and they require complete knowledge of true cardinalities and
estimates.
High-level approach. We propose a learning-based method for the sub-optimal plan identifi-

cation problem. We treat identification as binary classification, where plans with a cost at least 2
times larger than the optimal are considered sub-optimal—the other plans are optimal. The focus
of our work is on finding the best features for the classifier—not on designing a new classifier. To
this end, we employ standard decision trees. The classifier is trained on a workload of query plans
correctly labeled and is expected to accurately predict sub-optimal plans from a testing dataset.
L1-error. The main contribution of this work is the design of the L1-error feature for sub-

optimal plan classification. Similar to Q-error, L1-error requires complete knowledge of true
cardinalities and estimates for all the sub-plans of a query plan. Unlike Q-error, which considers
the estimates independently, L1-error is defined as the distance between the permutations – orders
– corresponding to true cardinalities and estimates for all the sub-plans having the same size,
i.e., the number of joins. Intuitively, the more different the two permutations are, the higher the
chance the plan computed using estimates is significantly different than the optimal plan, thus,
likely sub-optimal. The same observation is made in [33], where a plan is known to be optimal if
the two permutations are identical. We move beyond this limited case and define a quantitative
measure for the difference between permutations. Moreover, L1-error takes into account errors
relative to the magnitude of cardinalities since larger cardinalities have a greater influence on plan
optimality and, hence, their errors should incur higher penalties. L1-error also considers that small
multi-way joins are more critical, with their cardinality estimates likely to be more accurate than
larger joins [26, 38].
We summarize our main technical contributions as follows:
• We conduct an in-depth data-driven analysis of the impact of Q-error on cardinality estimation
and query plan optimality (Section 4). We study how Q-errors are distributed across different join
sizes and their impact on finding optimal query plans. Moreover, we identify practical limitations
of Q-error as a feature for sub-optimal plan classification.
• We introduce the L1-error feature for identifying sub-optimal query plans (Section 5). L1-error
is specifically tailored to assess how cardinality estimation errors impact plan enumeration
algorithms. It is designed to bridge the cardinality estimation errors and enumeration algorithms,
ultimately enhancing the interpretability of query optimizer performance.
• We apply L1-error as the single feature of a standard decision tree classifier (Section 6) and evaluate
its accuracy in identifying sub-optimal query execution plans over four different benchmarks,
including JOB [25, 26], JOB-light [21], JCCH [2], and DSB [7] benchmarks (Section 7). Our
experimental results confirm that L1-error is an accurate feature for identifying sub-optimal
plans. This accuracy can be further improved by combining L1-error with Q-error into a composite
feature that can be computed without overhead from the same data.

2 RELATED WORK

Cardinality estimation errors. The importance of each component within a query optimizer is
widely acknowledged in comprehensive studies on query optimization [5, 29]. However, Leis et al.
empirically prove that cardinality estimates hold paramount importance [25, 26]. They observe
instances where cardinality miscalculations do not inevitably lead to sub-optimal query plans. This
is because, provided the errors in misestimation are evenly distributed across a large portion of the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:5

A query plan P defines the sequence in which the tables – vertices – are to be joined. It also
dictates the physical operators, such as join or scan, that are deployed during query execution. A
query sub-plan can be defined as a query plan that operates over a subgraph of the original join graph.
Two plans Popt and Ppg derived from the join graph are displayed in Figure 2. These plans provide
the sequence of tables to be joined — (2= Z <2 Z C Z <: Z :) and (: Z <: Z C Z <2 Z 2=),
respectively. Sub-plan P2=Z<2 derived from a subgraph of two vertices 2= and<2 of the join graph
determines the first two tables to be joined in plan Popt. Throughout the paper, we use the terms
query plan and join order interchangeably.

3.1 Cost Model

To evaluate and compare the efficiency of various query plans derived from the join graph, the
query optimizer assigns a cost to each of them using an analytical cost function. The query plan
considered to be optimal is the one with the minimum cost, as it is expected to have the fastest
execution time. However, defining a cost function that can accurately reflect the execution time is
challenging. For main-memory databases – the setting for this work – several cost functions have
been proposed in past studies [10, 11, 26, 34, 45]. Virtually all these cost functions are defined in
terms of the number of tuples – or cardinality – processed by the operators in the query plan. In
this work, we settle for the cost function introduced by Leis et al. [25] – which is formally defined
in Eq. (1) – because it can accurately predict the query runtime:

C(P) =




g × |' | if P = ' ∨ P = f (')

|P| + |P1 | + C(P1) + C(P2) if P = P1 Z
� � P2

C(P1) + _ × |P1 | ×max
(
| P1Z' |
| P1 |

, 1
)

if P = P1 Z
�#! P2 ∧ (P2 = ' ∨ P2 = f ('))

(1)

This cost function recursively sums the cost of all the nodes in the query plan starting from the
leaves – corresponding to scan operators – and following through the joins. In the leaf nodes, the
size of a base table ' is multiplied by a parameter g = 0.2 to differentiate between a sequential
and an indexed scan. For the intermediate join nodes, the cost function considers two different
implementations—hash join Z� � and index nested-loop join Z�#! . The hash table is built on the
child with the smaller cost—as in zig-zag trees. To differentiate between hash lookup and index
lookup, parameter _ = 2 is used under the assumption that indexes are available on all the join
attributes. Even though the cost function considers different physical operators, operator cardinality
remains the main factor. This is in line with standard disk-based cost functions, which replace tuple
cardinality with block cardinality.

The order in which the tables are joined is pivotal as it can significantly influence the execution
time. A sub-optimal ordering can result in unnecessary computational work or data movement,
leading to time and resource inefficiencies. The costs of two join orders Popt and Ppg are displayed in
Figure 2. These costs are obtained by summing up the exact cardinalities . of the three intermediate
and the final join. We do not consider the physical operators in order to simplify the presentation.
In the case of the optimal plan Popt, the cost C>DC (Popt, .) = 388 + 388 + 1, 588 = 2, 364 is the sum
of the cardinalities of sub-plans corresponding to the 2-way join P2=Z<2 , the 3-way join P2=Z<2ZC ,
and the 4-way join P2=Z<2ZCZ<: , respectively. It is important to notice that the cardinality of
P2=Z<2ZC is not the sum of the cardinality for P2=Z<2 and P<2ZC – edges (cn −mc) and (mc − t)

from the join graph – which are 388 and 2.6" , respectively. This is because only the tuples in the
2-way join 2= Z <2 are subsequently joined with t—not all the tuples in mc.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:7

the join graph [26]. Given the factorial size of the search space, finding an optimal query plan is
NP-hard [13].
Search space. Traversing the join graph by following the existing edges 4 ∈ �, it is possible to

avoid enumerating binary trees that incorporate cross-joins, which join tables along non-existent
edges 4 ∉ �. Nonetheless, even the reduced search space still presents a computational challenge
due to its large size. A common strategy is to further downsize the search space by restricting the
shape of the considered query plans [30, 32]. This approach entails enumerating only those binary
trees with a certain shape. Bushy trees and left-deep trees are two common shapes of binary trees.
Bushy trees are characterized by an internal node that joins two sub-trees. On the other hand,
left-deep trees are identified by their structure where the right child at any given node is always a
leaf node, meaning it does not have any child nodes of its own. Two left-deep trees are depicted in
Figure 2. Focusing on specific types of binary trees helps to streamline the enumeration process and
manage the complexity of the search space, thereby simplifying the discovery of an optimal query
plan. However, this reduction in search space may inadvertently omit optimal query plans. This
balances the computational feasibility against the query plan optimality. Therefore, the objective is
to find a query plan within the reduced search space that is close to the globally optimal plan.
Exhaustive enumeration. To exhaustively enumerate all the trees, each individual query

plan is produced and its associated cost is calculated. Figure 3a depicts the optimal plan Popt –
in red – and the PostgreSQL plan Ppg – in green – selected through exhaustive enumeration.
Popt = (2= Z <2 Z <: Z : Z C) is computed based on the true cardinalities . while Ppg = (: Z

<: Z <2 Z 2= Z C) is computed based on the PostgreSQL estimated cardinalities .̂ . These plans
are shown in the bottom-right table along with their true and estimated costs. As the complexity
of a query increases, exhaustive enumeration faces significant computational challenges and is
mitigated through optimizations such as dynamic programming and cost-based pruning [6, 31, 40].
Although these optimization techniques can reduce the number of plans evaluated, they still ensure
the discovery of the plan with minimum cost—according to the input estimates.

Greedy enumeration. The exhaustive enumeration over the large search space can be further
simplified into greedy heuristics that directly compute a single plan [3, 9, 22, 36, 42, 43]. In this
case, the cost of a join is its standalone cardinality. Even though the decision at every step is locally
optimal, there is no guarantee that the final plan has minimum cost among all the alternative plans.
This is due to conditioning the available choices at a step on previous decisions. Figure 3b exhibits
this issue for the optimal plan Popt and the PostgreSQL plan Ppg. For both plans, since the plan is
built bottom-up starting from 2-way joins, the minimum cardinality 4-way join P2=Z<2Z<:Z: is not
an option because the optimal 3-way joins include C . At the same time, considering fewer sub-plans
when building a plan bottom-up means relying on estimates of smaller join size. The estimates for
smaller joins are – in principle – more accurate [26]. Thus, while exhaustive enumeration requires
consistent estimation across all join sizes, the greedy heuristics are more sensitive to estimates
for smaller joins. Therefore, the reduction in the size of the search space can be compensated by
consistent estimation of smaller joins.

4 Q-ERROR

Query optimizers often fail to find an optimal plan because of errors and sub-optimal decisions
made during the stages of cardinality estimation, cost function, and plan enumeration. In the cost
function, inaccuracies in measuring the exact cost of each physical operator in the plan can lead
the query optimizer to select a sub-optimal plan. Similarly, attempts to counter computational
constraints in plan enumeration through heuristic enumeration and pruning the search space can
mislead the query optimizer by excluding optimal plans from its scope of consideration. However,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:8 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

even under ideal conditions for the cost function and plan enumeration, unavoidable errors in
cardinality estimations can jeopardize these stages [25, 26]. In this section, we delve into the widely
used Q-error metric [33] that quantifies the errors in cardinality estimation. We discuss how this
metric can be employed to evaluate the sub-optimality of a plan by providing better understanding
of the extent of estimation errors and their impact on selecting the optimal plan.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
join size

101

103

105

107

109

Q
-e

rr
or

 (
lo

g
sc

al
e)

95th percentile
75th percentile
median
25th percentile
5th percentile
outliers

(a) Q-error computed using PostgreSQL estimates (b) Number of estimates in exhaustive enumeration

Fig. 4. The distribution of the Q-error and the number of sub-plans as a function of the number of joins for

all the 70,407 sub-plans generated from the 113 JOB queries.

4.1 Q-error for Cardinality Estimation

The Q-error metric was proposed as a means to quantify the degree of error in individual cardinality
estimations [33]. It has since become a preferred choice for quantifying the accuracy of synopses [4,
38] and learning-based models [19, 21]. Furthermore, it is extensively employed in empirical studies
to understand and improve the accuracy of these estimations, thus playing a significant role in
query optimization [24, 26, 44]. The Q-error of an individual cardinality estimation is defined as:

@8 = max

(
.̂8

.8
,
.8

.̂8

)
(2)

where .8 and .̂8 are true and estimated cardinality of a single sub-plan. The Q-error value is in the
range of [1, +∞). In the case of zero values in the denominator, the zeroes can be replaced by a
small number—in this work, we use 10−4 for this purpose. The Q-error quantifies the deviation of

the estimated cardinality .̂8 from the true cardinality .8 treating under- and over-estimation equally.
In the last row of every table from Figure 3, we show the individual Q-error for the corresponding
sub-plan. Q-errors for sub-plans in both exhaustive and greedy plan enumeration are the same.
This is because Q-error solely measures the error between true and estimated join cardinalities
and does not take into account the sub-plan costs. In the figure, across all join sizes, the Q-error
of P<2ZC and P<:ZC are the smallest – both equal to 1.70 – which are underestimates of the true
cardinalities in this case. The least accurate estimations are for the 2-way join P:Z<: and the 3-way

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:9

join P:Z<:ZC . These Q-errors are equal to 2, 092, which also underestimates the true cardinalities.
Alternatively, the cardinality of P2=Z<2ZC is overestimated when the Q-error is 2.51.

In Figure 4a, at each join level, we depict the Q-error measured for the 70, 407 sub-plans generated
from all 113 queries in the JOB benchmark—excluding cross-joins [25, 26]. The sub-plans are grouped
by the number of joins – ranging from 2 to 17 – shown on the x-axis. At each join size, Q-errors
are shown via boxplots including 95, 75, 50, 25, and 5 percentiles. Additionally, Figure 4b provides a
breakdown of the number of estimates grouped by join size, which illustrates the effect of estimation
errors. By examining these estimates, we can gain a clearer understanding of how estimation errors
are distributed across different join sizes and how these errors can impact the overall performance
of finding optimal query plans. The results show that cardinality estimations for 2-way joins based
on 1, 336 estimations – which are 1.9% of all sub-plans – are the most accurate. Estimation accuracy
from 3-way to 6-way joins starts decreasing—median Q-errors are between 101 and 103 based on
21, 690 estimations, which are 30.8% of all the sub-plans. Starting from 7-way to 13-way joins,
median Q-error significantly increases – over 103 – which includes 46, 544 estimations, or 66.1% of
all sub-plans. The rest of the queries form 1.2% of all sub-plans, which is 837 queries. Interestingly,
although the number of sub-plans is small, we observe relatively smaller errors starting from
14-way to 17-way joins. These observations indicate that errors increase exponentially with the
increase in join size [14]. Inaccuracies in cardinality estimation can have a cumulative detrimental
effect on finding optimal query plans. Specifically, significant errors in cardinality estimations at
higher-level joins can outweigh and misdirect the query optimizer, causing it to essentially select
a query plan at random. Such errors reduce the likelihood of finding the optimal join order and
selecting efficient physical operators, thus compromising the overall optimization effectiveness.

Fig. 5. Impact of cardinality estimation on plan enumeration. The costs are normalized to the cost of the

optimal plan obtained by exhaustive enumeration using true cardinalities.

In Figure 5, we illustrate the effect of errors in cardinality estimation on plan enumeration. This
figure provides a visual understanding of how inaccuracies in cardinality estimation can influence
the performance of different plan enumeration algorithms, highlighting the importance of accurate
estimations in finding an optimal query plan. For every JOB query – shown on the x-axis grouped
by join size – we compute the cost C of four different plans selected by exhaustive and greedy

enumeration when utilizing both true cardinalities . and the PostgreSQL estimations .̂ . These
costs are plotted relative to the cost of the exhaustive plan with true cardinalities C(Popt, .)—the
horizontal solid red line at 1. The plans C(Popt, .) are optimal within the search space. As expected,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:10 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

the costs of these optimal plans are lower than the costs of the other plans—equal to or above the
red horizontal line. We also observe that several plans selected by the greedy enumeration based
on true cardinalities have a higher cost than the greedy plans computed with estimates—green

spikes above the blue line. These cases occur when misestimated cardinalities .̂ accidentally lead
the greedy enumeration to more efficient plans than those selected based on true cardinalities . .

The figure also demonstrates the growing need for accurate estimations as the query complexity
increases—the gaps among the red, black, and blue lines around the second red vertical line. This
behavior is expected as we begin to observe significant misestimations starting from 7-way joins and
beyond—as shown in Figure 4a, the Q-error exceeds 103 in these cases. Moreover, these significant
misestimations adversely impact the exhaustive plan enumeration, as the cumulative effect of
estimation errors misguides the cost and enumeration components. For moderate and complex
queries, plans selected by exhaustive enumeration have higher costs than plans greedily selected
based on estimations—black spikes above the blue line. This means the greedy search algorithm
appears to make better decisions based on relatively accurate early-stage join estimations while
the exhaustive enumeration is misguided by large misestimations of larger joins. Consequently,
the supposedly optimal plans are underestimated compared to the actual optimal plans. Hence,
they are selected by the exhaustive enumeration algorithm. These observations suggest that the
advantage of exhaustive search diminishes when operating on significant misestimations of large
joins. Such errors hinder the enumeration algorithm from finding the optimal query plan.

4.2 Q-error for Plan Optimality

In addition to measuring the error of an individual estimate, Moerkotte et al. [33] introduce a
theoretical upper-bound on the ratio of the cost of the selected Ppg and optimal Popt query plans
using Q-error:

C(Ppg, .)

C(Popt, .)
≤ @4 (3)

where @ = max8⊆- {@8 } and - is the set of all sub-plans. The cost ratio between the selected and
optimal plan has recently been named P-error [11, 27, 34]. In Figure 3, for query 2c, the maximum
Q-error is @ = 2, 092. The bound states that, given the estimated and true cardinalities of a query,
we can determine whether the selected plan is equivalent to the optimal plan without having to
enumerate and select expected and optimal query plans to compute P-error. In other words, if the
P-error of the selected and optimal plan is at most @4, then the selected plan is identical – or close
– to the optimal plan. This approach provides a theoretical method to evaluate the optimality of
a query plan based on cardinality estimates, reducing the computational burden associated with
exhaustive enumeration.

To evaluate the Q-error bound on a larger and more complex workload operating on real-world
data, we compute both the Q-error and P-error for the entire JOB benchmark consisting of 113
queries [25, 26]. The results are presented in Figure 1 from the Introduction 1. We categorize the
queries based on the number of joins: 45 simple queries with 4-9 join predicates, 53 moderate
queries with 10-19 join predicates, and 15 complex queries with 20-28 join predicates, respectively.
To compute the P-error for a query, the join orders Popt and Ppg are determined by the exhaustive
enumeration algorithm with both true and PostgreSQL estimated cardinalities. The figure also
includes the upper-bound from Eq. (3) as an exponential function—represented by the red line.
The results show a large number of simple and moderate queries with optimal plans – P-error

equal to 1 – despite having a high Q-error. The P-error for these queries indeed falls within the
bound, hence their plans are optimal. However, many other queries that comply with the bound
exhibit significantly larger P-error and even higher Q-error. These queries are primarily moderate

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:11

or complex queries having plans that are not optimal, thus, resulting in different join orders despite
satisfying the bound. For query 2c from Figure 3a, the optimal planPopt is (2= Z <2 Z <: Z : Z C),
which has the true cost C(Popt, .) = 1, 980. The PostgreSQL selected plan Ppg is (: Z <: Z <2 Z
2= Z C), which has the true cost C(Ppg, .) = 190.4 . This results in a P-error of 96 and a Q-error of

@ = 2, 092. According to the bound [11], 96 ≤ 2, 0924 ≈ 2E+13 is correct. However, the gap between
the two values is immense—more than 10 orders of magnitude. For moderate and complex queries,
we observe larger cost deviations and extremely high Q-error values. This indicates that the selected
and optimal query plans are very different despite satisfying the Q-error bound. Therefore, we
argue that Q-error is too loose as a bound and, as an indicator, fails to identify sub-optimal query
plans. Intuitively, we expect a small P-error to correspond with a small Q-error and a large P-error
with a large Q-error. However, our observations show that queries with a large P-error can have a
small Q-error and vice versa. Consequently, these observations show that the maximum Q-error
bound falls short in accurately determining the optimality of query plans [11, 35].

5 L1-ERROR

Finding an optimal join order highly depends on the accuracy of cardinality estimations and how the
misestimation errors “impact” the plan enumeration algorithm. In Figure 3, we show the sub-plans
enumerated by exhaustive and greedy plan search algorithms sorted by the true cardinality . . The
sorted sub-plans are shown for every join size : of query 2c. For 2-way joins, if the sub-plans are

sorted by the estimated cardinality .̂ , then the relative order becomes different from the order of the
sub-plans sorted by true cardinality . . The difference occurs because of the impact of cardinality
misestimation errors of sub-plans 2= Z <2 and : Z <: . However, this difference is minimal in this
case – only on one position – henceforth, the plan enumeration algorithm is likely to make accurate
decisions in choosing optimal sub-plans. In this section, we introduce the L1-error to quantify the
permutation distance between the order of the true cardinalities and that of the estimates for a
given sub-plan size. While the importance of the relative ordering of the estimates has been pointed
out in previous work [33], L1-error is the first measure to analytically quantify and employ it in
determining if a particular join order is optimal.

5.1 Relative Sub-Plan Arrangement

By sorting the sub-plans for each join size : by true and estimated cardinality, we have two sub-plan
arrangements — position vectors of the same length. For instance, in 2-way joins, the two position

vectors are defined as d = (1, 2, 3, 4, 5) sorted by . and d̂ = (2, 1, 3, 4, 5) sorted by .̂ , respectively.
To differentiate between d and d̂ , we name d as the identity permutation in the rest of the paper.
Similarly, for each join size : , both position vectors are denoted as d and d̂ ∈ N3 by (1, 2, . . . , 3)
where 3 is the number of sub-plans of size : . There is an extensive range of metrics available,
such as Spearman’s footrule [41] and Kendall’s tau [18], to measure the distance between two
arrangements (or ranked lists) [28]. This field has been extensively researched and is a well-studied
area. Among the various metrics available, we find Spearman’s footrule distance (also known as
L1 distance) is particularly effective in quantifying the impact of cardinality estimation errors
on plan search algorithms. It provides a strong measure of the distance between two sub-plan
arrangements. While it is certainly possible to substitute Spearman’s footrule distance with other
metrics to compare precision performances, we show, through our observations, that Spearman’s
footrule distance intuitively fits our problem well and delivers accurate results. In the remainder
of this paper, for the sake of convenience, we refer to Spearman’s footrule distance as L1-error.
L1-error measures the element-wise absolute differences between two position vectors d and d̂ :

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:13

Sub-plan impact weights. First, we define a misestimation impact of sub-plans within a weight
symmetric matrix, for each join size : . Each 8-th row of length 3 in this matrix represents a
sub-plan, and misestimation impact weights are defined as:

, :
8,9 = max

(
.9

.8
,
.8

.9

)
(5)

where,8, 9 ≥ 1, and.9 and.8 are true cardinality values. In the case of zero cardinality, denominators
can be replaced with a small number. The weight scales are comparable across different query
complexities because,8, 9 only captures the relative differences in cardinality. Thus, the specific
scales of cardinality in simple and complex queries, and join sizes are not consequential. In Figure 6,
for each join size : , we illustrate the computed weight matrix as a separate table on the right
side of the white vertical bars. Row and column indexes in each weight matrix represent sub-plan
positions in the identity position vector d . The weight matrix signifies the relative differences in
cardinality between any two sub-plans of the same join size. A larger weight implies a greater
disparity between the two sub-plans in terms of their cardinalities. For example, in Figure 3b, the
cardinality of 2-way sub-plan P2=Z<2 is 388 and it is significantly less than the cardinalities of the
other four 2-way sub-plans with cardinalities of 41.8 , 2.6" , 4.5" , and 34.9" . Therefore, in row
1 of the weight matrix for : = 2, we observe much larger weights. The same weight matrix also
exhibits sub-plan weights of similar cardinality, a scenario frequently encountered when estimating
sub-plan cardinalities. Cardinalities of sub-plans P<2ZC and P<:ZC of join size 2 are relatively close
— 2.6" and 4.5" , respectively. Hence, the impact of mispositioning these two sub-plans has less
penalty — weight value is 1.73. We define the L1-error that assigns impact penalties for sub-plan
misestimations proportionate to their cardinality magnitudes:

L1:, =

3∑

8

∑

9 :d (9)<d (8)
∧ d̂ (9)>d̂ (8)

, :
8,9 +

∑

9 :d (9)>d (8)
∧ d̂ (9)<d̂ (8)

, :
8,9 (6)

To measure the difference between d and d̂ with sub-plan misestimation impacts, the outer term
sums weights for each sub-plan 8 when it is mispositioned with other sub-plans. The left inner
term aggregates the weights of sub-plans when their true cardinalities are overestimated more than
the estimated cardinality of the sub-plan 8 in d̂ , despite those sub-plans having true cardinalities
smaller than the true cardinality of sub-plan 8 in d . Similarly, the right inner term sums the weights
of sub-plans with underestimated true cardinality that is more than the estimated cardinality of the
sub-plan 8 in d̂ , despite those sub-plans having larger true cardinalities than the true cardinality of
sub-plan 8 in d .
For example, in Figure 6, sub-plan P:Z<:ZC of join size 3 is located at position 3 in d . Its

true cardinality of 41.8 is underestimated as 20 which is less than the estimated cardinalities
973 and 8, 739 for sub-plans P2=Z<2ZC and P2=Z<2Z<: which have true cardinalities as 388 and
1, 588, respectively. Hence, in the weight matrix, 3, the left inner term sums the penalty weights
,3,1 = 107.84 and,3,2 = 26.35 ofP:Z<:ZC for being misplaced in d̂ to the left of sub-plans P2=Z<2ZC
and P2=Z<2Z<: . Similarly, the right term sums the penalty weights for being misplaced to the
right side of sub-plans locations in d̂ despite their larger true cardinality and higher locations
in d . However, sub-plan P:Z<:ZC is not overestimated than sub-plans P:Z<:Z<2 and P<2ZCZ<: .
Sub-plan P:Z<:ZC has true cardinality of 41.8 and estimate as 20, while sub-plans P:Z<:Z<2 and
P<2ZCZ<: have true cardinality of 148.6 and 34.9" , and estimates as 104 and 2.7" , respectively.
Thus, the right term is equal to 0 and the overall misposition penalty weight for sub-plan P:Z<:ZC
is 107.84 + 26.35 + 0 = 134.19. For sub-plans of join size : = 3, total misestimation impact is
L13
,

= 1, 221.22.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:14 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

Sub-plan position weights. Intuitively, imposing larger penalties for the misestimation of
smaller cardinalities is desirable. This is because plan search algorithms are more likely to select
sub-plans with smaller cardinalities. The position vectors represent the locations of sub-plans sorted
by their true cardinality, thus sub-plans with smaller cardinalities are expected to be positioned
early or left half in d . In Figure 3, search algorithms, when guided by true cardinality, tend to
select sub-plans from the left half of sub-plan lists on every join step. Consequently, preserving the
relative order of sub-plans with smaller cardinalities is generally of significant importance. In other
words, we impose a higher penalty for the early position differences between position vectors d
and d̂ than the differences at the tail. To achieve desired position-based penalty weights, we need
monotonically increasing weights similar to in [23]. We define the cost of a swap between two
adjacent sub-plans 8 and 8 − 1 in the position vectors as the ratio between their true cardinalities
.8/.8−1 ≥ 1. In Figure 6, we show the swap costs in the third row named as Swap cost in each join
table. Then, the monotonically increasing swap weights are defined as:

`8 = `8−1 +
.8

.8−1
(7)

where `1 = 1, and `8 < ` 9 < `: such that 8 < 9 and 9 < : . In Figure 6, we show the monotonically
increasing weights in the fourth row named asMonotonic weight in each join table. This monotonic
property offers weights by considering both the distance in position and the closeness in cardinality
values of the sub-plans. For example, in Figure 6, sub-plan P:Z<:ZC of join size 3 is at distance 1
from sub-plan P:Z<:Z<2 while P2=Z<2ZC is away from P:Z<:Z<2 for 3 positions. Similarly, true
cardinality 388 of P2=Z<2ZC is much less than true cardinality 148.6 of P:Z<:Z<2 while sub-plan
P:Z<:ZC has true cardinality of 41.8 . Hence, the respective monotonic weights for these three
sub-plans are 1.0, 31.44, and 34.99. Integrating position-based monotonic weights ` into L1:

,
assigns

greater penalties to the misestimation of smaller true cardinalities that are positioned early in the
position vector d . By assigning these estimations more weight, L1-error more accurately reflects
the significance of their errors, improving its ability to predict sub-optimal query plans:

L1: =

3∑

8

`−18 ×



∑

9 :d (9)<d (8)
∧ d̂ (9)>d̂ (8)

, :
8,9 +

∑

9 :d (9)>d (8)
∧ d̂ (9)<d̂ (8)

, :
8,9



(8)

In Figure 6, in 3-way joins, penalty weights assigned to the five sub-plans are 490.71, 23.55, 4.27,
13.62, and 0, respectively. L1-error assigns a higher penalty to sub-plans P2=Z<2ZC and P2=Z<2Z<: ,
which are 490.71 and 23.55 respectively, because of their earlier positions in d . Despite being placed
at the fourth position, sub-plan P:Z<:Z<2 has a higher penalty weight of 13.62 than P:Z<:ZC
with 4.27 penalty weight at the third position. This is because P:Z<:Z<2 has a larger cardinality,
making it riskier to misplace. Consequently, overall L1-error for 3-way join is L13 = 532.15. This
illustration exemplifies how L1-error effectively penalizes misestimations based on their impact on
plan search algorithms.

6 L1-ERROR FOR PLAN OPTIMALITY

In this section, we explore the potential of the L1 error as a complement or perhaps even an
alternative metric to Q-error to evaluate query plans. In addition, we examine how the L1 error, as an
independent feature, can be utilized in classifying sub-optimal query plans, thereby demonstrating
its efficacy as a reliable indicator.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:15

Fig. 7. Importance of small joins at the beginning and decreasing impact of large joins at the end of query

plan enumeration algorithms.

6.1 �ery-level L1-error

In Section 5, we show how L1: can independently assess cardinality estimation errors at each join
size : . It is essential to note that the number of sub-plans 3 at each join size : may vary depending
on the complexity of the query — different lengths of the position vectors d and d̂ . By aggregating
individual L1-error at each join size into L1: , we can form a feature vector of size , starting from
2-way joins : = 2. Given that queries can have different join sizes, the dimensions of these feature
vectors can also vary. We define a query-level L1-error as:

L1& =

 ∑

:=2

L1: (9)

The magnitude of this query-level L1 error can be influenced by the complexity of the query —
various numbers of join sizes involved. Consequently, the aggregation approach, which sums up all
join-level L1 errors, can be particularly sensitive to the complexity of the query. This implies that
more complex queries with a larger number of join sizes may naturally result in higher aggregated
L1 errors, emphasizing the influence of query complexity on the overall L1-error calculation. To
alleviate this issue, we can take into account our insights from Figure 4a. Cardinality estimations
for higher-level joins tend to be severely inaccurate. There is a visible decline in accuracy following
3-way joins, and a considerable drop after 6-way joins. Given this, it is evident that higher-level
join cardinality estimations are unreliable and should, therefore, be excluded from consideration or
given less weight in comparison to lower-level join cardinality estimations [45]. This approach
would counterbalance the tendency for larger errors in complex queries. To further support this
decision, we present Figure 7 that illustrates how intermediate data decreases as the join size grows.
For each query complexity, we group all JOB sub-plans — including % +� and � +� joins — by
join size and plot the median cardinality value. The results show a consistent trend across all query
complexity groups: as join size increases and more filter predicates come into play, intermediate
data reduces. Therefore, selecting optimal sub-plans in the early stages of join sizes is crucial to
prevent the propagation of large intermediate data. Decisions made at later stages, influenced

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:16 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

by inaccuracies, are less impactful due to the smaller volume of intermediate data processed at
higher-level joins. In the figure, we observe a notable drop in data after 6-way join sizes in simple
queries, 10-way join in moderate queries, and 15-way join in complex queries. Interestingly, the
volume of intermediate data for complex queries between 6 to 13 joins remains stable. This implies
the importance of choosing optimal sub-plans up to 13-way joins. While these results are primarily
derived from the analysis of JOB sub-plans, we believe this observed trend applies to a wide range
of workloads. Taking into account the discussed facts and observed trends, we assign weights to
already computed join-level L1-errors L1: at each join size using an inverse logistic function. For
notational purposes, letF: be defined as:

F: =
4−C×:

1 + 4−C×:
(10)

where C represents the logistic growth rate or the steepness of the curve. With this in mind, we can
define the weighted query-level L1-error as follows:

L1& =

 ∑

:=2

F: × L1
:
= F) × L1 (11)

L1-errors across different join sizes are aggregated into a unified L1-error while assigning lower
weights to L1-errors at high-level joins. The logistic growth rate C can be tuned based on the
performance of the cardinality estimator in use. For example, we set C = 1.5, thusF_7 = 0.000028,
based on the Q-error values generated by PostgreSQL, depicted in Figure 4a. It begins to reduce the
impact of join-level L1-errors starting from 7-way joins as we observe significant estimation errors
at higher-level joins.

Algorithm 1 L1-error

Input: largest join size of input query & , set of query sub-plans (, true . and estimated .̂
cardinalities
Output: L1& weighted query-level L1-error

1: function�ery-L1-error(, (, . , .̂)
2: F ∈ R −1 ← join size weights from Equation 10

3: L1← Join-L1-error(, (,. , .̂)

4: return L1& = F) × L1

5: function Join-L1-error(, (, . , .̂)
6: for each join size : ∈ {2 . . . } do
7: (: ⊂ (← subset of sub-plans of size : in (
8: d ← positions of (: increasingly sorted by .

9: d̂ ← positions of (: increasingly sorted by .̂
10: // compute weights from Equations 5 and 7

11: , : ← impact weights of sub-plans in (:
12: X: ← position weights of sub-plans in (:
13: L1: ← L1-error for join size : from Equation 8

14: return L1← join-level L1 feature vector of size − 1

Algorithm overview. Algorithm 1 shows an overview of computing L1-error for a given query
& . The inputs are the maximum join size and all sub-plans (along with their true. and estimated

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:17

.̂ cardinalities. Algorithm 1 consists of two functions �ery-L1-error (lines 1-4) and Join-L1-

error (lines 5-14). For the sake of clarity, we separate these two functions, although these two
functions can be combined. At the query level, in function�ery-L1-error, join weightsF for
each join size : are generated as in Equation 10 (line 2). The impact of joins decreases as their
sizes increase following the ‘S’-shaped sigmoid curve. Join-level L1 ∈ R are aggregated into the
final query-level L1& (line 4). Join-L1-error computes join-level L1: for each join size : . For the
sub-plans (: of size : , two position vectors d and d̂ are created and sorted in increasing order based

on the true . and estimated .̂ cardinalities, respectively (lines 7-9). Simultaneously, impact weight
matrix, : and position weights X: are generated from Equations 5 and 7, respectively (lines 10-12).
Lastly, a join-level L1: for join size : is computed from Equation 8 (line 13). We repeat the process
for each join size (lines 6-13) yielding a feature vector, L1 of length , of join-level L1: (line 14).

6.2 Applications of L1-error

While minimizing individual Q-errors can enhance the overall efficiency of a query optimizer,
the metric often falls short of accurately indicating query plan optimality [11, 44]. Q-error is
conventionally used to assess cardinality estimation techniques and synopses, as a separate sub-
task that influences the likelihood of finding an optimal query plan [19, 26]. In recent years, Q-error
has been widely adopted in learning-based approaches [44], where it is utilized in the post-training
evaluation phase [12, 46–48] and during training [21, 34]. In Section 4, we observe that being solely
an error measurement, cannot reliably identify sub-optimal query plans. This limitation arises from
the fact that other factors that bridge the gap between estimation error and the selection of an
optimal plan, such as cost function and plan enumeration, are not taken into account by Q-error.
In this work, we present L1-error as a metric to characterize plan sub-optimality, taking as an

input only cardinalities and without requiring plan enumeration to compute P-error. Contrary to
Q-error which primarily concentrates on estimation precision, L1-error prioritizes the relative order
of sub-plans — a critical aspect for cost function and plan enumeration algorithms. It accounts for
the impact weights of sub-plans and their relative displacement in the presence of estimation errors.
Therefore, unlike Q-error, L1-error is capable of accurately identifying queries with sub-optimal
plans. This suggests that L1-error can serve as a complementary metric to Q-error to evaluate
query plans and can be employed in future research to evaluate the sub-optimality of query plans
produced by synopses and learning-based models. In the current work, we evaluate L1-error as
a standalone measure. For this purpose, we frame the identification of queries with sub-optimal
query plans as a binary classification task.

7 EMPIRICAL EVALUATION

In the current study, we assess L1-error as a separate measure and frame the identification of
queries with sub-optimal query plans as a binary classification task. This allows us to evaluate the
standalone efficacy of L1-error. Our evaluation of L1-error spans three different facets — varying
sources of cardinality estimates, plan search algorithms, and workloads and data.

7.1 Experimental Setup

Datasets & query workloads. We perform the experiments on the JOB benchmark [39] over
IMDB dataset [1], which has seen extensive use in evaluating query optimizers and has thereby
established itself as a standard benchmark [25, 26]. The JOB benchmark defines 113 queries grouped
into 33 families. These queries vary significantly in their complexity, with the simplest having 4 join
predicates and the largest join size of 4, and the most complex having 28 join predicates with the
largest join size of 17. This variability manifests itself in execution times that are highly different. To

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:18 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

compensate for this, we split the queries into three complexity groups — simple (4-9 join predicates),
moderate (10-19 join predicates), and complex (20-28 join predicates) — and examine each group
separately. We also perform experiments using the JOB-light benchmark [20], a simpler version of
the JOB benchmark that includes 67 simple queries that can be represented with a star join graph
and feature 2 to 4 join predicates. To show how L1-error generalizes to different workloads and
data, we evaluate L1-error on JCCH [2] and DSB [7] benchmarks. We use scale factors of 1 and 10,
and generate 511 and 1440 queries, respectively.

(a) Exhaustive enumeration

(b) Greedy enumeration

Fig. 8. Distribution of JOB queries based on P-error using true and PostgreSQL estimated cardinalities.

Methodology & implementation. For cardinality estimations, we select two distinct cardinality
estimators—PostgreSQL 15.1 [37], a widely recognized database system, and COMPASS [16, 17],
a more recent system. We run the sub-plans of the four workloads in PostgreSQL to collect their
estimated and true join cardinalities. Additionally, we collect estimated join cardinalities for the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:19

sub-plans of JOB and JOB-light produced by COMPASS. We compute the P-Error for each query and
use it as a true label in our binary classification task. We acquire query plans utilizing exhaustive
and greedy plan search algorithms based on estimated and true cardinalities. The cost of the query
plans is calculated using the cost function C from Section 3.1.

We show the performance of the L1-error-based binary classifier via confusion matrices depicted
in Tables 1 and 2. We label queries with sub-optimal plans as ‘positive’ (P) and ‘negative’ (N)
otherwise. These classifications are shown in the fifth to eighth columns of the confusion tables. In
the tables, we report four measures: ‘true positive’ (TP), ‘true negative’ (TN), ‘false positive’ (FP),
and ‘false negative’ (FN) shown on the ninth to twelfth columns. In addition, we report overall
accuracies on test data of the classifiers based on L1-error, Q-error and both in Figures 9 and 10.
In the binary classification task, we use a CART decision tree model of a tree depth of 5 from the
Scikit-learn library (version 1.1.2). For the logistic growth rate in Equation 10, we set C = 1.5, which
begins weighting 4-way joins at ≈ 0.002. We partition the queries into training and testing, using a
70% to 30% split, respectively, to have a large enough test data for the classification task. In JCCH
and DSB, we split the data into 80% to 20%. The resulting data sizes are shown in the third and
fourth columns in Tables 1 and 2. The implementation of the current work together with all the
experimental artifacts are available online [15].

Benchmark Enumerator
Train

queries

Test

queries

Actual Predicted

TP TN FP FNSub-optimal

(Positive)

Optimal

(Negative)

Sub-optimal

(Positive)

Optimal

(Negative)

JOB

113 queries

Exhaustive

79 34

87

61 train

26 test

26

18 train

8 test

94

67 train

27 test

19

12 train

7 test

85

60 train

25 test

17

11 train

6 test

9

7 train

2 test

2

1 train

1 test

Greedy

46

32 train

14 test

67

47 train

20 test

51

34 train

17 test

62

45 train

17 test

33

24 train

9 test

49

37 train

12 test

18

10 train

8 test

13

8 train

5 test

JOB-light

67 queries

Exhaustive

40 27

9

5 train

4 test

58

35 train

23 test

3

2 train

1 test

64

39 train

25 test

1

1 train

0 test

56

35 train

21 test

2

0 train

2 test

8

4 train

4 test

Greedy

2

1 train

1 test

65

39 train

26 test

0

0 train

0 test

67

40 train

27 test

0

0 train

0 test

65

39 train

26 test

0

0 train

0 test

2

1 train

1 test

JCCH

511 queries

Exhaustive

408 103

150

120 train

30 test

361

288 train

73 test

127

99 train

28 test

384

309 train

75 test

127

99 train

28 test

361

288 train

73 test

0

0 train

0 test

23

21 train

2 test

Greedy

120

96 train

24 test

391

312 train

79 test

59

45 train

14 test

452

363 train

89 test

59

45 train

14 test

391

312 train

79 test

0

0 train

0 test

61

51 train

10 test

DSB

1440 queries

Exhaustive

1152 288

727

582 train

145 test

713

570 train

143 test

668

529 train

139 test

772

623 train

149 test

586

462 train

124 test

631

503 train

128 test

82

67 train

15 test

141

120 train

21 test

Greedy

668

534 train

134 test

772

618 train

154 test

626

503 train

123 test

814

649 train

165 test

529

424 train

105 test

675

539 train

136 test

97

79 train

18 test

139

110 train

29 test

Table 1. Evaluation of L1-error on query plans selected using PostgreSQL cardinality estimates.

7.2 Results

L1-error performance on PostgreSQL. In this section, we first examine L1-error performance
identifying the sub-optimality of query plans selected based on PostgreSQL’s cardinality estimation.
Subsequently, we analyze L1-error performance on different sets of cardinality estimates collected
from the COMPASS estimator used to select query plans. We start the evaluation with the JOB
workload, composed of a mix of 113 simple, moderate and complex queries. Out of the four
workloads, JOB is the most challenging due to its relatively complex graph topology and large
number of joins. Figure 8 displays the distribution of JOB queries, grouped by their P-error shown
on the x-axis. In Figure 8a, when employing exhaustive enumeration, we observe that 23.9%

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:20 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

of the selected plans are equivalent to optimal plans (P-error = 1), while 35.4% of 113 queries
are near-optimal (P-error < 1.5), thus may be considered successful. The remaining 40.7% of
the overall number of queries exhibits larger cost differences, some of which are severely sub-
optimal. In the case of greedy enumeration, Figure 8b, we observe that 25.7% and 24.8% of the
selected plans are equivalent to optimal plans (P-error = 1) and near-optimal (P-error < 1.5),
respectively. Interestingly, 17.7% of the queries have even better plans than the plans selected using
true cardinalities (P-error < 1). This is due to greedy decisions made during the enumeration. The
remaining 31.8% of the plans demonstrate higher P-errors, and some are severely sub-optimal.
These sub-optimal plans mainly include moderate and complex queries, and their sub-optimal plans
should be accurately identified.

(a) JOB workload (b) JOB-light workload

(c) JCCH workload (d) DSB workload

Fig. 9. L1-error classifier accuracy on test data using PostgreSQL cardinality estimates.

The objective is to directly classify sub-optimal query plans using only L1-error, not by P-error.
The first two rows in Table 1 depict the performance of L1-error evaluated on JOB. In the case
of exhaustive enumeration, the number of positive queries (sub-optimal) is higher than negative
queries (optimal) – columns 5 and 6. Based on the results, we observe a similar trend but now
query plans are classified by L1-error as an indicator of queries with sub-optimal plans – columns
7 and 8. The difference between predicted positive and negative queries is also high. Out of 87 true
sub-optimal plans (Positive), 85 sub-optimal query plans are correctly classified (TP), resulting in 2
FN. On the other hand, the number of misclassifying optimal plans as sub-optimal (FP) is higher
which is not as critical as FN. In the case of greedy enumeration, we observe an opposite trend
– the number of positive queries (sub-optimal) is lower than negative queries (optimal). While
the classifier results in 18 FP and 13 FN, the predicted Positive and Negative results follow the
pattern of the actual Positive and Negative results. Analyzing the misclassified optimal plans, in
both enumerations, we observe that the classifier primarily misclassifies queries with P-error < 1.5.
We now evaluate L1-error on simple queries in JOB-light — third and fourth rows in Table 1.

Unlike in JOB, this particular workload presents a relatively high unbalanced class ratio for the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:21

classification task. From the results, we notice a significant difference between the number of true
sub-optimal plans (Positive of 9 and 2) and true optimal plans (Negative of 58 and 65) in exhaustive
and greedy enumerations, respectively. This is expected because, in simple queries, the join sizes are
smaller, thus cardinality estimations are relatively accurate. Therefore, this results in a high number
of queries with optimal plans in both search algorithms. The results exhibit a similar trend but now
queries are classified by L1-error as an indicator. The difference between predicted positive and
negative queries is also high. Even though a large P-error may have less impact on the execution
time of simple queries, the classifier is still efficient in identifying plan sub-optimality. As in JOB,
the misclassified query plans show P-error < 1.5.

To conduct a comprehensive assessment of L1-error across a more expansive dataset and query
spectrum, we present evaluations performed on JCCH (rows 5 and 6) and DSB (rows 7 and 8)
workloads. Unlike the previous two workloads, JCCH and DSB show a relatively more balanced
class ratio, albeit with the predomination of optimal plans. This is due to the workload complexity
standing between JOB and JOB-light. Based on the results, the predicted Positive and Negative
results in a similar trend as in actual Positive and Negative results. The predicted class ratio also
follows a similar trend. Interestingly, the classifier avoids misclassifying optimal plans as sub-
optimal, with 0 FN in both enumeration algorithms. Looking into the misclassified queries reveals
query plans exhibiting P-error values centered around 1.78.

Benchmark Enumerator
Train

queries

Test

queries

Actual Predicted

TP TN FP FNSub-optimal

(Positive)

Optimal

(Negative)

Sub-optimal

(Positive)

Optimal

(Negative)

JOB

113 queries

Exhaustive

79 34

78

55 train

23 test

35

24 train

11 test

100

68 train

32 test

13

11 train

2 test

76

54 train

22 test

11

10 train

1 test

24

14 train

10 test

2

1 train

1 test

Greedy

57

40 train

17 test

56

39 train

17 test

80

55 train

25 test

33

24 train

9 test

55

40 train

15 test

31

24 train

7 test

25

15 train

10 test

2

0 train

2 test

JOB-light

67 queries

Exhaustive

40 27

14

8 train

6 test

53

32 train

21 test

10

4 train

6 test

57

36 train

21 test

7

4 train

3 test

50

32 train

18 test

3

0 train

3 test

7

4 train

3 test

Greedy

3

2 train

1 test

64

38 train

26 test

4

2 train

2 test

63

38 train

25 test

3

2 train

1 test

63

38 train

25 test

1

0 train

1 test

0

0 train

0 test

Table 2. Evaluation of L1-error on query plans selected using COMPASS cardinality estimates.

Figure 9 illustrates the accuracy of the classifier on the test data. We compare the classifier based
on L1-error and the classifier based on Q-error as well as the classifier that utilizes both L1-error
and Q-error to identify sub-optimal query plans. Overall, we observe an improvement over the
Q-error classifier except in exhaustive enumeration on JOB-light attributed to the small number
of test data. The results above suggest L1-error is a viable indicator for identifying sub-optimal
query plans and can be used in tandem with Q-error to assess query optimizers to identify query
sub-optimality. The classifier based on both L1-error and Q-error exhibits overall improvement
in identifying sub-optimal plans. The combined approach can provide a more comprehensive
evaluation, considering both the absolute accuracy of individual estimates and their impact on
query plan optimality.

L1-error performance on COMPASS. In order to evaluate L1-error on a different dimension,
we collect true and estimated cardinalities from the COMPASS estimation for JOB and JOB-light
workloads. In Table 2, we present the classifier performance identifying sub-optimal query plans
selected by exhaustive and greedy enumeration algorithms using COMPASS cardinality estimates.
As with PostgreSQL estimates, we observe similar class ratios – actual Positives and Negatives
on columns 5 and 6 – in JOB and JOB-light. The predicted Positives and Negatives once again

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:22 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

(a) JOB workload. (b) JOB-light workload.

Fig. 10. L1-error classifier accuracy on test data using COMPASS cardinality estimates.

follow a similar pattern except for greedy enumeration in JOB. The number of estimated Positives
is noticeably higher than the actual Positives. Thus, the classifier results in a higher FP while still
maintaining a low FN. A closer scrutiny of the misclassified queries reveals a central tendency of
query plans exhibiting P-error values around 1.0. In Figure 10, we compare the classifiers using
L1-error, Q-error, and both performed, on JOB and JOB-light. As in PostgreSQL estimates, we
observe a positive trend over Q-error. The combined classifier on L1-error and Q-error shows
improved accuracy on the test data.

7.3 Summary

The experimental results can be summarized as follows:
• L1-error correctly classifies the optimality of query plans by following the trend and ratio
between true sub-optimal and optimal query plans. The results contain only a small number of
false negatives—the case when true sub-optimal plans are misclassified.
• The classifier based exclusively on L1-error identifies sub-optimal plans more accurately than
the classifier that has Q-error as a feature. When having a combined feature consisting of both
L1-error and Q-error, the best accuracy is achieved. These results prove that L1-error acts as an
important feature both alone as well as in conjunction with Q-error.
• L1-error maintains its accuracy across multiple sets of cardinality estimates and workloads. This
proves its generality both for different cardinality estimation synopses as well as across various
datasets and queries.

8 CONCLUSIONS AND FUTURE WORK

We introduce L1-error, a novel indicator designed to identify sub-optimal join orders. L1-error
emphasizes cardinality estimation errors that influence plan search algorithms, specifically those
errors that disrupt the cardinality-based sorted order of sub-plans. Importantly, L1-error disregards
estimation errors that do not bear any impact on the plan search algorithms. L1-error also takes
into account that the cardinality estimates of earlier multi-way joins tend to be more accurate and
critical than those of later joins. Our empirical results, across four different benchmarks, prove that
as a standalone metric, L1-error can efficiently identify sub-optimal join orders in both moderate
and complex queries.

As we look towards future research, we propose employing L1-error as a supplementary measure
in conjunction with Q-error to better correlate with the optimality of a query plan. Therefore, we
intend to utilize L1-error in the evaluation of a broader range of cardinality estimation techniques,
including learning-based approaches, to assess the efficacy of their trained models.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

Sub-optimal Join Order Identification with L1-error 17:23

ACKNOWLEDGMENTS

This work is supported by NSF award number 2008815.

REFERENCES

[1] Peter Boncz. [n. d.]. The IMDB Dataset. http://homepages.cwi.nl/~boncz/job/imdb.tgz.

[2] Peter Boncz, Angelos-Christos Anatiotis, and Steffen Klabe. 2017. JCC-H: Adding Join Crossing Correlations with

Skew to TPC-H. In TPCTC 2017. 103–119.

[3] Nicolas Bruno, César Galindo-Legaria, and Milind Joshi. 2010. Polynomial Heuristics for Query Optimization. In ICDE

2010. 589–600.

[4] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic Cardinality Estimation: Tighter Upper Bounds for

Intermediate Join Cardinalities. In SIGMOD 2019. 18–35.

[5] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational Systems. In PODS 1998. 34–43.

[6] David DeHaan and Frank Tompa. 2007. Optimal Top-Down Join Enumeration. In SIGMOD 2007. 785–796.

[7] Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek Narasayya. 2021. DSB: A Decision Support Benchmark for

Workload-Driven and Traditional Database Systems. PVLDB 14, 13 (2021), 3376–3388.

[8] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya, and Surajit Chaudhuri. 2019. Selectivity

Estimation for Range Predicates Using Lightweight Models. PVLDB 12, 9 (2019), 1044–1057.

[9] Leonidas Fegaras. 1998. A New Heuristic for Optimizing Large Queries. In DEXA 1998. 726–735.

[10] Immanuel Haffner and Jens Dittrich. 2023. Efficiently Computing Join Orders with Heuristic Search. PACMMOD 1, 1

(2023).

[11] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong, Yanzhao Qin,

Andreas Pfadler, Zhengping Qian, Jingren Zhou, Jiangneng Li, and Bin Cui. 2022. Cardinality Estimation in DBMS: A

Comprehensive Benchmark Evaluation. PVLDB 15, 4 (2022), 752–765.

[12] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2020.

DeepDB: Learn from Data, not from Queries! PVLDB 13, 7 (2020), 992–1005.

[13] Toshihide Ibaraki and Tiko Kameda. 1984. On the Optimal Nesting Order for Computing N-relational Joins. ACM

Transactions on Database Systems 9, 3 (1984), 482–502.

[14] Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the Propagation of Errors in the Size of Join Results. SIGMOD

Record 20, 2 (1991), 268–277.

[15] Yesdaulet Izenov. 2024. Sub-optimal Join Order Identification with L1-error. https://github.com/yizenov/l1-error.

[16] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COMPASS: Online Sketch-based Query

Optimization for In-memory Databases. In SIGMOD 2021. 106–117.

[17] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. Online Sketch-based Query Optimization.

CoRR arXiv:2102.02440v1 (2021).

[18] Maurice G Kendall. 1938. A New Measure of Rank Correlation. Biometrika 30, 1/2 (1938), 81–93.

[19] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating Join Selectivities using Bandwidth-

Optimized Kernel Density Models. PVLDB 10, 13 (2017), 2085–2096.

[20] Andreas Kipf. [n. d.]. JOB-light Benchmark. https://github.com/andreaskipf/learnedcardinalities/blob/master/

workloads/job-light.sql.

[21] Andreas Kipf, Thomas Kipf, Bernhard Radke, Victor Leis, Peter Boncz, and Alfons Kemper. 2019. Learned Cardinalities:

Estimating Correlated Joins with Deep Learning. In CIDR 2019.

[22] Donald Kossmann and Konrad Stocker. 2000. Iterative Dynamic Programming: A New Class of Query Optimization

Algorithms. TODS 25, 1 (2000), 43–82.

[23] Ravi Kumar and Sergei Vassilvitskii. 2010. Generalized Distances Between Rankings. In WWW 2010. 571–580.

[24] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2021. Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation,

Cost Model, and Plan Enumeration. Data Science and Engineering 6 (2021), 86–101.

[25] Victor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How Good

Are Query Optimizers, Really? PVLDB 9, 3 (2015), 204–215.

[26] Victor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.

2018. Query Optimization Through the Looking Glass, and What We Found Running the Join Order Benchmark.

VLDBJ 27 (2018), 643–668.

[27] Beibin Li, Yao Lu, Chi Wang, and Srikanth Kandula. 2021. Q-error Bounds of Random Uniform Sampling for Cardinality

Estimation. CoRR arXiv:2108.02715v2 (2021).

[28] Christina Lioma and Niels Dalum Hansen. 2017. A Study of Metrics of Distance and Correlation between Ranked Lists

for Compositionality Detection. Cognitive Systems Research 44 (2017), 40–49.

[29] Guy Lohman. 2014. Is Query Optimization a Solved Problem? https://wp.sigmod.org/?p=1075.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

17:24 Yesdaulet Izenov, Asoke Da�a, Brian Tsan, & Florin Rusu

[30] Guido Moerkotte and Pit Fender. 2013. Counter Strike: Generic Top-Down Join Enumeration for Hypergraphs. PVLDB

6, 14 (2013), 1822–1833.

[31] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One New Dynamic Programming

Algorithm for the Generation of Optimal Bushy Join Trees Without Cross Products. In VLDB 2006. 930–941.

[32] Guido Moerkotte and Thomas Neumann. 2008. Dynamic Programming Strikes Back. In SIGMOD 2008. 539–552.

[33] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad Plans by Bounding the Impact of

Cardinality Estimation Errors. PVLDB 2, 1 (2009), 982–993.

[34] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim Kraska, and Mohammad Alizadeh.

2021. Flow-Loss: Learning Cardinality Estimates That Matter. PVLDB 14, 11 (2021), 2019–2032.

[35] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and Mohammad Alizadeh. 2020. Cost-Guided

Cardinality Estimation: Focus Where it Matters. In ICDE Workshops 2020. 154–157.

[36] Thomas Neumann. 2009. Query Simplification: Graceful Degradation for Join-Order Optimization. In SIGMOD 2009.

403–414.

[37] Open Source Relational Database [n. d.]. PostgreSQL. www.postgresql.org.

[38] Matthew Perron, Zeyuan Shang, Tim Kraska, and Michael Stonebraker. 2019. How I Learned to Stop Worrying and

Love Re-optimization. In ICDE 2019. 1758–1761.

[39] Greg Rahn. [n. d.]. Join Order Benchmark (JOB). https://github.com/gregrahn/join-order-benchmark.

[40] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlain, R. A. Lorie, and T. G. Price. 1979. Access Path Selection in a

Relational Database Management System. In SIGMOD 1979. 23–34.

[41] Charles Spearman. 1904. The Proof and Measurement of Association between Two Things. The American Journal of

Psychology 15, 1 (1904), 72–101.

[42] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. 1997. Heuristic and Randomized Optimization for the Join

Ordering Problem. VLDBJ 6, 3 (1997), 191–208.

[43] Arun Swami. 1989. Optimization of Large Join Queries: Combining Heuristics and Combinatorial Techniques. In

SIGMOD 1989. 367–376.

[44] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. 2021. Are We Ready For Learned

Cardinality Estimation? PVLDB 14, 9 (2021), 1640–1654.

[45] Florian Wolf, Michael Brendle, Norman May, Paul R. Willems, Kai-Uwe Sattler, and Michael Grossniklaus. 2018.

Robustness Metrics for Relational Query Execution Plans. PVLDB 11, 11 (2018), 1360–1372.

[46] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica. 2021. NeuroCard: One

Cardinality Estimator for All Tables. PVLDB 14, 1 (2021), 61–73.

[47] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel, Joseph M Hellerstein,

Sanjay Krishnan, and Ion Stoica. 2019. Deep Unsupervised Cardinality Estimation. PVLDB 13, 3 (2019), 279–292.

[48] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian, Jingren Zhou, and Bin Cui. 2021. FLAT:

Fast, Lightweight and Accurate Method for Cardinality Estimation. PVLDB 14, 9 (2021), 1489–1502.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 17. Publication date: February 2024.

