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1. Introduction

The study of evolution and seasonality is crucial for understanding the dynamics of eco-
logical systems, particularly in the context of interactions between competing species
[8,19,34]. Both biological observations and mathematical models have provided valuable
insights into the impact of these factors on species coexistence, population dynamics, and
community structure [18,27]. In this paper, we will explore how evolution, and seasonal-
ity reflected by periodicity, are shaping the dynamics of two competing species through
evolutionary periodic Ricker competition models.

Evolution, the process by which heritable characteristics of a population change over
successive generations, plays a fundamental role in determining the outcomes of species
interactions [34]. In the context of competition, evolutionary processes can drive the adap-
tation of species to exploit different resources or occupy distinct ecological niches, leading
to the coexistence or exclusion of competing species [4]. Classic studies such as Darwin’s
finches in the Galapagos Islands have demonstrated the role of evolutionary divergence in
allowing closely related species to coexist by occupying different feeding niches [20]. Addi-
tionally, the presence of seasonality in the environment introduces significant challenges
and opportunities for competing species. Seasonal variations in temperature, resource

CONTACT Rafael Luis @ rafael.luis.madeira@gmail.com @ Center for Mathematical Analysis, Geometry, and
Dynamical Systems, Instituto Superior Tecnico, Technical University of Lisbon, Lisbon, Portugal

© 2023 Informa UK Limited, trading as Taylor & Francis Group



1092 (&) S.ELAYDIETAL.

availability, and other environmental factors impose strong selective pressures on organ-
isms, leading to adaptations and life history strategies optimized for specific seasonal
conditions. For instance, the migration patterns of birds and the hibernation behaviours
of mammals are adaptations that allow them to cope with seasonal variations in resource
availability and environmental conditions.

Mathematical models have provided a powerful framework for studying the dynamics
of competing species under the influence of evolution and seasonality. These models inte-
grate ecological and evolutionary principles with mathematical equations to simulate and
analyse species interactions over time. By incorporating parameters such as competition
coefficients, reproductive rates, and phenotypic plasticity, these models can capture the
complex dynamics arising from evolutionary processes and seasonal fluctuations. Several
influential studies have explored the interplay between evolution, seasonality, and species
competition. For example, classical ecological models, such as Lotka—-Volterra models, have
been extended to incorporate evolutionary dynamics, yielding insights into the conditions
under which coexistence or exclusion occurs. Furthermore, seasonally varying models,
such as the Nicholson-Bailey model, have been used to investigate the impact of seasonal
fluctuations on predator-prey dynamics [18].

The study of evolution and seasonality is vital for understanding the dynamics of com-
peting species. Both biological observations and mathematical models have provided valu-
able insights into the mechanisms underlying species coexistence, population dynamics,
and community structure.

Mathematical models of Darwinian evolution were introduced in the book of Vincent
and Brown [33]. Adaptive dynamics of trait models may be found in the book of Dercole
and Rinaldi [15] and the paper of Abrams [1]. Most models in the literature are continuous
and autonomous. It was Cushing [2,9-13,28] who established the foundation of discrete
phenotype evolutionary models. Several recent papers on discrete evolutionary competi-
tion models by Mokni et al. [25,26] and Elaydi et al. [17] were based on the ideas and the
methodology established by Cushing. Moreover, Cushing’s methodology was also applied
to predator-prey models by Ackleh et al. [3]. In this paper, we use the discrete-time mod-
elling framework of Darwinian evolution developed by Jim Cushing to study the global
dynamics of evolutionary periodic Ricker Competition models.

Up to this point, all the published papers and books have focused on local stability ques-
tions. Global stability was only obtained in a very special case when the trait equations were
uncoupled from the populations’ dynamic equations. In this paper, using the novelty of
mixed monotone maps, we extend the global stability theory of non-evolutionary models
in two directions:

(i) First, the global stability results are extended to autonomous evolutionary models in
which the trait equations are coupled with the population dynamics equations. This
will be presented in Section 2.

(ii) Second, the results obtained in (i) are extended to non-autonomous periodic evo-
lutionary models and asymptotically autonomous evolution models. This will be
presented in Section 3.

In the final Section 4, we provide conclusions about our study, the related conjectures,
and propose important and interesting open problems for future study.
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2. Autonomous evolutionary systems of Ricker type

In this section, we investigate the global stability of the interior equilibrium point of the
autonomous evolutionary Ricker model. We start with a single-species and then we extend
the obtained results to multi-species models.

2.1. Single-species evolutionary models

The autonomous evolutionary Ricker model [11] of single-species x with a single mean
trait u and individual trait v is given as follows:

2
x(t + 1) = x(t)e?~z ~cu®x®| _
u(t + 1) = u(®) + 0 (—u(®) - 2LED | ) x(0)

where we assume that c(v, u(t)) = c(v — u(t)) = c(z) by setting z = v—u and the function
c(z) is continuously differentiable for all values of its argument z. Thus, we have c(v —
#)|y=y = c(0) = ¢p. Therefore, we have the following model (1)
u

x(t+1) = x(t)e? 2 ~0x® (1)

ut+1) =1 - a®u(t) — ciox(t)
where ¢; := dizc(z)lz=0, and ¢y = ¢(0) = c(v — u(t))|y=up). The details of the model
derivations of Model (1) can be found in Cushing [11].

Model (1) can be represented by the map F(x, u) = (xe“_”Z/Z_COx, (1 —o?)u — c10%x)
which has the origin as a fixed point, and another fixed point E* of the form

gt — | (@/c,0) ifeg =0
| &, —ax®) ifeg #£0

—co+ cg+2cxc%
C2 '
By using the linearization principle for maps and the well-known results in [16,
Theorem 4.4, p. 200], sufficient conditions for a fixed point x* of a planar system to be
locally asymptotically stable are given by

where x* =

det(JF(x*")) > tr(JF(x*)) — 1, det(JF(x")) > —tr(JF(x*)) — 1, det(JF(x*)) < 1,
(2)
where det(JF(x*)) and tr(JF(x*)) are, respectively, the determinant and the trace of the
Jacobian matrix of the mapping F evaluated at the fixed point x*. The Jacobian matrix of
the mapping F of the system (1) is given by

2 2
JE(x, u) = (1 — cox)e® ™7 6% _xye® 7 —0%
T .
—c10? 1— g2

Thus, we have JF(0,0) = (_¢ , . °,) which leads to the conclusion that the origin is a

—6102 1—0o
saddle fixed point if @ > 0 and 02 < 2 (and unstable fixed point if @ > 0 and 02 > 2).
For the non-trivial fixed point E* we need to consider two cases as follows:
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(1)

()

In the case ¢; = 0, the fixed point (&/cp,0) is locally asymptotically stable when
0 < o < 2since JF(a/cy,0) = (1;“ 1—002) and 02 < 2. At @ = 2, a period-doubling
bifurcation occurs. Notice that from the equation u(t+ 1) = (1 — o2)u(t) we get
u(t) = (1 — 62)'u(0). Hence, we have u(t) — 0 as t — 00. From this, one can con-
clude that the dynamics of the equation x(t + 1) = x(t)e* —u(t)*/2—cox(®) jg eventually
converging to the limiting equation x(¢ + 1) = x(£)e*~*®, It is well known that the
local stability of the fixed point x* = a/co of the equation x(t + 1) = x(t)e* ~%0*®
implies its global stability. This statement was first established by May and Oster [24]
by using a graphical analysis, and an analytic proof can be derived from Singer [31].
Therefore, the fixed point (¢¢/cp, 0) is globally asymptotically stable when 0 < o < 2.
In the case ¢; # 0, the Jacobian JF(E*) is given by

C%—\/MC(H'C% (co—«/c33+2acf)2 1— cox* a1 (x*)z
JF(E*) = of q = 5

. —
—o?¢ 1 — o2 o l—-0o

which gives

—Cp (02 + 1) ‘/Zacf -+ c% 4+ c% ((Zcx —1o? + 1) + cg (0'2 + 1)

det(JF(E")) = .
1
=1—0242a0? — cp(1 + oH)x*
and
Co (co — 1/2Otc% + c%)
tr(JF(E*)) = 5 —0?42=2—cx* —0a>
a

We observe that det(JE(E*)) > tr(JE(E*)) — 1is always true. Now, simplifying the two
remaining relations in (2), it follows that the fixed point E* is locally asymptotically
stable whenever the following relations are satisfied

02+ oH)x* <2((@ — Do +2), (3)
(1 +02)x* > e — 1o (4)

Notice that Relation (3) is equivalent to det(JF(E*)) > — tr(JF(E*)) — 1 and Rela-
tion (4) is equivalent to det(JF(E*)) < 1. The region, in the parameter space bifur-
cation diagram, where Conditions (3) and (4) are satisfied, is depicted in Figure 1.
There are two cases, in the left graph we consider the parameter space oOc; while
in the right graph, we consider «Oc. We should mention that similar figures may be
obtained for the other cases of the fixing parameter. A complete study of local stability
properties of the Darwinian Ricker Model (1) may be found in [11].
If the inequality (3) becomes equality, i.e. when

0_2 _ 2(2 — C()x*)
cox* +2(1 —a)’

then the Jacobian has —1 as one of its eigenvalues where a period-doubling bifurcation
takes place. This phenomenon occurs when the parameters cross the dashed curve in
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Figure 1. Region, in the parameter space bifurcation diagram, of local stability of the non-trivial fixed
point of Model (1). In the region S, Conditions (3) and (4) are satisfied for co = 0.9. In the left graph we
consider o = 1.1 while in the right graph we take ¢; = —1.

Figure 1. Similarly, if the inequality (4) becomes an equality, i.e.

*

200 — 1 — ¢px*’

then the Jacobian has a pair of complex eigenvalues whose absolute value equals 1,
where Neimark-Sacker bifurcation takes place. This occurs when the parameters cross
the solid curve in Figure 1. In Ref. [25], the author presented a detailed analysis of these
two types of bifurcation for Model (1).

Based on the analysis above, we have the local stability result as follows:

Theorem 2.1 (Local asymptotically stable): Leta > 0,02 < 2andcy # 0. Then, the fixed
point (x*, —c1x*) of the evolutionary Ricker system given by (1) is locally asymptotically stable
ifco(2+ 0?)x* < 2((a — 1)o? 4+ 2) and co(1 + 02)x* > Qa — 1)o2.

Notes: Theorem 2.1 requires 02 < 2. Note that one may obtain the following formula of
u(t) from Model (1):

t—1

u(t) = (1 - 02)'u(0) — c106* Y (1 —o?Yx(t —j— 1).

j=0

Now if 02 > 2, this expression indicates that u(f) would approach infinity with x(¢)
approaching zero, which has been confirmed in the simulations as well. Thus, for the
boundedness of u(t), we require 6> < 2 for the remainder of this paper. Note that x* =
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_ (2152
C°+—C°+2m%, thus the local stability conditions in Theorem 2.1 becomes

o
Qe—1o2 , —C+gt2d (@ -1)0?+2)

<x* = <
co(14+02) ct co(2 4+ 0?)

From now on we assume that ¢; % 0. Our goal is to study the global stability of the
fixed point E*. To accomplish this task we use the notion of mixed monotone mappings
introduced by Hal Smith [32]. First we deal with an absorbing region in Model (1).

Definition 2.2: A region D in the domain of a map F is called an absorbing region if all
the orbits of the points in the domain of F are eventually in D after a number of iterations.

Remark 2.3: It should be noted that an absorbing region is a subset of the basin of
attraction and for most systems is not equal to.

Lemma 2.4 (Absorbing region): Let 0 <« < 1, 1 < 02 < 2 and c¢; # 0. Then the map
F in Model (1) has a compact invariant absorbing region D. Moreover, D is a subset of the
fourth quadrant when c1 > 0 and it is a subset of the first quadrant when ¢; < 0.

Proof: Assume that ¢; > 0. Now on the x-axis, the absorbing region is bounded
above by e*1/co since x(t)e* ! < e*~1/cy for all t. However, for u # 0 we have
x(£)e? W O/2=0x()) < x(£)e*—0*®) for all t. Hence, the x component of all orbits is
bounded by e*~!/cy.

Since u(t + 1) > (1 —o>)u(t) — M, M = o*c1e*" /¢y > 0, we have

1—(1—02)f) . M

liminf u(t) > lim ((1 —o)u) - M > e
t—o0 t—00 o

o2
On the other hand the relation u(t + 1) < (1 — o?)u(t) implies that

limsup u(t) < lim (1 — a®)'u(0) = 0.
t—00 =00
Thus, lim inf;_, o #(f) < u(t) < limsup,_, ., u(t),i.e. —Mo 2 < u(t) < 0. Consequently,
D is a subset of the fourth quadrant.
Then the set D = {(x,u) : 0 < x < e*"!/cy, —Mo ~? < u < 0} is an invariant absorb-
ing region of the map F. Analogously, there is an invariant absorbing region D = {(x, u) :
0 <x<e*1/cy,0 < u < Mo~? in the first quadrant when ¢; < 0. [ |

Definition 2.5: Let X be an ordered metric space. A continuous map F : X — X is mixed
monotone if there exists a map (not necessarily continuous) f : X x X — X satisfying

(i) F(x) =f(x,x)forallx € X;
(ii) fory e X and x; < x; we have f(x1,y) < f(x2,Y);
(iii) forx € X andy; <y, we have f(x,y2) < f(X,y1)-

The first main result now follows
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Lemma 2.6 (Mixed monotonocity): Let 0 < o < 1, 0% € (1,2) and ¢; > 0. Then the
mapping F of Model (1) is mixed monotone.

Proof: Consider <, to denote the southeast partial order, i.e. (x1,41) <se (x2,42) if and
only if x; < x, and u, < u; and let F(x,u) = (xe®~*"/2=%% (1 — 62)u — 62¢;x). From
Lemma 2.4, one can consider that all the dynamics of the mapping take place in the fourth
quadrant.

Define f((x1, u1), (x2, 42)) = F(x1, uz). Then:

(1) f((xu), (x,u)) = Fx, u);

(ii) Since x1e*~0*1 < x,e¥~0* for all x; < x2 < 1/co (notice that the function g(x) =
xe”~* 0 < o < 1, is increasing in the interval [0, 1/¢o] and we have g([0,1/co]) =

g([1/cp, +00)), so we can always assume x; and x;, after one iteration, i.e. values on

the range), we will have

xleoe—uz/z—coxl < xzea—uz/z—coxz’
or equivalently, F(x1, u) <. F(x2,u). So, writing f((x;, u;), (x,u)) = F(xj,u), i = 1,
2, for y = (x,u) and (x1,u;1) <g (x2,u2) we have f(x1,y) <s f(x2,y) with x; =
(xi,ui),i=1,2.

(iii) For u; < u; < 0 we have e~:/2 < ¢=41/2_ Hence, for x = (x,u) and (x1,u1) <
(%2, up) we have f(X,y2) <g f(x,y1) provide that

f&yi) = f((x, ), (xi, u;)) = F(x, u;)

a—u?/z—cox, (1-

= (xé o®u; —olex), i=1,2.

Consequently, F is a mixed monotone mapping.

To extend this result to the case ¢; < 0, we introduce the notion of topological conju-
gacy.

Definition 2.7 (Topological conjugacy): Two maps F and G are topologically conjugate if
there exists a homeomorphism A such that h o G = F o h, or, equivalentl, G=h"' o Fo h
(Figure 2).

Consider now the map F(x, u) = (xe“‘_”z/z_cox, (1 —0®)u — c0%x), where 1 < 02 <

2,0 <o < landc; < 0andlet G(x,u) = (xe“_”Z/Z_CO", (1 — 0?)u — ¢10%x) where ¢, =
—c1 > 0. For the maps F and G we have the following lemma:

Lemma 2.8: The maps F and G are topologically conjugate.
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Figure 2. Topological conjugacy of two maps.

Proof: Define h(x,u) = (x, —u). Then clearly h is a homeomorphism. Now for u > 0

W Y(G(h(x, u)) = 1 (G(x, —u))
= I (xe® 12790 (1 — 02)(—u) — E10%%)
= B (e W20 (1 — 0 X)u + &0%%))
= (xea‘”z/z‘c"x, 1- 02)u - clazx)

= F(x, u).

Hence the maps F and G are topologically conjugate. |
Using Lemma 2.8, we get the following result.

Lemma 2.9 (Mixed monotonocity): Let 0 < o < 1, 0% € (1,2) and c; < 0. Then the
mapping F of Model (1) is mixed monotone.

As a consequence of the previous results, we have the following important theorem.

Theorem 2.10 (Global Stability): The equilibrium point (x*, u*) of the Model (1) is globally
asymptotically stable if it is locally asymptotically stable and 0 <@ < 1,1 < 0? < 2, and
c <0.

Proof: Let D be the absorbing region as defined in Lemma 2.4, and let B=D —
{(x,u) : x =0} Let a = (x1,u1),b = (x2, u2) € B. Claim that ifa < b, f(a,b) <, a, and
f(b,a) >, b, then a = b. There are three cases to consider:

(1) a<eb;
(i) x1 = xp and u; > uy;
(iii) x1 < xp and u; = uy.
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Note that f(a,b) <, a and f(b,a) >, b imply that F(x;,u;) <. (x1,4;) and
F(x2,u1) >s¢ (x2,u2), respectively. Consequently, @ — u5/2 — cox; < 0 and o — u?/2 —
cox; > 0. Hence u% /2 — u% /2 + co(x1 — x2) > 0 which is false in the three cases. There-
fore,a = b.

Now let (x,u) € B. Then its orbit closure O(x, 4) C D and thus compact. Now ¢ =
inf w(x, u) € D (the infimum) and d = sup w(x, u) € D (the supremum), where w (x, u)
is the omega limit set of (x, #). Note that w(x, u) is invariant and compact. This implies
that both ¢ and d are in w(x, u). If (y1,v1) € w(x, u), then there exists (y,,v,) € w(x, u)
such that F(y,,v2) = (y1,v1)- Hence, ¢ <, (y2,12) <, d.

Let ¢ = (z,w) and d = (k,s). Then f(c,d) = f((z,w), (k,s)) = F(z,s) and f((y2,v»)
(k,$)) = F(y2,5) = (326*~12702(1 — 02)s — c102y;) <go (12* "2/ (1 — g2y, —
clazyz) = (y1,v1) By the mixed monotonicity of the map, it follows that f(c,d) <.
(y1, v1). Similarly, f(d, c) = f((k,s), (z, w)) = F(k,w), and f((k,s)), (y2,v2)) = F(k,v2) =
(ke 32750k (1 — 62y — €102k) e (1262 />, (1 — 02wy — c16%92) = (1, v1).
By the mixed monotonicity of the map, it follows that f(d, ¢) >, (¥1,v1).

Since (y1,v1) was arbitrary chosen from w(x,u), it follows that f(c,d) <, ¢ and
f(d,c) > d, which implies that ¢ = d. Therefore the omega limit set of the point (x, u) isa
fixed point in D. Since the origin is a saddle, it can’t be the attracting fixed point. Moreover,
since the interior fixed point (x*, u*) is locally asymptotically stable, then it must be the
unique attracting fixed point. Hence, for all points (x, u) € D, we have w(x, u) = (x*, u*).
Therefore (x*, u*) is globally asymptotically stable. |

By topological conjugacy, we obtain the following corollary.

Corollary 2.11 (Global Stability): Ifthe equilibrium point (x*, u*) of the model (1) is locally
asymptotically stable, then it is globally asymptotically stable if0 < & < 1,1 < 0% < 2, and
c1 > 0.

Combining Theorems 2.1, 2.10 and Corollary 2.11 we have the following result:

Corollary 2.12 (Globally asymptotically stable): Let0 <a < 1,1 < 02 <2, and ¢c; #
0. Then the interior equilibrium point of Model (1) is globally asymptotically stable if it is
locally asymptotically stable.

Example 2.13: Let ¢y = 1,062 = 1.5, ¢; = 2 and o = 0.3. Then (0.210977, —0.421954) is
a fixed point of the map F, where F(x, u) = (xeo'3_”2/ 2=x —0.5u — 202%x).

Now, the Jacobian matrix of F evaluated at the fixed point (0.210977, —0.421954) is
given by

JF = JF(0.210977, —0.421954) = ( 0789023 00890228 ) .

-3. —0.5

Hence, detJF = —0.127443 and tr JF = 0.289023. Clearly, the conditions (2) of local
stability are satisfied and we have local asymptotic stability by Theorem 2.1. Thus, by
Corollary 2.12, the fixed point (0.210977, —0.421954) is a globally asymptotically stable
fixed point of F. In Figure 3 it is represented a phase-space diagram in this case.
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Figure 3. Phase-space diagram for Example 2.13.

2.2. Two-species evolutionary models

In this subsection, we will extend our global analysis to the following two-species evolu-
tionary Ricker competition model

x(t+1) = x(t)ea—u%(t)ﬁ—m(O)x(f)—m)’(t)
y(t+1) = y(t)eﬁ—ug(f)/Z—Czlx(f)—522(0))'(0
ur(t+1) = (1 —oP)ui (t) — ofcrx(t)
up(t +1) = (1 — 03)uz(t) — a562y(1)

(5)

where a, B > 0,07 < 2,¢ € R, and c12, ¢21,¢11(0), €22(0) > 0. Specific details about the
local properties of this model may be found in Ref. [17] namely the effects of evolution on
the stability of competing species, i.e. the effects of evolution on the stability of the three
non-negative fixed points. Here, by non-negative we mean x > 0 and y > 0.

System (5) may be represented by the map F : R* — R* given by

2 2
—12)2— - —12 /231 x—c22(0
F(x, y, 1, thg) = (xea ui/2—c11(0)x Clzy,yeﬂ u5 [2—co1x—c22( ))”

(1- alz)ul — Glzclx, (1- 022)u2 — crzzczy) ) (6)

Theorem 2.14: Assume that0 < o, 8 < 1, oiz € (1,2) and ¢; < 0, i = 1, 2. Then the map
F given in (6) is mixed monotone.

Proof: Defining the map f : R* x R* — R* as

f (e y1, g, 1), (%2, 2, 3, 45)) = Fxw, y1, 43, u3),

it is a straightforward computation to show that the map f satisfies the three conditions of
mixed monotonicity. |

Theorem 2.15: Suppose that the assumptions of Theorem 2.14 hold. Then the interior
fixed point x* = (x*, y*, ul, u}) of System (5) is globally asymptotically stable if it is locally
asymptotically stable (Conditions (A1) stated in Appendix).
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Proof: The proof is similar to the proof of Theorem 2.10 considering
X={(yunu) €eR: x, y>0, w1, up >0},

and the conditions of local stability of (x*, y*, u], 4) are in Appendix. |

Now, following the ideas presented in the preceding subsection, for values of 0? €
(1,2),i = 1, 2, one can show that the maps

F(x,y,u1,uz) = (xea—uf/Z—Cn (O)x—Clz)"yeﬂ—“%/Z—Czlx—sz(O)y’
(1- o*lz)ul — Glzclx, (1-— 022)u2 — 0'2262)’) >
and
G(x,y, ul, uz) — (xea—u%/Z—cll(O)x—clzy,yeﬁ—u%/Z—cmx—czg(O)y)
(1- olz)ul - o*lzﬁlx, 1- 0‘22)u2 — 0‘2222)/)

are topologically conjugate by using the homeomorphism h(x, y, u1, u3) = (x,y, —u1, —uz)
and setting ¢; > 0 and ¢; = —¢;, i = 1, 2. Therefore, we have the following result.

Theorem 2.16: Assume that0 < o, 8 < 1, aiz € (1,2) and ¢; > 0, i = 1, 2. Then the map
F given in (6) is mixed monotone.

Theorem 2.17: The equilibrium pointx* = (x*, y*, (u1)}, (42)F) of the Model (5) is globally
asymptotically stable if it is locally asymptotically stable (Conditions A1) and 0 < o, B < 1,
1 <oi2 <2andc;>0,i=1,2.

By applying Theorems 2.15-2.17, we have the following example.

Example 2.18: Let us consider the following values for the parameters

=05 B=07 of=15 o5=13 =2 =3

Cl1 = € = 0.1, Clp = €1 = 0.5.
Then the mapping is mixed monotone by Theorem 2.16 and the interior fixed point is
x* ~ (0.386667,0.324621, —0.773334, —0.973863).

The coefficients of the characteristic polynomial of the Jacobian matrix of the mapping
evaluated at x* are

p1 ~ 0.0111288, p, ~ 0.96765, p3 ~ 0.169139 and p, =~ 0.107545.

It is straightforward to verify that all the conditions (A1) of local stability are satisfied. Since
all the conditions of Theorem 2.17 are satisfied, we have global stability of x*.
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3. Periodic systems of Ricker type

In this section, we study the global behaviour of the periodic evolutionary Ricker system
that is extended from the previous Section 2 by setting parameters being periodic. We start
with the single-species and later on, we study the multi-species. First, we recall a general
result of the asymptotic behaviour which is needed in this field.

3.1. Asymptotically periodic systems

Let R”, denote the cone of non-negative vectors in R"” and let int(R’} ) and 9 (R’ ) denote
the interior and the boundary of R}, respectively. Let G;, F; : Rt —> R’} to be contin-
uous functions for all t € Z and t =0,1,...,p, such that G, = G, for some p > 1.
Assume that

Aj : F; converges uniformly to G; as t — oo.

Then x(0) € R, implies that the solutions of the non-autonomous difference equation

x(t + 1) = F(x(1)), (7)

satisfies x(t) € R, forall t € Z, where x = (x1,x3,...,%) € Rﬁ_.
The same is true for solutions of the limiting non-autonomous periodic equation

x(t+1) = Gi(x(1)), (8)

where we assume
Ay : F; : int(R7) — int(R"). The same is true for the maps G;.

Theorem 3.1 ([14]): Assume Ay and A, and the limiting periodic Equation (8) has periodic
cycle C, of period p or a divisor of p in RY}.. If C, € R} and if it is globally asymptotically
stable on int(R7), then all solutions of the non-autonomous difference equation with x(0) €
int(R’}) tend to C,.

3.2. Single-species periodic evolutionary models

In this section, we study the dynamical properties of the evolutionary periodic single-
species model as follows:

{ x(t + 1) = x(t)ett = O/2=ax () o

ut+1) =1 —o?ut) — o?cx()

where 02 < 2, ¢y > 0, ¢c; € R and the sequence of parameter o is p-periodic, i.e. @ty =
a; for all t =0,1,2,..., and some positive integer p greater than 1. This model may be
represented by the non-autonomous periodic system {Fo, F1, . .., Fp—1}, where

Fi(x,u) = (xe“f—“z/z—cox, 1 —o0®u—cqo? ) , i=0,1,...,p— 1L (10)
Notice that from the fact that a;y, = o; we have Fi;, = F; for all i. This means that the

minimum period of the system is p.
We will study first the properties of trivial cycles and later the interior cycle.
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3.2.1. Global stability of trivial cycles

The origin is a fixed point of the p-periodic System (9) since it is a fixed point of each
individual map F;. Since the Jacobian of the composition map ®, = Fp 1 0...0F; o Fyis
the product of the individual Jacobians, it follows that

p o p—1

_ et 0 _ eZ,-=0 ot 0

Iq)P(O’O)_H(_CIO_Z 1_0,2)_( o (l_o—z)P).
i=0

Consequently, the origin is a saddle fixed point of System (9). Thus we have the following

result:

Theorem 3.2: Let 0% € (0,2), p> 1 is a positive integer, and oy > 0, t = 0,1,2,. .., with
s1p = 0. Then the origin is a saddle fixed point of the p-periodic System (9).

Similar to the autonomous case, under the scenario of ¢; = 0, from the equation u(t +
1) = (1 — oH)u(t) we get u(t) = (1 —o2)'u(0) and thus u(t) — 0 as t — oo. Hence,
the dynamics of the non-autonomous equation x(t + 1) = x(t)e* —u} [2—cox(1) converge to
the dynamics of the periodic equation x(t + 1) = x(£)e¥ 0¥, ot+p = . It has been
proven by R. Sacker in [29] that the one-dimensional p-periodic Ricker equation x(¢ +
1) = x(t)e*~0*®), @, , = a, has a globally asymptotically stable p-periodic cycle of the
form {Xo, X1, . .., Xp—1} whenever a; € (0,2). Notice that the condition of local stability is
P a-%) <1

It is clear that if c; = 0 then p-periodic System (9) has a non-trivial p-periodic cycle of
the form

Cp = {(EO) 0)7 (Ela 0)) RS} (Ep—ly O)}
It follows that
p - —% -1 —
_ (1=X%)ex™% 0 (T, a—%) 0
provided that Zﬁ:& o = Z‘;:Ol *t. Thus, by Theorem 3.1 we have the following result.

Theorem 3.3: Let 62 € (0,2), p> I is a positive integer, and 0 < oy <2, t =0,1,2,.. .,
such that ayp, = oy Then the p-periodic evolutionary Ricker system

bl

{ X(t + 1) = x(t)e? ¥ O/2—cox(t)
ut+1) = (1 - o?u(®)

has a globally asymptotically stable p-periodic cycle of the form {(X, 0), (X1, 0), . . ., (Xp—1, 0)}.

It should be noted that Sacker and Bremen conjectured in [30] that the global stability
of the one-dimensional p-periodic Ricker model without evolution may occur if

p—1
Z(xt <2p, O<ar<2+¢,
t=0

where €, is a positive number depending on p, 0 < t < p — 1. This conjecture was proven
for p = 2. However, E. Liz showed in [22] that the region of the parameters may be
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Figure 4. Region S, in the parameter space bifurcation diagram, where the one-dimensional 2-periodic
Ricker equation x¢1 = x;e*t =%, ¢y = 1 and a2 = a, for all t, has a non-trivial globally asymptoti-
cally stable 2-periodic cycle. As the parameters cross the solid curves a period-doubling bifurcation takes
place while when it crosses the dashed curves a saddle-node bifurcation takes place.

extended beyond o 4 a; < 4. This fact may be observed in Region § in Figure 4. It
remains an open problem to show this observation for a general value of p > 2.

3.2.2. Mixed monotonicity of systems

In the sequel, we assume that ¢; # 0 in order to study the properties of a non-trivial p-
periodic cycle. We will split our study in two cases: (i) ¢; > 0 and (ii) ¢c; < 0. We start with
the case of p = 2. If one assumes that 0 < oy < 1,i =0, 1, o? € (1,2) and ¢; > 0, then
from Section 2.1 it follows that each one of the individual maps F; : X — X,i =10, 1lisa
mixed monotone map on a metric space X with associated mapsf; : X x X - X,i =0, 1.
Define the mapfo : X x X > X x X, by letting

Jo(Cer, w1), (x2,42)) = (Fo(x1, u), Fo(x1, 42)).

Then

& (1, w1), (X2, 42)) = fi 0 fo(Ger, 1), (%2, 12)) = fi (Fo (%1, 42), Fo(x1, 142))

=h ((xlea"_”%/z_xl, 1 —o0Huy — clale) ,the same)
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=F (xleao_”%/z_xl, (1=0Duy — clale)
= F1 e} Fo(xl, uz).

Next, we are going to show that the composition map g»(x;,x7) is a mixed monotone
map.

(i) Note that g2(x,x) = F; o Fo(x), x = (x, u);
(ii) Lety = (x,u) and x; = (x;, u;), i = 1, 2, such that x; <y x. It is clear that

29 —2
xleao u” [2—cox] szeao u[2—coxz and

2 2

a1- o2)u — cio’x, < (1-— 62)u —10°x1,

ie.

2/ 42/
(xle“" w2—eon (1 — g2y — clale) <se (xze“" wmex (1 — o)y — clcrzxz).

Since  g2(x;,y) = fi (Fo(xi, ), Fo(xi, ) = Fy (x;e®0~/2=%0% (1 — o)y — ¢102x;),
i = 1,2, it follows from the fact that F; is a mixed monotone map that

2 20—
al—((l—oz)u—clale) /2—c102x %0 7H [2—coxy

ao—u2/2—60x1e

X1€

2 2V ey 22 \2 Sy 2 g —uZ [2—coxp
< xzeozo u-/2 Cox2 g1 ((1 g )u—c10 x2) /2—c10°x2€

and

2
(1 —0%) ((1 — oHu — c102x) — cro2xpe0 4 /27 0%2

2
<1-0% (== o®)u — clale) — c1o2x %0 /2a0x
Hence, we have

X1, Y) <5 £2(X2,¥).

(iii) Letx = (x,u) andy; = (x;, 4;), i = 1, 2, such thaty; < y2. In this case, we have

ao—u%/Z—cox

—12 /72—
xe o0 —ui/2—cox

< xe and (1—0%)u; —c1o?x < (1 —ocDuy — c1o’x

provide that u, < u; < 0and 1 < 62 < 2. Or equivalently,

2 —y2 /27—
(xe""’ wl=ax (1 — g2yuy — clo'zx) <e (xe"’0 w/2=cox (1 — g2y — clcrzx) .

Since g(x,y:) = Fi (xe“"_”iz/z_mx, (1 — 0®u; — c16%x), i = 1, 2, it follows from the
fact that F; is a mixed monotone map that

2
o — ((1—Uz)uz—clazx)z/Z—xeao_"Z /2=cox

o0 —u%/z—coxe

xe

2
(xl—((1—02)u1—clazx)2/2—xea0_”l/2_cox

00 —u%/Z—coxe

< xe
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and

(1—02) (a- o®)u; — clazx) — clazxeao_”%/z_cox

2
<(1-0»)(A—0*u; —c1o%x) — 10 2xe0 T2/ 2 00X,

Thus, we have that g3(x,y2) <: £2(X,Y1)-

Consequently, the composition of two mixed monotone maps of an evolutionary Ricker
type is a mixed monotone map.
Generalizing the preceding ideas, one can define the composition operator ®; as

®i(x1,up) =Fi10...0F oFy(x1,u2), i=12...,p,

and let the associated mapfi(xl, x2) = (P;(x1, u2), Pi(x1, u2)), one can use mathematical
induction and show that

gi(X1,X2) = fi—1 0 fi1(X1,X2) = Pi(x1,42), i=12,....,p,

is a mixed monotone map of evolutionary Ricker type.
We now summarize the preceding discussion in the following result:

Theorem 3.4: Let 0% € (1,2), p>1 is a positive integer, c; >0 and 0 <oy < 1, t =
0,1,2,... with ayp = a;. Then, the composition of p mixed monotone maps (10) of
evolutionary Ricker type is a mixed monotone map.

Using Lemma 2.8 of topological conjugacy one can prove the following result.

Theorem 3.5: Let 62 € (1,2), p>1 is a positive integer, c; <0 and 0 <oy < 1, t =
0,1,2,... with ayyp = & Then, the composition of p mixed monotone maps (10) of
evolutionary Ricker type is a mixed monotone map.

3.2.3. Global stability of periodic cycles
In the sequel, we are going to focus on the stability analysis of the 2-periodic cycle of the
periodic System (9) when p = 2.

Consider the difference equation

x(t + 1) = F(x(t), ) = Fi(x(t)), (11)

where F: U x G — U is continuous, U C Rﬁ_, G C Ry and JFj(x) = JF(x, o;) (the Jaco-
bian matrix) is continuous on R x G. We start our analysis with a perturbation result that
is crucial in our investigation of the global stability of the periodic 2-cycle of a 2-periodic
system.

In the sequel, we are going to use the notation of an open ball in a metric space X as
B(z,8) = {x € X : d(x,z) < 8} where d is the metric defined on X.

Theorem 3.6: Let x5 = (x3, ug) be the interior equilibrium point of Fo(x), i.e. F(X§, o) =
x;. Assume that (x5, a0) € U x G and the spectral radius p (JF(xj, ap)) < 1 and x5 is glob-
ally asymptotically stable hyperbolic interior equilibrium point of (11). Then there exists
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8 > 0 and a uniquex*(a) € U fora € B(ag, §) such that F(x*(a), &) = x*(a) and F'(z) —
x*(@)ast — oo forallz € U.

Proof: Since ||JF(xg,a3))ll < p < 1, and JF(x, u) is continuous, there exists §; > 0 and
n > 0 such that |JF(x,a))|| < p <1 for all x € B(x§,n) and « € B(xp,d1). Choose
8o < 81 such that || F(x5, o) — F(x5,a)|| < (1 — p)n, for @ € B(wo, o). Thus for x1,x; €
B(x},n), o € B(ag, 89). Hence by the mean value theorem [21]

1
[F(x1, @) — F(xa, ) || < f IJE(sx1 + (1 — $)xa, @)ds|lx1 — X2l < plx1 — X2,
0

and

IF(x1, ) — F(xg, o) | < [|F(x1, ) — F(x5, ) || + [|F(x5, &) — F(xg, o) | < plIx1 — Xo|
+ (1 — p)n. Thus the map F(x, &) is a uniform contraction self-map. By the contraction
mapping principle [21] there is a continuous function h : B(ag, 89) — B(x5, 1) such that
F(h(), ) = h(e) = x*() and h(ap) = x3, and lim;_, o F,(x) = h(a) = x*(e) for all
x € B(xg,n) and a € B(ay, dp).

We claim that for sufficiently small &g, for all o € B(ap, 80) and x € B(xj, 1), Fj'(x) €
B(x}, n), for some positive integer m. If not, then there exist sequence {c,} converging
to o, and {x,} converging to x, such that ||F£n (x) —xgll = n for all £ > 0. Since x* (o)
is globally asymptotically stable under the map Fy,, it follows that ||Fjjl (x) — x|l < n/2,
h(x, o) = FJ}(x). By the continuity of the map F, we have lim_, oo F* (X4, @) = F™ (X, otp).
Hence [|Fy! (xn) — x5l < |y (x4) — Fii (0 || + || Fg (X) — x51| < 0, for large n, a contra-
diction. Thus given x € D, where D is the absorbing region of x*(a), and & € B(wo, o),
there exists large N such that F,(x) € B(x,n) for all £ > N. Hence lim;_, o0 F,(x) =
h(x) = x* (o). |

Theorem 3.7 (Global stability of the 2-periodic system): Assume the conditions given in
Corollary 2.12, in which o = o. Then for sufficiently small § > 0 and letting a1 = g £ 4,
there is a 2-periodic cycle which is globally asymptotically stable in the interior of the first
quadrant if c; < 0 and in the interior of the fourth quadrant if c; > 0.

Proof: We apply the preceding perturbation theorem to the system (1), where we fix all the
parameters except &. Then by Theorems 3.4 and 3.5, F? is a mixed monotone map. Assum-
ing the conditions given in Corollary 2.12, where & = «y, the interior equilibrium point
xX*(og) = (x™ (o), u™(cxp)) is globally asymptotically stable with respect to the interior of
either the first quadrant (if ¢c; < 0) or the interior of the fourth quadrant (if ¢; > 0).

Let us now consider the second iteration F2 = F o F of the map F of the system (1).
We perturb F? and write it as the composition of two maps G = Fj o Fy, where Fy = F,
in which & = «, and F;(x,u) = (xe"”‘”z/z'c"x, (1 — 0®)u — cj0%x) where o) = g £ 6.
Using Theorem 3.6, there is an interior 2-periodic cycle that is globally asymptotically
stable. [

Example 3.8: Let cg = 1,62 = 1.5, ¢; = 2 and a9 = 0.3. Then, from Example 2.13, the
fixed point (0.210977, —0.421954) is a globally asymptotically stable fixed point of the



1108 (&) S.ELAYDIETAL.

X

Figure 5. An absorbing region of the 2-periodic cycle in Example 3.8.

. ;(t)
-0.2] x(t
0.251 0.271 0.3 ®

-0.46 |

-0.58

-0.65

Figure 6. Phase-space diagram for the 2-periodic cycle in Example 3.8.

map Fy, where Fy(x, u) = (xeo'3_”2/ 2=% —0.5u — 202x). By Theorem 3.4 the mapping F?

is mixed monotone. Now, letting o; = g + 0.2 = 0.5, we have that
C, = {(x(0), #(0)), (x(1), #(1))} ~ {(0.271644, —0.461582), (0.251217, —0.58414)}

is a (locally stable) 2-periodic cycle of System (9), where the composition map is G = F; o
Fo with Fi(x, u) = (er‘S_”z/Z_x, —0.5u — 20%x).

Figure 5 shows the absorbing region of the 2-periodic cycle C, with given o and ;.
Moreover, Figure 6 illustrates Theorem 3.7 showing that, for sufficiently small § > 0, the
cycle C; is globally asymptotically stable in the interior of the fourth quadrant.
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Theorem 3.9 (global stability of the p-periodic system): Assume the conditions given in
Corollary 2.12, in which o = otg. Then for sufficiently small §; > 0 and letting ;| = ot; =
8,i=0,1,...,p—2suchthat 0 < g £ Z‘f:(,z 8; < 1, there is a p-periodic cycle which is
globally asymptotically stable in the interior of the first quadrant if c; < 0 and in the interior
of the fourth quadrant if c; > 0.

Proof: Similarly to the case p = 2, we use the preceding perturbation theorem to the
system (1), where we fix all the parameters except «.

By Theorems 3.4 and 3.5, the composition map F? is mixed monotone. Assuming the
conditions given in Corollary 2.11, where o = a, the interior equilibrium point x*(ap) =
(x* (), u*(ctp)) is globally asymptotically stable with respect to the interior of either the
first quadrant (if ¢c; < 0) or the interior of the fourth quadrant (if ¢; > 0).

Now, we perturb F? and write it as the composition of p maps G = F,_; o ... o F; o F,
where Fy = F, in which oy = «, and F;(x, u) = (xe“i'”z/z‘c"", (1 — 0®)u — c10%x) where
ir1=«;£8,i=0,1,...,p — 2, such that 0 < @ = Zf:oz 8; < 1. Using Theorem 3.6,
there exists an interior p-periodic cycle that is globally asymptotically stable. |

Proposition 3.10: Let and ¢, # 0 and assume that p > 1 is a positive integer and ayyp = ay,
fort=0,1,2,...1If

Cp = {(x(0), u(0)), (x(1), u(1)), ..., X(p — 1), u(p — 1))}
is a p-periodic cycle of System (9), then
p-1 p-1
Y ) =—a Yy xG).
i=0 i=0
Proof: From the second equation in (9) we get
ui+1) = (1 —odu@) —o?ax@), i=0,1,2....

Taking sums in both sides we obtain

p—1 p—1 -1
Y ai+1)=Q0—0%) @) — o’y ().
i=0 i=0 i=0

Now, since u(p) = u(0) we have Zf;()l u(i+1) = ‘:-:01 u(i). Thus, by simplifying the
precedent equality we obtain the result. |

3.3. Two-species periodic evolutionary models

Consider now the two-species non-autonomous periodic evolutionary Ricker model given

by
x(t+1) = x(t)eat—u%(f)/Z—Cn(O)X(t)—clz}’(t)
Yt + 1) = y()ePr—12 0/ 2—cax(O—cn Oy
u(t+1) =1 —od)u(t) — ofax(t)
up(t+1) = (1 — 07)uz(t) — o5c2y(1)

where we assume that at; 1, = @ and B¢y = By forallt = 0,1,2,. .. and for some p > 1.

, (12)
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The p-periodic system (12) may be represented by the sequence of maps F; : R* — R*
given by

Fi(%,y, u1,u2) = (xeai—u%/Z—Cn(0)x—612}/)},eﬂi—u%/Z—Cux—sz(O)y,
1 - alz)ul - o*f‘clx, 1 - 0'22)112 — Uzzczy) . (13)

Notice that the dynamics of the system (12) is completely determined by the composition
operator

&y (x,y,ur,u2) = Fp—1 0...0Fy o Fo(x,y, u1, uz).

3.3.1. Global stability of the trivial cycles
The Jacobian of &, is given by

(1 — C]]X)A —ClzxA —ule 0

p-1
B —c1y B (1 —cpy)B 0 —uzyB
]CDP(JC,}/,MI,“Z) - ljo _610'12 0 ]_ —0'12 0 >
= 0 —620’22 0 1— 022

where A = ¢®~#/2-cu1x=cy and B = ¢fi—¥3/2-cnx—cny,

Theorem 3.11: Let o; € (0,2), i = 1, 2, p>1 is a positive integer, and oy, By > 0, t =
0,1,2,...,withatp = ot and Br1p = Br. Then origin is a saddle fixed point of the p-periodic
System (12).

Proof: The origin O is a fixed point of ®, since it is a fixed point of the sequence of maps F;.

Now, the eigenvalues of J®,(0) are A| = 5:01 % Ay = 5:01 ePi s =(1— of)? and
A= (11— 022)1’. Clearly A1, A2 > 1 and —1 < A3, A4 < 1. Hence the origin is a saddle
fixed point. |

Now, if ¢; = 0, i = 1, 2, from the equations u;(t + 1) = (1 —o?)u;(t), i = 1, 2 we
get u;(t) = (1 — 02)'u;(0) and thus u;(t) — 0 as t — oco. Hence, from Theorem 3.1 the
dynamics of the non-autonomous subsystem

x(t+1) = x(t)eaf—uf(t)/Z—m(O)x(t)—my(f)
Wt + 1) = y()efBO-crxO-caOy0) (14)
converge to the dynamics of the periodic system
x(t + 1) = x(t) e nOxO)—cay®
{ y(t + 1) = y(t)ebr—caxO—c2(0y®) (15)

It has been proven by Balreira and Luis in [6] that the two-dimensional p-periodic
Ricker system (15) has a globally asymptotically stable p-periodic cycle of the form
{(X0,¥)> (X1:¥1)5- - - (Ep_ljp_l)} whenever ay, B; € (0, 1).
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It is clear that if c; = 0, i = 1, 2, then p-periodic System (12) has a p-periodic cycle of
the form

Cp = {0, 79 0, 0), (F1, 7> 0, 0), - . ., Fp—1, 7 0, )}

The Jacobian matrix /@, evaluated along the cycle C, has four eigenvalues, two of which
are the same as the Jacobian matrix of the globally asymptotically stable p-periodic cycle of
the system (15) and the other two are (1 — 07)? and (1 — 03)P. Hence, using Theorem 3.1
we have the following result:

Theorem 3.12: Let ¢; =0, 0; € (0,2), i = 1, 2 and 0 < oy, By < 1 such that a;p = oy
and Bip = P, forallt =0,1,2,... and p> 1. Then, C, is a globally asymptotically stable
p-periodic cycle of the p-periodic System (12).

3.3.2. Mixed monotonicity of systems

We assume that ¢; # 0, i = 1, 2. Our goal is to study the properties of a non-trivial interior
p-periodic cycle of System (12). Similarly to the case of the previous subsection, we are
going to prove that the composition of mixed monotone maps (13) is a mixed monotone
map.

We start with the case of p = 2. If one assume that0 < ¢j, i < 1,i =0, 1, o? e (1,2)
and ¢; < 0, from Section 2.2 it follows that each one of the individual maps F; : R* —
R%,i = 0, 1 is mixed monotone map on a metric space R* with associated maps f; : R* x
R* — R%, i = 0, 1. Define the map fp : R* x R* — R* x R?, by letting

Jo(Ger,yr uj wy), (2, y2, 1, 43)) = (Foler, y, i, ), Folew, yr, 17, ))).

Then setting x; = ((x1, y1, u}, ué)) and x = (x2, 2, u%, u%) we have
(X1,%) = fi 0 fo(X1,%2) = fi (Fo(x1, y1, ui, 43)), Fo(x1, y1, U3, 43)))
=fi ((xIA,ylfi’, 1 - af)u% — af‘clxl, 1- azz)u% — azzczyl) , the same)
=F; (xlﬁ,ylfi‘, (1— o*f‘)u% — alzclxl, (1-— az‘z)u% — ozzczyl)
= F} o Fo(x1, 42),

where A — g%~ /2—c11(Ox1—c12y1 gnd B — gho—(15)*/2—carx1—caa(O)y1
It is a straightforward computation to show that g, (x;, X;) is a mixed monotone map.
Now, generalizing this process, one can define the composition operator ®; as

CD,-(xl,yl,u%,ug) =F_j0...0F oFO(xl,yl,u%,u%), i=12...,p,

and letting the associated map f,-(xl,xz) = (Di(x1,y1, u%, u%), d;(x1, y1, u%, u%)), one can
use mathematical induction and show that

gi(X1, %) = fio1 0 fio1(X1, %) = ®i(xp, y1, 48,13, i=12,...,p,

is a mixed monotone map of evolutionary Ricker type.
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Theorem 3.13: Letc; < 0,0; € (1,2),i = 1, 2, p> 1 is a positive integer, and 0 < oy, B <
1 such that ayyp = o and Biyp = P, for all t =0,1,2,.... The composition of p mixed
monotone maps (13) of evolutionary Ricker type is a mixed monotone map.

Now, using Lemma 2.8 of topological conjugacy one can also prove that the composition
of p mixed monotone maps (13) of evolutionary Ricker type is a mixed monotone map of
evolutionary Ricker type when ¢; > 0,i = 1, 2.

Theorem 3.14: Letc; > 0,0; € (1,2),i = 1, 2, p> 1 is a positive integet, and 0 < oy, B <
1 such that ayy, = oy and Beyp = Py, for all t =0,1,2,.... The composition of p mixed
monotone maps (13) of evolutionary Ricker type is a mixed monotone map.

3.3.3. Global stability of periodic cycles
In this subsection, we study the global stability of a p-periodic cycle of System (12) via
perturbation theory. We will follow the techniques introduced in Section 3.2.3.

Now, let us consider the difference equation

x(t+1) = Fx(),y) = F(x(®), x(t+1)=Fx(f),a) = Fy(Xa), (16)

where F: U x G — U is continuous, U C Ri, yj = (o, B) € GC ]Ri_ and JFj(x) =
JE(x, y;) (the Jacobian matrix) is continuous on Rﬁ_ x G. The perturbation result is as
follows:

Theorem 3.15: Let x; = (x*(0),y*(0), u](0), u5(0)) be the interior equilibrium point
of Fo(x), i.e. F(x3,y0) =x§. Assume that (x3,v0) € U x G and the spectral radius
pUFo(x3)) < 1 and x{ is globally asymptotically stable hyperbolic interior equilibrium
point of (16). Then there exists § > 0 and a unique x*(y) € U for y € B(yo,8) such that
F(x*(y),y) = x*(y) and F'(z) - x*(y) ast — oo forallz € U.

Proof: The proof is similar to the proof of Theorem 3.6 and will be omitted. |

Theorem 3.16: Assume the conditions given in Theorems 2.15 and 2.17 and set y; = («;, Bi)-
Then for sufficiently small §; > 0 and letting yis1 = yi £6;, i =0,1,...,p — 2 such that
0<apx Zf;oz Si<land0 < B+ Z‘?;Oz 8i < 1, there is a p-periodic cycle of (12) which
is globally asymptotically stable in the interior of R3. x RZ% if (c1,c2) € R% and in the interior
of of RZ x R if (c1,c2) € RA.

Proof: The proof is similar to the proof of Theorems 3.7 and 3.9 and will be omitted. W

Example 3.17: Let us consider the following values ap = 0.5, By = 0.7, §p = 0.02, 61 =
0.015, 02 = 1.5, 63 = 1.3, c1 =2, ¢ = 3; c11 = ¢2 = 0.1 and ¢33 = ¢1 = 0.5. Setting
ai+1 = oj — 8; and Bi+1 = Bi + Ji, we have a; = 0.48, ap = 0.465, 1 = 0.72 and B, =
0.735. Let @j13 = rj and Bjy3 = Bjforallj =0,1,2,....

From Example 2.18, we know that x* ~ (0.386667, 0.324621, —0.773334, —0.973863) is
a globally asymptotically stable fixed point of the map Fy. By Theorem 3.14, F; is mixed
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monotone map. It follows that

C; ~ {(0.374371,0.335204, —0.722071, —1.01674),
(0.379751,0.329361, —0.782082, —0.997936),
(0.363593, 0.334088, —0.731276, —0.981284) }

is a (locally stable) 3-periodic cycle of the System (12), where the composition map is G =
F, o F; o Fy. Using a specific software, such as Mathematica or Maple, we are able to verify
the conditions of Theorem 3.17, i.e. for sufficiently small §; > 0, all orbits are attracted to
c3, meaning that the cycle C; is globally asymptotically stable in the interior of RZ x RZ .

Proposition 3.18: Letc; # 0,0 € (1,2),i=1,2and0 < as, Bt < 1 such that asyp = o;
and Beyp = Pr, forallt =0,1,2,... and p > 1. Assume that

is a p-periodic cycle of System (12). Then
p—1 p—1 p—1 p—1
Y@ =—c ) xand Y @) =-c )y j0.
i=0 i=0 i=0 i=0
Proof: The proof is similar to the proof of Proposition 3.10 and will be omitted. |

4. Conclusion, open problems and conjectures

This paper investigated the global dynamics of evolutionary Ricker competition models.
We developed the theory of mixed monotone maps and used it to show that the posi-
tive equilibrium of the autonomous evolutionary Ricker model of single and multi-species
is globally asymptotically stable. Then we extend this result to the periodic evolutionary
Ricker model. We also showed that small perturbations, that lead to periodic systems, will
not change the dynamics of the species. There are still many open problems that we will
state here and make conjectures regarding them.

Problem 4.1: We have shown that the evolutionary models do not exhibit saddle-
node bifurcation just as evolutionary models. Moreover, evolutionary models and non-
evolutionary models may exhibit period-doubling bifurcation. However, in contrast to
non-evolutionary models, evolutionary models may exhibit a Neimark-Sacker bifurca-
tion. A thorough investigation of the bifurcation theory of evolutionary models is still
an open problem. However, for the special case of the evolutionary Leslie-Gower model,
Ch-Chaoui and Mokni [7] did study the Neimark—Sacker bifurcation.

Problem 4.2: The global stability of autonomous and periodic evolutionary models with
multiple traits is still an open problem.

Problem 4.3: In this paper, we restricted our investigation to the case when the growth
rates of the populations ¢ and B is between 0 and 1. For non-evolutionary models,
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Figure 7. Values of the first component of the family of fixed points (x*, u*) for model (1) depending
ono.Inthis case we use ¢cp = 0.5and ¢; = 2.

it has been shown by Baigent et al. [5] that the interior equilibrium point is globally
asymptotically stable if 0 < «, B < 2. Are our results extendable to this general case?

Problem 4.4: In the case of two evolutionary species, we have shown global stability when
eitherc; > 0 or¢; < 0,i = 1, 2. What happensif¢; X ¢; < 02

Conjecture 4.5: Our study was restricted for the case when the speed of evolution o2 is
restricted to 1 < o2 < 2. Based in several simulations (see Figure 7 for three cases), we
conjecture that our global stability results for both autonomous and periodic are valid for
the case 02 < 1.

Conjecture 4.6: We conjecture that our results may be extended to predator-prey models
and host-parasitoid models.
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Appendix. Local stability conditions in 4-dimensional system

Let JF(x*) be the Jacobian matrix of the map (6) evaluated at the interior fixed point x* =
(x*, y*,ul,u}) where x* > 0 and y* > 0 with u] = —c1x* and uj = —c2y*. The characteristic
equation of JF(x*) can be written in the form

A4 1A%+ pad® + psh +py =0,

where
4 4
p1=—tr(JFx")), po= Y JF(x*), ps=—) JF(x*), ps=det(JF(x"),
1<i<j i=1

and det is the determinant of the Jacobian matrix, JF;(x*) is the 3 x 3 determinant of the 3 sub-
matrices JF; obtained from JF by deleting the i row and the i column, Z‘ll <i<j JF;;(x*) is the 2 x 2
determinant of the 6 sub-matrix JF;; obtained from JF by deleting the i and j rows and the i and j
columns and tr is the trace of the Jacobian matrix. (For more details, see [23] .)

It is well known that all the roots of the characteristic equation lie inside the unit disk [23] if

Necessary Conditions : |[p1 + p3| < 1+ p2 + pas
SufficientConditions :|ps| < 1, |p1ps — p3l <1 —p3
1(pf — * — ap1 — p3)°
> |(pg — Dp2(pa — D) — (p3pa — p)@r1pa —p3)l.  (AD)



