2023 IEEE Symposium Series on Computational Intelligence (SSCI) | 978-1-6654-3065-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/SSCI52147.2023.10371881

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

Digital Twins for Creating Virtual Models of Solar
Photovoltaic Plants

Deborah George, Graduate Student, IEEE
Real-Time Power and Intelligent Systems Laboratory
Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29634, USA

dgeorge@ieee.org

Abstract— Amidst the challenges posed by the high
penetration of distributed energy resources (DERs), particularly
a number of distributed photovoltaic plants (DPVs), in modern
electric power distribution systems (MEPDS), the integration of
new technologies and frameworks become crucial for addressing
operation, management, and planning challenges. Situational
awareness (SA) and situational intelligence (SI) over multi-time
scales is essential for enhanced and reliable PV power generation
in MEPDS. In this paper, data-driven digital twins (DTs) are
developed using Al paradigms to develop actual and/or virtual
models of DPVs, These DT are then applied for estimating and
forecasting the power outputs of physical and virtual PV plants.
Virtual weather stations are used to estimate solar irradiance
and temperature at user-selected locations in a localized region,
using inferences from physical weather stations. Three case
studies are examined based on data availability: physical PV
plant, hybrid PV plants, and virtual PV plants, generating real-
time estimations and short-term forecasts of PV power
production that can support distribution system studies and
decision-making.

Keywords -- Al, distributed energy resources, digital twin,

power distribution systems, weather stations, virtual systems

L INTRODUCTION

The high penetration of distributed energy resources
(DERs), and in particular several distributed photovoltaics
plants (DPVs) has increasingly created operation and
management (O&M) challenges in the modern electric power
distribution system (MEPDS), as well as complexities during
distribution system planning and design [1]. High fidelity, high
quality, real-time estimations and predictions of PV plant
performance considering both environmental and spatial
characteristics is valuable for analysis of complex behavioral
dynamics in PV plants and thereby supporting O&M and
planning and design tasks in distribution systems with high
penetration of DPVs [2].

Data-driven digital twins (DTs) of DER sources such as PV
plants can enable generation of realistic datasets over a wide
range of scenarios. Such DTs can be valuable aids for
estimating and predicting/forecasting the behavior of complex
systems. The availability of DTs can enable MEPDS O&M
support even with sparse/limited measurement infrastructure.
These DTs can be further extended to facilitate enhanced
monitoring and observability, condition monitoring, fault-
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detection, predictive analysis and forecasting, as well as other
advanced functionality such as energy management, planning
and design studies such as hosting capacity, cloud impact
analysis and scenario testing of PV plants when integrated into
testbeds such as real-time digital simulators (RTDS).

The primary contributions of this paper are as follows:

e Data-driven DTs are developed for real-time estimation
and prediction of a physical PV plant power output under
different weather patterns. It is assumed a physical PV
plant and a physical weather station is available to
generate the data.

e Virtual weather stations are developed using a mutation
approach based on data from physical weather stations,
providing real-time estimated weather measurements at
additional locations.

e A multi-DT methodology for real-time estimation and
prediction of power outputs of physical and virtual PV
power plants over the selected region is developed for
supporting various scenarios and purposes, enabling SA
and SI of PV power generation in a distribution system, as
shown in Figure 1.
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Figure 1. Scenarios for data generation using a physical PV plant, hybrid

PV plants and virtual PV plants.

The rest of the paper is written as follows: Section II
describes digital twins for PV plants. Section III presents the
mutation methodology used to create virtual weather stations.
Section IV describes the application of DTs to provide SA and
SI of physical and virtual PV plant power outputs. Section V
presents typical results and some discussions. Finally, the
conclusion and some suggestions for future work is presented
in Section VL.

978-0-7381-4409-2/23/$31.00 ©2023 IEEE 252

Authorized licensed use limited to: University of Pretoria. Downloaded on September 30,2024 at 21:18:29 UTC from IEEE Xplore. Restrictions apply.



II.  DIGITAL TWINS FOR PV PLANTS

PV generation at a site is typically dependent on external
environmental factors as well as internal factors. A
mathematical equation defining typical PV power generated at
time instant ¢ is given in (1), where Gy and Ty, are the standard
test conditions for solar radiation and cell temperature,
respectively, and a7 is the manufacturer temperature
coefficient of a PV module.

PV(t) = Prok o2 = o[ Te(t) ~ Tug] (1)

The following subsections describe digital twins, and DTs
for PV plant power estimation and prediction.

A. Digital twins

A digital twin can be defined as a virtual model or
representation of a physical system, asset or process enhanced
with data connections enabling the transfer of data insights and
process data from the virtual representation in real-time (RT)
back to the physical system [3]. The DT has three major
components: the physical system, the virtual model or “twin”
and a constant real-time informational or control flow
exchange, enabling “twinning” of the digital model with the
changes in the physical system, as shown in Figure 2.

DT model

Real Time Information/
Data Transfer_

— PV Plant

Figure 2. Digital twin components for a PV plant.

Traditionally, physics-based, mathematical approaches,
data-driven or hybrid combinations of those methods can be
used for creating DTs of DERs, especially for PV plants. In
MEPDS with high penetrations of DPVs, physics-based or
mathematical-based DT modeling will need to account for
stochastic or nonlinear plant behavior dependent on
environment processes. These include cloud cover variation,
wind speed changes, shading losses, bundled behind-the-meter
readings where load usage is to be predicted, seasonal
variation, humidity, to PV panel degradation and aging, and
other accompanying variables. Additionally, intensive
modeling and setting up accompanying measurement
equipment and management of data streams may not be
economically viable. Al paradigms enable data-driven DT
design through function approximation and enable reasonably
accurate estimation of nonlinear and stochastic processes,
require little maintenance and are easily adaptable and scalable
compared to mathematical or physics-based DTs which may
be system specific [4].

A data-driven PV plant DT is employed here to model PV
power generation of an existing real-world PV-plant at a
physical site, called the R06 site, which a 1 MW PV plant at

Clemson University. The solar power generation data from this
plant is streamed from a micro-PMU. A CR300 weather data
logger that monitors and logs input solar irradiance,
temperature, wind speed and wind direction data every second
is utilized to capture the input variables. This data was archived
and timestamped in an open Historian, a back-office No-SQL
database used for streaming, archiving, and integrating process
control and synchro phasor data. Weather and PV power data
over 72 days in the spring 2023 was collected for this study.

B. PV power estimation

Real-time power estimation at a PV plant is useful for
analytics, understanding of system dynamics, condition and
health monitoring as well as a source of measurement data
when pPMUs or other measurement devices at the site are
absent, or bundled. A PV plant DT for estimation of power
outputs is developed using Multi-Layer Perceptron
feedforward neural network (MLP) that typically enables
informational flow in one direction [5]. MLPs are used to
model system behavior and estimate real-time PV power
generation at the location. The MLP model inputs are real-time
data and is re-trained appropriately to reflect in real-time
changing PV plant conditions. The architecture of the MLP
used is as shown in Figure 3.

Output Layer

Hidden Layer

Figure 3. MLP for PV power estimation at current time interval.

The MLP equation is given in (2) [5], where x(¢) and y(2)
are the inputs and outputs of the MLP network, and W and
are input and output weight matrices, respectively.

YO=fx®), W, V) 2)

Python’s scikit-learn module is used to define the MLP
architecture, here “MLPRegressor”, with hyperparameters
defined as in [6]. Three MLPs are utilized, separately pre-
trained on historical data categorized by amount of solar
irradiance received per day, as “Cloudy”, “Sunny” and
“Moderately Cloudy”. Real-time solar irradiance and
temperature measurements obtained from the weather station
at the PV plant are used as inputs to each MLP model to
continuously estimate PV power output at the current time
interval for each solar irradiance category. The mean squared
error (MSE) of MLP estimation from the three models are
compared every minute and the best performing model’s
output was recorded.

C. PV power prediction

Short term PV power prediction are useful for distribution
system operation (DSO) needs and applications such as cloud
cover impact identification, inverter voltage regulation and
volt-var optimization and fault prediction. A PV plant DT for
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prediction of power output is developed using echo state
networks (ESNs) to effectively predict PV plant performance
in real-time.

An ESN is a form of a recurrent neural network (RNN),
created by Herbert Jaeger as a paradigm falling under the
category of reservoir computing [7]. The ESN dynamics can
be represented as shown in (3) where f is an activation
function, x(n) is the n-dimensional reservoir state, ¥ is the (n
X n) reservoir weight matrix, W;, is the (n X k) input weight
matrix, u(n) is the k-dimensional input signal, Wy, is the (n x
m) output feedback matrix, and y(n) is the m-dimensional
output signal.

x(n+1D)=f(x(n), Win, W, Wy, y(n)) )

For PV power prediction, three parameters are used to
accurately model the PV array's power generation based on
the approach used in [8]; the solar irradiance, temperature, and
the output power of the PV array. Three ESNs are utilized,
with hyperparameters as in [7], separately fitted on historical
data categorized by amount of solar irradiance received per
day, as “Cloudy”, “Sunny” and “Moderately Cloudy”. The
DTs iteratively predict 60, 120 and 180 seconds ahead, and
best performing ESN output is recorded.

III.  VIRTUAL WEATHER STATIONS

High quality, high resolution, spatiotemporal weather data
is necessary for analyzing the spatial variances in PV and
DPVs for further integration into MEPDS. A means to
develop virtual weather stations (VWS) at any location,
supported by locally available measurement sites through data
re-analysis and strategic mutations are developed [9]. This
approach enables the generation of real-time, multi-time scale
weather data for a PV DT for fast, computationally efficient
PV power estimation and prediction for an area with sparse
weather measurements. The real-time behavior of the weather
stations with respect to each other is observed and modeled
for a particular day using three-month averages of historical
data to capture long term trends and daily data to analyze short
term trends between the stations.

A. Mutation procedure

VWS are developed to estimate solar irradiance,
temperature, wind speed and direction for user selected
locations in a region with less than 20km radius, based on real-
time measurement data from neighboring physical weather
stations (PWS). A minimum of three PWSs are necessary to
create VWS in this method, with the mutation equations
described below executed in real-time.

Solar irradiance, S;in W/m?, is queried in real-time to form
arrays of real-time solar irradiance measurements S, for a
period of time, ¢, for example, 60,120 or 180 seconds from
each station as shown in (4). Inverse distance weighting
(IDW) is then used to estimate base solar irradiance values
Spres» wind speed and wind direction at VWS based on the
approach used in [10].

The formula for IDW can be expressed as shown in (5) and
(6) where V(u) is the estimated value at the unknown location,
V; is the value at the known location i and w; is the weight
assigned to the known location i, calculated based on the
distance between the known and unknown locations as a

squared or cubic of the distance. Herein, three locations are
known and p in (6) is set to two. After IDW is applied, ten
Sprea and W, arrays with ¢ lengths are identified for each
VWS.

Sp = [51'52' Sl] (4)
V() = % Q)
Vp = 1/ (x1—x2)? (6)

Based on the random number generator model referenced in
[11], a scaled random distribution based on estimated distance
from the plant is used to mimic C, (7) over geographical
locations within a 20 kms radius. C, is obtained from
combinations of controlled random sampling of ¢ seconds
IDW solar irradiance estimations, Sy« and the addition of up
to 5% Gaussian noise as seen in (7). From this, S,, or mutated
solar irradiance streams are obtained, as shown in (8).

0.05

A

Cm =rand(Syreq) + e~Gprea=? /2067 (7

[Spreal Sprea > 0 and Cd < 10%
Sm =3[ Cnl Sprea > 0 and Cd > 10% (8)
0 Spred =0

Wind speed and direction is a separate parameter that is
seen to be very weakly correlated to cloud cover and thereby
does not directly impact solar irradiance patterns affected by
cloud coverage [12]. A weak correlation is seen, where for
both rural and urban areas, highly windy days are slightly
more likely to be clear [13]. However, wind speed affects the
temperature at the weather station. A cooling effect factor, W.,
is obtained to vary temperature data obtained at each VWS
based on estimated wind speed effects from IDW calculation.
Wairis the wind speed difference at the VWS station from the
average wind speeds at the three PWS at instant ¢, divided by
the average wind speeds at the PWS. Wy is used to look up
temperature variation values from Table I, where each range
in Wy corresponds to a cooling effect factor We. If Wy is
positive at time ¢, the W, is added to temperature 7}, and if
negative, it is subtracted. In this manner, real time temperature
data is estimated at the VWS locations.

IV. SITUATIONAL AWARENESS AND INTELLIGENCE OF PV

PLANT POWER OUTPUTS
A. Situational Awareness

A significant challenge in MEPD:s is the lack of sufficient
observability and difficulty in forecasting and planning in
active distribution networks [14]. This means that SA of real-
time behavior of various DERs, particularly DPVs in the
system is often difficult to monitor, especially due to lack of
measurement data.

In this study, PV Plant DTs that obtain real-time data from
physical and virtual weather stations are used to facilitate both
real-time monitoring and DSO operator SA of PV system
behaviors. Data collection over a day can further allow for PV
integration into distribution system studies or time series
analysis to  be  performed in the  system.
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TABLE I. LOOK UP TABLE FOR REAL-TIME TEMPERATURE
ESTIMATION

Waigscale (+/-) Temperature Variation

(degrees Celsius) Ti(+/-)
1 (0.1,0.4] -0.332
2 (0.4,0.7] -0.202
3 (0.7, 1.0] -0.125
4 (1.0, 1.3] 0.062
6 (1.3,1.8] 0.332
7 (1.8,2.1] 0.396
8 (2.1,2.4] 0.440
9 (2.4,2.6] 0.486
10 (2.6,2.9] 0.544
11 (2.9,3.2] 0.594

B. Situational Intelligence

Operator situational awareness can be established through
behavioral modeling of DPVs in various data availability
scenarios. However, situational intelligence, or predictive
analysis is often needed in the system, especially for short
term PV production generation forecast, feeder voltage
analysis, scenario analysis or DSO decision-making wherein
multiple DT models can be run in parallel for predictive
analysis and volt-var algorithm optimization or control,
among other use cases. Here, short term forecasts of PV power
production support DER management system (DERMS)
applications and other distribution system analyses involved
in resiliency, reliability and planning such as hosting capacity
studies, voltage profile analyses, distribution system behavior
in peak load and light generation, light load and peak
generation, and other long-term or time-series analysis
performed on DER/ DPV sources integrated into the grid.

The creation of virtual real-time PV plants (V-RT-PVPs)
for DPV situational awareness and situational intelligence is
broken down into three scenarios as follows:

e  Scenario 1: Both PWS and PMU data is available, called
the Physical PV source.

o Scenario 2: Only PWS may be available, or Hybrid PV
sources.

e  Scenario 3: Neither PWS or PMU data is available, called
Virtual PV sources, and DPV power generation needs to
be estimated or forecasted in the region.

V. RESULTS AND DISCUSSION

Section V.A presents typical results obtained for the virtual
weather stations. Typical SI (prediction) results for the three
scenarios mentioned above are presented in Sections V.B to
V.D.

A. Virtual Weather Stations

VWS are generated at the PWS site locations to validate the
approach defined in Section III, comparing estimated vs actual
solar irradiance and temperature results shown in Figure 4.
Mutated temperature differences are due to utilization of two
physical weather stations in our limited experimental setup.
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Mutated Temperature at R06
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Figure 4. (a) Estimated vs. Actual Temperature and (b) Solar Irradiance (b)
at R06.

B. Scenario 1

This case study is used to validate the proposed DT based
approach. Here, measurements are present for both PWS
streams as well as the PV plant power data (from the micro-
PMU). The developed PV DTs can be used similarly to
traditional DTs and utilized for prognostics, condition
monitoring and fault detection and faster-than-real-time
operation analysis. Results of the PV DT for estimation and
predication are shown in Tables II and III. These results
include mean absolute error (MAE), mean squared error
(MSE), root-mean squared error (RMSE) and mean absolute
percentage error (MAPE).

C. Scenario 2

There is often a need to estimate PV power or predict its
impact over the distribution system for locations where micro-
PMU, separate meter readings or other measurement data is
unavailable or where a PV plant has not been installed yet. In
this scenario, PWS may be present at the site, or other weather
models may be available for estimation of solar irradiance and
temperature at the site. The results of the PV prediction DT at
PWS sites, called “Ravenel” and the “Airport” for a cloudy
day are shown in Figures 5 (a) and (b).

TABLE II, PV DT ESTIMATION RESULTS

Day Category n MAE MSE | RMSE | MAPE
Sunny 10 | 0.0003 | 0.0002 | 0.0141 | 0.0064
Moderately Cloudy | 20 | 0.0075 | 0.0087 | 0.0933 | 0.0112
Cloudy 20 | 0.009 | 0.0095 | 0.0975 | 0.0142

D. Scenario 3

PV power also can be estimated or predicted at VWS sites,
where no PV plant has yet been installed or where micro-

255

Authorized licensed use limited to: University of Pretoria. Downloaded on September 30,2024 at 21:18:29 UTC from IEEE Xplore. Restrictions apply.



PMU, separate meter readings or other measurement data is
unavailable. These virtual PV sources can be easily adapted to
be integrated into a distribution testbed for short term PV
forecasts, data collection and general situational intelligence
of PV power generation in the area. The results of the study
for virtual PV sites (“Ravenal” and “Airport”) for moderately
cloudy days are shown in Figures 6 (a) and (b).

Figure 7 shows the three scenarios (physical PV plant,
hybrid PV plant and virtual PV plant). In each case, the solar
irradiance and solar PV power predicted 180 seconds ahead is
shown.

TABLEIII. PV DT PREDICTION RESULTS FOR DIFFERENT

power estimation and prediction based on spare
measurements. The developed models provide real-time
estimations and short-term forecasts of PV power generation,
offering valuable O&M support for distribution systems.
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Figure 5. Predicted PV power using PWS 180 seconds ahead for (a)
Ravenel amd (b) Airport on a cloudy day.

PREDICTION INTERVALS
Day Reservoir | Metric 60s 120 s 180 s
Category neurons
()
Sunny 200 MAE 0.0005 0.0006 0.0011
200 MAPE 0.023 0.0353 0.0423
200 MSE 0.001 0.0013 0.0014
200 RMSE | 0.0316 0.0361 0.0374
Moderately 550 MAE 0.0063 0.0089 0.012
Cloudy
550 MAPE | 0.2456 0.3571 0.3345
550 MSE 0.0079 0.0123 0.0149
550 RMSE | 0.0889 0.1109 0.1221
Cloudy 450 MAE 0.016 0.0168 0.0194
450 MAPE | 0.2124 0.2232 0.2361
450 MSE 0.0183 0.019 0.0204
450 RMSE | 0.1353 0.1378 0.1428
VI. CONCLUSION

Multi-time scale situational awareness and situational
intelligence is necessary to deal with operation, management,
and planning and design complexities in modern electric
power distribution systems with high penetration of
distributed solar PV systems. Measurements for existing
and/or potential PV sites to support MEPDS O&M are sparse.
Installation of measurement devices may be costly, create
additional maintenance needs or may not be useful to add
during the planning stages. The methodology presented herein
provides a cost-effective, scalable and computationally
efficient way to develop virtual real-time PV plants based on
available data.

Data-driven DTs that enable PV power estimation and
prediction at a given site have been developed. Virtual
weather stations that estimate solar irradiance and temperature
at specific user-selected locations within a localized region,
utilizing insights from physical weather stations in the region
have also been developed. Finally, these DTs and VWS have
been combined to illustrate three possible scenarios for PV
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Figure 6. Predicted PV power using VWS 180 seconds ahead for for (a)
Ravenel amd (b) Airport on a moderately cloudy day.
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