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ABSTRACT

Most query optimizers rely on cardinality estimates to optimize
their execution plans. Traditional databases such as PostgreSQL,
Oracle, and Db2 utilize synopses, such as histograms, samples,
and sketches. Recent main-memory databases like DuckDB and
Heavy.Al often operate with minimal or even without estimates,
yet their performance does not necessarily suffer. To the best of our
knowledge, no analytical comparison has been conducted between
optimizers with and without cardinality estimates. In this paper, we
present a comprehensive analysis of optimizers that use cardinality
estimates and those that do not. To represent optimizers that don’t
use cardinality estimates, we design a simple graph-based optimizer
that only utilizes join types and table sizes. Our evaluation on the
Join Order Benchmark reveals that cardinality estimates have a
marginal impact in non-indexed settings, whereas inaccuracies
in estimates can be detrimental in indexed settings. Furthermore,
the impact of cardinality estimates is negligible in highly parallel
main-memory databases.
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1 INTRODUCTION

Accurate cardinality estimation is well known to be vital for query
optimization. However, Leis et al. [14, 15] observed that the impact
of cardinality estimation is negligible when the database only has
primary key indexes and hash joins — even with inaccurate cardi-
nality estimates. This outcome arises due to lack of indexes on the
fact tables necessitating costly full-table scans, leaving little margin
for improvement between an optimal and a suboptimal join order.
Nonetheless, it remains essential to avoid large joins (i.e., foreign
key/foreign key, many-to-many, or between fact tables) for which
even inaccurate cardinalities likely suffice.
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In proposing the Join Order Benchmark [15], Leis et al. note
that “when the database has only primary key indexes, and once
nested-loop joins have been disabled and rehashing has been enabled,
the performance of most queries is close to the one obtained using
the true cardinalities,” which remains true even with inaccurate
cardinality estimates. What does this imply for query optimizers
without cardinality estimation, e.g., HEAVY.AI? Given that newer
versions of PostgreSQL now include parallel processing, does this
observation remain valid as more computational power is afforded
to database systems? In this paper, we explore the answer to these
questions using the Join Order Benchmark (JOB). To represent
methods that don’t use estimates, we designed a simple graph-
based method - Simpli-Squared (Simpli?) - which only utilizes join
type and table size information.

In query optimization, the impact of cardinality estimation is
well-studied. Leis et al. conducted an exhaustive study of how inac-
curate cardinality estimates can lead to suboptimal plans, emphasiz-
ing the need for accurate cardinality estimates. Building upon this,
Lee et al. [13] investigated the phenomenon within an industrial
database system (Microsoft SQL Server) by progressively increasing
cardinality estimation errors. However, analyzing the performance
gap between query optimizers with and without cardinality esti-
mation remains largely unexplored.

We compare the performance of three different optimization
strategies: optimization with cardinality estimates, without cardi-
nality estimates, and with the true cardinalities provided by an
oracle. Our goal is to address the following questions:

e How do different optimization strategies impact query cost
and execution time?

® What is the floor for performance — how badly can optimiz-
ers with inaccurate or even without estimates perform?

o Does parallel processing make the significance of cardinality
estimates negligible — to what degree?

Our experiment utilizes the Internet Movie Database (IMDB)
dataset and Join Order Benchmark (JOB). These experiments were
carried out across several database systems: PostgreSQL [28], Mon-
etDB [26], DuckDB [24], and HEAVY.AT [25]. This diverse setup
allows us to investigate the performance of different query opti-
mization strategies under varied conditions. The source code and
data for our experiments are available on GitHub [5].

2 CARDINALITY ESTIMATION (CE) BASED
QUERY OPTIMIZATION

Cardinality Estimation(CE) based query optimization utilizes car-
dinality estimates to guide optimization decisions. This method
employs various data synopses and statistics to identify the most
efficient plan for executing a query. The optimizer leverages these
cardinality estimates to make informed decisions regarding join
order, physical operators, and indexes. For instance, if the optimizer
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estimates that a specific join would generate a large number of
rows, it may opt for a different join order to minimize the plan
cardinality and improve performance. Likewise, during index se-
lection, if the optimizer anticipates that a particular index will be
highly selective and yield fewer rows, it may favor that index to
enhance performance. Accurate cardinality estimation has the po-
tential to boost query performance by allowing the optimizer to
make better-informed decisions when executing a query. However,
success depends on the precision of the statistics and data synopses.
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Figure 1: PostgreSQL execution plans for query 18a.

2.1 Non-Indexed

Many modern relational databases, such as PostgreSQL, employ
a CE query optimizer [28]. The PostgreSQL optimizer leverages
data and system statistics to estimate the cost of all potential join
orders or plans, ultimately selecting the one with the lowest cost.
Although the enumeration can benefit from join graphs by travers-
ing only existing edges, the edge type — either primary/foreign key
or foreign/foreign key — is not a primary consideration. Redundant
and suboptimal orders are efficiently managed through dynamic
programming and early pruning techniques.

A plan’s cost is calculated by aggregating the cost of individual
plan operators. The cost of an operator is contingent upon the num-
ber of accessed pages and processed tuples, with these quantities
weighted by the configurable system parameters, seq_page_cost
and cpu_tuple_cost, respectively. Exact costs are only known
for base tables, necessitating estimations for all other operators
without executing them. This constitutes the cardinality estimation
problem in PostgreSQL.

Pre-computed data synopses or statistics are utilized for this
purpose. PostgreSQL statistics are per attribute and include ranges,
heavy hitters, the number of distinct values, and equi-depth his-
tograms. Operator costs are estimated by integrating these statistics
into formulas that assume uniformity, independence, and inclusion
regarding the data [14, 15]. Inaccurate estimates result whenever
these assumptions are violated, often in queries involving many-to-
many joins or multiple predicates.

We execute JOB query 18a in PostgreSQL. To determine the
optimal plan, PostgreSQL’s enumeration algorithm exhaustively
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examines all potential join orders of the ci, n, mi_idx, it2, t, mi, it1
tables and the available physical operators. For example, it evaluates
permutations such as (ci & n X mi_idx > it2 > t > mi ™ it1),
((ci »a n) > (mi_idx > it2) >t > mi & it1), and others. In the
non-indexed configuration, due to our main-memory setup, we
constrain the join operators to hash join.

The enumeration algorithm also explores various options for
building and probing hash tables. The hash table must fit in memory,
which is why the smaller side of the join is typically selected for
building the hash table. The optimal plan for query 18a is illustrated
in Figure 1a, where the optimizer chooses to construct a hash table
on the join result of (ci > n) rather than on mi_idx. Subsequently,
however, it builds the hash table on the base table it2 instead of
the join result of (ci b n > mi_idx). This choice is made because,
in certain cases, constructing a hash table on an intermediate join
result can be more cost-effective than doing so on a base table.

2.2 Indexed

In the presence of indexes, the PostgreSQL optimizer follows a
process akin to the one employed in non-indexed settings. The in-
tegration of indexes within a database system broadens the choices
of available physical operators, as it offers alternative methods for
data access beyond a full table scan. Instead of examining all records
in a table to locate the desired information, the index facilitates
direct access to pertinent data, thereby improving efficiency and
overall performance.

Consider JOB query 18a with the optimal indexed join order:
mi_idx > it2 > mi ™ itl > ci ™ n < t which differs from
the non-indexed setting(Figure 1b). In the presence of indexes, the
optimizer determines if using an index will be beneficial, given that
the cost of an index scan differs from that of a sequential scan. For
example, if an index is available on the mi_idx table’s join column
(info_type_id) with it2 tables join column (id), PostgreSQL’s cost
function evaluates the cost of the join with the index (20K) and
without the index (16K) and chooses the more cost-effective option,
in this case, Sequential Scan followed by Hash Join. Conversely,
for the mi > mi_idx join, the optimizer opts for an index scan on
mi_idx in conjunction with a nested loop join, given the cost of the
join using an index is 8K and without is 234K.

3 SIMPLI-SQUARED (Simpli?)

Simpli?, is designed to completely eschew the use of synopses,
statistics, or cardinality estimations. Instead, it employs the query’s
join graph and key/foreign key constraints to guide its decision-
making. While the incorporation of key/foreign key constraints in
join optimization has precedents [3, 11], those prior approaches
have typically combined such constraints with cardinality estimates,
which is not the case here. Additionally, Simpli? takes table sizes as
auxiliary input parameters. These inputs are used to annotate the
vertices (tables) and edges (joins) of the join graph. Table vertices
are annotated with their respective sizes, while join edges are clas-
sified as either one-to-many (1:n) or many-to-many (n:m) based on
their key/foreign key constraints.

These heuristics can be intuitively understood in the context of
the JOB schema. Many-to-many joins typically involve two large
fact tables, while one-to-many joins occur between a fact table
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Method Statistics Estimates Join Graph Use PostgreSQL Integration
PostgreSQL || distincts, heavy hitters, histograms all minimal native

Pessimistic || Count-Min sketches, PostgreSQL many-to-many joins join type estimates in optimizer
Simplicity table sizes, heavy hitters, PostgreSQL  all join type query rewriting
COMPASS || Fast-AGMS sketches joins graph query rewriting

Simpli? table sizes none join type query rewriting

Table 1: Analytical comparison between few cardinality estimates approaches and SimpliZ.

and a significantly smaller table. By prioritizing one-to-many joins,
the number of rows participating in the join from the fact tables
is reduced. Furthermore, prioritizing smaller tables decreases the
likelihood of generating large join results early in the join order.
Simpli? has two optimization objectives: minimizing the num-
ber of accessed tuples, and maximizing the utilization of available
indexes. The cost of joining a foreign key table is determined by its
cardinality when indexes are unavailable. When there are indexes,
its cost is inversely proportional to the number of adjacent primary
key tables. We express these objectives in the following formula.

|FKp,|, non-indexed
Cs2(FKm) = \ |FK,n| i dexed
ZTF_Km’ maexe:

Where FKy, is a foreign key table and Tr,, is the number of pri-
mary key tables adjacent to FKj,. The cost of FKp, is calculated
differently depending on the presence of indexes. The join order of
a query is determined by sorting it’s foreign key tables in ascending
order of their cost.

3.1 Non-Indexed

The Simpli? algorithm is outlined in Algorithm 1. It starts by identi-
fying the foreign key tables and their primary key join candidates,
splitting the join graph into multiple — possibly overlapping — com-
ponents. The join order is determined by sorting the foreign key
tables using Csj, their cardinalities, in ascending order. Each foreign
key table is appended to the join order, followed by its component.
The primary key tables in each component is appended to the join
order in ascending order of their cardinality. If the same primary key
table is present in multiple components, it will only be appended to
the join order with the component where it initially appears. Any
remaining tables not yet part of the join order are subsequently ap-
pended. Each component in the join graph is treated as a subquery,
with the exception of the first one, resulting in a bushy join order.

We execute JOB query 18a with the Simpli? algorithm. We com-
pute the components for each foreign key table: mi_idx, mi, and
ci. The components are then combined, resulting in the join order
depicted in Figure 2 as a bushy tree.

3.2 Indexed

In the presence of indexes, assuming each table has at least one
index, the Simpli? algorithm has the additional objective of maxi-
mizing the utilization of those indexes. While the algorithm itself
remains the same, the cost determined by Cgs; differs from the non-
indexed setting. To calculate the cost of a foreign key table with
indexes, Cs; divides the table’s cardinality |FKp,| by 277Km where
Trk,, represents the number of adjacent primary key tables. Thus,
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Figure 2: Simpli® execution plans for query 18a.

foreign key tables with more adjacent primary key tables are pri-
oritized in the join order. Bushy trees, which minimize access to
base tables later in the join order and subsequently reduce index
usage, are counterproductive to our objective. To address this, we
default to left-deep trees when there are indexes. The impact of
these modifications on query 18a’s join order is depicted in Fig-
ure 2. Additionally, the choice of physical operators is adapted to
benefit from indexes. For instance, index scans are preferred over
sequential scans, and indexed nested loop joins are preferred over
hash joins whenever possible.

Following Hertzschuch et al. [11], we rewrite queries using
the explicit join order determined by Simpli? algorithm. In a non-
indexed setting, we construct a subquery for each join component -
except the first. When executing a rewritten query with a database
system, e.g., PostgreSQL, the optimizer must be configured to follow
the given join order and disable subquery unnesting. We leave the
selection of physical operators up to the optimizer’s default, which
may use statistics when indexes are available. Simpli? operates in-
dependently of cardinality estimates, making it a viable standalone
option for databases with limited or no reliance on cardinality esti-
mates. Additionally, Simpli? can be used to create query plans on
refined search space produced using methods like LIP [22].

4 EXPERIMENTAL EVALUATION

We experiment on both indexed and non-indexed configurations
in PostgreSQL [28]. In the indexed setting, we disable sort-merge
join, while in the non-indexed setting, sort-merge and nested-loop
joins are both disabled. Hash joins are preferred in main-memory
and non-indexed setups to ensure optimal performance [14, 15].
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Algorithm 1: Simpli-Squared (Simpli?)

Data: Query join-graph G(V, E) where edges are
key/foreign key constraints
Result: Join-order JO, initialized to an empty list
1 FK « list of all foreign key tables from V'
2 Sort FK in ascending order by Cs2
3 for f € FK do
4 FK, « list of primary key tables adjacent to f
5 Sort FK in ascending order by cardinality
6 Append f to JO
7 for c € FK. do

8 if ¢ ¢ JO then
9 ‘ Append c to JO
10 end
1 end
12 note : In non-indexed setting, each f € FK produces
separate sub-query after it joins one or more primary
key table
13 end

14 while 3 tablece V3 c ¢ JO do
15 if 3¢’ € JO 3 (¢,c’) € E then

16 ‘ Append c to JO
17 end
18 end

The motivation for these can be found in the extended versions
of this work [6, 7]. In addition, our analysis encompasses results
from DuckDB [24] and HEAVY.AI [25], both of which operate
as main-memory database systems. Furthermore, we extend our
experiments to MonetDB [26], which utilizes a columnar storage
architecture and mainly relies on main memory for data processing.

4.1 Setup

In alignment with prior work [14, 15], we specifically configure Post-
greSQL by increasing the memory limit per operator work_mem from
4 megabytes to 128 gigabytes, shared_buffers from 32 megabytes
to 128 gigabytes, and effective_cache_size from 4 gigabytes
to 128 gigabytes. We raise the geqo_threshold parameter to 18
joins, which adjusts the threshold for switching from dynamic pro-
gramming to heuristic search. Lastly, we set the query optimizer
not to reorder joins or unnest subqueries for Simpli? by setting
from_collapse_limit and join_collapse_limit to 1.

Hardware. Each database is configured within its own Ubuntu
20.04 LTS Docker container. These containers are deployed on a
machine featuring an Intel Xeon E5-2660 v4 (2.00GHz) processor
with 28 CPU cores, 256 GB of RAM, and HDD storage.

Dataset. Many prior works on query processing and optimiza-
tion use standard benchmarks like TPC-H, TPC-DS, or the Star
Schema Benchmark (SSB) [2, 16, 18]. However, Leis et al. [15] argue
that, while these benchmarks serve well in assessing the perfor-
mance of query engines, they are not good for evaluating query
optimizers. We use JOB (Join Order Benchmark) [19] derived from
the IMDB (Internet Movie Database) dataset [1], a widely recog-
nized benchmark for assessing query optimizer performance in
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real-world scenarios. JOB consists of 113 queries of varying com-
plexity with up to 28 join predicates. The IMDB dataset features
skewed attributes and cross-table correlations.

Methodology. In our research methodology, we have structured
the experimental evaluation into two distinct phases to thoroughly
assess the performance characteristics of systems with and with-
out cardinality estimates. In the first phase, we compare methods
that utilize cardinality estimation — including PostgreSQL [28],
Pessimistic [3], Simplicity [11], Compass [12] — and that doesn’t
— Simpli2. This comparison is conducted within the context of the
Join Order Benchmark (JOB). Each method is run independently
to collect their join orders and explicit query statements, which
are then executed in PostgreSQL to measure runtime performance.
Building on the insights gained from the first phase, we delve deeper
to better understand the performance traits between systems with
and without estimates. PostgreSQL is chosen to present the cardinal-
ity estimation based approach, while Simpli? illustrates the systems
where cardinality estimation is absent. To anchor our analysis, we
utilize TrueCard, a modified version of PostgreSQL calibrated to
utilize actual cardinalities instead of estimates, setting it as our
comparative baseline. Initially, we examine these systems on a
per-query basis, assessing both cost and runtime. Then, we collect
10k random plans for three queries of different complexity using
the quickpick algorithm [20] and analyze their cost and runtime
compared with the TrueCard plan, assuming that’s the best plan
we can get. Finally, we analyze how the plan is produced using
different optimization strategies that benefit from multi-threaded
and main-memory settings.
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Figure 3: Execution time for JOB queries in PostgreSQL with
various index configurations: No Index, Primary Key (PK)
Only, and Primary + Foreign Key (PK+FK).

4.2 Results

For phase 1, we conduct experiments in three configurations - con-
figuration with no index, primary key index(PK), and primary and
foreign key (PK+FK) - for every method. We report the median
between five runs. Figure 3 depicts the JOB workload runtime. In
the following, we analyze the results organized by configurations.

Non-Indexed. In the non-index configuration, where database
systems rely on full table scans, the execution time of queries is
mainly influenced by both the order and type of joins employed.
Figure 3 depicts the performance of various query optimization
methods in a non-indexed setting. Among these methods, the stan-
dard PostgreSQL takes the longest execution time of 350 seconds
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to run all the queries from JOB. This performance is primarily due
to inaccurate estimates that lead to suboptimal join order decisions.
Simplicity performs marginally better compared with other meth-
ods. This performance is attributed to its efficient use of heuristics,
which, when combined with upper bounds and functional depen-
dencies, find better join orders in most cases.

The Pessimistic and COMPASS methods show comparable per-
formances, with times of 300 and 303 seconds, respectively, sug-
gesting they possess optimizations that marginally improve over
the baseline PostgreSQL. Simpli? registers a moderately better ex-
ecution time at 285 seconds, standing out as a middle ground be-
tween the efficiency of Simplicity and other approaches. These
observations collectively underscore the impact of different query
optimization techniques, which leads to marginal improvement
comparable with the baseline in the absence of indexes.
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Figure 4: Cost and time [non-indexed setting] — as a normal-
ized ratio to TrueCard.

Indexed. The impact of indexing on query performance is pro-
found, as evidenced in figure 3. Including primary key indexes
alone leads to noticeable enhancements in performance across all
evaluated methods, compared to scenarios without indexing. Specif-
ically, the Simplicity method slightly outperforms its counterparts.
However, with only primary key indexes at play, the systems are
compelled to conduct full-table scans for foreign keys, a factor that
predominantly dictates the overall query runtime. This necessity
for full-table scans on foreign keys explains limited variation in
runtime across different methods.
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Figure 5: Cost and time [indexed setting] — as a normalized
ratio to TrueCard.

Including foreign key indexes alongside primary key indexes
markedly impacts the performance outcomes among the evaluated
methods. Specifically, Pessimistic, PostgreSQL, and Simpli® see their
runtimes improve by factors of 1.42x, 1.26x, and 1.42x, respectively.
This enhancement suggests that these systems are finely tuned for
environments rich in indexing, leveraging the available indexes to
formulate query execution plans that optimize the utilization of
these indexes.
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In contrast, the Simplicity and COMPASS do not exhibit any ben-
efit from the availability of foreign key indexes. This discrepancy
can be attributed to the inherent design of these two approaches,
which do not factor in indexes during the optimization phase. In-
stead, their focus is primarily on optimizing the order of joins.

5 ANALYSIS OF RESULTS

In phase 1, we observed marginal differences in performance across
different systems in both non-indexed and primary key indexed
settings. This outcome is intriguing and worth investigating further
to understand the reason behind this behavior. Given the statistics-
free nature of Simpli?, it is expected to perform worse. However,
this wasn’t clearly the case in Figure 3.

In this section, we dive deeper and try to understand the rea-
son behind it. We begin by comparing Simpli’> with PostgreSQL
and TrueCard, focusing on their performance at the query level in
terms of cost and runtime 5.1. We assume TrueCard, which relies
on actual cardinality, should theoretically deliver the best plans and
fastest execution times. Using TrueCard as a baseline helps us better
understand the performance differences when actual, estimated,
or no cardinality estimates are used. Given no index setting and
setting with only primary key indexes exhibit similar trends in per-
formance, for the rest of the experiments, we used a non-indexed
setting to represent without an index setup and an indexed setting
to represent a setup where both primary and foreign key indexes
are present. And, for non-indexed setting, hash join is used exclu-
sively as it yields more consistent performance and mitigates the
potential for selecting suboptimal join operators as a consequence
of cardinality estimation errors [7, 15].

Next, in section 5.2, we examine whether Simpliz’s performance
is random or driven by specific factors. We do this by analyzing
10,000 random query plans generated using the quickpick algo-
rithm, then comparing these results with the plans produced by
PostgreSQL, TrueCard, and Simpli?.

Lastly, in section 5.3, we assess how parallel processing affects the
query runtime for both Simpli? and PostgreSQL in these different
settings, aiming to understand the role of parallel execution in their
performance.

5.1 Query-level Analysis

In this subsection, we conduct a comparative analysis of True-
Card, PostgreSQL, and Simpli? within the PostgreSQL framework,
focusing on both cost and runtime. Join orders from Simpli? are
integrated into the PostgreSQL system via query rewriting. Exact
cardinalities for TrueCard are collected by executing all subqueries
for each query, which are then injected during query runtime. The
cost of each query is calculated using the cost function defined in
[15]. Although PostgreSQL’s default cost function was an option,
we opted for Leis’ [15] cost function due to its suitability for main-
memory setups focused on operator cardinality. Query runtime was
collected by running each query five times and taking its median.
These results are illustrated in Figures 4 and 5.

Non-Indexed. We evaluate the costs of JOB plans for Post-
greSQL, Simpliz, and TrueCard, with the cost ratio relative to True-
Card depicted in Figure 4a. The cost of PostgreSQL plans are usually
similar to TrueCard’s. Even in the worst case, they are up to 1.5
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TrueCard (ratio) PostgreSQL (ratio) Simpli? (ratio)

cost(million) 994.8 (1)

non-indexed

1006.6 (1.01) 1680.4 (1.68)

runtime(seconds) 324.6 (1) 349.4 (1.07) 416.3 (1.28)
. cost(million) 257.03 (1) 290.02(1.13) 1041.6(4.05)
indexed )

runtime(seconds) 102.3 (1) 192.5 (1.88) 309.2(3.02)

Table 2: Summary of aggregated cost (in millions) and runtime (in seconds) relative to TrueCard.
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Figure 6: Execution plans for a representative sub-query extracted from query JOB 18a.

times higher. The cost of Simpli® plans is also similar to TrueCard’s,
except for a few instances where they can be as much as 6.5 times
higher. This is due to the bushy join structure of Simpli? method,
which generates more intermediate join results compared with a
linear structure, i.e., left-deep. In contrast, the join orders utilized
by TrueCard and PostgreSQL are primarily left-deep, minimizing
the production of join results.

While the cost of a query plan can indicate its execution time,
it is not always an accurate predictor. Factors like database con-
figuration and available resources also influence runtime but may
not be accurately represented in the cost model. The cumulative
cost ratio of JOB plans between PostgreSQL and TrueCard is 1.01,
while the runtime ratio is 1.08 — which is 8% slower than TrueCard.
Conversely, the cost ratio between Simpli2 and TrueCard is 1.69,
yet the runtime ratio is 1.28 — 28% slower than TrueCard. Overall,
the cost function tends to overestimate.

Indexed. Figure 5a depicts the impact of indexing on query
plan costs. In the most unfavorable scenarios, the cost of plans
using cardinality estimates (PostgreSQL) can escalate to as much as
1370 times greater than those using TrueCard’s exact cardinalities.
However, the ratio of these costs exhibits considerable variabil-
ity across different plans, more so than in non-indexed settings.
While some plans do incur elevated costs, the aggregate workload
cost for PostgreSQL plans is merely 1.13 times that of TrueCard.
This is primarily due to the majority of plans having costs similar
to, or occasionally even lower than, TrueCard’s, thus counterbal-
ancing the effects of costlier outliers. No outliers were observed
regarding query runtime, and the cumulative workload runtime for
PostgreSQL plans is 1.88 times that of TrueCard’s.

In extreme scenarios, Simpli? plans can incur costs that are up
to 3,000 times greater than TrueCard. Despite being optimized for
maximum index utilization, the absence of cardinality estimates

often leads to suboptimal query plans. This manifests as a cuamu-
lative workload cost that is 4.05 times higher when using Simpli?
plans, compared to TrueCard, while total runtime is 3.02 times more
than those of TrueCard. However, for certain complex queries in-
volving multiple joins, Simpli? surprisingly outperforms TrueCard
in terms of runtime. This advantage is likely due to the relatively
low optimization time required by Simpli?, even for complex, join-
heavy queries. In contrast, plans utilizing cardinality estimates
(PostgreSQL) and TrueCard necessitate additional time for opti-
mization, especially when more joins are involved, consequently
affecting query runtime.

5.2 Good Plans Despite Bad/No Cardinalities

Table 2 presents an aggregated analysis of costs and runtimes for
the Join Order Benchmark, comparing the TrueCard method with
PostgreSQL and Simpli? in indexed and non-indexed settings. In
non-indexed settings, the PostgreSQL and Simpli? costs are 1.01
and 1.68 times that of TrueCard, respectively, while runtimes are
1.07 and 1.28 times greater. Despite the potential inaccuracies in car-
dinality estimation and the absence of any estimates in the Simpli?
approach, the performance of PostgreSQL and Simpli? closely aligns
with the TrueCard baseline. Moreover, the performance disparity
among the methods is less pronounced in non-indexed settings com-
pared to indexed ones. A detailed examination of Figure 4 reveals
that, for the majority of queries, all methods under comparison
perform similarly, barring a few outliers. Contrary to expectations
that, inaccuracies in cardinality estimates(PostgreSQL) and the ab-
sence of cardinality estimates in Simpli? would lead to sub-optimal
execution plans and extended runtimes. Our observations do not
substantiate this in most cases. This subsection delves into the
underlying reasons for this observation.
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Figure 7: Cost (log-scale) and runtime (seconds) distribution for query 6a, 11a and 18a relative to TrueCard.

In our study, we generated 10,000 random plans for queries 6a,
11a, and 18a from the Join Order Benchmark (JOB) [14, 15] using the
QuickPick algorithm [20]. These plans are analyzed and visualized
in Figure 7, where we display the distributions of plan costs and
runtimes in both non-indexed and indexed settings. Each row in
the figure depicts the cost and runtime distributions for a given
query under both non-indexed and indexed settings. The costs are
normalized against the cost of TrueCard’s indexed plan and are
represented on a logarithmic scale. In each subplot, we highlight
the costs or runtimes of plans derived from TrueCard, PostgreSQL,
and Simpli? approaches with vertical lines in green, black, and red,
respectively. The vertical lines coinciding indicate instances where
these methods yield comparable costs or runtimes, as observed in
sub-figure 7 a), which focuses on the cost distribution for query 6a.

Non-Indexed. Figure 7, column a, represents the cost distri-
bution of all considered queries in a non-indexed setting. Similar
cost of plans formed clusters. There are multiple such clusters of
plans for the same query. For instance, query 6a demonstrates three
distinct clusters of such plans. The cluster adjacent to the green
line represents plans that are closest in cost to the optimal plan,
whereas clusters to the right indicate progressively costlier plans. A
closer inspection of the plans in the third cluster — the one farthest

from the optimal cost — revealed a common pattern: many either
commence with or incorporate a foreign key/foreign key join. This
pattern persists across other queries as well.

Figure 6a focuses on a specific subquery from query 18a to illus-
trate the effect of foreign key/foreign key joins on cost. It demon-
strates that plans commencing with a join between foreign keys -
for example, ci and mi in this context — tend to incur higher costs
by generating large intermediate results early in the execution
path. Contrastingly, in the other two scenarios analyzed within a
non-indexed setting, such cost inflations do not occur.

Minimizing the occurrence of foreign key/foreign key joins could
reduce the likelihood of generating plans that fall within this third,
less cost-effective cluster for query 6a — figure 7. Leis et al. [14, 15]
argued that cardinality estimates are generally good for avoiding
such joins. However, our research extends this discourse by illus-
trating how a Simpli? approach can successfully avoid these joins
even in the absence of cardinality estimates.

Column b of Figure 7, which examines runtime, reflects a pattern
analogous to that of cost, albeit with generally reduced distances
between the clusters. This is particularly evident in the runtime dis-
tributions for queries 11a(b) and 18a(b), where the clusters are more
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method setting <0% 0.1-39% 40-94% improvement percentage
. 0 0 100 % of queries
non-indexed . .
0 0 627.04 runtime decrease in seconds
PostgreSQL
indexed 62 13.20 23.90 % of queries
-12.50 1.96 48.78 runtime decrease in seconds
non-indexed 0 1.76 98.23 % of queries
..o 0 1.48 748.82 runtime decrease in seconds
Simpli
indexed 39.80 6.10 54 % of queries
-2.31 0.81 490.3 runtime decrease in seconds

Table 3: Variation in query execution time (seconds) as a function of the thread count increment from 1(t1) to 5(t5), with the
proportion of queries per category represented as a percentage of the total 113 JOB queries.

tightly grouped compared to their cost counterparts, suggesting a
lesser variance in the runtime efficiency of the plans.

Indexed. In Figure 7, column c depicts the cost distribution of
all considered queries in an indexed setting. Similar to non-indexed
settings, similar plans cost form clusters for all queries. Notably,
in the indexed context, these clusters tend to be positioned signif-
icantly to the right of the green line, representing the TrueCard
cost. This displacement suggests that the randomly selected plans
are generally associated with substantially higher costs than the
TrueCard plan, a trend consistent across the queries studied. We
assume that this phenomenon is largely attributable to the selection
of physical operators, where errors in cardinality estimates can lead
to sub-optimal choices, adversely affecting the cost of the plans.
Conversely, in non-indexed settings, the choice of join physical
operator was constrained to hash joins.

In the case of query 11a, the PostgreSQL demonstrates a higher
cost than the TrueCard. With query 18a, both the PostgreSQL and
Simpli® methods result in costs that exceed those associated with
TrueCard. This underscores the pivotal role of precise cardinality
estimates in settings where indexes are employed. Throughout
our experiment in the indexed setting, we fixed the join order in
advance; however, the choice of physical operators was left to
the discretion of the database management system, which in our
experiments was PostgreSQL.

Column d of Figure 7 presents the runtime analysis for the re-
spective queries. The runtimes of similar plans tend to form clusters.
Notably, multiple clusters are evident within the results for queries
6a and 18a. For query 11a, the clusters are more closely spaced, in-
dicating a smaller variation in runtimes among the different plans.

Observations. We observe that plans with comparable cost form
clusters, and the same pattern holds for runtime. In no-indexed
settings, columns a and b in Figure 7, TrueCard, PostgreSQL, and
Simpli? yield plans that fall into the same cluster, indicating little
to no variation in the plans cost and runtime. We also observe that
plans with significantly higher costs than TrueCard often exhibit
a common pattern - many either start with or incorporate a for-
eign key/foreign key join. Avoiding foreign key/foreign key join
whenever possible reduces the likelihood of generating plans with
higher cost and runtime. Simpli? effectively sidesteps foreign key/
foreign key join whenever possible by prioritizing primary key/
foreign key joins. However, in scenarios with indexes, plans derived

from actual and estimated cardinalities tend to outperform those
generated without such estimates.

5.3 Parallel Processing and Runtime

Contemporary query execution engines, including PostgreSQL ver-
sion 9.6 and later, have embraced the capability for parallel pro-
cessing. The degree of parallelism within a given query in Post-
greSQL is governed by two parameters: max_parallel_workers
and max_parallel_workers_per_gather. During the query opti-
mization phase, PostgreSQL evaluates both parallel and sequential
execution plans, in contrast to some other databases that may allo-
cate threads dynamically at execution time.

In this section, we examine the impact of thread concurrency
on query runtime, comparing the performance in both indexed
and non-indexed settings. We analyze the proportional disparity
in runtime between multi-threaded and single-threaded (t1) execu-
tions as depicted in Table 3, 4. We further investigate to identify
which queries benefit from parallel execution and which do not for
both the PostgreSQL and Simpli? methods. Our experiments span
a range from single-threaded (t1) to five-threaded (t5) execution,
with the empirical finding that extending beyond five threads yields
negligible performance improvements when using the PostgreSQL
execution engine.

Non-Indexed. In the non-indexed environment, as demonstrated
in Table 3, we note consistent improvement in the execution times
of all queries, with speed-ups ranging from 40% to 94% when the
number of operating threads is increased from a single thread (t1)
to five threads (t5). The performance variance is quantified using
the following formula.

Runtime;; — Runtime;s

Performance Change = X 100%

Runtime;;

Transitioning from a single-threaded(t1) to a five-threaded(t5) en-
vironment results in a runtime reduction of 627.04 seconds for
PostgreSQL and approximately 750.3 seconds for Simpli? as de-
tailed in Table 3. This increase in efficacy primarily stems from the
adept parallelization of physical operations, particularly in Sequen-
tial Scans and Hash Joins, within non-indexed scenarios. These
findings underscore that in the absence of indexes, an elevation in
thread count exerts a positive impact on query runtimes, though
the magnitude of acceleration varies across individual queries.
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method improvement threads Index Scans Heap Scan SeqScan Nested Loop Hash Join
. 1(t1) 450 66 209 573 15
(a) <0 (71 queries)
5(t5 441 61 211 569 19
PostgreSQL )
. 1(t1) 212 22 106 231 45
(b) >0 (42 queries) ¢ ) 218 11 107 214 62
. 1(t1) 294 29 116 344 21
0 (45
— (a) <0 (45 queries) o) 290 24 120 339 26
Simpli
. 1(t1) 304 14 263 320 179
(b) >0 (68 queries) o ;) 302 2 265 300 199

Table 4: Impact of thread count on operator statistics for queries with improvement and decline in execution times.

Indexed. In an indexed configuration, the comparative analy-
sis between a five-threaded (t5) and a single-threaded (t1) execu-
tion yields a diverse spectrum of results. Specifically, while using
PostgreSQL, 62% of queries experience a marginal degradation in
performance, 13.20% exhibit negligible changes, and a noteworthy
enhancement in runtime - exceeding 40% - is observed in 23.90%
of queries. Similarly, while using Simpli? approach, a marginal per-
formance decrement is observed in 39.80% of queries, while 6.10%
remain essentially stable, and an improvement exceeding 40% is dis-
cernible in 54% of queries. This result indicates, for both PostgreSQL
and Simpli? fails to exhibit performance improvements for lot of
queries, a pattern that is documented in Table 3. To elucidate the
underlying dynamics at play, we turn our attention to the operator
statistics presented in Table 4.

Table 4 categorizes the JOB workload into two distinct groups
based on performance trajectory: (a) <0, where performance wanes,
and (b) >0, where performance is improved relative to a single-
threaded baseline (t1). Within the first category (a), the adoption
of physical operators remains invariant from t1 through t5. Index
Scans are the preferable choice for scan operation in most cases,
followed by Sequential Scans. Concurrently, join operations are
primarily dominated by Nested Loop Joins for both thread con-
figurations t1 and t5. The invocation of Hash Join operations is
relatively infrequent, registering at 15 instances for t1 and 19 for t5.
We observe a similar trend for the Simpli? approach.

Category (b) reflects a pattern akin to category (a), with Index
Scans and Nested Loop Joins being the prevalent methods for scan
and join operations, respectively. However, category (b) distin-
guishes itself by a greater incidence of Hash Joins—constituting
22% of joins in PostgreSQL (t5) and 40% in Simpli? (t5) — figures that
surpass those observed in category (a), where Hash Joins account
for a mere 3% in PostgreSQL and 7% in Simpli?. In PostgreSQL (t5)
setting, a notable 23.9% of JOB queries exhibit performance gains
ranging from 40% to 94% over the single-threaded baseline (t1),
culminating in a runtime reduction of 48.78 seconds. In contrast,
Simpli? witnesses 54% of queries outperforming t1 by 40% to 94%,
resulting in a substantial runtime decrease of 491 seconds.

Despite the inherent capability of all operators listed in Table 4 to
capitalize on parallel processing, category (a) does not demonstrate
any performance gains, whereas category (b) shows a moderate
improvement for PostgreSQL and a more pronounced enhancement

for Simpli®. We assume that the observed performance improve-
ments are attributable to the heightened utilization of hash join
operations, which appear to be more amenable to parallel execution.

5.4 In-memory Experiments

To ensure a comprehensive evaluation, our study includes anal-
ysis in modern main-memory databases, specifically in DuckDB,
HEAVY.AI and MonetDB, a columnar database. While MonetDB
does not offer guaranteed join ordering, our analysis aligns with
prior work [11] and incorporates its findings. We present the exe-
cution times for non-indexed configurations in Table 5. We omitted
the indexed settings from our results due to the absence of com-
prehensive index support in HEAVY.AJ, coupled with minimal or
no performance gains observed in DuckDB and MonetDB when
utilizing indexes. Our evaluation considers both the default runtime
for each database system, indicated as “default” in Table 5, as well
as execution plans chosen by the Simpli? algorithm.

DuckDB utilizes a basic query optimizer, considering join types
and column distinct value counts. In our experiments, DuckDB ex-
ecuted the Join Order Benchmark (JOB) workload in 30.38 seconds,
while Simpli?’s duration was 37.89 seconds. HEAVY.AI struggled
with the same workload, timing out on 37 out of 113 queries based
on a 120-second threshold. Accounting for these timeouts by as-
signing a 120-second penalty for each, the cumulative time for the
JOB workload amounted to 4744 seconds. When we run Simpli?
queries in HEAVY.AI the JOB workload completion time was 282.50
seconds. MonetDB, on the other hand, employs a more advanced,
cost-based optimizer that utilizes both statistics and heuristics,
thereby distinguishing itself from both DuckDB and HEAVY.AIL
In our tests, MonetDB processed the JOB queries in 114.46 sec-
onds, when augmented with Simpli? method, the time was further
reduced to 88.79 seconds.

In the context of main-memory databases, we find that the per-
formance of the Simpli? method is on par with the default optimiza-
tion strategies while using Join Order Benchmark. This observation
is likely attributable to the databases minimal to no reliance on
cardinality estimates during the optimization process.

6 RELATED WORK

Cardinality estimation is crucial for determining optimal query ex-
ecution plans. Leis et al. [14, 15] explored the impact of cardinality
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default Simpli?

DuckDB 30.38 37.87
HEAVY.AI >4744 282.50
MonetDB 114.46 88.79

Table 5: Execution time (seconds) in DuckDB, HEAVY.AI and
MonetDB.

estimates on query optimization. Estimates often suffer from inac-
curacies due to oversimplified assumptions like uniformity, inde-
pendence, and inclusion. PostgreSQL [28] uses histograms for data
representation, relying on formulas based on these assumptions. Al-
though histograms work well for single attribute estimations, they
struggle with join-crossing correlations. Cai et al. [3] introduced
Pessimistic, employing count-min sketches to capture foreign key
join-crossing correlations, but the sketch-building process intro-
duces significant overhead as join numbers increase. Hertzschuch
et al. [11] maintained pessimistic cardinality estimation properties
while substituting sketches with an upper bound formula leverag-
ing statistics already available to PostgreSQL. Izenov et al. [12] used
Fast-AGMS sketches to capture join-crossing correlations, reducing
overhead during sketch-building compared to Pessimistic.

Heuristic-based query optimizers employ predefined heuristics
to identify the optimal plan for query execution. Several heuristic-
based systems [4, 8-10, 17, 21, 23, 27, 29] have developed their own
rule languages and execution environments to avoid compatibility
issues. Held et al. [10] introduced Ingres, the first rule-based system,
where the original query is divided into single-valued sub-queries
and executed separately using a greedy approach. While effective
for simple queries, this method struggles with complex queries. In
contrast, Pirahesh et al. [17] developed Starburst, a Query Graph
Model (QGM) based system that represents a SQL query as a graph.
Query rewriting rules transform one QGM into an equivalent QGM,
and during the plan optimization phase, each equivalent QGM is
assigned an estimated cost, with the lowest cost QGM selected for
query execution. Integrating query graphs with join types and func-
tional dependencies may help to find efficient plans for execution
in a main-memory setup [6]. Graefe et al. [8] created EXODUS,
where a query is represented as an algebraic tree and employs
rule-based reordering and plan optimization techniques similar to
Starburst. However, the simplistic search strategy and cost function
used by Starburst and EXODUS introduce limitations for complex
queries. To address these limitations, Graefe et al. [9] presented
Volcano, which utilizes directed dynamic search rather than rules
for enumeration.

7 CONCLUSIONS

This paper presents an in-depth analysis of query optimization
with and without cardinality estimates across a broad experimental
spectrum. Our findings suggests that the performance gap between
different optimization strategies is minimal in non-indexed settings
and main-memory databases. This insight emerged from a detailed
analysis of plan costs and execution times, supplemented by an
evaluation of around 10,000 random query plans generated using
the quick pick algorithm. Our investigation extends to assessing

Asoke Datta, Brian Tsan, Yesdaulet Izenov, Florin Rusu

the effects of parallel processing on query performance, examin-
ing its implications across both indexed and non-indexed settings.
Overall, our findings contribute to a deeper understanding of query
optimization in the presence and absence of estimates.
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