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estimates that a specific join would generate a large number of

rows, it may opt for a different join order to minimize the plan

cardinality and improve performance. Likewise, during index se-

lection, if the optimizer anticipates that a particular index will be

highly selective and yield fewer rows, it may favor that index to

enhance performance. Accurate cardinality estimation has the po-

tential to boost query performance by allowing the optimizer to

make better-informed decisions when executing a query. However,

success depends on the precision of the statistics and data synopses.

Figure 1: PostgreSQL execution plans for query 18a.

2.1 Non-Indexed

Many modern relational databases, such as PostgreSQL, employ

a CE query optimizer [28]. The PostgreSQL optimizer leverages

data and system statistics to estimate the cost of all potential join

orders or plans, ultimately selecting the one with the lowest cost.

Although the enumeration can benefit from join graphs by travers-

ing only existing edges, the edge type — either primary/foreign key

or foreign/foreign key — is not a primary consideration. Redundant

and suboptimal orders are efficiently managed through dynamic

programming and early pruning techniques.

A plan’s cost is calculated by aggregating the cost of individual

plan operators. The cost of an operator is contingent upon the num-

ber of accessed pages and processed tuples, with these quantities

weighted by the configurable system parameters, seq_page_cost

and cpu_tuple_cost, respectively. Exact costs are only known

for base tables, necessitating estimations for all other operators

without executing them. This constitutes the cardinality estimation

problem in PostgreSQL.

Pre-computed data synopses or statistics are utilized for this

purpose. PostgreSQL statistics are per attribute and include ranges,

heavy hitters, the number of distinct values, and equi-depth his-

tograms. Operator costs are estimated by integrating these statistics

into formulas that assume uniformity, independence, and inclusion

regarding the data [14, 15]. Inaccurate estimates result whenever

these assumptions are violated, often in queries involving many-to-

many joins or multiple predicates.

We execute JOB query 18a in PostgreSQL. To determine the

optimal plan, PostgreSQL’s enumeration algorithm exhaustively

examines all potential join orders of the 28, =,<8_83G, 8C2, C,<8, 8C1

tables and the available physical operators. For example, it evaluates

permutations such as (28 Z = Z <8_83G Z 8C2 Z C Z <8 Z 8C1),

((28 Z =) Z (<8_83G Z 8C2) Z C Z <8 Z 8C1), and others. In the

non-indexed configuration, due to our main-memory setup, we

constrain the join operators to hash join.

The enumeration algorithm also explores various options for

building and probing hash tables. The hash table must fit in memory,

which is why the smaller side of the join is typically selected for

building the hash table. The optimal plan for query 18a is illustrated

in Figure 1a, where the optimizer chooses to construct a hash table

on the join result of (28 Z =) rather than on<8_83G . Subsequently,

however, it builds the hash table on the base table 8C2 instead of

the join result of (28 Z = Z <8_83G). This choice is made because,

in certain cases, constructing a hash table on an intermediate join

result can be more cost-effective than doing so on a base table.

2.2 Indexed

In the presence of indexes, the PostgreSQL optimizer follows a

process akin to the one employed in non-indexed settings. The in-

tegration of indexes within a database system broadens the choices

of available physical operators, as it offers alternative methods for

data access beyond a full table scan. Instead of examining all records

in a table to locate the desired information, the index facilitates

direct access to pertinent data, thereby improving efficiency and

overall performance.

Consider JOB query 18a with the optimal indexed join order:

<8_83G Z 8C2 Z <8 Z 8C1 Z 28 Z = Z C which differs from

the non-indexed setting(Figure 1b). In the presence of indexes, the

optimizer determines if using an index will be beneficial, given that

the cost of an index scan differs from that of a sequential scan. For

example, if an index is available on the<8_83G table’s join column

(8=5 >_C~?4_83) with 8C2 tables join column (83), PostgreSQL’s cost

function evaluates the cost of the join with the index (20K) and

without the index (16K) and chooses the more cost-effective option,

in this case, Sequential Scan followed by Hash Join. Conversely,

for the<8 Z <8_83G join, the optimizer opts for an index scan on

<8_83G in conjunction with a nested loop join, given the cost of the

join using an index is 8K and without is 234K.

3 SIMPLI-SQUARED (Simpli2)

Simpli2, is designed to completely eschew the use of synopses,

statistics, or cardinality estimations. Instead, it employs the query’s

join graph and key/foreign key constraints to guide its decision-

making. While the incorporation of key/foreign key constraints in

join optimization has precedents [3, 11], those prior approaches

have typically combined such constraints with cardinality estimates,

which is not the case here. Additionally, Simpli2 takes table sizes as

auxiliary input parameters. These inputs are used to annotate the

vertices (tables) and edges (joins) of the join graph. Table vertices

are annotated with their respective sizes, while join edges are clas-

sified as either one-to-many (1:n) or many-to-many (n:m) based on

their key/foreign key constraints.

These heuristics can be intuitively understood in the context of

the JOB schema. Many-to-many joins typically involve two large

fact tables, while one-to-many joins occur between a fact table
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Method Statistics Estimates Join Graph Use PostgreSQL Integration

PostgreSQL distincts, heavy hitters, histograms all minimal native

Pessimistic Count-Min sketches, PostgreSQL many-to-many joins join type estimates in optimizer

Simplicity table sizes, heavy hitters, PostgreSQL all join type query rewriting

COMPASS Fast-AGMS sketches joins graph query rewriting

Simpli2 table sizes none join type query rewriting

Table 1: Analytical comparison between few cardinality estimates approaches and Simpli2.

and a significantly smaller table. By prioritizing one-to-many joins,

the number of rows participating in the join from the fact tables

is reduced. Furthermore, prioritizing smaller tables decreases the

likelihood of generating large join results early in the join order.

Simpli2 has two optimization objectives: minimizing the num-

ber of accessed tuples, and maximizing the utilization of available

indexes. The cost of joining a foreign key table is determined by its

cardinality when indexes are unavailable. When there are indexes,

its cost is inversely proportional to the number of adjacent primary

key tables. We express these objectives in the following formula.

�(2 (� <) =

{

|� < |, non-indexed
|� < |

2)� <
, indexed

Where � < is a foreign key table and )� < is the number of pri-

mary key tables adjacent to � < . The cost of � < is calculated

differently depending on the presence of indexes. The join order of

a query is determined by sorting it’s foreign key tables in ascending

order of their cost.

3.1 Non-Indexed

The Simpli2 algorithm is outlined in Algorithm 1. It starts by identi-

fying the foreign key tables and their primary key join candidates,

splitting the join graph into multiple – possibly overlapping – com-

ponents. The join order is determined by sorting the foreign key

tables using�(2, their cardinalities, in ascending order. Each foreign

key table is appended to the join order, followed by its component.

The primary key tables in each component is appended to the join

order in ascending order of their cardinality. If the same primary key

table is present in multiple components, it will only be appended to

the join order with the component where it initially appears. Any

remaining tables not yet part of the join order are subsequently ap-

pended. Each component in the join graph is treated as a subquery,

with the exception of the first one, resulting in a bushy join order.

We execute JOB query 18a with the Simpli2 algorithm. We com-

pute the components for each foreign key table:<8_83G ,<8 , and

28 . The components are then combined, resulting in the join order

depicted in Figure 2 as a bushy tree.

3.2 Indexed

In the presence of indexes, assuming each table has at least one

index, the Simpli2 algorithm has the additional objective of maxi-

mizing the utilization of those indexes. While the algorithm itself

remains the same, the cost determined by �(2 differs from the non-

indexed setting. To calculate the cost of a foreign key table with

indexes, �(2 divides the table’s cardinality |� < | by 2)� < where

)� < represents the number of adjacent primary key tables. Thus,

Figure 2: (8<?;82 execution plans for query 18a.

foreign key tables with more adjacent primary key tables are pri-

oritized in the join order. Bushy trees, which minimize access to

base tables later in the join order and subsequently reduce index

usage, are counterproductive to our objective. To address this, we

default to left-deep trees when there are indexes. The impact of

these modifications on query 18a’s join order is depicted in Fig-

ure 2. Additionally, the choice of physical operators is adapted to

benefit from indexes. For instance, index scans are preferred over

sequential scans, and indexed nested loop joins are preferred over

hash joins whenever possible.

Following Hertzschuch et al. [11], we rewrite queries using

the explicit join order determined by Simpli2 algorithm. In a non-

indexed setting, we construct a subquery for each join component –

except the first. When executing a rewritten query with a database

system, e.g., PostgreSQL, the optimizer must be configured to follow

the given join order and disable subquery unnesting. We leave the

selection of physical operators up to the optimizer’s default, which

may use statistics when indexes are available. Simpli2 operates in-

dependently of cardinality estimates, making it a viable standalone

option for databases with limited or no reliance on cardinality esti-

mates. Additionally, Simpli2 can be used to create query plans on

refined search space produced using methods like LIP [22].

4 EXPERIMENTAL EVALUATION

We experiment on both indexed and non-indexed configurations

in PostgreSQL [28]. In the indexed setting, we disable sort-merge

join, while in the non-indexed setting, sort-merge and nested-loop

joins are both disabled. Hash joins are preferred in main-memory

and non-indexed setups to ensure optimal performance [14, 15].
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Algorithm 1: Simpli-Squared (Simpli2)

Data: Query join-graph � (+ , �) where edges are

key/foreign key constraints

Result: Join-order �$ , initialized to an empty list

1 � ← list of all foreign key tables from +

2 Sort � in ascending order by �(2
3 for 5 ∈ � do

4 � 2 ← list of primary key tables adjacent to 5

5 Sort � 2 in ascending order by cardinality

6 Append 5 to �$

7 for 2 ∈ � 2 do

8 if 2 ∉ �$ then

9 Append 2 to �$

10 end

11 end

12 note : In non-indexed setting, each 5 ∈ � produces

separate sub-query after it joins one or more primary

key table
13 end

14 while ∃ table c ∈ + ∋ 2 ∉ �$ do

15 if ∃2′ ∈ �$ ∋ (2, 2′) ∈ � then

16 Append 2 to �$

17 end

18 end

The motivation for these can be found in the extended versions

of this work [6, 7]. In addition, our analysis encompasses results

from DuckDB [24] and HEAVY.AI [25], both of which operate

as main-memory database systems. Furthermore, we extend our

experiments to MonetDB [26], which utilizes a columnar storage

architecture and mainly relies on main memory for data processing.

4.1 Setup

In alignmentwith prior work [14, 15], we specifically configure Post-

greSQL by increasing thememory limit per operator work_mem from

4 megabytes to 128 gigabytes, shared_buffers from 32 megabytes

to 128 gigabytes, and effective_cache_size from 4 gigabytes

to 128 gigabytes. We raise the geqo_threshold parameter to 18

joins, which adjusts the threshold for switching from dynamic pro-

gramming to heuristic search. Lastly, we set the query optimizer

not to reorder joins or unnest subqueries for Simpli2 by setting

from_collapse_limit and join_collapse_limit to 1.

Hardware. Each database is configured within its own Ubuntu

20.04 LTS Docker container. These containers are deployed on a

machine featuring an Intel Xeon E5-2660 v4 (2.00GHz) processor

with 28 CPU cores, 256 GB of RAM, and HDD storage.

Dataset.Many prior works on query processing and optimiza-

tion use standard benchmarks like TPC-H, TPC-DS, or the Star

Schema Benchmark (SSB) [2, 16, 18]. However, Leis et al. [15] argue

that, while these benchmarks serve well in assessing the perfor-

mance of query engines, they are not good for evaluating query

optimizers. We use JOB (Join Order Benchmark) [19] derived from

the IMDB (Internet Movie Database) dataset [1], a widely recog-

nized benchmark for assessing query optimizer performance in

real-world scenarios. JOB consists of 113 queries of varying com-

plexity with up to 28 join predicates. The IMDB dataset features

skewed attributes and cross-table correlations.

Methodology. In our researchmethodology, we have structured

the experimental evaluation into two distinct phases to thoroughly

assess the performance characteristics of systems with and with-

out cardinality estimates. In the first phase, we compare methods

that utilize cardinality estimation — including PostgreSQL [28],

Pessimistic [3], Simplicity [11], Compass [12] — and that doesn’t

— Simpli2. This comparison is conducted within the context of the

Join Order Benchmark (JOB). Each method is run independently

to collect their join orders and explicit query statements, which

are then executed in PostgreSQL to measure runtime performance.

Building on the insights gained from the first phase, we delve deeper

to better understand the performance traits between systems with

andwithout estimates. PostgreSQL is chosen to present the cardinal-

ity estimation based approach, while Simpli2 illustrates the systems

where cardinality estimation is absent. To anchor our analysis, we

utilize TrueCard, a modified version of PostgreSQL calibrated to

utilize actual cardinalities instead of estimates, setting it as our

comparative baseline. Initially, we examine these systems on a

per-query basis, assessing both cost and runtime. Then, we collect

10k random plans for three queries of different complexity using

the quickpick algorithm [20] and analyze their cost and runtime

compared with the TrueCard plan, assuming that’s the best plan

we can get. Finally, we analyze how the plan is produced using

different optimization strategies that benefit from multi-threaded

and main-memory settings.

Figure 3: Execution time for JOB queries in PostgreSQL with

various index configurations: No Index, Primary Key (PK)

Only, and Primary + Foreign Key (PK+FK).

4.2 Results

For phase 1, we conduct experiments in three configurations - con-

figuration with no index, primary key index(PK), and primary and

foreign key (PK+FK) - for every method. We report the median

between five runs. Figure 3 depicts the JOB workload runtime. In

the following, we analyze the results organized by configurations.

Non-Indexed. In the non-index configuration, where database

systems rely on full table scans, the execution time of queries is

mainly influenced by both the order and type of joins employed.

Figure 3 depicts the performance of various query optimization

methods in a non-indexed setting. Among these methods, the stan-

dard PostgreSQL takes the longest execution time of 350 seconds
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to run all the queries from JOB. This performance is primarily due

to inaccurate estimates that lead to suboptimal join order decisions.

Simplicity performs marginally better compared with other meth-

ods. This performance is attributed to its efficient use of heuristics,

which, when combined with upper bounds and functional depen-

dencies, find better join orders in most cases.

The Pessimistic and COMPASS methods show comparable per-

formances, with times of 300 and 303 seconds, respectively, sug-

gesting they possess optimizations that marginally improve over

the baseline PostgreSQL. Simpli2 registers a moderately better ex-

ecution time at 285 seconds, standing out as a middle ground be-

tween the efficiency of Simplicity and other approaches. These

observations collectively underscore the impact of different query

optimization techniques, which leads to marginal improvement

comparable with the baseline in the absence of indexes.

Figure 4: Cost and time [non-indexed setting] — as a normal-

ized ratio to TrueCard.

Indexed. The impact of indexing on query performance is pro-

found, as evidenced in figure 3. Including primary key indexes

alone leads to noticeable enhancements in performance across all

evaluated methods, compared to scenarios without indexing. Specif-

ically, the Simplicity method slightly outperforms its counterparts.

However, with only primary key indexes at play, the systems are

compelled to conduct full-table scans for foreign keys, a factor that

predominantly dictates the overall query runtime. This necessity

for full-table scans on foreign keys explains limited variation in

runtime across different methods.

Figure 5: Cost and time [indexed setting] — as a normalized

ratio to TrueCard.

Including foreign key indexes alongside primary key indexes

markedly impacts the performance outcomes among the evaluated

methods. Specifically, Pessimistic, PostgreSQL, and Simpli2 see their

runtimes improve by factors of 1.42x, 1.26x, and 1.42x, respectively.

This enhancement suggests that these systems are finely tuned for

environments rich in indexing, leveraging the available indexes to

formulate query execution plans that optimize the utilization of

these indexes.

In contrast, the Simplicity and COMPASS do not exhibit any ben-

efit from the availability of foreign key indexes. This discrepancy

can be attributed to the inherent design of these two approaches,

which do not factor in indexes during the optimization phase. In-

stead, their focus is primarily on optimizing the order of joins.

5 ANALYSIS OF RESULTS

In phase 1, we observed marginal differences in performance across

different systems in both non-indexed and primary key indexed

settings. This outcome is intriguing and worth investigating further

to understand the reason behind this behavior. Given the statistics-

free nature of Simpli2, it is expected to perform worse. However,

this wasn’t clearly the case in Figure 3.

In this section, we dive deeper and try to understand the rea-

son behind it. We begin by comparing Simpli2 with PostgreSQL

and TrueCard, focusing on their performance at the query level in

terms of cost and runtime 5.1. We assume TrueCard, which relies

on actual cardinality, should theoretically deliver the best plans and

fastest execution times. Using TrueCard as a baseline helps us better

understand the performance differences when actual, estimated,

or no cardinality estimates are used. Given no index setting and

setting with only primary key indexes exhibit similar trends in per-

formance, for the rest of the experiments, we used a non-indexed

setting to represent without an index setup and an indexed setting

to represent a setup where both primary and foreign key indexes

are present. And, for non-indexed setting, hash join is used exclu-

sively as it yields more consistent performance and mitigates the

potential for selecting suboptimal join operators as a consequence

of cardinality estimation errors [7, 15].

Next, in section 5.2, we examine whether Simpli2’s performance

is random or driven by specific factors. We do this by analyzing

10,000 random query plans generated using the quickpick algo-

rithm, then comparing these results with the plans produced by

PostgreSQL, TrueCard, and Simpli2.

Lastly, in section 5.3, we assess how parallel processing affects the

query runtime for both Simpli2 and PostgreSQL in these different

settings, aiming to understand the role of parallel execution in their

performance.

5.1 Query-level Analysis

In this subsection, we conduct a comparative analysis of True-

Card, PostgreSQL, and Simpli2 within the PostgreSQL framework,

focusing on both cost and runtime. Join orders from Simpli2 are

integrated into the PostgreSQL system via query rewriting. Exact

cardinalities for TrueCard are collected by executing all subqueries

for each query, which are then injected during query runtime. The

cost of each query is calculated using the cost function defined in

[15]. Although PostgreSQL’s default cost function was an option,

we opted for Leis’ [15] cost function due to its suitability for main-

memory setups focused on operator cardinality. Query runtime was

collected by running each query five times and taking its median.

These results are illustrated in Figures 4 and 5.

Non-Indexed. We evaluate the costs of JOB plans for Post-

greSQL, Simpli2, and TrueCard, with the cost ratio relative to True-

Card depicted in Figure 4a. The cost of PostgreSQL plans are usually

similar to TrueCard’s. Even in the worst case, they are up to 1.5
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TrueCard (ratio) PostgreSQL (ratio) Simpli2 (ratio)

non-indexed
cost(million) 994.8 (1) 1006.6 (1.01) 1680.4 (1.68)

runtime(seconds) 324.6 (1) 349.4 (1.07) 416.3 (1.28)

indexed
cost(million) 257.03 (1) 290.02(1.13) 1041.6(4.05)

runtime(seconds) 102.3 (1) 192.5 (1.88) 309.2(3.02)

Table 2: Summary of aggregated cost (in millions) and runtime (in seconds) relative to TrueCard.

(a) Non-indexed (b) Indexed

Figure 6: Execution plans for a representative sub-query extracted from query JOB 18a.

times higher. The cost of Simpli2 plans is also similar to TrueCard’s,

except for a few instances where they can be as much as 6.5 times

higher. This is due to the bushy join structure of Simpli2 method,

which generates more intermediate join results compared with a

linear structure, i.e., left-deep. In contrast, the join orders utilized

by TrueCard and PostgreSQL are primarily left-deep, minimizing

the production of join results.

While the cost of a query plan can indicate its execution time,

it is not always an accurate predictor. Factors like database con-

figuration and available resources also influence runtime but may

not be accurately represented in the cost model. The cumulative

cost ratio of JOB plans between PostgreSQL and TrueCard is 1.01,

while the runtime ratio is 1.08 – which is 8% slower than TrueCard.

Conversely, the cost ratio between Simpli2 and TrueCard is 1.69,

yet the runtime ratio is 1.28 – 28% slower than TrueCard. Overall,

the cost function tends to overestimate.

Indexed. Figure 5a depicts the impact of indexing on query

plan costs. In the most unfavorable scenarios, the cost of plans

using cardinality estimates (PostgreSQL) can escalate to as much as

1370 times greater than those using TrueCard’s exact cardinalities.

However, the ratio of these costs exhibits considerable variabil-

ity across different plans, more so than in non-indexed settings.

While some plans do incur elevated costs, the aggregate workload

cost for PostgreSQL plans is merely 1.13 times that of TrueCard.

This is primarily due to the majority of plans having costs similar

to, or occasionally even lower than, TrueCard’s, thus counterbal-

ancing the effects of costlier outliers. No outliers were observed

regarding query runtime, and the cumulative workload runtime for

PostgreSQL plans is 1.88 times that of TrueCard’s.

In extreme scenarios, Simpli2 plans can incur costs that are up

to 3,000 times greater than TrueCard. Despite being optimized for

maximum index utilization, the absence of cardinality estimates

often leads to suboptimal query plans. This manifests as a cumu-

lative workload cost that is 4.05 times higher when using Simpli2

plans, compared to TrueCard, while total runtime is 3.02 times more

than those of TrueCard. However, for certain complex queries in-

volving multiple joins, Simpli2 surprisingly outperforms TrueCard

in terms of runtime. This advantage is likely due to the relatively

low optimization time required by Simpli2, even for complex, join-

heavy queries. In contrast, plans utilizing cardinality estimates

(PostgreSQL) and TrueCard necessitate additional time for opti-

mization, especially when more joins are involved, consequently

affecting query runtime.

5.2 Good Plans Despite Bad/No Cardinalities

Table 2 presents an aggregated analysis of costs and runtimes for

the Join Order Benchmark, comparing the TrueCard method with

PostgreSQL and Simpli2 in indexed and non-indexed settings. In

non-indexed settings, the PostgreSQL and Simpli2 costs are 1.01

and 1.68 times that of TrueCard, respectively, while runtimes are

1.07 and 1.28 times greater. Despite the potential inaccuracies in car-

dinality estimation and the absence of any estimates in the Simpli2

approach, the performance of PostgreSQL and Simpli2 closely aligns

with the TrueCard baseline. Moreover, the performance disparity

among the methods is less pronounced in non-indexed settings com-

pared to indexed ones. A detailed examination of Figure 4 reveals

that, for the majority of queries, all methods under comparison

perform similarly, barring a few outliers. Contrary to expectations

that, inaccuracies in cardinality estimates(PostgreSQL) and the ab-

sence of cardinality estimates in Simpli2 would lead to sub-optimal

execution plans and extended runtimes. Our observations do not

substantiate this in most cases. This subsection delves into the

underlying reasons for this observation.
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method setting <0 % 0.1 - 39 % 40-94 % improvement percentage

PostgreSQL

non-indexed
0 0 100 % of queries

0 0 627.04 runtime decrease in seconds

indexed
62 13.20 23.90 % of queries

-12.50 1.96 48.78 runtime decrease in seconds

Simpli2
non-indexed

0 1.76 98.23 % of queries

0 1.48 748.82 runtime decrease in seconds

indexed
39.80 6.10 54 % of queries

-2.31 0.81 490.3 runtime decrease in seconds

Table 3: Variation in query execution time (seconds) as a function of the thread count increment from 1(t1) to 5(t5), with the

proportion of queries per category represented as a percentage of the total 113 JOB queries.

tightly grouped compared to their cost counterparts, suggesting a

lesser variance in the runtime efficiency of the plans.

Indexed. In Figure 7, column c depicts the cost distribution of

all considered queries in an indexed setting. Similar to non-indexed

settings, similar plans cost form clusters for all queries. Notably,

in the indexed context, these clusters tend to be positioned signif-

icantly to the right of the green line, representing the TrueCard

cost. This displacement suggests that the randomly selected plans

are generally associated with substantially higher costs than the

TrueCard plan, a trend consistent across the queries studied. We

assume that this phenomenon is largely attributable to the selection

of physical operators, where errors in cardinality estimates can lead

to sub-optimal choices, adversely affecting the cost of the plans.

Conversely, in non-indexed settings, the choice of join physical

operator was constrained to hash joins.

In the case of query 11a, the PostgreSQL demonstrates a higher

cost than the TrueCard. With query 18a, both the PostgreSQL and

Simpli2 methods result in costs that exceed those associated with

TrueCard. This underscores the pivotal role of precise cardinality

estimates in settings where indexes are employed. Throughout

our experiment in the indexed setting, we fixed the join order in

advance; however, the choice of physical operators was left to

the discretion of the database management system, which in our

experiments was PostgreSQL.

Column d of Figure 7 presents the runtime analysis for the re-

spective queries. The runtimes of similar plans tend to form clusters.

Notably, multiple clusters are evident within the results for queries

6a and 18a. For query 11a, the clusters are more closely spaced, in-

dicating a smaller variation in runtimes among the different plans.

Observations.We observe that plans with comparable cost form

clusters, and the same pattern holds for runtime. In no-indexed

settings, columns a and b in Figure 7, TrueCard, PostgreSQL, and

Simpli2 yield plans that fall into the same cluster, indicating little

to no variation in the plans cost and runtime. We also observe that

plans with significantly higher costs than TrueCard often exhibit

a common pattern - many either start with or incorporate a for-

eign key/foreign key join. Avoiding foreign key/foreign key join

whenever possible reduces the likelihood of generating plans with

higher cost and runtime. Simpli2 effectively sidesteps foreign key/

foreign key join whenever possible by prioritizing primary key/

foreign key joins. However, in scenarios with indexes, plans derived

from actual and estimated cardinalities tend to outperform those

generated without such estimates.

5.3 Parallel Processing and Runtime

Contemporary query execution engines, including PostgreSQL ver-

sion 9.6 and later, have embraced the capability for parallel pro-

cessing. The degree of parallelism within a given query in Post-

greSQL is governed by two parameters: max_parallel_workers

and max_parallel_workers_per_gather. During the query opti-

mization phase, PostgreSQL evaluates both parallel and sequential

execution plans, in contrast to some other databases that may allo-

cate threads dynamically at execution time.

In this section, we examine the impact of thread concurrency

on query runtime, comparing the performance in both indexed

and non-indexed settings. We analyze the proportional disparity

in runtime between multi-threaded and single-threaded (t1) execu-

tions as depicted in Table 3, 4. We further investigate to identify

which queries benefit from parallel execution and which do not for

both the PostgreSQL and Simpli2 methods. Our experiments span

a range from single-threaded (t1) to five-threaded (t5) execution,

with the empirical finding that extending beyond five threads yields

negligible performance improvements when using the PostgreSQL

execution engine.

Non-Indexed. In the non-indexed environment, as demonstrated

in Table 3, we note consistent improvement in the execution times

of all queries, with speed-ups ranging from 40% to 94% when the

number of operating threads is increased from a single thread (t1)

to five threads (t5). The performance variance is quantified using

the following formula.

Performance Change =

(

RuntimeC1 − RuntimeC5
RuntimeC1

)

× 100%

Transitioning from a single-threaded(t1) to a five-threaded(t5) en-

vironment results in a runtime reduction of 627.04 seconds for

PostgreSQL and approximately 750.3 seconds for Simpli2 as de-

tailed in Table 3. This increase in efficacy primarily stems from the

adept parallelization of physical operations, particularly in Sequen-

tial Scans and Hash Joins, within non-indexed scenarios. These

findings underscore that in the absence of indexes, an elevation in

thread count exerts a positive impact on query runtimes, though

the magnitude of acceleration varies across individual queries.
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method improvement threads Index Scans Heap Scan Seq Scan Nested Loop Hash Join

PostgreSQL

(a) <0 (71 queries)
1 (t1) 450 66 209 573 15

5 (t5) 441 61 211 569 19

(b) >0 (42 queries)
1 (t1) 212 22 106 231 45

5 (t5) 218 11 107 214 62

Simpli2
(a) <0 (45 queries)

1 (t1) 294 29 116 344 21

5 (t5) 290 24 120 339 26

(b) >0 (68 queries)
1 (t1) 304 14 263 320 179

5 (t5) 302 2 265 300 199

Table 4: Impact of thread count on operator statistics for queries with improvement and decline in execution times.

Indexed. In an indexed configuration, the comparative analy-

sis between a five-threaded (t5) and a single-threaded (t1) execu-

tion yields a diverse spectrum of results. Specifically, while using

PostgreSQL, 62% of queries experience a marginal degradation in

performance, 13.20% exhibit negligible changes, and a noteworthy

enhancement in runtime – exceeding 40% – is observed in 23.90%

of queries. Similarly, while using Simpli2 approach, a marginal per-

formance decrement is observed in 39.80% of queries, while 6.10%

remain essentially stable, and an improvement exceeding 40% is dis-

cernible in 54% of queries. This result indicates, for both PostgreSQL

and Simpli2 fails to exhibit performance improvements for lot of

queries, a pattern that is documented in Table 3. To elucidate the

underlying dynamics at play, we turn our attention to the operator

statistics presented in Table 4.

Table 4 categorizes the JOB workload into two distinct groups

based on performance trajectory: (a) <0, where performance wanes,

and (b) >0, where performance is improved relative to a single-

threaded baseline (t1). Within the first category (a), the adoption

of physical operators remains invariant from t1 through t5. Index

Scans are the preferable choice for scan operation in most cases,

followed by Sequential Scans. Concurrently, join operations are

primarily dominated by Nested Loop Joins for both thread con-

figurations t1 and t5. The invocation of Hash Join operations is

relatively infrequent, registering at 15 instances for t1 and 19 for t5.

We observe a similar trend for the Simpli2 approach.

Category (b) reflects a pattern akin to category (a), with Index

Scans and Nested Loop Joins being the prevalent methods for scan

and join operations, respectively. However, category (b) distin-

guishes itself by a greater incidence of Hash Joins—constituting

22% of joins in PostgreSQL (t5) and 40% in Simpli2 (t5) — figures that

surpass those observed in category (a), where Hash Joins account

for a mere 3% in PostgreSQL and 7% in Simpli2. In PostgreSQL (t5)

setting, a notable 23.9% of JOB queries exhibit performance gains

ranging from 40% to 94% over the single-threaded baseline (t1),

culminating in a runtime reduction of 48.78 seconds. In contrast,

Simpli2 witnesses 54% of queries outperforming t1 by 40% to 94%,

resulting in a substantial runtime decrease of 491 seconds.

Despite the inherent capability of all operators listed in Table 4 to

capitalize on parallel processing, category (a) does not demonstrate

any performance gains, whereas category (b) shows a moderate

improvement for PostgreSQL and a more pronounced enhancement

for Simpli2. We assume that the observed performance improve-

ments are attributable to the heightened utilization of hash join

operations, which appear to be more amenable to parallel execution.

5.4 In-memory Experiments

To ensure a comprehensive evaluation, our study includes anal-

ysis in modern main-memory databases, specifically in DuckDB,

HEAVY.AI, and MonetDB, a columnar database. While MonetDB

does not offer guaranteed join ordering, our analysis aligns with

prior work [11] and incorporates its findings. We present the exe-

cution times for non-indexed configurations in Table 5. We omitted

the indexed settings from our results due to the absence of com-

prehensive index support in HEAVY.AI, coupled with minimal or

no performance gains observed in DuckDB and MonetDB when

utilizing indexes. Our evaluation considers both the default runtime

for each database system, indicated as “default” in Table 5, as well

as execution plans chosen by the Simpli2 algorithm.

DuckDB utilizes a basic query optimizer, considering join types

and column distinct value counts. In our experiments, DuckDB ex-

ecuted the Join Order Benchmark (JOB) workload in 30.38 seconds,

while Simpli2’s duration was 37.89 seconds. HEAVY.AI struggled

with the same workload, timing out on 37 out of 113 queries based

on a 120-second threshold. Accounting for these timeouts by as-

signing a 120-second penalty for each, the cumulative time for the

JOB workload amounted to 4744 seconds. When we run Simpli2

queries in HEAVY.AI, the JOBworkload completion time was 282.50

seconds. MonetDB, on the other hand, employs a more advanced,

cost-based optimizer that utilizes both statistics and heuristics,

thereby distinguishing itself from both DuckDB and HEAVY.AI.

In our tests, MonetDB processed the JOB queries in 114.46 sec-

onds, when augmented with Simpli2 method, the time was further

reduced to 88.79 seconds.

In the context of main-memory databases, we find that the per-

formance of the Simpli2 method is on par with the default optimiza-

tion strategies while using Join Order Benchmark. This observation

is likely attributable to the databases minimal to no reliance on

cardinality estimates during the optimization process.

6 RELATED WORK

Cardinality estimation is crucial for determining optimal query ex-

ecution plans. Leis et al. [14, 15] explored the impact of cardinality
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default Simpli2

DuckDB 30.38 37.87

HEAVY.AI >4744 282.50

MonetDB 114.46 88.79

Table 5: Execution time (seconds) in DuckDB, HEAVY.AI, and

MonetDB.

estimates on query optimization. Estimates often suffer from inac-

curacies due to oversimplified assumptions like uniformity, inde-

pendence, and inclusion. PostgreSQL [28] uses histograms for data

representation, relying on formulas based on these assumptions. Al-

though histograms work well for single attribute estimations, they

struggle with join-crossing correlations. Cai et al. [3] introduced

Pessimistic, employing count-min sketches to capture foreign key

join-crossing correlations, but the sketch-building process intro-

duces significant overhead as join numbers increase. Hertzschuch

et al. [11] maintained pessimistic cardinality estimation properties

while substituting sketches with an upper bound formula leverag-

ing statistics already available to PostgreSQL. Izenov et al. [12] used

Fast-AGMS sketches to capture join-crossing correlations, reducing

overhead during sketch-building compared to Pessimistic.

Heuristic-based query optimizers employ predefined heuristics

to identify the optimal plan for query execution. Several heuristic-

based systems [4, 8–10, 17, 21, 23, 27, 29] have developed their own

rule languages and execution environments to avoid compatibility

issues. Held et al. [10] introduced Ingres, the first rule-based system,

where the original query is divided into single-valued sub-queries

and executed separately using a greedy approach. While effective

for simple queries, this method struggles with complex queries. In

contrast, Pirahesh et al. [17] developed Starburst, a Query Graph

Model (QGM) based system that represents a SQL query as a graph.

Query rewriting rules transform one QGM into an equivalent QGM,

and during the plan optimization phase, each equivalent QGM is

assigned an estimated cost, with the lowest cost QGM selected for

query execution. Integrating query graphs with join types and func-

tional dependencies may help to find efficient plans for execution

in a main-memory setup [6]. Graefe et al. [8] created EXODUS,

where a query is represented as an algebraic tree and employs

rule-based reordering and plan optimization techniques similar to

Starburst. However, the simplistic search strategy and cost function

used by Starburst and EXODUS introduce limitations for complex

queries. To address these limitations, Graefe et al. [9] presented

Volcano, which utilizes directed dynamic search rather than rules

for enumeration.

7 CONCLUSIONS

This paper presents an in-depth analysis of query optimization

with and without cardinality estimates across a broad experimental

spectrum. Our findings suggests that the performance gap between

different optimization strategies is minimal in non-indexed settings

and main-memory databases. This insight emerged from a detailed

analysis of plan costs and execution times, supplemented by an

evaluation of around 10,000 random query plans generated using

the quick pick algorithm. Our investigation extends to assessing

the effects of parallel processing on query performance, examin-

ing its implications across both indexed and non-indexed settings.

Overall, our findings contribute to a deeper understanding of query

optimization in the presence and absence of estimates.
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