2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA) | 979-8-3503-6086-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICIEA61579.2024.10665014

Digital Twin for Solar Photovoltaic Power
Estimations based on an Ensemble of Recurrent
Neural Networks

Michael Walters, IEEE Student Member
Real-Time Power and Intelligent Systems Laboratory
Holcombe Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29634, U.S.A

mawalters@ieee.org

Abstract—Planning, managing, and maintaining solar
photovoltaic (PV) plants is becoming increasingly challenging as
a result of their increasing implementation world-wide. Solar
PV power generation estimations provide a source of knowledge
and certainty, assisting system operators in day-to-day
responsibilities. Digital twins (DTs) replicate physical entities
within a virtual setting, providing a real-time platform to
perform solar PV power generation estimations, further
enhancing situational awareness and operational efficiency. In
this paper, a DT is developed and implemented for Clemson
University’s 1 MW solar PV plant located in South Carolina,
USA to perform solar PV power generation estimations. An
ensemble of Elman recurrent neural networks (ERNNs) is
utilized in the DT for solar PV power generation estimations,
replicating PV plant behaviors and characteristics. The ERNN
ensemble utilizes data collected at the PV plant site, i.e.
generated power, solar irradiance and ambient temperature.
The DT’s performance is evaluated based on different weather
conditions and ERNN ensemble’s output selection methods.
Typical results are presented to show the effectiveness of the
neural network ensemble based DT for solar PV power
generation estimations.

Keywords—Computational  intelligence,  digital  twin,
ensemble, recurrent neural networks, solar photovoltaic power

[. INTRODUCTION

The electric power generation industry is transforming due
to the ever-rising demand for solar photovoltaic (PV) power
generation. However, with the progressive integration of solar
PV plants, the balance and security of the electrical power grid
is at risk. Solar PV power generation introduces a source of
dynamic power generation, due to a high dependance on
volatile weather conditions. Additionally, consistent
maintenance and accurate performance monitoring over short
and long time periods can further negatively impact efficient
widespread PV plant integration Therefore, system operators
face greater challenges in the seamless introduction of new
solar PV sites and in energy dispatch during daily operation.
Solar PV power generation estimations offer a valuable source
of information to combat these operational challenges,
enhancing situational awareness in distribution control, thus
assisting  day-to-day  operations. Examples include
comparisons of measured and estimated data for inferring
maintenance or cleaning requirements, evaluating system
degradation at regular intervals, providing realistic power
generation expectations aiding in new site planning and
quality control assurance.
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Digital twins (DTs) offer a reliable platform to perform
solar PV power estimations. By providing a real-time virtual
reproduction of solar PV plants, system characteristics and
dynamic responses to variable weather conditions may be
captured. DTs developed with computational intelligence
techniques may learn solar PV plant behaviors strictly using
data gathered from the PV plant and its surrounding
environment. With empirical studies, the comparison of
multiple digital twin architectures performing solar PV power
estimations was made in [1]. This paper concluded that, while
DTs offer a reliable reproduction of solar PV plant power
generation behaviors, the single multi-layer perceptron and
Elman recurrent neural networks (ERNNSs) used to create DTs
fell short of capturing the vast dynamics and critical responses
governed by volatility of a solar PV plant due to limiting
factors such as slow convergence speeds, local minima, and
low flexibility for adaptable problem solving, especially as
data sets and systems increase in size [2].

To improve digital twin architecture for solar PV power
generation estimations, the use of a neural network ensemble
(NNE) is proposed in this paper. NNEs originate in [3] and
consist of a finite number of neural networks that are trained
on the same dataset to perform the same task. NNEs offer
improvement on computational capabilities when compared
to that of a singular NN. Through training, each NN is allowed
to specialize on certain patterns in the dataset. As these
generalizations develop, their respective errors grow.
However, it is the collective decision and resulting error of the
ensemble as an entity that has been shown as far less fallible
than any individual network [3]. NNEs have been used in both
classification and regression applications, including machine
learning, pattern recognition, image analysis, medical
diagnosis, and weather forecasting [4, 5]. By implementing a
NNE as a digital twin, the virtual replication can better capture
the dynamic characteristics and attributes of a physical reality.
In the context of solar PV plants, NNE DTs can more
accurately and reliably learn the dynamic relationship
between environmental conditions and generated power, thus
providing a more robust application.

This paper presents the development and implementation
of a digital twin utilizing an ensemble of Elman recurrent
neural networks (ERNNs) for solar photovoltaic power
generation estimations of Clemson University’s 1 MW solar
PV plant located at the R-06 parking site. Two ensemble
output calculation methods are presented and compared using
different performance metrics.

The remaining sections of this paper are outlined as
follows: Section II discusses digital twins for solar PV power
estimations, Section III describes the implementation of
ensemble neural networks for DTs and Section IV presents
results, discussions, and applications for estimation DTs.
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Finally, the conclusion and directions for future work are
summarized in Section V.

II. DIGITAL TWINS FOR SOLAR PV POWER ESTIMATION

Digital twins have seen increasing deployment in
academic, research and industry contexts alike due to their
highly versatile and adaptable capabilities seen in a variety of
applications. A generalized definition of DTs given in [6]
characterizes them as having three primary components: a
physical reality, virtual representation, and interconnection
between the two. Both physical reality and virtual

representation are further decomposed into three
subcomponents for each, including relevant systems,
processes, and environmental conditions. Each of these

elements represents physical and virtual aspects crucial to the
framework of DTs. Combining each of these entities allows
for the fusion of real-time information. Fig. 1 summarizes the
explained DT architecture.

Physical System — Interacting entities
forming a single asset

Physical
Reality

Physical Environment — Conditions and
influences surrounding physical system

Physical Process — Interaction ofa
system within an environment

virtual
connection

Physical to
LINIRELILITIA]

Teatsigd
0} [enjuA

Virtual System — Data and models
describing the entity of interest

Virtual
Representation

Virtual Environment — Interaction of
data describing system states

Virtual Process — Computational
models showing input/outputrelation

Fig. 1. General digital twin architecture consisting of a physical reality,
virtual representation and a bi-directional interconnection.

With increasing levels of solar PV power generation in
today’s energy market, day-to-day operation and management
of these plants is challenged. Solar PV plants are dynamic
systems with variable power generation characteristics highly
dependent on the present weather conditions. Furthermore,
differences in design parameters affecting efficiency and life-
expectancy pose challenges to developing a generic, one-size-
fits-all model. In short, solar PV plants might have similar
characteristics to others, but no two sites are the same.
However, digital twins implemented at new or existing sites
can provide a greater understanding of their non-linear,
volatile power generation characteristics. DTs offer a scalable
and adaptable platform to replicate solar PV plants on the
basis of historical and real-time data. Therefore, many of the
properties, parameters and relationships associated with an
individual plant may be captured based on the level of
abstraction used. For instance, a DT may be deployed to
model the entire energy conversion process that takes place
within a solar PV plant. Other DT implementations may
involve the individual characterization of components,
processes, and machinery within a solar PV site. Regardless
of the depth of abstraction within a DT model, an accurate
depiction of the physical reality may be obtained based on the
nature of data collected [7]. IoT devices and sensors within
power systems plants and machinery enable both flexibility
for DT development and dependable data sources.

Furthermore, artificial intelligence (Al)-based methods aid in
power plant modeling in the power systems industry, as they
provide a superior computational platform, as compared to
physics-based or statistic-based methods [8]. By combining
the advantages of big-data collected through IoTs and the
robust nature of Al-based DTs, a reliable and accurate
realization performing solar PV power generation estimations
may be created. Thus, insights to solar PV power generation
provide a consistent source of information, improving daily
operation, management, and maintenance of solar PV sites.

Fig. 2 summarizes DT performing solar PV power
generation estimations developed for this study, and the solar
PV plant and physical facilities at the R-06 parking lot
provided by Clemson University. The upper portion contains
the physical reality, i.e., 1 Mega Watt solar PV plant, weather
station containing IoT devices, and micro-PMU. The collected
environmental and power generation data are transmitted to
the Real-Time Power Systems (RTPIS) Laboratory, located
on Clemson University’s campus through a wireless data
communication network. The lower portion contains the
virtual representation, as shown by the data flow and
computational models. DT power estimations can then be
used in control center applications, such as PV panel cleaning
requirements, maintenance notifications, and damage alerts.

R-06 Site Parking Lot
1 MW Solar PV Plant

Weather
Station

=

Data Communication Network ]

RTPIS Lab
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Fig. 2. Overview of solar PV power generation estimation digital twin and
Clemson University’s 1 MW solar PV plant at the R-06 Site.

III. NEURAL NETWORK ENSEMBLE DIGITAL TWIN
IMPLEMENTATION

For solar PV sites, a physics-based approach to estimate
PV power at a given instant is given in (1),

SI(t) P

PPV(t) = ref,mp [1 + V(T(t) - Tref)] Q)
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where Py, is the estimated PV power, S/ is solar irradiance,
Sl.5 is reference solar irradiance, Pref mp is the maximum
PV power reference, y is the solar array coefficient, 7 is
temperature and T,..¢ is reference temperature. Accordingly,
Prefmps Shrer and o5 are all parameters that are subject to
change, as they relate to specific PV sites. Often times, these
parameters are subject to frequent variations due to an
individual PV plant’s generation characteristics, including age
and efficiency, impacting accurate parametrization and
difficulty of modeling with this approach.

On the other hand, NNs may learn PV plant generation
characteristics based solely on input environmental conditions
and generated output power at a given instant, as seen in (2),

Poy (£) = fese(SI), T(1), W, V) @)

where W and V represent input and output synaptic weights,
respectively derived from training. DTs utilizing NNs provide
the capability replicate PV plants as a whole entity. Therefore,
variables relevant to a specific PV plant, such as partial
shading, cloud coverage, and system degradation are further
captured by the DT, as compared to the physics-based
approach.

A. Elman Recurrent Neural Network

In previous studies, as well as in recent literature, it has
been found that neural networks provide superior performance
in modeling and estimating solar PV systems, when compared
to other computational intelligence paradigms [9]. For this
reason, ERNNs are implemented in this study.

The architecture of an ERNN consists of input, hidden,
output and context layers, as seen in Fig. 3. Within each layer,
neurons are represented as circles, each containing a transfer
function. Linear for input, output, and context layer neurons,
and logarithmic sigmoid for hidden layer neurons. Edges
signify synaptic weights that connect neurons: input weights
W, output weights 7, and intermediate weights D. The input
layer includes solar irradiance and temperature at time ¢,
measured PV power at the previous time instant, Ppy, (t — 1),
and time delayed intermediate weight matrix, D(t — 1) .
Including Ppy(t — 1) adds an element of historical time
dependence in the input layer, offering a foundation for power
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SI(b)

T

Ppy(t—1)

Context eee
Layer
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Fig. 3. Elman neural network for solar PV power generation estimation DT
implementation.

SI(t), T(@), Ppy(t — 1)') (3)

Poy prani(t) = frst ( D(t—1),W,V

estimations occurring in the present time, ¢. Following (2), the
function to estimate PV power of individual NNs within the
ensemble is updated in (3). During development, it was
determined that a hidden layer of 60 neurons was capable of
estimating PV power, while balancing computational
performance. Therefore, the resulting ERNN size is (3 +
60) x 60 x 1, with 3,840 synaptic weights.

B. Training Procedure

Meteorological data and solar PV power generation polled
every minute at Clemson University’s 1 MW solar PV plant,
located in Clemson, South Carolina, USA is used to form the
DT training dataset. These specifically include solar
irradiance, ambient temperature, and plant-generated power.
After a data pre-processing procedure, the resulting dataset
includes 86 days ranging from March 2023 to June 2023
(approximately 371,520 datapoints). Due to the range of data
collected, the DT primarily captures springtime weather
characteristics, whereas dynamics of other seasons, i.e.,
Summer, Autumn, and Winter may be absent.

The training dataset is categorized daily by cloud-
coverage conditions as indicated by PV plant power
generation. Characteristics such as peak power generation,
frequency of volatility and severity of volatility are prioritized
factors while sorting. Of the 86-day dataset, the identified
categories, and the number of days within each sub-dataset are
as follows: 21 clear, 25 partially cloudy, 27 moderately
cloudy, and 13 mostly cloudy days. It is important to note that
the mostly cloudy category contains significantly fewer days,
impacting the training sub-dataset size. However, sorting
prioritized accurate grouping over having an equal
distribution of days, ensuring that days within categories have
higher correlation.

The NNE implemented in this study utilizes four ERNNs,
each training independently on individual sub datasets.
Accordingly, the four ERNNs will be referred to and labeled
as ERNN¢y,, ERNNpic, ERNNppg, and ERN Ny, for clear,
partially cloudy, moderately cloudy, and mostly cloudy sub-
datasets. By creating sub-datasets classified by weather
conditions and solar PV power generation characteristics, and
individually training ERNNs within their respective category,
specialization within the ensemble occurs. Thus, trends in
power generation based on differing meteorological
conditions across weather categories may be further exposed.
ERNNSs are trained using the batch backpropagation algorithm
discussed in [10].

C. Ensemble Output Selection

To incorporate the diversity and specialization of
individual ERNNs during testing, two ensemble output
selection methods are implemented and compared, namely an
unweighted averaging and previous best approaches. This
further exposes the trends that cause differing relationships
between power generation and meteorological conditions for
certain weather categories. The overall ensemble output,
ISPV,Ensemble is determined as a function of the four NN solar
PV power estimations, as seen in (4).

PPV,Ensemble - {

“4)

PPV,ERNNCIT' PPV,ERNNptC! }

PPV.ERNdec: PPV,ERNNmsc

Where P, PV,ERNNclr » P PV,ERNNptc » Ppy grnNmac and
Ppy rnnmsc are solar PV power estimations corresponding to
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outputs from ERNN;,., ERNNpc, ERNNp,qc and ERN Ny,
respectively.

Ensemble averaging constitutes a computationally
inexpensive approach for ensemble output determination,
where power estimations of individual ERNNs are averaged
at every time instant, . Unweighted averaging produces an
equal representation of the four ERNNs. Therefore, strengths
and weaknesses of ERNNs are present, but at a diluted level.
Ensemble average estimated PV power ensemble output,
Poy gnsembie» i determined utilizing (5), where Ppy pryni is
the estimated PV power of the ith ERNN.

~ 1 ~
Ppy pnsembie (£) = Ezli‘/il Ppy grvni(t) (%)

The previous best ensemble output selection method
introduces an element of time-dependency, as historical power
estimations are utilized for evaluating ensemble output. First,
squared errors (SEs) of individual power estimations of
ERNNS at the previous time instance, (t — 1), are computed
and compared. The ERNN with minimum SE is chosen as the
ensemble winner for the current time instance (7), (6). The
estimated PV power of the winning ERNN (ﬁPV, ernnj) 18 then
selected as the ensemble output (7).

SE (ISPV,ERNNclr(t - 1)) )

min B
SE (PPV,ERNNmsc (t- 1))

(6)

pPV.Ensemble(t) = ﬁPV,ERNNj (t) (7)

synchronously while testing.
v

A depiction of the ensemble selection algorithm is
Calculate ensemble DT solar PV

provided in Fig. 4. As seen, both selection methods are utilized
Initialize testing dataset
{SI(6), T(t), Py (t — 1)}
power generation estimations (4)

PPV,Ensmble

Ensemble
average

Previous
Ensemble best
selection

algorithm

4 y
Determine best performing
ERNN at previous time

step (6)

Average power estimations
from individual ERNNs (5)

| Assign ensemble output (7) |

!

| Dispatch ensemble output |

Fig. 4. A flowchart showing two ensemble output selection methods
utilized by solar PV power generation estimation DT.

IV. RESULTS & DISCUSSION

Ensemble training is conducted until a 30,000 epoch limit
has been achieved. Fig. 5 shows averaged mean square error
(MSE) progression of individual NNs within the ensemble
through training epochs over twenty training trials.
Additionally shown are the error values determined at the
conclusion of training.

Certain characteristics of training performance are present
for each ERNN, based on assigned weather category. For
instance, ERNN_,- and ERNN,, 4. averaged the least error
through the initial portion of training, whereas ERNN,.
experienced a significant drop in MSE through later portions
of training. The final training MSE for ERNN_, and
ERNN,,;. were nearly the same, at 4.5 X 10™* and 4.0 x
107*, respectively. On the other hand, ERN N, and

ERNN,,4. , final training MSE were slightly greater, at
3.2 x 1072 and 1.9 X 1073, respectively. These differences
can be contributed to the correlation strength between
meteorological inputs solar irradiance and temperature and the
measured PV power, as a greater number of variations is
observed to be a more difficult relationship to learn.

ERNN_;,:45X 107+ 41x10°°
ERNN,:32x10°+31x10°°
ERNN,,;.-19% 103+ 53x 10°°
ERNN,,..:40x 107*+79x 10°®
L
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msc
10t
10" 10? 10° 104 10°
No. of Epochs

Fig. 5. Averaged mean square error progression for each ERNN ensemble
member. Mean square errors are shown after training for 30,000 epochs.

After training is completed, the DT is tested over a sample
of 20 testing days gathered in May 2023. The testing dataset
contains an even distribution of information for each weather
category, i.e., five days for each. Samples of each weather
category for both ensemble output selection techniques are
shown in Fig. 5. Weather categories are sorted in rows,
subplots (@), (b), (¢), and (d), for clear, partially cloudy,
moderately cloudy, and mostly cloudy, respectively.
Ensemble outputs are sorted by columns, (/) and (2), for
ensemble average and previous winner methods, respectively.

As seen in Fig. 6, insights to the cloud coverage
categorization process are revealed. Clear days, shown in
(1.a) and (2.a) ideally contain a smooth profile and maximum
generation during the peak time interval. Partially cloudy days
shown in (1.b) and (2.h), consist of generation volatility
through large portions of the sampled day, while still reaching
peak generation. Moderately cloudy and mostly cloudy
categories, (/.¢), (2.c) and (1.d) and (2.d), respectively contain
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Fig. 6. Sampled DT power estimations comparing measured PV power (black) with ensemble average (blue) and previous best (green) output

selection techniques.

TABLE IL DAYTIME PERFORMANCE METRIC COMPARISON OF DTS
Ensemble Average Previous Best Single ERNN ARIMA
Weather Profile MAPE (%) MSE MAPE (%) MSE MAPE (%) MSE MAPE (%) MSE
Clear 5.11 1.22x107 1.11 6.33x10° 5.27 1.20x10 4.42 1.63x10*
Partly Cloudy 12.89 1.76x102 12.62 1.78x102 12.77 1.79%10 18.05 2.20x102
Moderately Cloudy 3.23 7.30x10* 3.15 7.34x10* 3.39 6.71x10 6.71 1.18%10
Mostly Cloudy 4.10 1.62x10* 4.35 1.67x10* 4.69 1.33x10 11.99 2.86x10*

similar features in terms of PV power generation volatility but
differ significantly in peak power.

Table I summarizes mean absolute percent error (MAPE)
and MSE for daytime periods. For further comparison, a
single ERNN and an auto-regressive integrated moving
average (ARIMA) model are additionally included. Both of
these models were trained in the same datasets, with the single
ERNN consisting of similar parameters to those in the DT
NNE. The ARIMA model utilizes a statistical approach and is
frequently implemented for time series forecasting
applications [11].

When comparing MAPE for the ensembles, it is observed
that the previous best method is significantly more accurate on
clear days. Whereas, with partially, moderately and mostly
cloudy conditions, both ensemble selection methods feature
very similar performance. Previous best tested with slightly
lower error on partially and moderately cloudy conditions, and
ensemble averaging testing with slightly lower error on mostly

cloudy days. When comparing the single ERNN to the
ensembles, it is seen that MAPEs are very similar for all
conditions except for previous best on clear days.
Additionally, both NNEs and single ERNN tested more
accurately than the ARIMA model, with the exception of
previous best on clear days.

The largest trend observed with testing results is the
significantly lower error of the previous best method on clear
weather conditions. This can be attributed to the low volatility
of power generation on clear days, allowing for the persistence
of the NN with the lowest MSE at the previous timestep to
dominate in the previous best method. On the other hand, the
ensemble average does not consider historical instantaneous
error, as reflected in an overall greater error accumulation.
Partially, moderately, and mostly cloudy categories involve
power generation volatility to some degree, creating a weaker
correlation between time-dependent parameters, as shown by
the marginal differences in MAPEs exhibited by NNEs during
these conditions. In these cases, power generation has a lesser
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dependence on time-varying persistence, as previously
discussed with the clear condition case. Thus, the previous
best method is constrained by the limits of the introduced
time-dependency for output selection, whereas the ensemble
average approach enables an equally weighted, diluted
representation of specialized qualities between ERNNs within
the ensemble.

Considering the three cloud coverage conditions, the DTs
containing NNEs display similar performances to the single
ERNN. Specifically with these conditions, the dynamic nature
of PV power generation and estimations is uncovered. With
these cases, it is important to note that individual NNs within
the NNE:s still developed specialization qualities as a result of
their respective training sub-datasets. The aggregation of NNE
PV power estimations with both output selection algorithms
enables a generalized representation of these properties,
resulting in slight performance gains over the single ERNN.
This is particularly evident with the ensemble averaging
method, where these specialization properties are equally
weighted, resulting in the dilution of strengths developed
during individual NN training. Considering the clear cloud
coverage condition, it is evident that the specializations
developed in individual NNs enables superior performance
when utilizing the previous best selection method. It is
specifically with this case that specialization of individual
NNs dominated PV power estimations. In future exploration
of NNEs, the development and exploitation of specialized
qualities of all NNs across all weather classifications will lead
to greater performance benefits.

Fig. 8 displays the coefficient of determination, R?, for
both ensemble average and previous best selection techniques.
Calculated using (8), the coefficient of determination shows
the correlation between measured and estimated values.

Z(PPV(t)_f’PV,Ensemble(t))z
R?=1- =
(Ppy(t) — Ppy)? ®)

where Ppy, is measured power, and Ppy, is the mean measured
power for the respective ensemble. Additionally, an ideal 1:1
line is plotted to show ideal correlation. In both cases, R? is
determined to be approximately 98%, indicating strong
correlation.
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Fig. 8. Coefficient of determination for ensemble average (a) and previous
best (b) output selection techniques.

V. CONCLUSION

Digital twins performing solar PV power generation
estimations can provide unique insights for the highly
dynamic operating characteristics of a solar PV plant, assisting
power system operations. By utilizing neural network

ensembles, individual neural networks may specialize on
specific trends evident in datasets, further improving accuracy
of solar PV power generation estimations. Thus, a trustworthy
source of information is introduced for enhanced situational
awareness in planning, monitoring, and maintenance
applications.

In this study, a digital twin based on an ensemble of
recurrent neural networks for solar PV power estimations was
developed and implemented for Clemson University’s 1
Megawatt solar PV plant. The DT utilized ensembles of
Elman recurrent neural networks, each trained on individual
sub-datasets according to weather conditions. Different
ensemble output aggregation algorithms were compared. The
DT featuring NNEs proved capable of accurately replicating
solar PV plant dynamics for a variety of weather conditions.

In future work, accuracy and robustness of the DT may be
improved by incorporating state-of-the-art computational
intelligence paradigms. With this advancement, more
opportunities for specialized ensemble output aggregation
algorithms to further exploit NNE specialization traits and
applications in PV power forecasting can be explored.
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