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Abstract—Planning, managing, and maintaining solar 
photovoltaic (PV) plants is becoming increasingly challenging as 
a result of their increasing implementation world-wide. Solar 
PV power generation estimations provide a source of knowledge 
and certainty, assisting system operators in day-to-day 
responsibilities. Digital twins (DTs) replicate physical entities 
within a virtual setting, providing a real-time platform to 
perform solar PV power generation estimations, further 
enhancing situational awareness and operational efficiency. In 
this paper, a DT is developed and implemented for Clemson 
University’s 1 MW solar PV plant located in South Carolina, 
USA to perform solar PV power generation estimations. An 
ensemble of Elman recurrent neural networks (ERNNs) is 
utilized in the DT for solar PV power generation estimations, 
replicating PV plant behaviors and characteristics. The ERNN 
ensemble utilizes data collected at the PV plant site, i.e. 
generated power, solar irradiance and ambient temperature. 
The DT’s performance is evaluated based on different weather 
conditions and ERNN ensemble’s output selection methods. 
Typical results are presented to show the effectiveness of the 
neural network ensemble based DT for solar PV power 
generation estimations. 

Keywords—Computational intelligence, digital twin, 
ensemble, recurrent neural networks, solar photovoltaic power 

I. INTRODUCTION 
The electric power generation industry is transforming due 

to the ever-rising demand for solar photovoltaic (PV) power 
generation. However, with the progressive integration of solar 
PV plants, the balance and security of the electrical power grid 
is at risk. Solar PV power generation introduces a source of 
dynamic power generation, due to a high dependance on 
volatile weather conditions. Additionally, consistent 
maintenance and accurate performance monitoring over short 
and long time periods can further negatively impact efficient 
widespread PV plant integration Therefore, system operators 
face greater challenges in the seamless introduction of new 
solar PV sites and in energy dispatch during daily operation.  
Solar PV power generation estimations offer a valuable source 
of information to combat these operational challenges, 
enhancing situational awareness in distribution control, thus 
assisting day-to-day operations. Examples include 
comparisons of measured and estimated data for inferring 
maintenance or cleaning requirements, evaluating system 
degradation at regular intervals, providing realistic power 
generation expectations aiding in new site planning and 
quality control assurance. 

Digital twins (DTs) offer a reliable platform to perform 
solar PV power estimations. By providing a real-time virtual 
reproduction of solar PV plants, system characteristics and 
dynamic responses to variable weather conditions may be 
captured. DTs developed with computational intelligence 
techniques may learn solar PV plant behaviors strictly using 
data gathered from the PV plant and its surrounding 
environment. With empirical studies, the comparison of 
multiple digital twin architectures performing solar PV power 
estimations was made in [1]. This paper concluded that, while 
DTs offer a reliable reproduction of solar PV plant power 
generation behaviors, the single multi-layer perceptron and 
Elman recurrent neural networks (ERNNs) used to create DTs 
fell short of capturing the vast dynamics and critical responses 
governed by volatility of a solar PV plant due to limiting 
factors such as slow convergence speeds, local minima, and 
low flexibility for adaptable problem solving, especially as 
data sets and systems increase in size [2]. 

To improve digital twin architecture for solar PV power 
generation estimations, the use of a neural network ensemble 
(NNE) is proposed in this paper. NNEs originate in [3] and 
consist of a finite number of neural networks that are trained 
on the same dataset to perform the same task. NNEs offer 
improvement on computational capabilities when compared 
to that of a singular NN. Through training, each NN is allowed 
to specialize on certain patterns in the dataset. As these 
generalizations develop, their respective errors grow. 
However, it is the collective decision and resulting error of the 
ensemble as an entity that has been shown as far less fallible 
than any individual network [3]. NNEs have been used in both 
classification and regression applications, including machine 
learning, pattern recognition, image analysis, medical 
diagnosis, and weather forecasting [4, 5]. By implementing a 
NNE as a digital twin, the virtual replication can better capture 
the dynamic characteristics and attributes of a physical reality. 
In the context of solar PV plants, NNE DTs can more 
accurately and reliably learn the dynamic relationship 
between environmental conditions and generated power, thus 
providing a more robust application. 

 This paper presents the development and implementation 
of a digital twin utilizing an ensemble of Elman recurrent 
neural networks (ERNNs) for solar photovoltaic power 
generation estimations of Clemson University’s 1 MW solar 
PV plant located at the R-06 parking site. Two ensemble 
output calculation methods are presented and compared using 
different performance metrics.  

The remaining sections of this paper are outlined as 
follows: Section II discusses digital twins for solar PV power 
estimations, Section III describes the implementation of 
ensemble neural networks for DTs and Section IV presents 
results, discussions, and applications for estimation DTs. 

This research is funded by US NSF grant CNS 2131070, ECCS 
2234032, CNS 2318612 and the Duke Energy Distinguished Professor 
Endowment Fund. Any opinions, findings and conclusions or
recommendations expressed in this material are those of author(s) and do not
necessarily reflect the views of NSF and Duke Energy. 
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Finally, the conclusion and directions for future work are
summarized in Section V.

II. DIGITAL TWINS FOR SOLAR PV POWER ESTIMATION

Digital twins have seen increasing deployment in 
academic, research and industry contexts alike due to their 
highly versatile and adaptable capabilities seen in a variety of 
applications. A generalized definition of DTs given in [6] 
characterizes them as having three primary components: a 
physical reality, virtual representation, and interconnection 
between the two. Both physical reality and virtual 
representation are further decomposed into three 
subcomponents for each, including relevant systems, 
processes, and environmental conditions. Each of these 
elements represents physical and virtual aspects crucial to the 
framework of DTs. Combining each of these entities allows
for the fusion of real-time information. Fig. 1 summarizes the 
explained DT architecture.  

Fig. 1. General digital twin architecture consisting of a physical reality, 
virtual representation and a bi-directional interconnection. 

With increasing levels of solar PV power generation in 
today’s energy market, day-to-day operation and management 
of these plants is challenged. Solar PV plants are dynamic 
systems with variable power generation characteristics highly 
dependent on the present weather conditions. Furthermore, 
differences in design parameters affecting efficiency and life-
expectancy pose challenges to developing a generic, one-size-
fits-all model. In short, solar PV plants might have similar 
characteristics to others, but no two sites are the same. 
However, digital twins implemented at new or existing sites 
can provide a greater understanding of their non-linear, 
volatile power generation characteristics. DTs offer a scalable 
and adaptable platform to replicate solar PV plants on the 
basis of historical and real-time data. Therefore, many of the 
properties, parameters and relationships associated with an 
individual plant may be captured based on the level of 
abstraction used. For instance, a DT may be deployed to 
model the entire energy conversion process that takes place 
within a solar PV plant. Other DT implementations may 
involve the individual characterization of components, 
processes, and machinery within a solar PV site. Regardless 
of the depth of abstraction within a DT model, an accurate 
depiction of the physical reality may be obtained based on the 
nature of data collected [7]. IoT devices and sensors within 
power systems plants and machinery enable both flexibility 
for DT development and dependable data sources. 

Furthermore, artificial intelligence (AI)-based methods aid in
power plant modeling in the power systems industry, as they 
provide a superior computational platform, as compared to 
physics-based or statistic-based methods [8]. By combining 
the advantages of big-data collected through IoTs and the 
robust nature of AI-based DTs, a reliable and accurate 
realization performing solar PV power generation estimations 
may be created. Thus, insights to solar PV power generation 
provide a consistent source of information, improving daily 
operation, management, and maintenance of solar PV sites. 

Fig. 2 summarizes DT performing solar PV power 
generation estimations developed for this study, and the solar 
PV plant and physical facilities at the R-06 parking lot 
provided by Clemson University. The upper portion contains 
the physical reality, i.e., 1 Mega Watt solar PV plant, weather 
station containing IoT devices, and micro-PMU. The collected 
environmental and power generation data are transmitted to 
the Real-Time Power Systems (RTPIS) Laboratory, located 
on Clemson University’s campus through a wireless data 
communication network. The lower portion contains the 
virtual representation, as shown by the data flow and 
computational models. DT power estimations can then be 
used in control center applications, such as PV panel cleaning 
requirements, maintenance notifications, and damage alerts.  

Fig. 2. Overview of solar PV power generation estimation digital twin and 
Clemson University’s 1 MW solar PV plant at the R-06 Site. 

III. NEURAL NETWORK ENSEMBLE DIGITAL TWIN
IMPLEMENTATION

For solar PV sites, a physics-based approach to estimate 
PV power at a given instant is given in (1), ( ) = ( ) , 1 + ( )
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where is the estimated PV power, SI is solar irradiance, 
is reference solar irradiance, , is the maximum 

T is 
temperature and is reference temperature. Accordingly, , , and are all parameters that are subject to 
change, as they relate to specific PV sites. Often times, these 
parameters are subject to frequent variations due to an 
individual PV plant’s generation characteristics, including age
and efficiency, impacting accurate parametrization and
difficulty of modeling with this approach.

On the other hand, NNs may learn PV plant generation 
characteristics based solely on input environmental conditions 
and generated output power at a given instant, as seen in (2),( ) = ( ( ), ( ), , )
where W and V represent input and output synaptic weights, 
respectively derived from training. DTs utilizing NNs provide 
the capability replicate PV plants as a whole entity. Therefore, 
variables relevant to a specific PV plant, such as partial 
shading, cloud coverage, and system degradation are further 
captured by the DT, as compared to the physics-based 
approach. 

A. Elman Recurrent Neural Network
In previous studies, as well as in recent literature, it has 

been found that neural networks provide superior performance 
in modeling and estimating solar PV systems, when compared 
to other computational intelligence paradigms [9]. For this 
reason, ERNNs are implemented in this study.

The architecture of an ERNN consists of input, hidden, 
output and context layers, as seen in Fig. 3. Within each layer, 
neurons are represented as circles, each containing a transfer 
function. Linear for input, output, and context layer neurons, 
and logarithmic sigmoid for hidden layer neurons. Edges 
signify synaptic weights that connect neurons: input weights 
W, output weights V, and intermediate weights D. The input 
layer includes solar irradiance and temperature at time t, 
measured PV power at the previous time instant, ( 1), 
and time delayed intermediate weight matrix, ( 1) . 
Including ( 1) adds an element of historical time 
dependence in the input layer, offering a foundation for power 

Fig. 3. Elman neural network for solar PV power generation estimation DT 
implementation.

, ( ) = ( ), ( ), ( 1),( 1), ,

estimations occurring in the present time, t. Following (2), the 
function to estimate PV power of individual NNs within the 
ensemble is updated in (3). During development, it was 
determined that a hidden layer of 60 neurons was capable of 
estimating PV power, while balancing computational 
performance. Therefore, the resulting ERNN size is (3 +60) × 60 × 1, with 3,840 synaptic weights.

B. Training Procedure
Meteorological data and solar PV power generation polled 

every minute at Clemson University’s 1 MW solar PV plant, 
located in Clemson, South Carolina, USA is used to form the 
DT training dataset. These specifically include solar 
irradiance, ambient temperature, and plant-generated power. 
After a data pre-processing procedure, the resulting dataset 
includes 86 days ranging from March 2023 to June 2023 
(approximately 371,520 datapoints). Due to the range of data 
collected, the DT primarily captures springtime weather 
characteristics, whereas dynamics of other seasons, i.e., 
Summer, Autumn, and Winter may be absent. 

The training dataset is categorized daily by cloud-
coverage conditions as indicated by PV plant power 
generation. Characteristics such as peak power generation, 
frequency of volatility and severity of volatility are prioritized 
factors while sorting. Of the 86-day dataset, the identified 
categories, and the number of days within each sub-dataset are 
as follows: 21 clear, 25 partially cloudy, 27 moderately
cloudy, and 13 mostly cloudy days. It is important to note that 
the mostly cloudy category contains significantly fewer days, 
impacting the training sub-dataset size. However, sorting 
prioritized accurate grouping over having an equal 
distribution of days, ensuring that days within categories have 
higher correlation. 

The NNE implemented in this study utilizes four ERNNs, 
each training independently on individual sub datasets. 
Accordingly, the four ERNNs will be referred to and labeled 
as , , and , for clear, 
partially cloudy, moderately cloudy, and mostly cloudy sub-
datasets. By creating sub-datasets classified by weather 
conditions and solar PV power generation characteristics, and 
individually training ERNNs within their respective category, 
specialization within the ensemble occurs. Thus, trends in 
power generation based on differing meteorological 
conditions across weather categories may be further exposed.
ERNNs are trained using the batch backpropagation algorithm
discussed in [10].

C. Ensemble Output Selection
To incorporate the diversity and specialization of 

individual ERNNs during testing, two ensemble output 
selection methods are implemented and compared, namely an 
unweighted averaging and previous best approaches. This 
further exposes the trends that cause differing relationships 
between power generation and meteorological conditions for 
certain weather categories. The overall ensemble output, , is determined as a function of the four NN solar 
PV power estimations, as seen in (4).

, = , , , ,, , ,   (4)

Where , , , , , , and , are solar PV power estimations corresponding to 
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outputs from , , and , 
respectively. 

Ensemble averaging constitutes a computationally 
inexpensive approach for ensemble output determination, 
where power estimations of individual ERNNs are averaged 
at every time instant, t. Unweighted averaging produces an 
equal representation of the four ERNNs. Therefore, strengths 
and weaknesses of ERNNs are present, but at a diluted level. 
Ensemble average estimated PV power ensemble output, , , is determined utilizing (5), where , is 
the estimated PV power of the ith ERNN. 

, ( ) = , ( )
The previous best ensemble output selection method 

introduces an element of time-dependency, as historical power 
estimations are utilized for evaluating ensemble output. First, 
squared errors (SEs) of individual power estimations of 
ERNNs at the previous time instance, ( 1), are computed 
and compared. The ERNN with minimum SE is chosen as the 
ensemble winner for the current time instance (t), (6). The 
estimated PV power of the winning ERNN ( , ) is then 
selected as the ensemble output (7).

, ( 1) , … ,
, ( 1)

, ( ) = , ( )
A depiction of the ensemble selection algorithm is 

provided in Fig. 4. As seen, both selection methods are utilized 
synchronously while testing. 

Fig. 4. A flowchart showing two ensemble output selection methods
utilized by solar PV power generation estimation DT.

IV. RESULTS & DISCUSSION

Ensemble training is conducted until a 30,000 epoch limit 
has been achieved. Fig. 5 shows averaged mean square error 
(MSE) progression of individual NNs within the ensemble 
through training epochs over twenty training trials. 
Additionally shown are the error values determined at the
conclusion of training.

Certain characteristics of training performance are present 
for each ERNN, based on assigned weather category. For 
instance, and averaged the least error 
through the initial portion of training, whereas   
experienced a significant drop in MSE through later portions 
of training. The final training MSE for and 

were nearly the same, at 4.5 × 10 and 4.0 ×10 , respectively. On the other hand, and 

, final training MSE were slightly greater, at 3.2 × 10 and 1.9 × 10 , respectively. These differences 
can be contributed to the correlation strength between 
meteorological inputs solar irradiance and temperature and the 
measured PV power, as a greater number of variations is 
observed to be a more difficult relationship to learn.

Fig. 5. Averaged mean square error progression for each ERNN ensemble 
member. Mean square errors are shown after training for 30,000 epochs.

After training is completed, the DT is tested over a sample 
of 20 testing days gathered in May 2023. The testing dataset 
contains an even distribution of information for each weather 
category, i.e., five days for each. Samples of each weather 
category for both ensemble output selection techniques are 
shown in Fig. 5. Weather categories are sorted in rows, 
subplots (a), (b), (c), and (d), for clear, partially cloudy, 
moderately cloudy, and mostly cloudy, respectively. 
Ensemble outputs are sorted by columns, (1) and (2), for 
ensemble average and previous winner methods, respectively.

As seen in Fig. 6, insights to the cloud coverage 
categorization process are revealed. Clear days, shown in 
(1.a) and (2.a) ideally contain a smooth profile and maximum 
generation during the peak time interval. Partially cloudy days
shown in (1.b) and (2.b), consist of generation volatility 
through large portions of the sampled day, while still reaching 
peak generation. Moderately cloudy and mostly cloudy 
categories, (1.c), (2.c) and (1.d) and (2.d), respectively contain 
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similar features in terms of PV power generation volatility but 
differ significantly in peak power.

Table I summarizes mean absolute percent error (MAPE) 
and MSE for daytime periods. For further comparison, a 
single ERNN and an auto-regressive integrated moving 
average (ARIMA) model are additionally included. Both of 
these models were trained in the same datasets, with the single 
ERNN consisting of similar parameters to those in the DT 
NNE. The ARIMA model utilizes a statistical approach and is 
frequently implemented for time series forecasting 
applications [11]. 

When comparing MAPE for the ensembles, it is observed 
that the previous best method is significantly more accurate on 
clear days. Whereas, with partially, moderately and mostly 
cloudy conditions, both ensemble selection methods feature 
very similar performance. Previous best tested with slightly 
lower error on partially and moderately cloudy conditions, and 
ensemble averaging testing with slightly lower error on mostly 

cloudy days. When comparing the single ERNN to the 
ensembles, it is seen that MAPEs are very similar for all 
conditions except for previous best on clear days. 
Additionally, both NNEs and single ERNN tested more 
accurately than the ARIMA model, with the exception of 
previous best on clear days.

The largest trend observed with testing results is the 
significantly lower error of the previous best method on clear 
weather conditions. This can be attributed to the low volatility 
of power generation on clear days, allowing for the persistence 
of the NN with the lowest MSE at the previous timestep to 
dominate in the previous best method. On the other hand, the 
ensemble average does not consider historical instantaneous 
error, as reflected in an overall greater error accumulation.
Partially, moderately, and mostly cloudy categories involve 
power generation volatility to some degree, creating a weaker 
correlation between time-dependent parameters, as shown by 
the marginal differences in MAPEs exhibited by NNEs during 
these conditions. In these cases, power generation has a lesser 

Fig. 6.  Sampled DT power estimations comparing measured PV power (black) with ensemble average (blue) and previous best (green) output
selection techniques.

TABLE II. DAYTIME PERFORMANCE METRIC COMPARISON OF DTS

Weather Profile

Ensemble Average Previous Best Single ERNN ARIMA

MAPE (%) MSE MAPE (%) MSE MAPE (%) MSE MAPE (%) MSE

Clear 5.11 1.22×10-3 1.11 6.33×10-5 5.27 1.20×10-3 4.42 1.63×10-4

Partly Cloudy 12.89 1.76×10-2 12.62 1.78×10-2 12.77 1.79×10-2 18.05 2.20×10-2

Moderately Cloudy 3.23 7.30×10-4 3.15 7.34×10-4 3.39 6.71×10-3 6.71 1.18×10-3

Mostly Cloudy 4.10 1.62×10-4 4.35 1.67×10-4 4.69 1.33×10-3 11.99 2.86×10-4
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dependence on time-varying persistence, as previously 
discussed with the clear condition case. Thus, the previous 
best method is constrained by the limits of the introduced 
time-dependency for output selection, whereas the ensemble 
average approach enables an equally weighted, diluted 
representation of specialized qualities between ERNNs within 
the ensemble. 

Considering the three cloud coverage conditions, the DTs 
containing NNEs display similar performances to the single 
ERNN. Specifically with these conditions, the dynamic nature 
of PV power generation and estimations is uncovered. With 
these cases, it is important to note that individual NNs within 
the NNEs still developed specialization qualities as a result of 
their respective training sub-datasets. The aggregation of NNE 
PV power estimations with both output selection algorithms 
enables a generalized representation of these properties, 
resulting in slight performance gains over the single ERNN. 
This is particularly evident with the ensemble averaging 
method, where these specialization properties are equally 
weighted, resulting in the dilution of strengths developed 
during individual NN training. Considering the clear cloud 
coverage condition, it is evident that the specializations 
developed in individual NNs enables superior performance 
when utilizing the previous best selection method. It is 
specifically with this case that specialization of individual 
NNs dominated PV power estimations. In future exploration 
of NNEs, the development and exploitation of specialized 
qualities of all NNs across all weather classifications will lead 
to greater performance benefits. 

Fig. 8 displays the coefficient of determination, , for 
both ensemble average and previous best selection techniques. 
Calculated using (8), the coefficient of determination shows 
the correlation between measured and estimated values. 

= 1 ( ) , ( )( ( )  )
where  is measured power, and   is the mean measured 
power for the respective ensemble. Additionally, an ideal 1:1 
line is plotted to show ideal correlation. In both cases,  is 
determined to be approximately 98%, indicating strong 
correlation. 

 
Fig. 8.  Coefficient of determination for ensemble average (a) and previous 
best (b) output selection techniques. 

V. CONCLUSION 
Digital twins performing solar PV power generation 

estimations can provide unique insights for the highly 
dynamic operating characteristics of a solar PV plant, assisting 
power system operations. By utilizing neural network 

ensembles, individual neural networks may specialize on 
specific trends evident in datasets, further improving accuracy 
of solar PV power generation estimations. Thus, a trustworthy 
source of information is introduced for enhanced situational 
awareness in planning, monitoring, and maintenance 
applications. 

In this study, a digital twin based on an ensemble of 
recurrent neural networks for solar PV power estimations was 
developed and implemented for Clemson University’s 1 
Megawatt solar PV plant. The DT utilized ensembles of 
Elman recurrent neural networks, each trained on individual 
sub-datasets according to weather conditions. Different 
ensemble output aggregation algorithms were compared. The 
DT featuring NNEs proved capable of accurately replicating 
solar PV plant dynamics for a variety of weather conditions. 

In future work, accuracy and robustness of the DT may be 
improved by incorporating state-of-the-art computational 
intelligence paradigms. With this advancement, more 
opportunities for specialized ensemble output aggregation 
algorithms to further exploit NNE specialization traits and 
applications in PV power forecasting can be explored. 
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