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Multidimensional Array Data
Management

Florin Rusu
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ABSTRACT

Multidimensional arrays are a fundamental abstraction to
represent data across scientific domains ranging from as-
tronomy to genetics, medicine, business intelligence, and
engineering. Arrays come under multiple shapes — from
dense rasters to sparse data cubes and tensors — and have
been studied extensively across many computing domains.
In this survey, we provide a comprehensive guide for past,
present, and future research in array data management from
a database perspective. Unlike previous surveys that are
limited to raster processing in the context of scientific data,
we consider all types of arrays — rasters, data cubes, and
tensors. We identify and analyze the most important re-
search ideas on arrays proposed over time. We cover all
data management aspects, from array algebras and query
languages to storage strategies, execution techniques, and
operator implementations. Moreover, we discuss which re-
search ideas are adopted in real systems and how are they
integrated in complete data processing pipelines. Finally, we
compare arrays with the relational data model. The result
is a thorough survey on array data management that should
be consulted by anyone interested in this research topic —
independent of experience level.
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1

Introduction

Multidimensional arrays are one of the fundamental computing ab-
stractions to represent data across virtually all areas of science and
engineering (Harris et al., 2020) — and beyond. In science, spatio-
temporal data acquired by sensors measuring environmental conditions
or generated by simulations of physical phenomena are represented as
3- or 4-D dense arrays — also called rasters or grids. Concrete exam-
ples include spatial 3-D (x/y/z) arrays of Earth subsurface voxels, 3-D
(x/y/t) time series of X-ray and fMRI medical images, and 4-D (x/y/z/t)
optical or radio telescope signals in astronomy (Baumann et al., 2021).
In business analytics, data cubes aggregate statistical measures such as
the mean, variance, and median across all the combinations of the values
on a set of multiple — possibly hierarchical — dimensions (Gray et al.,
1996). For example, a retailer may want to compute the monthly average
volume of sales for every city and every product category. Unlike the
science rasters, the coordinates of a data cube do not necessarily have
a strict ordering — they are categorical, not ordinal. Moreover, many
entries in the data cube can be empty, resulting in a sparse array. In
machine learning and artificial intelligence, highly-dimensional models
are defined over features extracted from text and image data. For ex-
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ample, the text synthesis models applied in natural language processing
consist of embeddings with billions of features (Brown et al., 2020).
These models are represented as 1-D vectors, 2-D matrices, and their
multidimensional tensor generalizations. Machine learning training and
prediction consist of a sequence of linear algebra operations between
the model and the training/testing data — also represented as tensors.

Due to their ubiquity, multidimensional arrays — rasters, data
cubes, and tensors — have been studied extensively across many areas
of computer science — including compilers, programming languages,
scientific and high-performance computing, graphics, machine learning,
and databases. With the exception of databases, the vast majority
of these studies are focused on the computational aspects of array
processing — not the data management issues. Within the database
field, the first “call” to extend the unordered set-based relational model
with ordered rasters dates back to 1993 (Maier and Vance, 1993).
Although rasters had initially spurred research interest, they had been
overshadowed by data cubes upon their introduction in 1996 (Gray
et al., 1996). However, the era of “Big Data” from the late 2000s and
early 2010s has renewed the interest in raster and sparse ordered arrays.
The main driver has been the large volume of spatio-temporal data
generated by scientific applications. This has led to the creation of the
SciDB array database (Cudre-Mauroux et al., 2009) as a collaboration
between data management researchers and astronomers fostered by the
XLDB suite of conferences. The success of deep neural network models
in classifying objects from images and text has brought the spotlight
on tensor processing in the late 2010s — which continues by the time
of this writing.

In this work, we survey the research on multidimensional array data
management — including rasters, data cubes, and tensors — from a
database perspective. Thus, our focus is on work published in database
conferences and journals. Nonetheless, we also include references to
relevant work from other computing domains whenever necessary. Our
definitive goal is to identify and analyze the most important research
ideas on arrays proposed over time. We cover the full spectrum of data
management, from array algebras and query languages to storage strate-
gies, execution techniques, and operator implementations. Moreover, we
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discuss which research ideas are adopted in real systems and how are
they integrated in complete data processing pipelines. Given that the
unordered set-based relational data model is dominant across databases,
we compare the differences to arrays at every step in the presentation.

The resulting survey aims to serve two main objectives. First, it
summarizes concisely the most relevant work on multidimensional array
data management by identifying the major research problems. Second,
the survey organizes this material to provide an accurate perspective
on the state-of-the-art and future directions in array processing. To the
best of our knowledge, this is the first complete survey on array data
management that includes rasters, data cubes, and tensors. Previous
surveys are limited to raster processing in the context of scientific data.
For example, the first survey on array storage and processing (Rusu
and Cheng, 2013) does not consider data cubes and tensors. The VLDB
2021 tutorial on array DBMS (Zalipynis, 2021) discusses the design of
the ChronosDB system for external raster processing.

The most recent survey on array databases (Baumann et al., 2021)
gives a thorough analytical and experimental comparison among several
raster systems — nineteen systems are compared and four of them are
experimentally benchmarked. While there is some unavoidable overlap
between our work and this survey, their approach and take-away message
are quite different. The focus of Baumann et al. (2021) is RasDaMan

— the array database developed by the same authors. The presenta-
tion of the main concepts — including algebra and query language,
storage, and processing — is centered on the solutions implemented
in RasDaMan. Alternative solutions are only briefly referenced. The
end message is that RasDaMan is the most feature-complete array
database system available — which is true given its 30+ years of devel-
opment. This work delves considerably deeper in each of the topics and
covers more breadth. Our perspective on multidimensional array data
management considers all types of arrays — rasters, data cubes, and
tensors. The focus is first on methods and then on their realization in
a particular system. Our end goal is to summarize all the methods in a
systematic presentation and provide a thorough analysis. In summary;,
we view Baumann et al. (2021) as system-centric while this work is
technique-centered.
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This work surveys a large body of work on multidimensional arrays
published over three decades and is organized as follows. We start with
a theoretical formalization of arrays and their categorization in Section
2. The defining operations for every type of array are presented in
Section 3. The next three sections follow the architecture of a data
processing system — going top-down from the user interface to the
execution internals. Array algebras and query languages are introduced
in Section 4. Array storage techniques are presented in detail in Section 5.
Execution strategies and array operators are discussed in Section 6. The
implementation of these ideas and their integration in real systems are
analyzed in Section 7. We conclude with a summary of the most relevant
ideas and an outlook to future directions on array data management in
Section 8.



2

Multidimensional Arrays

In this section, we provide a formalization of multidimensional arrays
from a relational database perspective. At a high level, arrays can be
viewed as an instance of a particular type of relation — or table — in
which the set of attributes that form the unique key have domains that
are finite integer intervals. This set of attributes are called dimensions
and they functionally determine the values of the other attributes in
the array. This abstraction considers arrays as functions — which is
first introduced by Maier and Vance (1993) — and is different from the
representation of arrays as collection types (Libkin et al., 1996). Based
on this functional abstraction, we give a classification of array types
and a conceptual comparison between arrays — on one side — and
tensors, relations, and data cubes — on the other.

2.1 Arrays

A multidimensional array with N dimensions and M attributes —
or N-dimensional array — is defined by a set of dimensions D =
{D1,...,Dn} and a set of attributes A = {Ay,..., Ay }. Every dimen-
sion D;, i € {1,..., N}, is a finite ordered set over a discrete domain
[;,u;] that contains the integers between [; and w;. For simplicity, we
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2.2. Types of Arrays 75

assume that [; is always 1. Every combination of dimension values,
or indices, [i1,12,...,in], defines a cell. Cells have the same tuple —
or struct — type, given by the set of attributes .A. Dimensions and
attributes define the schema of the array. Based on these concepts, an
array can be thought of as a function from dimensions to attribute
tuples:

A’I“T(lyl [Dl,DQ,... ,DN} — <A1,A2,... ,AM> (21)

This formalization corresponds to the definition of N-dimensional
tensors (Kolda and Bader, 2009). It is different from multidimensional
vectors, which do not differentiate between dimensions and attributes.
In the vector model (Salton et al., 1975), the array with N dimensions
and M attributes is represented as a vector with (N + M) dimen-
sions/attributes. The functional formalization of arrays also makes
explicit the functional dependence between dimensions and attributes
specific to the relational data model (Codd, 1970), in which the N
dimensions form a key of the corresponding relation.

Example 2.1 (Arrays). Two arrays A and B with dimensions i and
j, and attributes r and s of integer type are depicted in Figure 2.1.
Their notation in SciDB’s AQL language (Maier, 2012; Lim et al., 2012)
is A,B<r:int,s:int>[i=1,3;j=1,4]. The range of i is [1,3], while
the range of j is [1,4]. The numbers in every non-empty cell are
the values of attributes r and s, e.g., A[i=1,j=2] — (r=2,s=5). It
is important to notice that (2,5) represents a tuple — not a nested
array — and can be decomposed into two primitive values (2) and
(6) — both identified by the index combination [i=1,j=2]. From
the relational perspective, arrays A and B are relations with schema
A,B(i:[1,3],j:[1,4],r:int,s:int) having the pair of attributes
(i,j) as primary key.

2.2 Types of Arrays

There are two kinds of array data — dense and sparse — classified
according to the number of entries defined for the Array function.
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\J_[1] [2] [3] [4] \i_[1] [2] [3] [4]

[il (7,1)[(25)|(63) ]| (6.4 lil (7,1) (6,3)
2 2,3) | (6,8) | (1,4) | (8,3) 2] (8,3)
& (2,1) | (5.5) | (3.5) | (9.7) & (2,1) | 5.5) | (3.5)

(a) (b)

Figure 2.1: (a) Dense array A. (b) Sparse array B.

An example of each type of array is depicted in Figure 2.1. If Array
is defined for every entry in the input domain, i.e., for each of the
|D1| % |Da| * - - - % | Dn| entries, then the array is considered dense, also
known as grid or multidimensional discrete data (MDD) (Furtado and
Baumann, 1999). Grids contain values in every cell.

Sparse arrays can be thought of as incomplete grids with missing
cells. Intuitively, sparse arrays are obtained by making the size of the
domain for every dimension extremely large, while providing values
only for a limited number of cells. For example, consider the case of
dimensions defined over real-valued domains. Notice that it is also
possible to go the other direction — transform sparse arrays into grids.
The idea is to condense multiple index values across every dimension
into a single scalar, such that all the cells contain at least one value.
However, this may result in cells that contain more than a single tuple,
case in which there are two alternatives — store the tuples with all —
or a part — of their attributes independently or create a single tuple
that aggregates the multiple values across the merged cell. This process
is similar to histogram binning for data compression or approximation.

An intuitive way to understand the difference between dense and
sparse arrays is to look at the expression Array[dy,ds,...,dy]. In the
case of a grid, this expression always returns a valid cell containing data.
That is not the case for sparse arrays, in which it is possible that a cell
is empty and does not contain valid data, e.g., Bli = 1,7 = 2] — () in
Figure 2.1 (b). This can be dealt with by returning a special value —
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such as zero in the case of numerical matrices. Thus, from a high-level
logical perspective, all arrays can be treated as dense. However, always
storing arrays in dense format cannot be practically implemented at
the physical layer due to the extensive space requirements. As a result,
the strategies to manage dense and sparse arrays are quite different.

2.3 Array Dimensions

The dimensions of an array functionally determine the values of the
attributes in every cell. Moreover, they define a candidate key on the
array. Thus, dropping any dimension — dimensionality reduction —
results in the loss of the functional property. The remaining dimensions
define a domain having as many duplicates as the size of the range of
the eliminated dimension. In order to preserve the functional property
under dimensionality reduction, the original array has to be split or
sliced into multiple arrays with lower dimensionality. The number of
these arrays is given by the range of the eliminated dimension. For
example, let us assume that we reduce the dimensionality of Array by
eliminating the first dimension D;. The result is u; — I; + 1 arrays of
dimensionality N — 1 given by:

Arrayy, : Da X -+ X Dy — (A1, Ao, ..., Ayr)
ATT’ayllJrl :DQ X oo X DN — (Al,Ag,... ,AM) (2 2)
Arrayy, : Doy X -+ X Dy — (A1, Ag, ..., Ap)

A concrete example of slicing the array A from Figure 2.1 along its
first dimension 7 is depicted in Figure 2.2.

Evaluating the expression Array[dy,ds,...,dyN] requires two steps
in the sliced representation. First, the d; array has to be identified.
Then, the expression Arrayy, [dz,...,dy] has to be evaluated instead.

Dimensionality reduction can be generalized to any number of dimen-
sions. The result is multiple lower dimensionality arrays. Although the
benefits of slicing may not be clear immediately, there are classes of
queries that benefit from this representation.
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j [1] [2] [3] [4]
qf (7,1) 1 (2,5) | (6,3) | (6,4)
i1 [2] [3] [4]
1 (2,3)1(6,8) | (1,4) | (8,3) :>A[21 (2,3)1(6,8) |1 (1,4)](8,3)

b 2.1)|(55) [@5)]©.7) j(2[1]1) (;2]5) (353]5) (;]7)
Am ’ ’ ’ '

N[ [ @ [4] A
1 (7,1) | (2.5) | (6.3) | (6.4)

Figure 2.2: Array slicing through dimensionality reduction.

2.4 Arrays and Relations

An array has multiple physical representations as a relation. We present

the most common representations for the two 2-D arrays A and B

given in Example 2.1 following the nomenclature used previously in the
literature (Luo et al., 2017; Yuan et al., 2021):

e Array as table T(4,j,r,s): The array dimensions and attributes

become primitive attributes of the table. There is a tuple for every
valid cell in the array. In data warehousing, the array table T is
called a fact table while the array attributes r and s are called
measures. The table representation is optimal for the sparse array
B since only the valid cells are included. In the case of the dense
array A, the dimensions i and j are redundant across the tuples
since a cell can be identified based on its position. Thus, the
dimensions do not have to be physically stored.

Array as tuple ST(x[]1[1,s[]1[1): The entire array is represented
as a single tuple, with every array attribute becoming an attribute
of the relation. These relation attributes are composite multidi-
mensional arrays that maintain the dimensions of the original
array. However, the dimensions are included only in the composite
attribute, not as relation attributes. Positional indexing in the ar-
ray is delegated to the composite attribute. In order to reassemble
the attributes inside an array cell, the indexes in r[] [] and s [] []
have to be matched. Similar to columnar storage in relational
databases, this can be done either positionally or through an
equi-join across all the dimensions.
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o Array as set of tiles TI(i_t,j_t,r_t[J[],s_t[1[1): The array
is decomposed into a set of identical sub-arrays — or tiles — that
group contiguous blocks of cells. The tiles are identified by their
indices on the contracted dimensions, which become primitive
attributes of the table. The tiles are represented as a single tuple.
Thus, the number of tuples is equal to the number of tiles. This
representation is a generalization of array as tuple.

o Array as set of slices: This representation corresponds to array
slicing and combines array as table and array as tuple. The di-
mensions are split into two groups. The dimensions in the first
group are represented explicitly as primitive attributes — as is
the case for array as table. The dimensions in the second group
form a lower-dimensional array for every combination of the ex-
plicit dimensions. The array attributes are also represented as
lower-dimensional arrays. While the arrays in array as tuple have
the same dimensionality as the original array, the arrays in this
representation have lower dimensionality. For 2-D arrays, there
are two symmetric instances of array as set of slices — array as
set of row vectors RV(i,j[]1,r[],s[]) and array as set of column
vectors CV(i[],j,r[],s[]1). In the case of row vectors, dimension
i becomes a primitive attribute while dimension j and the array
attributes r and s become composite vector attributes of the table.
There is a tuple for every row of the array. This eliminates the
redundancy in the representation of the row index — which is
stored at most once. For the dense array A, there is still redun-
dancy on the column index j. The column vectors representation
is identical, but applied to columns.

The main difference among these representations is the number
of dimension indices that are stored explicitly. At one extreme, we
have array as table, which represents all the indices, while at the other,
array as tuple, which represents only the array attributes. The other
representations implement various tradeoffs between the two. Array as
table is the only representation that conforms with the original relational
data model (Codd, 1970). All the other representations require support
for attributes having a composite array data type and corresponding
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functions, which are characteristics of object-relational databases such as
PostgreSQL (The PostgreSQL Development Team, 2020). If composite
data types are not supported, arrays can be mapped to binary large
objects (BLOB), case in which the database system provides only storage
while the array manipulations are delegated to the application.

To better understand the difference between arrays and relations,
it is important to clarify the distinction between dimensions and at-
tributes. A relation can be viewed as an array without dimensions,
only with attributes. Thus, there is no ordering function that allows
the identification of a tuple based on dimensional indices. Going from
relations to arrays, it is required that dimension attributes form a key
in the corresponding relation, i.e., there is a functional dependence from
the dimension attributes to all the other attributes in the relation. Since
a key is maximal, any attribute can be immediately transformed into a
dimension. Converting dimensions into attributes results in breaking the
functional dependence property and losing the ordering information. As
such, any array can be viewed as a particular type of relation organized
along dimensions.

The expression Array [dy,da, .. .,dn], where d; € [I;, u;], makes sense
for an array and is uniquely determined. The same is true for a relation in
which (dy,ds, ...,dy) represents a key. However, what distinguishes an
array from a relation is that the array is organized such that finding the
entry Array[dy,ds,...,dy] can be done directly from the value of the
indices — the position — without looking at any other entries. This is not
possible in a relation since there is no correspondence between the indices
and the actual position in the physical representation. Consequently,
multidimensional arrays are specialized relations stored physically sorted
according to their dimensions.

2.5 Arrays and Tensors

From a mathematical perspective, a tensor can be defined implicitly
through a vector space product over a scalar field or explicitly as a
concrete multidimensional array (Guo, 2021). Given a basis for the
abstract vector space, the tensor is represented by the coordinates
in this basis — which are themselves a multidimensional array. For
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example, the natural basis of an N-dimensional tensor is given by the set
of vectors {e; = (1,0,...,0),ea = (0,1,...,0),...,exy = (0,0,...,1)}.
When the basis changes, the tensor coordinates also change according
to the transformations in the vector space. However, in the case of
explicitly defined tensors, a basis change operation is not common.

In this work, we adopt the explicit mathematical definition of ten-
sors. From this perspective, tensors are data structures that generalize
1-D vectors and 2-D matrices to N-dimensional arrays with three or
more dimensions. Moreover, the number of attributes in a tensor is
restricted to one — which has to be of a primitive scalar data type (Kim,
2014). Consequently, the two arrays A and B from Example 2.1 gener-
ate four tensors: A_r<int>[i=1,3;j=1,4], A_s<int>[i=1,3;j=1,4],
B_r<int>[i=1,3;j=1,4], and B_s<int>[i=1,3;j=1,4], respectively.

2.6 Arrays and Data Cubes

A data cube (Gray et al., 1996; Harinarayan et al., 1996) expands a
relational table by computing a set of aggregations over all the possible
subspaces created from the combinations of the attributes of such a ta-
ble (Vassiliadis and Sellis, 1999). The attributes defining the aggregation
space are called dimensions, while the aggregates are called measures.
The measures are functionally dependent on the dimension values. With
N dimensions and M measures, we obtain an /N-dimensional data cube.
For example, the two arrays A and B from Example 2.1 can be seen as
two data cubes DC_A,DC_B<r:int,s:int>[i=1,3;j=1,4]. While these
data cubes seem identical to the corresponding N-dimensional arrays,
there are both conceptual and physical representation differences be-
tween the two. They stem from the original application that led to their
creation — on-line analytical processing (OLAP) for data cubes (Chaud-
huri and Dayal, 1997), respectively science for arrays (Baumann, 1994).

Conceptually, the measures of the data cube are the result of aggre-
gation queries that join a fact table with one or more dimension tables.
Thus, the data cube is obtained by organizing and storing multiple
query results. This can be done by following either a relational represen-
tation (ROLAP) or a multidimensional representation (MOLAP). As
a result, both relational (Gray et al., 1996; Gyssens and Lakshmanan,
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1997) and multidimensional-oriented (Agrawal et al., 1997; Cabibbo and
Torlone, 1998; Vassiliadis, 1998) models are proposed to conceptualize
data cubes (Vassiliadis and Sellis, 1999; Pedersen et al., 2001; Torlone,
2003). Additionally, data cubes are also modeled as statistical data
elements (Shoshani, 1997). Since the dimension values in these models
are categorical — not ordinal — a complete ordering relationship cannot
be defined over the domain of dimensions. This precludes direct map-
ping of data cube models to index-based — or positional — accessible
multidimensional arrays. Nonetheless, measures can be directly accessed
based on the dimension values that functionally determine them. For
arrays, this requires an intermediate mapping to the dimension index.
Dimension hierarchies group dimension values into classes based on
inclusion relationships. While the grouping is often based on some form
of partitioning, it does not necessarily require a complete order of the
dimension values. Moreover, the order at the upper levels of the hierar-
chy can also be undefined since inclusion does not determine ordering.
In conclusion, the difference between data cubes and arrays can be
summarized as the difference between hash-based and sort-based data
structures. While both of them provide point access, only sort-based
data structures support efficient range-based access. In fact, range is
not even defined for categorical dimensions.

2.7 Summary

e Arrays, tensors, and data cubes are defined by a set of dimensions
and a set of attributes — known as values for tensors and measures
for data cubes. The attributes are instantiated for every valid
combination of the dimensions.

e In the case of a dense array, all the dimension combinations are
valid, while in a sparse array, only a subset of combinations is
valid.

e An array can be seen as a function from dimension values to
attribute values since there is a functional dependence between
the two.

o While arrays and tensors are conceptually identical, tensors can
include constraints on values based on their dimensions.
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e An array can be represented as a relation with a composite key
defined over the dimensions. However, this still does not allow for
positional access due to the unordered set property of relations.

o Positional access is permitted in a data cube for equality — or
point — conditions on dimensions. In the case of an array, more
general range conditions are supported.



3

Multidimensional Array Operations

Array processing is a common operation across multiple domains, includ-
ing image processing, scientific computing, and machine learning. This
results in a multitude of array operation types with different parameters
and processing requirements. The common characteristic across all these
operations is indexring, which provides direct access to an array cell
based on its dimensions or position. Concretely, the expression A[l, 2]
identifies the cell on the first row and second column in Figure 2.1(a).

In this section, we identify and categorize the most important classes
of operations on arrays, relations, tensors, and data cubes starting from
scientific and linear algebra applications. These operations are sub-
sequently formalized in array algebras, used as drivers for designing
optimized array storage methods, and implemented as primitive opera-
tors in array processing systems.

3.1 Array Operations in Scientific Applications

The SS-DB benchmark (Cudre-Mauroux et al., 2010) is modeled based
upon a real workflow for processing astronomical images from the Sloan
Digital Sky Survey (SDSS) (Szalay, 2008). Although application-specific,
SS-DB includes a full spectrum of operations over arrays representa-
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tive across various scientific domains. SS-DB contains queries on 1-D
arrays (e.g., polygon boundaries), dense and sparse 2-D arrays (e.g.,
images and astrophysical objects), and 3-D arrays (e.g., trajectories in
space and time). The SS-DB benchmark defines complex pipelines of
composable array operators for observation extraction, grouping, and
querying. These pipelines or query plans are equivalent to the relational
algebra trees that encode advanced operations on tables. We present
the benchmark pipelines and identify the relevant array operations.

Observation extraction. Observations are extracted, i.e., “cooked”,
from the cell values of dense 2-D grids/images that satisfy a given
condition. This condition can take the form of a simple predicate or
be expressed as a complex user-defined function (UDF) over the cell
values. Adjacent cells satisfying the condition are clustered together
into an observation. As an example observation, consider the image
labeling operation that clusters adjacent pixels with the R component in
RGB having values larger than 50. Adjacency is defined as a rectangle
with configurable size centered on every grid cell. In addition to the
data corresponding to every cell belonging to an observation, a set of
aggregated attributes — such as the center, the bounding box, and the
boundary polygon — are derived for the entire observation. Observations
are represented as sparse 2-D arrays in the same dimension domain
as the grids they are extracted from. Cell values include the unique
identifier assigned to the observation and the aggregated attributes.
Multiple array operations are performed during observation extrac-
tion. Filtering the cells based on their value — or a UDF applied to
the cell attributes — is equivalent to the relational selection opera-
tor. Aggregation across multiple cells is identical to relational tuple
aggregation. However, the cells that are aggregated satisfy an adjacency
relationship given as a shape parameter. This corresponds to the sten-
cil operator from scientific computing (Datta et al., 2008; Maruyama
et al., 2011) and convolution from image processing (O’Gorman et al.,
2008; Lippmeier and Keller, 2011). As depicted in Figure 3.1, the sten-
cil/convolution is applied to every cell in the input array — shape
centered on every cell, to be precise. The value of the output array cell
is the aggregate of the cells covered by the shape argument. Finally, a
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positional join between the input array and the extracted observations

is required to derive the aggregated properties of observations.

N[ [2] 3] [4 \Jj_[1] [2] 31 [4]

[1]

[2

31

(7,1) (6,3) [ 8 9
(8,3) shape [2] 11
[2y]65]E5 ]
(21)|(5,5) | (3,5 B 321 | 18
(a) (b)

Figure 3.1: (a) B<r,s>[i=1,3;j=1,4]. (b) STENCIL(B, SUM(r+s), shape).

We summarize the sequence of array operations that implement

observation extraction — also depicted in Figure 3.2 — in the following;:

1.

FILTER the grid with the cell-based condition. This operation
transforms the dense grid into a sparse array having as valid cells
only those cells satisfying the predicate.

. Assign a unique id to every valid cell in the sparse array. The id is
an additional attribute in the sparse array and can be derived from
the cell indices. While not necessarily required, the id provides an
easier to understand identification of observations.

Perform a sequence of STENCIL operations with arguments the
adjacency shape and the minimum aggregate over the id attribute
of the sparse array. The result is the observation array with the
same id in the cells belonging to an observation. STENCIL has
to be invoked iteratively until the input and result arrays are
identical.

Execute a structural/positional JOIN between the original grid
and the observation array to get the attributes corresponding to
the cells in the observation.

Derive the aggregate attributes of the observation by applying
another STENCIL operation with the same shape and the corre-
sponding aggregate functions.
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Figure 3.2: Observation extraction from the grid depicted in (a): FILTER out the
cells with a value larger than 50, generating a sparse array (b); assign a unique id to
every valid cell and perform a sequence of STENCIL operations with the shown shape
and the minimum aggregate (c); the resulting three observations (d); structural JOIN
between the (b) and (d) arrays to retrieve the data corresponding to every cell in the
observation (e); the aggregate value — in this case, average — and the observation
bounding box computed with another STENCIL operation (f).

Observation grouping. A group contains observations extracted from
different grids that have their centers close to each other. Closeness
is specified through a distance UDF rather than using a fixed shape.
Nonetheless, adjacency can be represented as an irregular 3-D array
derived based on a discretized version of the distance function. Thus,
we can view grouping as a 3-D version of observation extraction with
an irregular adjacency shape operating on observation centers. Conse-
quently, the computation of grouping is similar to that of observation
extraction and includes a sequence of stencil operations followed by a
positional join and an aggregation.
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Queries. SS-DB queries consist of sequences of array operations, in-
cluding selection based on the cell attributes, stencil aggregations, and
dimension translation. The stencil operations differ in terms of the
cells where they are invoked, the shape of the neighborhood, and the
aggregation function. A general characteristic across all the queries is
that they operate on a portion of the space instead of the entire grid.
This operation is known as subsampling or range filtering and provides
access to the cells in a subspace of the domain identified by the range
on every dimension. Subsampling is a direct application of indexing
since it selects cells based on their position/dimensions. It is applied as
an initial step before any of the other operations. The size and position
of the filtering subspace control the difficulty of the query. The larger
the subspace, the larger the number of cells considered by the other
array operations.

3.2 Relational Operations

Since arrays are a particular type of relation in which the dimensions
form a key, all the operations in relational algebra are directly applica-
ble to arrays. However, due to the storage organization optimized for
dimension — or index — access, operations on dimensions are more
efficient than operations on attributes. Arguably, a similar effect can
be obtained with a set of indexes layered on top of a relation. From
this perspective, array operations can be seen as relational operations
optimized for a particular storage organization.

The duality between arrays and relations is evident when considering
the correspondence between relational algebra and the array operations
in the SS-DB benchmark. While every operation from SS-DB can be
expressed in terms of relational algebra operators, the operations that
require the notion of adjacency or proximity — which is inexistent
on relations — have a higher degree of complexity. Subsampling and
stencil are two operations in this category. By default, the subsampling
ranges are expressed as predicates on dimensions. When subsampling
is applied around an anchor point, the predicates become more com-
plex. The stencil operation takes this to another level by performing a
subsampling-based aggregation at every cell. While relational window-
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based aggregation may look as a good fit for this, it is intrinsically a 1-D
linear operation that works optimally on streams. Its generalization to
multiple dimensions is not straightforward — not to mention an optimal
implementation. Distance-based operators such as similarity join and
self-join are other relational extensions that have related semantics to
the subsampling and stencil operations (Zhao et al., 2016). The main
difference is that they are defined over a continuous domain while sub-
sampling and stencils are defined over discrete arrays. In addition to
these conceptual issues, the physical organization of arrays is natively
optimized for proximity operations. On the other hand, relational multi-
dimensional indexes such as R-trees and quad trees are secondary data
structures that target only a particular type of data access.

3.3 Tensor Operations

The NumPy API (NumPy Development Team, 2022) is one of the most
extensive libraries for tensor operations. While the API includes multiple
types of indexing and aggregations, value-based selection, reshaping, con-
catenating, padding, and sorting, the tensor-specific operations — which
are not common among the scientific array operations and relational
algebra — are the BLAS linear algebra operations. Basic Linear Algebra
Subprograms (BLAS) (Wikipedia, 2020) are the de facto specification
for tensor operations. BLAS classifies tensor operations at multiple
levels based on the dimensionality of the tensor operands. BLAS level 1
includes operations between 1-D arrays, such as the dot product of two
vectors. BLAS level 2 extends to matrix-vector multiplication — an
operation between a 2-D matrix and a 1-D vector — while BLAS level
3 is centered around the generalized matrix-matrix multiplication oper-
ation. In the space of multidimensional tensors, matrix multiplication is
a special form of tensor contraction (Shi et al., 2016; Matthews, 2016;
Springer and Bientinesi, 2018; Kim et al., 2019) — the most general
operation between two tensors proposed in BLAS level 4 (Springer and
Yu, 2019). In tensor contraction, for every index in the two input and
the single output matrix, one or more tensor dimensions are substituted.
For example, the contraction of a 7-D tensor by a 5-D tensor into a 6-D
tensor corresponds to the substitution of a 4-D by 3-D and a 3-D by
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2-D tensor, respectively, with a 4-D by 2-D tensor — three common
dimensions are eliminated. This operation is mathematically equivalent
to multidimensional matriz multiplication when the metric tensor g
defining the distance between two points is the identity matrix. Thus, we
treat matrix multiplication as the most representative tensor operation.

Matrix multiplication. Consider the multiplication of two matrices
A and B with dimensions m x k and k x n, respectively. The result
matrix C = A - B has dimensions m X n. Its elements are computed as:

k
Cij =Y Ay By, where 1<i<m,1<j<n (3.1)
p=1

In order to obtain the element C;; of the result, the dot product
between row i from A and column j from B has to be computed.
This access pattern is applied to every row-column pair (4, 7), which
corresponds to a join on the common dimension followed by a summation.
While this relational mapping is possible, it is likely not optimal. Instead,
given the ubiquity across application domains, matrix multiplication is

provided as a primitive operation in BLAS libraries.

3.4 Data Cube Operations

Given the exhaustive nature of the data cube (Gray et al., 1996), in
which the aggregates of all the possible dimension combinations are
materialized, the most common data cube operation is to access a
particular cell and extract the corresponding aggregate. This indexing
operation requires the specification of the value for every dimension. If
a dimension is omitted — represented as * — the default semantics is
to include all the values on the missing dimension in the result — which
is not a problem because this aggregate is also materialized. Range
predicates on dimensions are not permitted because there is no ordering
among the categorical coordinates. Instead, a set of coordinates can
be specified by enumerating their values. These indexing variations are
restricted instantiations of subsampling.
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Summary

The most common array operations are indexing and subsam-
pling. Indexing provides direct access to a cell specified by its
dimensions/coordinates. Subsampling provides access to the cells
in a subspace of the domain identified by the ranges on every
dimension.

The stencil /convolution is a ubiquitous array operation in scientific
applications. The stencil computes the aggregate value of a group
of adjacent /neighboring cells. Its access pattern is specified by a
shape parameter, e.g., cross, hexagon, etc.

Matrixz multiplication and its extension to more than two dimen-
sions — tensor contraction — are the most general linear algebra
operations. Their access pattern pairs every row from one matrix
with every column from the other.

While most array operations can be written as SQL statements
and sequences of relational algebra operators, this may lead to
unacceptable complexity and performance.
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Algebras and Query Languages for
Multidimensional Arrays

When designing an array query language, the variety of array operation
types across the many application domains has to be considered. While
several attempts have been made over the years (Tomlin, 1990; Ritter et
al., 1990; Baumann, 1999), to date, there is no commonly accepted array
query language similar to SQL. The common trend among the proposed
languages is to first identify an array algebra — a set of primitive
operators that can express as many array operations as possible — and
then to design a query language that resembles SQL on top of the
identified operators — typically array extensions to SQL. The challenge
faced when identifying the primitive operators is the diversity of the
array operations introduced in Section 3. The standard solution is to
allow for second-order operators — operators that take user-defined
functions as arguments — in the algebra. Writing composite expressions
of array algebra operator invocations is the first step in designing a query
language. Several attempts stop at this stage. Adding a more elevated
syntax on top of the pure algebra operator invocation is the next stage.
To encourage adoption, the proposed syntax is quite often a modification
to SQL — if not simple extensions with new keywords corresponding
to the array algebra operators. In this more advanced scenario, query

92
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execution requires mapping the higher-level language constructs into
array algebra operators, which represent the only implemented functions
that can be executed. If multiple mappings are possible — the case
when multiple implementations for the same operator are available or
when the query expression permits it — the optimal mapping has to be
determined. This process corresponds to query optimization.

In this section, we present the most important array algebras and
query languages proposed in the database literature and discuss if and
how the observation extraction operation introduced in Section 3.1 can
be expressed in every case.

4.1 Array Query Language (AQL)

AQL (Libkin et al., 1996) is a declarative query language for multidimen-
sional arrays that treats arrays as functions from index sets to values,
rather than as collection types. AQL is based on the nested relational
calculus with arrays (NRCA), which plays the same role relational
calculus and algebra play for the relational data model. Types and
functions represent primitives in NRCA. The types include booleans,
natural numbers, tuples, finite sets, and arrays defined over rectangular
domains with indices ranging over initial segments of the natural num-
bers. Functions are defined from one type to another. The constructs
supported in NRCA not involving arrays are standard in nested rela-
tional calculus and include functions, products, set constructs, ordering,
nesting, and arithmetic operators for natural numbers.
There are four basic array operators in NRCA:

e Define or tabulate an array
o Extract an array element at a given index

Extract the dimensions of an array
e Convert an indexed set into an array

These array operators together with the standard constructs in
the nested relational calculus are sufficient to express any operation
on multidimensional arrays, including mapping a function to every
element of the array, zipping multiple arrays together, i.e., positional
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natural join, extracting a subsequence — not necessarily contiguous
— from an array, reversing, transposing, and projecting an array, and
matrix multiplication. To simplify programming, a series of derived
constructs such as comprehensions, patterns, and blocks are also added
as operators in AQL — in a similar manner to the operators in extended
relational algebra. This allows for expressing array operations in a higher-
level language that hides the user from implementation details and is
amenable to optimizations that would have to be implemented explicitly
by the programmer otherwise. The negative effect of this is a reduction
in the expressiveness of the operations that can be coded directly in the
language. AQL addresses this drawback by providing extensible support
for integrating user code dynamically in the language.

An implementation of AQL in the ML functional programming
language (Milner et al., 1997; Laboratory for Foundations of Computer
Science at the University of Edinburgh, 2008) is introduced in Libkin
et al. (1996). AQL constructs are supported as library functions written
in ML and made available as language operators. Queries are written
as ML programs invoking these operators on the input data. Thus,
there is no higher-level query language beyond the NRCA constructs.
AQL takes advantage of the advanced programming features, such as
second-order functions, available in ML. This is the main feature used
to provide support for user-defined functions (UDF), thus, extensible
and customizable array processing. The operators are executed in full
and intermediate results are materialized after every invocation. Part
of query execution, the AQL constructs go through a series of transfor-
mations meant to generate an optimal execution plan that is eventually
executed as calls to routines in the AQL library. Notice, though, that
this type of optimization does not map a higher-level language to AQL
— rather it rewrites a sequence of function invocations optimally.

Example 4.1 (AQL). In order to implement the observation extraction
operation in AQL, the three required array operations are FILTER,
STENCIL, and index-based JOIN. While AQL supports FILTER and JOIN
— called zip — it does not contain anything that closely resembles
STENCIL. AQL does not have the concept of adjacency or shape pattern.
However, since AQL has extensive support for UDFs, it is conceivable
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that a STENCIL UDF combining multiple index expressions can be
written.

4.2 Array Manipulation Language (AML)

The Array Manipulation Language (AML) (Marathe and Salem, 2002)
is a functional query language defined over an algebra consisting of
three operators that manipulate dense arrays. Every operator takes one
or more arrays as arguments and produces an array as result. All of
the AML operators take bit patterns as parameters. Patterns are not
allowed to refer to array element values. This restriction implies that
the shape of the result of an AML operation can always be statically
determined — without actually evaluating the operator — if the shapes
of the operator’s array arguments are known — the same is true for
the schema of the result relation in relational algebra. This property is
useful when evaluating AML expressions since it implies that the space
required to implement an AML operation can be determined in advance.
AML expressions can be treated declaratively and can be subject to
rewrite optimizations according to equivalence rules between operators.
The AML algebra operators are presented in the following:

e SUB. Subsample is a unary operator that extracts a sub-array
along a given dimension. It takes an array, a dimension number,
and a bit pattern as parameters, and produces an array, i.e.,
B = SUB;(P, A), where A is the input array, P is the bit pattern,
and i is the dimension. SUB divides A into slabs along dimension
i and then retains or discards the slabs based on pattern P. If
P[k] = 1, then slab k is concatenated to the result array B. Two
subsequent SUB applications to two different dimensions of the
same array produce the same result independent of their order,
i.e., SUB is commutative across dimensions. The resulting array
can be inferred from the two bit patterns without the need to
actually compute the result of each individual SUB operation —
property applied in query optimization.

e MFERGE. Merge is a binary operator that combines two arrays
defined over the same domain. The merge operator takes as pa-
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rameters two arrays A and B, a dimension number i, a bit pattern
P, and a default value §. It merges the two arrays to produce
the result array C, i.e., C = MERGE;(P, A, B,J), by dividing A
and B into slabs along dimension i and then merging the slabs
according to pattern P. In this case, the pattern defines the order
in which the slabs from A and B are added to the result C. Due to
a shape mismatch between A and B, some values in C may be un-
defined. 0 is assigned to all such undefined values. It is important
to remark that MERGE can be used to increase the dimension-
ality of an array. MERGE is commutative and associative when
applied to the same dimension with different patterns. The corre-
sponding patterns can be easily determined. SUB and MERGE
can be reordered both when applied to the same dimension as
well as when applied to different dimensions. The corresponding
patterns have to be determined from the patterns in the original
expression. Choosing the optimal rule to apply is handled in query
optimization.

APPLY. Apply applies a user-defined function to an array to
produce a new array. It is written as B = APPLY (f, A, Py, P, ...,
Pn_1), where f is the function to be applied, A is the array to apply
it to, P;’s are patterns, and N is A’s dimensionality. The structural
relationship among the array cells f is applied to is made explicit
by the patterns P. The stencil/convolution operations (Figure 3.1)
can be expressed through pattern combinations. f is required
to be defined such that it maps sub-arrays of A of some fixed
shape D; to sub-arrays of B of some fixed shape R;. APPLY
applies f to some or all of the sub-arrays of shape Dy of A. The
pattern arguments specify to which of the possible sub-arrays of
the input array A function f is applied. Pattern P; selects the slabs
in dimension i. f is applied to the sub-array with origin at x only
if x belongs to selected slabs in all the N dimensions. Moreover,
the sub-arrays to which f is applied to must be entirely contained
within A. The results of these applications are concatenated to
generate B. The arrangement of the resulting sub-arrays in B
preserves the spatial arrangement of the selected sub-arrays in
A. Applying a function to every cell and to the entire array are
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special instances of APPLY. The structural locality captured by
patterns can be used to reduce the number of applications of f
and to prune portions of the input array.

The three logical AML operators are implemented with six physical
operators that produce their result array based on the order of the input
array(s). Marathe and Salem (2002) provide concrete examples with the
mapping between the logical and physical operators. The underlying
characteristic of the physical operators is generating the output array
one-cell-at-a-time, which simplifies processing at the expense of exten-
sive caching. In order to reduce the overall cache utilization, adjacent
operators have to share the same processing order. This is achieved by
optimally inserting array reordering operators between mappings.

AML is designed starting from an image algebra that defines the
most common operations in image processing. AML defines only those
operators that are amenable to declarative optimization, which includes
a sufficiently large class of image processing algorithms. With single-
ton APPLYs, i.e., APPLY is defined for every array cell individually,
AML encompasses almost all the image processing algorithms. AML is
a functional programming language in which operators are nested as
arguments to other upper-level operators to form queries. Processing
functions are also passed as functor arguments — second-order func-
tions — to operators, i.e., the function argument to APPLY. Query
optimization involves simple rewriting rules that replace combinations
of algebra operators with other such combinations deemed optimal.
Thus, AML is more like an elevated execution plan description rather
than a declarative array query language. Another AML limitation is
that it contains only structural operators, i.e., operators that consider
the indexes. While image processing represents a large class of array
manipulations, it is interesting to investigate how AML can be extended
to other array operations that are not originating from image processing.

Example 4.2 (AML). The implementation of observation extraction in
AML uses only the APPLY and MERGE operators. FILTER is implemented
as an instance of APPLY with the identity shape pattern and the predicate
as a condition to filter the valid cells. STENCIL is the exact equivalent
of APPLY. Positional JOIN requires a MERGE followed by APPLY. MERGE is
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the only AML operator that creates an array from two input arrays. It
is used to generate an array with twice as many rows as the array (e) in
Figure 3.2 by interleaving rows from array (b) and (d). APPLY combines
groups of two consecutive non-overlapping rows into a single row using
a vertical two-cell shape and the identity value function. This results in
array (e) from which APPLY can derive the observation properties.

4.3 Relational Array Mapping (RAM)

RAM (Ballegooij, 2004) is an array processing system built on top of
the MonetDB (Idreos et al., 2012) relational database. While RAM
deals with dense arrays, SRAM (Cornacchia et al., 2008) is targeted
at sparse arrays commonly used in information retrieval applications.
Nonetheless, both systems employ similar array formalizations based
on the comprehension syntax, which represents arrays as functions
defined over dimensions and taking primitive type values. Dimensions
are defined over continuous integer intervals starting at 0 for a regular
array shape — not necessarily symmetric, though. Array decomposition
— an array with composite type values is represented as a set of aligned
arrays with primitive type values — is default in RAM due to the
columnar data representation in MonetDB. Since the execution happens
inside a relational database engine, array queries follow a sequence
of transformations that map arrays represented in the comprehension
syntax to relational operators through an intermediate array algebra
stage. Although a series of rewriting rules and optimizations are applied
at each of these two steps, relying on the relational algebra operators to
map and process array operations introduces inefficiencies due to the
impedance mismatch in representation.

The RAM query language consists of methods to extract values from
arrays and methods to construct arrays. Value extraction is supported
natively through array application since arrays are functions that can
be applied to index values in order to yield results. Array construction
is supported through a generative comprehension constructor and a
concatenation operator. There is no query language syntax defined for
these functions. They are exclusively theoretic notations expressed in
comprehension syntax.
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The RAM array algebra consists of six operators that implement the
query language, create arrays and extract values based on indexes only.
The const operator fills a new array with a constant value, whereas
the grid operator creates an array with values taken from one of the
indexes. map, apply, and choice are induced operators that operate
on cell values. map creates a new array by applying a given function
to one or multiple aligned arrays. apply replaces the function in map
with an array interpreted as a function from indexes to values. choice
is a combination of map and apply in which an array with boolean
values selects the elements of a newly created array from the elements
of two arrays passed as arguments. The aggregate operator applies an
aggregate function to the array elements having the same value for the
first k indexes, resulting in an array with smaller dimensionality.

In addition to the RAM operators, the SRAM array algebra (Cor-
nacchia et al., 2008) introduces a series of structural operators. pivot
permutes the dimensions of an array according to an axis order per-
mutation. rangeSel is the standard subsample operator, which extracts
a sub-array with the same dimensionality from an array passed as
argument. replicate generates an array with dimensionality N 4+ 1 by
replicating the original array a specified number of times. topK is a
specialized operator that works only for vectors and creates an array
with the indexes of the first K values in a specified order.

The mapping of the extended SRAM array algebra operators to
relational operators is presented in Cornacchia et al. (2008). It is specific
to the chosen relational representation of arrays in MonetDB. Sparse
arrays are stored as relations clustered and indexed based on the array
dimensions. The order is chosen arbitrarily as the lexicographical di-
mension order, i.e., the order in which dimensions are specified in the
array definition. Only the cells with valid values are stored explicitly.
The mapping of apply as a series of joins followed by a projection is pre-
sented as a canonical mapping for all the structural operators — pivot,
rangeSel, and replicate. map between two dense arrays corresponds to
relational join followed by function application. In the case of sparse
arrays, the general form of outer join is used instead. aggregate can
be mapped into a standard group-by aggregate relational operator on
the dimensions, while topK does not have a relational equivalent. In
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addition to the mapping rules from array algebra operators to relational
operators, a series of simplification and rewriting rules are also proposed.
They form the basis of the query optimization process.

Example 4.3 (RAM). It is not clear how the three operators from
observation extraction can be expressed in RAM. FILTER is the easy
one because it is a map instance with the predicate as the function
applied to every cell. choice is the only alternative for implementing
structural JOIN since it is the only operator taking two input array
arguments. Array (d) in Figure 3.2 is used as the boolean selector while
array (b) provides the values. Although apply may seem sufficient to
implement STENCIL, it lacks the aggregate function applied to the shape
pattern. This is assuming that the shape can be represented as the
array argument passed to apply. Moreover, the RAM aggregate operator
implies dimensionality reduction on the input array — which is not
the case for STENCIL. Therefore, it is fair to say that STENCIL has no
immediate RAM representation.

4.4 RasDaMan Query Language (RasQL)

The RasDaMan array algebra (Baumann et al., 1998; Baumann, 1999)
conceptualizes arrays as functions from rectangular domains to cell
values, similar to AQL (Libkin et al., 1996). The algebra contains
three core constructs that can express every array operation when
composed together (Baumann, 1994). The execution of each of these
constructs is iteration-based and safe — it does not require recursion.
While user-defined functions can be integrated in the algebra, they are
not fundamental. The authors advocate against their use due to the
complications they introduce in query optimization.
The three core constructs in the RasDaMan array algebra are:

e MARRAY. The array constructor MARRAY creates new arrays
by indicating a spatial domain and an expression that is evaluated
for every cell position of the spatial domain. An iteration variable
bound to a spatial domain is available in the cell expression so
that a cell’s value can depend on its position.
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e COND. The condenser COND takes the values of an array’s cells
and combines them through the operation provided — which has
to be commutative and associative — thereby obtaining a scalar
value. An iterator variable is bound to the array spatial domain
to address cell values in the condensing expression.

e SORT. The array sorter SORT proceeds along a selected di-
mension to reorder the corresponding hyper-slices. It rearranges
a given array along a specified dimension based on an order-
generating function that associates a sequential position to each
(N-1)-dimensional hyper-slice, without changing its value set or
the spatial domain.

While these three operators are minimal to make the array algebra
complete, a series of derived operators are added to the algebra to
enhance usability. They include trimming and slicing, operators induced
by the underlying type of the array cells, and multiple aggregates that
are particular condenser instances. The result is an extended array
algebra identical in spirit to the extended relational algebra.

The RasDaMan array algebra is integrated in relational algebra and
SQL following the array-as-attribute approach (Misev and Baumann,
2014). This requires the extension of relational operators with support
to handle arrays. While extended projection is straightforward, selection
and join require that array expressions return boolean values. The
integration also requires the definition of operators that convert between
arrays and relations. These operators are NEST and UNNEST, originally
introduced in Jaeschke and Schek (1982) and refined in Ozsoyoglu et al.
(1987) and Cao and Badia (2007).

Having the proposed array algebra as a theoretical foundation,
RasQL is a declarative query language that extends SQL-92 with support
for arrays. In RasQL, array expressions can appear in the SELECT
and WHERE clauses of a SQL query. Special language constructs are
introduced for the core array algebra operators — MARRAY, COND,
and SORT — which can then be integrated with standard SQL. However,
following the SQL standard, arrays are treated as a composite attribute
type with a set of corresponding operators. Nonetheless, RasQL is the
first complete array query language that integrates both an algebra and
a higher-level declarative query language.
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The generality of RasQL. Baumann and Holsten (2011) provide a
comparison of AQL, AML, (S)RAM, and RasQL. In all these models,
arrays are conceptualized as functions from hyper-rectangles to primitive
or composite values. Array creation is specified using either tabulation
(RasQL) or comprehension (AQL and RAM). Operations are defined
as functionals, i.e., second-order functions taking other functions as
parameters. While this generates a small set of operators, a large part
of the complexity is hidden in the functional parameters. An important
issue that has to be addressed is how many physical operators to
implement and make available through the language syntax? The answer
varies from all operators to only the operators in the algebra. Baumann
and Holsten (2011) also show that all the array algebras can be reduced
to RasQL — both in array representation as well as operations. This
is primarily due to the equivalence between comprehensions and the
MARRAY operator for creating arrays — the comprehension syntax
is the basis for AQL and RAM. The equivalence between AML and
RasQL is proven directly. Since it is valid in both directions, AML and
RasQL are equally expressive.

Example 4.4 (RasQL). Since RasQL has the same expressive power as
AML and observation extraction can be expressed in AML, it follows
that the extraction can also be expressed in RasQL. FILTER and index-
based JOIN are mapped as two instances of the MARRAY constructor
operator. For FILTER, MARRAY keeps the value of the cells that satisfy
the selection predicate and assigns a special value to the other cells. JOIN
is an induced MARRAY operator that uses the observation array (d) in
Figure 3.2 as a boolean selector for array (b). Since STENCIL requires
aggregation, it is expressed with the COND operator. The shape pattern
is provided as an explicit array to COND. The application of COND to
every cell is controlled by an instance of MARRAY that iterates over
the input array. When these two are grouped together, STENCIL consists
of the sequence MARRAYinput array( CONDgpgpe(cell)). This expression
is written in the SQL-compatible RasQL language as follows:

SELECT MARRAY array_(d) IN domain(array_(a))
VALUES COND MIN OVER x IN domain(shape)
FROM array_(c)
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We do not include the statements for FILTER and JOIN because they
have exactly the same syntax as SQL — the WHERE clause includes pred-
icates while multiple arrays in the FROM clause imply a structural join.

4.5 Science Query Language (SciQL)

SciQL (Kersten et al., 2011; Zhang et al., 2011) is the most compre-
hensive extension to the SQL-2003 standard with support for arrays.
It provides seamless integration of set, sequence, and array semantics.
The goal is to make minimal modifications to the SQL syntax while
allowing for maximum expressiveness in the array operations supported
by the language. It is heavily targeted at experienced SQL programmers.
While this is considered to be one of the most distinctive characteristics
of SciQL from a database perspective, it may also be a drawback given
the reduced familiarity the science community has with SQL.

SciQL provides all the benefits of a declarative query language that
isolates an abstract data model from the physical data representation.
Arrays are defined by specifying the dimensions, their corresponding
ranges, and the array cell content. Named dimensions allow for direct
indexing of the array elements. A default value is assigned to all the
cells in the array at declaration. Arrays can appear wherever tables
are allowed in SQL statements. The result of a query is an array only
when the column list of a SELECT statement contains dimensional
expressions. The SQL iterator semantics associated with tables extends
to arrays, but iteration is confined to the cells whose values are not
NULL. However, this may be quite inefficient for operations that require
array traversal in a particular order.

Array creation and modification statements follow entirely the syntax
corresponding to tables. The only difference is that dimensions have to
be defined explicitly for arrays. Converting arrays to tables can be done
by simply selecting all the array cells without specifying any dimensional
expression. The reverse is not that straightforward since the designated
dimensions have to form a primary key in both representations. If the
result of a query is an array, it has to be specified explicitly in the
SELECT clause. Cell selection and array slicing are performed using
the bracketed index syntax from C/C++.
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The most specific array operator introduced in SciQL is structural
grouping — in fact, it is a syntactic representation for the APPLY
operator in AML (Marathe and Salem, 2002). It consists in placing a
template at every position in the array and computing an aggregate
for all the cells in the neighborhood that are covered by the template.
The result is an array with the same dimensions. Two versions are
proposed — with and without overlap — corresponding to sliding and
tumbling window aggregates from data streaming — which are both
supported in SQL. Essentially, structural grouping is a multidimensional
generalization of relational window aggregates. SciQL provides extensi-
bility through user-defined operators. They can be implemented using
primitive SciQL constructs — similar to stored procedures — or can be
imported from an imperative programming language such as C/C++ —
similar to UDFs in relational databases. In addition to multidimensional
array operations, SciQL supports a large range of time-series operators,
which are most of the time instances of 1-D structural grouping.

Example 4.5 (SciQL). The STENCIL operation is written in SciQL as
structural grouping:

SELECT [x], [y], MIN(id)
FROM array_(c)
GROUP BY array_(c) [x-1:x+1] [y-1:y+1]

x and y correspond to the array dimensions. The shape pattern is
included in the GROUP BY clause as ranges on dimensions. The other
two operations in observation extraction — FILTER and JOIN — follow
the standard SQL syntax.

4.6 SciDB Query Languages

SciDB (Stonebraker et al., 2011) is a shared-nothing parallel database
system designed specifically for array processing. SciDB queries can
be written in two languages — Array Functional Language (AFL)
and Array Query Language (AQL). AFL is a functional language in
which the execution plan is expressed exactly in the same format as in
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AML (Marathe and Salem, 2002). A slight difference is that the number
of operators is larger than in AML. The reason is that instances of
APPLY that execute a specific operation are promoted to stand-alone
operators with their own name. We present AQL and its formal ArrayQL
algebra (Maier, 2012) in the following.

ArrayQL algebra. In ArrayQL, arrays are defined as 3-tuples of the
form (box, valid, content), where box represents the domain of the
array with fixed bounds on all dimensions, valid is a boolean map
indicating which cells have valid values, and content is a function
providing the values for the array cells. ArrayQL is the first algebra
that represents cell validity explicitly. The benefit is that both dense
and sparse arrays can be formalized within the same algebra constructs.

Given the representation of an array as a 3-tuple, a new array is
created by each operator, with a corresponding new 3-tuple. Operators
define mappings between the original 3-tuple components and the new
components. We present the most important operators defined in the
ArrayQL algebra in the following;:

e SHIFT array origin to a new position by changing the domain
of the array components accordingly. It is useful when moving
between coordinate systems.

o REBOX changes the dimension sizes. It can either clip or extend the
array domain. REBOX implements subsampling or range queries
over dimensions, one of the most important array operations.

e FILTER invalidates some array cells based on a content-only predi-
cate. It is the direct equivalent of selection from relational algebra.

e FILL transforms all the invalid cells to valid and assigns them a
default value — it transforms a sparse array into a dense one.

e APPLY applies a function to every valid cell of an array. Unlike the
AML APPLY (Marathe and Salem, 2002), the value of the output
cell is a function of only the input cell — not multiple adjacent
cells — since no shape parameter is specified.

e COMBINE combines the content of two arrays having the same
shape, but not necessarily the same validity. The content of the
new array is computed by a function over the content of the
argument arrays.
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« REDUCE generates a reduced version of an array by aggregating over
one or more dimensions. Supported aggregate functions include
the standard relational algebra and SQL aggregates.

AQL. AQL is an array creation and query language based on ArrayQL
algebra. It is highly reminiscent of SQL and contains only two statements
— CREATE ARRAY to create arrays at the schema level and SELECT FROM
to query arrays. ArrayQL queries take as input arrays. The output can
be either a new array — with dimensions specified explicitly in the query
as brackets — or a relation — without any ordering constraints. Ranges
on dimensions can be specified both for the input and the output arrays.
In the case of input arrays, ranges correspond to sub-arrays, while in
the case of the result array, ranges implement the SHIFT operator. If no
ranges are provided, the complete dimension ranges of the input array(s)
are automatically inherited. Structural joins between two arrays are
specified by enumerating the arrays in the FROM clause and matching the
dimension names. Overall, algebra operators are mostly implemented
through index mappings. However, not all ArrayQL algebra operators
are specified in the language. Moreover, not all the operations possible in
the language by means of intricate index mappings are part of ArrayQL
algebra.

Array joins. Consider two N-dimensional arrays « and /3 given in the
functional representation (2.1):

a:{D*=Df x--- x DY} — {AY = (AT,..., AS))}
5:{Dﬁ:Df e XD%} — {Aﬁz(Af,...,A@)}
A join between arrays a and 8, 7 = « Xp [, is written in AQL
as: SELECT expression INTO 7 FROM « JOIN S ON P, where P is the
join predicate, which consists of pairs of attributes and/or dimensions

from the two source arrays. The output is a new array 7 : D™ — A"
having the schema:

DT =D*UD? AT =A"UAP
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in which both the dimensions and the attributes from the input
schemas are merged. Essentially, the result array has dimensionality
equal to the sum of the dimensionality of the input arrays and every cell
contains the union of the attributes. It is important to notice that the
non-empty cells are given exclusively by the combination of non-empty
cells in the input arrays. An array outer join generates a valid cell as
long as one input cell is valid. As is the case with the relational cross
product, the default array join is not of particular practical importance
since it pairs every cell from « with every cell from .

Duggan et al. (2015b) introduce a series of array equi-joins — di-
mension:dimension, attribute:attribute, and attribute:dimension — for
the case in which predicate P contains only equality conditions. These
joins have corresponding INNERDJOIN and INNEREJOIN operators in the
ArrayQL algebra. Out of the three types of array equi-join, dimen-
sion:dimension join is specific to array databases while the others are
instances of the relational join operator. ChronosDB (Zalipynis, 2018)
extends dimension:dimension joins to more than two arrays based on a
reducer function that derives the result cell from the input cells.

The array similarity join operator (Zhao et al., 2016) is a generaliza-
tion of the dimension:dimension join to predicates other than equality.
The join predicate between arrays « and ( is expressed by extending
the AML APPLY operator (Marathe and Salem, 2002) with a mapping
function that assigns a unique cell ¥ in g8 to every cell T in « and
applying the shape/pattern to ¥ rather than Y. The mapping function
and similarity shape can encode a large range of relationships between
cells — including all the LP norms and Hamming distances. Moreover,
the array similarity join supports uncommon discrete shapes such as
arrays with empty cells and non-symmetric arrays, which cannot be
expressed as implicit distance functions. Xing and Agrawal (2019) intro-
duce the value similarity join operator as a combination of dimensional
equi-join and attribute similarity join. This operator outputs cells that
have identical indices and attribute values within the specified range e.

Example 4.6 (SciDB). The ArrayQL operators FILTER and INNERDJOIN
can be immediately applied to observation extraction. STENCIL, however,
does not have a corresponding operator. It has to be implemented as a
UDF. Thus, observation extraction is not directly expressible in SciDB.
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4.7 Algebras for Domain Specific Data

AQUERY (Lerner and Shasha, 2003) uses the concept of “arrables”,
i.e., ordered relational tables, and SQL queries extended with an AS-
SUMING ORDER clause to represent one-dimensional time series data.
A blob-based approach where an algebra for the manipulation of irreg-
ular topological structures is applied to the natural science domain is
proposed in Howe and Maier (2004).

The ChronosDB array data model (Zalipynis, 2018) is an abstract
representation for geospatial data stored in raster file formats. It pro-
vides array mapping to a raster file that is independent of the storage
format and supports arrays partitioned across multiple files distributed
over the nodes of a cluster. This is achieved with a two-level structure
consisting of a user-level array mapped over a set of system-level sub-
arrays corresponding to the raster files. The array operations defined
in ChronosDB include retiling, join, aggregation, resampling, hyper-
slabbing, reshaping, and chunking. They are defined abstractly over
the user-level array and implemented concurrently over the distributed
system-level subarrays.

SAVIME (Lustosa and Porto, 2019) defines the typed array data
model (TAR), which consists of two mapping functions — position
mapping and data mapping — that translate between data values and
memory addresses. These mappings provide support for sparse arrays,
non-integer dimensions, heterogeneous memory layouts, and functional
partial dependencies with respect to dimensions — all of which are
characteristics of simulation data.

The array-based genomic data model (Horlova et al., 2020) defines a
representation for genomic data consisting of three dimensions — coor-
dinate, sample, and signal — that provide fast associative index access
to the corresponding values. The operations defined in the genomic data
model include standard relational operators such as selection, projection,
grouping, join, union, and difference, and genomic-specific operators
such as histogram, cover, and map. These operators are classified as
region preserving — no new regions are created — and space-localized or
space-rearranged. In a space-localized operation, every region can be pro-
cessed independently from all the other regions, while space-rearranged
operations require merging several input regions.
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The statistical data transformation data model (SDTDM) (Song
et al., 2021) is a hierarchical model for the metadata associated with
statistical operations. In SDTDM, metadata on statistical operations
are organized into hierarchical meta tables consisting of meta rows
and meta columns, which encode positional information. This allows
for direct index access to data. SDTA defines an algebra over meta
tables. It includes operations derived from relational algebra, such as
selection, projection, aggregation, and join. Additionally, SDTA defines
order-preserving operations over meta rows and meta columns. These
are aimed at maintaining the ordering information through statistical
transformations. The SDTL language provides syntactic sugar shortcuts
for composite operations derived from nested SDTA operations.

4.8 Relational Algebra

The array representations as relations given in Section 2.4 can be
divided into relational mapping — array as table — and object-oriented
mapping — all the other representations. In the relational mapping,
every array cell is represented explicitly as a tuple containing both the
indices as well as the values. Array operations are directly mapped
into expressions of relational algebra operators and SQL statements.
However, SQL is not particularly well-suited for array operations due
to the lack of positional indexing. In the object-oriented mapping, the
original relational model is extended with a composite array data type
and corresponding operators. The array becomes an attribute of a larger
relation. Array operations are included in queries by making calls to the
methods defined for the array data type. The set of supported methods
is extensible with user-defined functions. Queries consist of a relational
component and a non-relational component with expressions involving
array methods. Since method invocations are treated as black boxes, the
optimization of the non-relational part is mostly limited to the correct
placement of the operators in the query plan.
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4.9 Tensor Algebras

Operations over multidimensional tensors — including contractions and
derivatives — can be written declaratively using index notations. In such
a notation, an index variable is assigned to every dimension. Variables
that appear in a single tensor are called free and their corresponding
dimension is part of the result. Variables that are shared among tensors
correspond to dimensions that are eliminated through aggregation. The
two most common index notations are the Einstein notation and the
Ricci notation. The matrix multiplication C' = A - B is written in these
notations as:

Einstein: A;p - By, Ricci: A}, - BY (4.1)

Although the two notations are syntactically quite similar — the
FEinstein notation uses only lower indexes, while the Ricci notation
uses both lower and upper indexes — they have semantic differences.
The most important difference is that the Ricci notation differentiates
between co- and contra-variant dimensions/indices and the Einstein
notation does not. This allows for element-wise operations — among
others — to be expressible only with the Ricci notation. Nonetheless,
the Einstein notation is used more extensively — if not exclusively —
in programming languages due to its uniform index handling.

4.9.1 Relational Algebra Extensions and Generalizations

Since tensors can be represented as relations, operations over tensors —
including the Einstein notation — can be expressed in terms of relational
algebra operators. This can be achieved either through JOIN GROUP
BY AGGREGATE statements or through language extensions such as user-
defined functions (UDF) and aggregates (UDA). The former requires
a pure relational array as table representation for tensors, while the
later works on any of the other array formats presented in Section 2.4.
The initial solutions implemented in MADLib (Hellerstein et al., 2012)
and GLADE (Qin and Rusu, 2015) adopt the UDA approach because
of its flexibility and better performance. AC/DC (Khamis et al., 2018)
on the other hand uses the array as table representation and enhances
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its performance through factorization, functional dependencies, and
worst-case optimal join algorithms. Given their reliance on SQL, these
approaches are not aimed at defining a formal tensor algebra.

In the following, we present in detail several tensor algebras that
extend or generalize the relational algebra. Each of them selects a
relational array representation as a primitive data structure and defines
a set of operations — relational and matrix — over this primitive.
In many cases, the relational operators are second-order functions
parametrized by matrix operations.

Tensor-Relational Model (TRM). TRM (Kim and Candan, 2011; Kim
and Candan, 2014) introduce a representation of unordered relations
as two types of tensors — occurrence tensor and value tensor. In the
occurrence tensor, all the relation attributes become tensor dimensions
and the cell value — only 0 or 1 — indicates whether a tuple with
the corresponding attributes exists or not. The value tensor is the
functional formalization of relations as multidimensional arrays from
keys (dimensions) to functionally dependent attributes (Section 2.1).
The standard relational operations — including selection, projection,
Cartesian product, join, and set-based operations — can be performed on
the tensor representation with minimal changes. Tensor decomposition
is the only tensor-specific operation defined in TRM. Its interaction with
the relational algebra operators is carefully analyzed and rule-based
transformations to optimize complex expressions are designed. TRM is
implemented with the ArrayQL algebra operators (Maier, 2012), which
process tensors as tiled chunks.

LARA. LARA (Hutchison et al., 2017) is a reduced algebra consisting
only of three operators that generalizes the operations and rules of both
linear algebra and relational algebra. LARA is a formalization of the
concepts first introduced in Kunft et al. (2016). The only abstract data
structure in LARA is the associative table, which corresponds to the
functional formalization of relations as multidimensional arrays (Sec-
tion 2.1). The associative table represents arrays by explicitly storing
the mapping from dimensions to attributes using the array as table
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representation (Section 2.4). The physical implementation is using par-
titioned sorted maps, which require massive space in the case of dense
arrays since all the indices have to be materialized. This implementation
is refined to a specialized key-value data structure for linear algebra op-
erations in LevelHeaded (Aberger et al., 2018). The LARA operators are
second-order functions parameterized by UDFs defined over a restricted
semiring structure — UDFs that are associative, commutative, and
have an identity/zero element. The three operators are Union (vertical
concatenation), Join (horizontal concatenation), and Ext (flatmap).
They are applied to the keys/dimensions, while the UDF is applied to
the corresponding values. Matrix multiplication consists of Join on the
shared dimension with a multiply UDF followed by Union with a sum
UDF. For physical optimizations, the Sort operator — which sorts an
associative table based on its keys — is added to the algebra.

MATLANG. MATLANG (Brijder et al., 2019) is a query language for
matrices built up from basic linear algebra operations that are closed
under composition. The only variables in MATLANG are matrices,
i.e., 2-D tensors, specified by a type definition for their dimensions.
The type associated with a matrix is either given at declaration or
induced from the expression operands. The type distinguishes among
matrices, row/column vectors, and scalars. The MATLANG operators
are inherited from linear algebra. They include matrix multiplication and
transposition, the constant 1 vector and column vector diagonalization,
and the pointwise function application. These operators are composed
into expressions — or queries — that are evaluated over the set of
matrices in the input schema. The expressive power of MATLANG is
similar to that of relational algebra with aggregates (Libkin et al., 1996).
This follows from the array as table representation given in Section 2.4.
In order to express more complicated matrix operations such as inverse
and eigenvector decomposition, MATLANG is extended with the inv
and eigen operations.

Relational Matrix Algebra (RMA). RMA (Dolmatova et al., 2020) ex-
tends the relational model with matrix operations performed exclusively
on relations. RMA applies the array as set of row vectors representation
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(Section 2.4) to a relation in order to construct a corresponding matrix.
This requires the specification of the row dimension — which has to be
a key attribute of the relation — and of the column attributes. Since the
induced rows are indexed based on the dimension index, the columns
have to be sorted accordingly. The order of the columns is given by the
order of the attributes in the relation schema. Thus, there has to be an
attribute for every column of the matrix — resulting in explicit storage
of all the matrix indices. Essentially, matrices are constructed by sort-
ing and generalized projection — both of which are relational algebra
operators. Moreover, they have an exact relational representation. RMA
supports all the matrix operations from the statistical programming
language R, implemented as function calls to an external library from
the MonetDB database. The result matrix is reversely mapped to a
corresponding relation based on the dimension and column attributes
specified in the matrix constructor.

Tensor Relational Algebra (TRA). TRA (Yuan et al., 2021) is an
extension of classical relational algebra (Codd, 1970) that models tensors
concisely as binary relations from a vector encoding dimensions to the
corresponding values represented as a tile. In other words, TRA takes
as its primitive abstraction the array as set of tiles representation
(Section 2.4) and defines closed operations over it. The TRA operations
consist of second-order functions that have as arguments groups of tiles
identified based on their indices. For example, matrix multiplication
is expressed in TRA as a Join followed by an Aggregation. The Join
operation pairs the tiles based on the common dimension and computes
a matrix multiply kernel function. The resulting 3-D tiles are input to
an Aggregation operator with a sum kernel function that sums up the
values along the common dimension to generate the result matrix. The
important aspect here is that join and aggregation are relational algebra
operations extended with linear algebra kernels that work on tiles. This
allows for a direct integration of optimized numerical kernels such as
ScaLAPACK (Choi et al., 1992) into relational databases. The other
operations in TRA include ReKey, Filter, and Transform — which work
only on dimensions — and Tile and Concat — which alter the structure
of the tiles by regrouping the indices.
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4.9.2 Tensor Algebras for Machine Learning

The Einstein notation is adopted to express the linear algebra operations
standard in machine learning computations more abstractly. Optimized
low-level kernels that implement these abstractions for specific target
architectures — such as GPU — are subsequently automatically gen-
erated. Tensor Comprehensions (Vasilache et al., 2018) are a direct
instantiation of the Einstein notation as a domain-specific language in
which index variables are defined implicitly by using them in an expres-
sion. Their range is inferred automatically from the tensors they are
assigned to. The dimensions of the result tensor correspond to the index
variables on the left side of an expression. All the index variables that
appear only on the right side are assumed to be reduction dimensions.
An extension of tensor comprehensions that specifies the indices of the
result tensor explicitly is used to define a tensor calculus for automatic
higher order differentiation in Laue et al. (2020). These declarative ten-
sor algebras are integrated in ML libraries such as NumPy, TensorFlow,
and PyTorch.

The applicability of LARA (Hutchison et al., 2017) and MAT-
LANG (Brijder et al., 2019) to express common ML problems is
studied by Barcel6 et al. (2019). They prove that the Einstein no-
tation/summation is supported by both LARA and MATLANG, con-
volution is expressible only in LARA, and matrix inversion cannot be
expressed in LARA when index comparisons are not allowed.

4.10 Data Cube Algebras

Following the concepts and operations introduced in the relational
model (Codd, 1970), closed data cube models are proposed in Agrawal
et al. (1997) and Vassiliadis (1998) among others. These models provide
a formal representation for data cubes and define composable opera-
tions that generate a data cube as their result. The model introduced
in Agrawal et al. (1997) treats dimensions and measures symmetrically,
and supports multiple hierarchies along every dimension. The model
in Vassiliadis (1998) is based on the notion of basic cubes as the storage
element for the original data in a cube, and focuses on the support of
sequences of navigational operations. Both models include standard
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data cube operations such as slicing and dicing, roll-up and drill-down,
and navigation along dimension hierarchies. Moreover, both models
provide mappings to the relational model and to a restricted form of
multidimensional arrays. This restriction is imposed by the lack of a
complete order on dimensions, which precludes the application of range
operations. Nonetheless, selection — or restriction — on dimensions
is possible with set membership conditions. An alternative mapping
from data cubes to multidimensional arrays — also lacking complete
ordering — is through intermediate relations (Vassiliadis, 1998).

411 Summary

e Arrays are modeled as functions from dimensions to attribute
values. This allows for an equivalent relational tuple representation
where the dimensions form a key. An alternative representation —
with wider support in SQL — is to declare arrays as attributes
having a container data type. This way, the entire array is kept
together in a single tuple instead of having every cell separately.

e Array operators are defined as second-order functions with di-
mensional operands that apply the functional argument to the
attributes. In SQL, the array operators are implemented as user-
defined functions (UDF). Without sufficient knowledge of the
UDF processing, the integration of array operators in query opti-
mization is difficult.

e The various algebras proposed in the literature share a set of
similar single-array operators. Moreover, they are semantically
equivalent, RasQL and AML being the most general.

e Array join formalizations distinguish between dimensions and
attributes. While attribute joins are equivalent to relational joins,
dimensional joins are defined based on discrete shape predicates
that encode the neighborhood relationship among cells.

o Tensor algebras extend relational algebra by defining matrix op-
erations over a primitive relational array representation. Matrix
operations are embedded as functional parameters into second-
order relational operators. This allows seamless integration of
optimized linear algebra kernels into a relational processing en-
gine.
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Multidimensional Array Storage

In this section, we consider array storage in the following context.
The size of the array — which can be bounded by |Dp| * |Da| * - - - %
|Dn| * |sizeof (A1, Ag, ..., Apr)|, where |D;| is the maximum range on
dimension ¢ — is too large to fit entirely in memory. However, it is
possible to access the array elements based on their index. This is a major
departure from table — or relation — storage where tuples cannot be
identified based on their position. Nonetheless, the segment where a tuple
is stored can be determined when data partitioning methods (DeWitt
and Gray, 1991) are applied. Thus, there is a connection between data
partitioning for parallel processing and array storage.

The array is organized on secondary storage into chunks — or par-
titions — that contain a group of array cells (in Figure 5.1). Whenever
an element from a chunk has to be read into memory, the entire chunk
is read — the I/O unit is the chunk, similar to the page for file systems
and the block/partition for relational databases, respectively. Moreover,
chunks can be allocated to different hosts or tasks for storage and
concurrent processing. The optimal chunking is dependent on the oper-
ations performed on the array. While some operators, such as matrix
multiplication, have static access patterns, the stencil operator applies a

116
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shape-based aggregate to an array region, resulting in a highly-variable
access to the array cells. Based on these considerations, array chunking
has to address the following questions:

e What is the optimal size of a chunk?

e What is the shape of the chunk?

e What is the mapping function from an array index to the corre-
sponding chunk? The mapping of a chunk to disk storage? To
processes and processing nodes?

e How are the chunks allocated to processes and processing nodes?

e How are the cells organized inside the chunk?

task X il task Y il task 2 task X il tasic Y il task 2
(a) (b)

Figure 5.1: Chunking for dense (a) and sparse (b) arrays.

5.1 Optimal Chunk Size

Let us consider B to be the chunk size. This is a global system parameter
similar to the block size in relational databases. Determining the optimal
B value is the first question array chunking has to address. In early
work (Sarawagi and Stonebraker, 1994), it was common to set B to
the size of the file system page or the database block size, e.g., 4 to 64
KB. This strategy keeps the chunks tight without wasting space due to
fragmentation. It is also optimal when small portions of the array are
retrieved by the majority of the accesses, e.g., direct cell access based on
the indexes or selective range queries. In more recent work (Soroush et
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al., 2011; Cheng and Rusu, 2014; Papadopoulos et al., 2016), B is set to
much larger values, in the order of tens to hundreds of megabytes — for
example, the chunk size in SciDB and EXTASCID is set to 64-256 MB.
There are multiple reasons for this significant increase. First, scanning
larger contiguous segments from disk does not take considerably longer
due to the logic implemented in the disk controller. Second, memory
capacity has increased considerably, thus, allowing for more data to be
cached in memory. If a chunk is placed in contiguous memory blocks —
which is the case for larger chunks — access is further improved. Finally,
distributed processing across multiple servers has become the dominant
array data management architecture. Network transfer throughput and
latency are optimized when the data volume in a single transfer is higher
and the number of transfers is reduced. In distributed array storage
systems — as well as file systems — this is achieved through large chunk
sizes and batching.

5.2 Chunking Strategies

A chunking strategy specifies the size and shape of a chunk, as well as
what array cells are grouped together in the chunk. Different chunking
strategies answer these questions in different ways. We consider the most
important strategies in the following. We start with general strategies
that can be applied equally to dense and sparse arrays. Then, we consider
more specific solutions.

5.2.1 Arbitrary Chunking

Arbitrary chunking is the most straightforward chunking strategy. It
does not require any mathematical formulation or any other kind of
information. The main idea behind this strategy is to group together in
the same chunk cells that are close to each other. Closeness is measured
based on dimensions. A common simplification is to enforce that the
shape of the resulting chunks is a multidimensional hypercube aligned
with the dimension axes. Then, two questions have to be answered:

e Where to position the hyperplanes corresponding to every axis?
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e Are the hyperplanes bounded or unbounded, i.e., do they cover
the entire axis or only a segment?

Based on the answers to these questions, three types of arbitrary
chunking — depicted in Figure 5.2 — are introduced.

(a) (b) (c)

Figure 5.2: Arbitrary chunking: (a) regular, (b) directional, and (c) sliced.

Regular chunking. Regular chunking (Soroush et al., 2011) or aligned
tiling (Furtado and Baumann, 1999) divides every dimension into equal
segments. The segments cover the entire axis. The result is a set of
identical hypercubes aligned with the axes. A chunk corresponds to
each such hypercube. In regular chunking, the number of hyperplanes
on every axis is chosen arbitrarily. In aligned tiling, it is chosen such
that the resulting chunks represent a uniform scaling down of the entire
domain that fits in the allocated chunk size B, i.e., the ratio between
the chunk size and the domain size is identical on all dimensions.

Example 5.1 (Regular chunking). Consider a 3-D grid of integers. The
domain sizes along the 3 dimensions are (7,500, 7,500,20). Aligned
tiling this dense array requires chunk sizes that have the same ratio
across all the dimensions. Thus, if we consider the constant ratio to
be 10, then the chunk shape is (750, 750,2) and we get 1,000 chunks.
Regular chunking does not require the same ratio. For example, chunks
with the shape (750, 375,4) have different ratios on every dimension.
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Directional tiling. In directional tiling (Furtado and Baumann, 1999),
every dimension is treated independently. The position of the hyper-
planes is given for every dimension. Chunks are obtained at the intersec-
tion of the hyperplanes. They do not necessarily have the same shape.
While this results in chunks having different number of cells in the case
of dense arrays, for sparse arrays the chunks can be determined such
that they contain the same number of cells (Papadopoulos et al., 2016).
Nonetheless, chunks are aligned and irreqular. Careful consideration is
required for the cases when the volume of a chunk is smaller than the
maximum allowed volume B — merging is possible — and when the
volume is greater — further splitting is required. When any of these
operations are applied, chunks become nonaligned, i.e., the hyperplane
is only a segment that does not cover the entire axis domain. This
case is depicted in Figure 5.2(b), which is obtained by merging several
groups of adjacent chunks from the regular chunking in Figure 5.2(a).

Sliced chunking. A special case of arbitrary chunking corresponds to
slicing a particular dimension with hyperplanes at every position in its
domain. The resulting hypercubes have dimensionality N-1 and they
can be chunked further, independently of each other. Any processing
that can be confined to a slice becomes simpler due to the reduced
dimensionality. Processing across multiple slices has to be decomposed
into separate processing on every slice — a loop over the slices. The
default representation of multidimensional arrays in general-purpose
programming languages, e.g., C/C++ or Java, is based on slicing. Starting
with the most significant dimension, arrays of lower dimensionality are
obtained by fixing the value of the outer indexes. Due to the linear
representation in memory, these arrays are straightforward to generate.
Problems appear when a lower-dimensional array has to be obtained by
fixing the value of an index that does not match the linearization order.
In this case, the lower-dimensional array has to be explicitly created
by individually accessing every element. Consider, for example, a C
language 2-D matrix matrix[10] [10] linearized in standard row-major.
Accessing the 3% row is straightforward, i.e., matrix[2], but accessing
the 37% column requires explicitly accessing every element.
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Example 5.2 (Sliced chunking). If we consider the same setting as in
Example 5.1, we generate sliced chunks by treating each of the 20 points
on the 3" dimension separately. We first generate 20 2-D arrays with
size (7,500,7,500). Then, we chunk each of them individually.

5.2.2 Workload-based Chunking

The storage organization of an array is strongly dependent on the
access patterns used to access its cells — which are application and
workload specific. Thus, there is no organization that provides optimal
performance for all possible queries. In the worst case, the entire array
has to be read from secondary storage in order to compute the result.
This is equivalent to a complete table scan in the relational model. In
the best case, only the chunks containing data relevant to the query at
hand are read from storage. Given these two extremes, the organization
has to minimize the number of chunks read from storage for the majority
of queries in the workload. A second parameter that requires careful
consideration when deciding upon the chunking strategy is the size of
the query result. It is likely that — in the case of queries returning a
large number of cells — the difference between strategies is not that
significant. However, when only a handful of cells are returned, the
chunking strategy plays an important role. This problem is closely
related to the effectiveness of indexes in relational databases.

Subsample access pattern. In Furtado and Baumann (1999), the
authors identify a set of frequent access patterns:

o Subsample multidimensional area with the same dimensionality.
The result of such a query is a hypercube having the same di-
mensionality as the original array. Splitting the array into chunks
across all the dimensions is the optimal strategy in this situation.
Notice that accessing the full array is a particular case of this
access pattern.

o Section of lower dimensionality across a subset of dimensions. In
this case, the query result is typically a hypercube with a lower
dimensionality. The storage organization matching the section
pattern provides optimal access in this case.
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The authors propose a chunking strategy that takes the workload
queries into account. Based on the query log, the access frequency
is measured for every hypercube of the array. Hypercubes accessed
frequently enough are designated areas of interest. Directional tiling
is directly applied by taking the sides of the areas of interest as the
splitting hyperplanes across every dimension. Further partitioning or
merging may be required, as in directional tiling. Merging is different
due to the requirement that only tiles from the same area(s) of interest
can be put together. The objective is to put together as much data as
possible from a single area of interest and to minimize the number of
tiles for a given area.

Overlap access pattern. Soroush et al. (2011) provide more varied
access patterns in addition to range selection patterns across all — or a
subset — of dimensions. These diversified access patterns are:

o Structural join between two arrays. This operation requires com-
bining data from the same index position in two arrays having
the same dimensionality. The straightforward and optimal solu-
tion is to partition the arrays identically and — in the case of
parallel processing — store corresponding partitions on the same
processing node.

e Querlap operations that access adjacent cells. If the accessed ad-
jacent cells are confined to a bounded region, the data can be
replicated in every array chunk. This allows for independent par-
allel processing of every chunk without communication across
nodes. If the number of adjacent cells is not bounded, merging
and communication across chunks are required — this is the more
general solution.

The chunking strategies proposed by Soroush et al. (2011) to handle
these two access patterns are variations on regular and directional tiling.
The main idea is to apply two-level regular or directional tiling. At the
upper level, the chunk is determined as in any of these strategies. Inside
a chunk — the lower level — another chunking is executed using again
one of the regular or directional algorithms. The mini-chunks resulted
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at the lower level can be accessed as a unit of processing — the I/O unit
is still the upper level chunk. This strategy is beneficial exactly when
data from adjacent chunks are needed. Instead of moving the entire
chunk, only the overlapping mini-chunks have to be transferred.

The second chunking strategy proposed for overlapped processing
requires replicating cells across multiple chunks. This materialized view
can be stored either with the main chunk or separated. Additional
space is used in both cases. The advantage of storing the materialized
view separated is that it can be read on demand, only when needed.
Otherwise, it has to be read whenever the chunk is read and this has
the potential to incur significant overhead. As a variation on the same
idea, multiple concentric materialized views with increasing radii can be
created. The exterior materialized views include the interior ones. Dong
et al. (2017) apply replication at chunk boundaries dynamically based
on the specific processing task. The replicated regions — known as
ghost zones — are only transient in this case. They are not materialized
within or outside the chunk. Thus, they do not survive across tasks.

Query shape model. The approach taken in Sarawagi and Stonebraker
(1994) is to model all the observed access patterns as a probability
distribution function (pdf) over the shapes of the accesses — query shape
model (Otoo et al., 2007). Essentially, accesses are represented as N-
dimensional hypercubes with a corresponding length on every dimension,
ie., (s1,82,...,8n). While this is the most general form of access, notice
that it also encompasses degenerated patterns such as accessing a single
cell or a hyperplane, i.e., s; = 1. A probability is assigned to every
access pattern independent of the actual occurring position in the array
— the positions are assumed to be uniformly distributed across the entire
domain. Then, access patterns can be grouped into classes of the form
{[Ps, (Siy» Sigs - - -5 Siy)] |1 < i < K}, where K is the number of different
hypercube shapes and P; is the probability corresponding to every class.
In order to determine the optimal chunking — only regular chunking is
considered — an optimization formulation that minimizes the number
of blocks read from storage across all the classes is solved.
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Example 5.3 (Query shape model). In this formulation, the only con-
straint is given by the size of the storage block and the requirement
that a chunk has to fit in a single block:

: (1 [56
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B (5.1)
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where (c1,c2,...,cn) is the shape of the regular chunk

The authors make the assumption that — independent of the relative
position of the chunk and the query hypercube — at most one additional
chunk is read from storage for every dimension — that is where the
ceiling comes from in the objective function. Clearly, this assumption
is dependent on the actual position of the chunk, the shape of the
chunk and what range query has to be answered — in some cases,
two additional chunks have to be read. What amplifies the error effect
is the multiplication of the factors across dimensions, while assuming
dimensionality independence. Thus, the error becomes significantly
higher if the same error is made for all the dimensions of a given class
— the higher the dimensionality of the array, the higher the error. As
a result, the solution of this formulation is only approximate and can
incur significant errors.

Example 5.4 (Expected query shape model). In this formulation, the
authors modify the objective function by observing that the assumption
made in Sarawagi and Stonebraker (1994) on the number of chunks to
be read is problematic:

K (N /¢ 1
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The factors in this formulation represent the expected value of the
number of chunks to be read for every query class under the assumption
that the position of the queries is uniformly distributed over the entire
array domain. Notice that the objective function takes real values in
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this case. These values do not represent the exact number of chunks to
be read from storage for a given set of queries.

No matter which formulation we consider, it is not possible to
compute a closed-form solution. Since it is not feasible to search the
entire solution space, i.e., |D1|* |Da| * - - % |Dy/|, methods to prune the
space are required. The solution proposed in Sarawagi and Stonebraker
(1994) reduces the search space to shapes of the form (2¥1,2¥2 ... 2VN)
that are maximal, i.e., Ef\il Y = [log2 |sizeof(A1,?42,...,AM)|—" where y;,
1 <1¢ < N, are positive integers. Essentially, only hypercubes with side
length of powers of 2 are considered that fill the maximum chunk size
with minimal waste. The search over such shapes is exhaustive. Once the

optimal shape with this restricted form is found, an additional search
around the solution can be triggered to find an even better solution that
allows more general shapes. In Otoo et al. (2007), the exhaustive search
at the first level is replaced with a greedy algorithm that starts with 0
lengths for all dimensions and then chooses optimally which dimension
to increase at every step. The computations required at each step are
intricate and the authors do not show what benefit this brings when
compared to exhaustive search over the parameter space. While the
solution to the optimization problem is guaranteed to provide optimal
chunking under the given assumptions, it would be interesting to see
how far is this from the best solution. None of Sarawagi and Stonebraker
(1994) and Otoo et al. (2007) provide such results or mention if other
chunking strategies are better for practical query classes.

Independent attribute range model. The query workload can also be
modeled through the size of the ranges it accesses on every dimension.
Instead of considering a hypercube as the access unit, the query is
decomposed into its corresponding segments on every dimension. Thus,
two 2-D query shapes {< 4,4 >, < 4,6 >} are part of two different
pattern classes in the query shape model, but they are part of the
same class based on the first dimension D;. In this case, the probability
distribution is defined separately for every dimension (Otoo et al., 2007).

Example 5.5 (Independent attribute range model). The optimization
formulation for the independent attribute range model is:
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are the number of ranges on dimension 4; s;; is the 4§ range on dimension
i; P;; is the probability of the j  range on dimension i.

In this case, a closed-form formula can be computed if we give up
the requirement that ¢;’s have to be positive integers and we impose
maximality in the sense defined for the query shape model. The formula
obtained using the Lagrange multiplier method gives us the ¢;’s:

n
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N
[Tis1 Ai j=1

In order to obtain the integral solution, i.e., positive integer values
for ¢;’s, the authors propose a method that rounds up some of the ¢;’s,
while others are rounded down. By carefully choosing the two partitions,
the optimal integral solution is obtained.

5.2.3 Recursive Chunking

In recursive — or hierarchical — chunking, the starting point is a single
chunk corresponding to the entire array. The output is a set of chunks
that form a directional tiling (Figure 5.2(b)) of the original array. At each
step in the process, an existing chunk — or chunks — are chosen to be
split. This can be done either by considering a query (Zhao et al., 2018)
or a cost function that ranks the chunks (Li et al., 2020). The chosen
chunk can be split into any number of additional chunks varying from 1
to 3%, where N is the array dimensionality. In practice, a chunk is split
into two chunks by first choosing a dimension and then a point along
the dimension. The coordinates on all the other dimensions stay the
same. The choice of the splitting dimension and the point differentiate
between recursive chunking algorithms. The splitting process is applied
recursively — or iteratively — until a stopping criterion is met. The most
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common such criterion considers the number of non-empty cells in every
resulting chunk — if the number of non-empty cells is below a threshold,
the chunk is not considered for further splitting. Figure 5.3 depicts the
first, fourth, and final split in the recursive chunking that produces
the directional tiling in Figure 5.2(b). A careful reader immediately
observes that this process is similar to how a kd-tree index is built.

2.1 1111 2.1
1.1.21
111 1.1.2
1 2 1.1.1.2
2.2 1122111222 2.2
1.2 1.2
(a) (b) (c)

Figure 5.3: Recursive chunking: (a) first split, (b) fourth split, and (c) final tiling.

Raw array chunking. The goal of raw array chunking (Zhao et al., 2018)
is to infer the chunks dynamically at runtime from the query workload.
Instead of creating arbitrary chunks during loading — which is time-
consuming, delays the time-to-query, and may not be optimal for the
actual workload — chunks are built incrementally one query-at-a-time.
Given a subsample query, the relevant cells have to be identified, while
minimizing the total number of inspected cells. Raw array chunking
is an incremental algorithm that builds an evolving R-tree based on
the queries executed by the system. The invariant of the algorithm
is that the set of chunks cover all the valid cells of the array at any
time instant. Moreover, the chunks are non-overlapping. However, the
resulting chunks do not necessarily cover the complete array — they
cover only the valid cells, which are non-empty in a sparse array. The
central point of this algorithm is splitting a chunk that overlaps with
the query. A chunk is split in two cases. First, if there is a sufficiently
large number of cells in the chunk. In the second case, even when the
number of cells is small, if the query does not contain any cell, the
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chunk is split further. Raw array chunking always splits a chunk into
two chunks. This is done by selecting a single splitting dimension. The
algorithm enumerates over the query boundaries that intersect with the
chunk bounding box and chooses to split into those two chunks that
have the minimum combined hyper-volume. Rather than computing
the hyper-volume from the query-generated chunks, the bounding box
of a chunk is derived only from the cells assigned to it. Chunks that
cover a smaller hyper-volume are more compact, thus the probability to
contain relevant cells is higher. As a result, it is likely that the resulting
chunks do not completely cover the range of the array dimensions. This
is not a problem because the uncovered ranges do not contain valid
cells. Therefore, they are not part of any computation. Nonetheless, the
management of the chunk bounding boxes — the metadata — becomes
more intricate since this is where the operation scheduling is performed.
For optimal performance, a balance has to be achieved between the
number of chunks and the array domain coverage.

RecPart. Given a distributed band-join query between two arrays,
the RecPart algorithm (Li et al., 2020) computes a recursive chunking
that optimizes a composite objective function consisting of two factors.
The first factor is the number of cells that have to be replicated across
chunks, while the second is the overall size of chunks processed at a
computing node — load balancing. Similar to decision trees training in
machine learning, RecPart’s chunking is performed from the root, each
time recursively splitting some chunk. As RecPart splits chunks, cell
replication is monotonically increasing, while large chunks are broken
up into smaller ones. Given the targeted objective, the rank function —
used to choose the best chunk to split and the splitting point — is the
ratio between load balance improvement and additional cell replication.
This gives priority to chunks that do not introduce replication through
splitting. When a chunk becomes small enough that all cells join with
each other, then the chunk is not split any further. However, if the
load induced by that chunk is high, then a grid-style partitioning is
applied internally for scheduling. The rank function is evaluated over
random samples, which can introduce serious errors for sparse and
skewed arrays. Moreover, sampling has to be also performed on the
output of the band-join.
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5.2.4 Adaptive Rechunking

Chunking imposes a strict processing strategy for certain array oper-
ations that access neighboring cells, such as subsample and similarity
join. In such cases — depending on the existing chunking — adjacent
chunks have to be accessed to execute the operation. However, with
a different chunking, it may be the case that the operation can be
performed for every chunk independently, or by accessing a smaller
number of adjacent chunks. Thus, a choice is required — perform the
operation based on the existing chunking or rechunk the arrays first —
the reshape and repart operations in SciDB (Cudre-Mauroux et al.,
2009; Stonebraker et al., 2011; Paradigm4, 2022a) — and then perform
the operation? ChronosDB (Zalipynis, 2018) applies an heuristic to
determine when to rechunk an array. Whenever the size of a chunk
becomes two times larger or smaller than a user-defined threshold, the
entire array is rechunked. A third alternative — possible for operations
such as array similarity join (Zhao et al., 2016) — is to overlap or fuse
rechunking and the operation at the expense of considerable increase in
complexity. While the optimal choice depends on the relative cost of the
available alternatives, in practice the decision is largely binary. With
the exception of similarity joins — band-join (Li et al., 2020) included
— which always perform rechunking, the other operations preserve the
existing chunking.

5.2.5 Update-optimized Chunking

The array fragment concept as a timestamped snapshot of a batch
of updates is introduced in Papadopoulos et al. (2016). A fragment
is a collection of array cells modified via write operations. Rather
than performing the updates in-place — as in the case of HDF5 (The
HDF5 Group, 2020) — the modified cells are grouped into fragments
of fixed size. The order of cells inside a fragment follows the order of
dimensions in the chunk representation. The shape of a fragment is
given by the minimum bounding rectangle (MBR) that encompasses
it. Since fragments are built based on the order of the modification
operations, overlapped fragments can result. However, a cell always
belongs to a single fragment. Update operations are optimized because
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the modifications from a fragment are applied all at once. Moreover, the
consolidation between chunks and fragments is performed only when
the array read access becomes suboptimal due to a large number of
fragments — array reads have to consider both chunks and fragments.

5.3 Mapping Cells to Chunks

Independent of the actual chunking strategy, neighboring cells in the
case of dense grids or proximal points in sparse arrays — measured
based on dimensions — are grouped together in chunks. Moreover, the
typical shape of a chunk is a hypercube aligned with the dimensions.
Whenever a cell or a range of cells have to be retrieved based on their
index, the chunk(s) containing the cell(s) have to be found first. This
requires a mapping function from the cell index to the corresponding
chunk:

Map:DlXDQX---XDNI—>[1...ZChunkS], (55)
where Z hunks 18 the total number of chunks ‘
A chunk is identified by its position across all the chunks — chunks
are linearized similarly to how they are materialized on storage. The
position is given as an index on a discrete axis. The mapping function
can be implicit — given by a closed-form formula — or explicit — stating
the corresponding position for every chunk. In the case of distributed
storage, a second function maps chunks from the linear index to the
assigned server. The chunks allocated to the same server can either
follow the global order or go through another local mapping.

5.3.1 Implicit Mapping

An implicit mapping requires a pre-determined order in which chunks
are considered in the dimension space, e.g., row-major or column-major
for 2-D arrays. The order impacts how chunks are accessed from storage
— precisely, the order determines how long are the sequential scans. An
implicit mapping function requires regular chunks having the same size
and can be applied only to dense grids. When applied to sparse arrays,
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all the empty cells have to be represented explicitly, e.g., NULLs, thus
requiring additional storage space.

Example 5.6 (Implicit mapping). Consider the 3-D grid from Exam-
ple 5.1, i.e., (7,500, 7,500,20), chunked into 1,000 regular tiles with
shape (750, 750, 2). The mapping function used to linearize the chunks
considers the dimensions from the first to the third, with the index on
the third increasing the fastest, i.e., row-major extended to three dimen-
sions. Thus, the order in which chunks are stored follows the indexes as:
[(1,1,1),(1,1,2),...,(1,1,10),(1,2,1),...,(1,10,10),(2,1,1),...].
In this case, the formula for the implicit mapping function is:

xJ.7,500'20+{yJ 20 [z
750

750] 750 2 N J (56)

Mapimplicit(xv Y, Z) = \‘ 2
Given an array index, it is straightforward to find the chunk that
contains the corresponding cell. For example, the cell corresponding to
index (1111, 308,7) is in chunk | 2 [-100+| 88| -10+[ ] = 100+0+4 =
104. Identifying the chunks corresponding to a range/subsample query
is more intricate. Consider the range ([3,000,4,000], [1,000,7,000],
[5,11]). We have to treat every dimension separately in order to identify
the range of chunks covered by the query interval. For dimension =,
we have [4,5]; for y, [1,9]; and [3,6] on z, respectively. To find the
chunks that overlap this range, we have to compute all the possible
combinations of indexes, i.e., 2-9 -4 = 72. Thus, there are 72 chunks
that have to be accessed in order to answer this range query. Some of
them are: [413,414, 415,416, ...,445,446,...,593,594, 595, 596]. Since
1,001 - 6,001 - 7 = 42,049,007 cells are covered by the query — which
fit into 38 compact chunks — the effectiveness of the chunking scheme
is poor for this range query — almost a double number of chunks is
accessed. While the effectiveness can be improved by reducing the chunk

size, this may impact the access speed negatively.

Intermediate mapping with regular chunking. An alternative ap-
proach is to first partition the array into regular chunks using any of
the methods presented previously. The domain on every dimension is
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reduced from the original size to the number of chunks along the dimen-
sion. Based on the original dimension ordering, a chunk corresponds to
every point in the new domain. A chunk is identified by its position
along every dimension. Given the new coordinate system, the mapping
function is defined as a dimensionality reduction transformation from
the multidimensional coordinates of the chunk to an integral position
along a linear axis. This method is introducing an intermediate mapping
from the original domain to the chunk domain, in the same multidimen-
sional space. Only then we are mapping the chunks to the linear axis.
Formally, this corresponds to two functions:

Ma’pchunk:DlXDQX"'XDN»—>01><CQ><...XCN

Mapear : C1 X Co X - x On — [1... Zepumks) » (5.7)
where Cj, is the number of chunks along a dimension, .

Zchunks = |C1| * |C2| % - -+ |C| is the number of chunks

While Map j,,n is straightforward to define, there are a variety of
choices for Mapy;,,.,,- The most common choices are row-major (column-
major), snake row-major (snake column-major), and their extensions to
multidimensional spaces.

Mapping functions based on space-filling curves are presented in Ja-
gadish (1990). They are defined recursively for a given domain size and
do not have a simple closed-form formula. Out of the three methods
presented — Z-curve, Gray code, and Hilbert curve — it is shown that
Hilbert curve mapping provides the best performance for partial exact
match selection — slicing along one dimension — and range selections
in 2-D space. The performance metric used for the theoretical analysis
is the number of runs of consecutive grid points, which is equivalent
to the number of non-consecutive disk blocks fetched. Lower values
correspond to a reduced number of disk seek jumps. This translates
indirectly to continuous scans, thus better disk I/O throughput. In
addition to this metric, the total number of disk blocks fetched and the
size of the linear span for a given selection — the difference between
the maximum and minimum linear coordinate — are also used in the
experimental evaluation.
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Dimension ordering. An important question that requires attention
in the case of implicit mapping is the order in which to consider the
dimensions when linearizing the chunks on storage. Notice that the
same number of chunks has to be accessed for a query no matter what
the order is. What is highly sensitive to the order, though, are the
length of the sequential scans and that of the seeks between chunks
that are within query range. Longer sequential scans and shorter seek
jumps are better. The arbitrary — and most common — solution is to
use the order in which dimensions are specified in the array definition.
In Sarawagi and Stonebraker (1994), the authors provide a heuristic
which orders the dimensions based on the ratio of the number of chunks
accessed on a dimension — across the queries in the workload — and the
number of chunks on that dimension. The dimension with the largest
ratio is the inner-most one. Intuitively, this corresponds to having the
dimensions with the largest accessed number of chunks in the inner loops
of the traversing order. Or, equivalently, execute the longer sequential
scans more often — and the longer seek jumps less frequent.

5.3.2 Explicit Mapping

An explicit mapping function bypasses the conversion to a chunk position
and maps N-dimensional hypercubes specified by their left-bottom and
right-upper corners to the starting position of the chunk on storage:

Ma’pexplicit : [Cl17cu1] X X [ClN’ CUN] — [1 s ZdiSk] ) (5 8)
where Z g is the maximum storage index '

In this case, finding the array cell corresponding to a given index
requires identifying the chunk which contains the index. Since the
mapping function is represented explicitly, this reduces to inspecting
every entry in the function domain and checking inclusion. Building a
multidimensional index — such as an R-tree — over the hypercubes
is an alternative to reduce the number of entries inspected — at the
expense of maintaining the index.

Example 5.7 (Explicit mapping). Let us consider a modification of the
3-D array used in the previous examples. Instead of having a dense
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grid, consider the (7,500,7,500) squares positioned in a plane of size
(10%,10°%). The resulting 20 2-D arrays — when considered together
over the (106, 106, 20) space — form a sparse array. One strategy to
chunk the sparse array is to slice each square out and chunk it using
a dense strategy. Thus, if we use (750, 750) rectangles as before, we
obtain 2,000 chunks with 6 coordinates corresponding to every chunk.
They have the form [(z,y,21), (z + 750,y + 750, z1)] or, equivalently,
[,z + 750] X [y,y + 750] X [21, z1]. An explicit mapping function stores
the corresponding position on storage for every such hypercube — with-
out first mapping to the chunk position. While this example is for a
sparse array, notice that irregular chunking always requires the mapping
function to be represented explicitly.

5.4 Chunk Organization

Once array cell membership to chunk is determined, the next step is to
organize the cells inside the chunk. It is important to remember that
the I/O unit is the chunk. Even if only one cell is needed for a given
task, the entire chunk has to be read from disk into memory. While I/O
is supposed to be the most time-consuming operation, memory access
and CPU processing are also relevant. Thus, it is important to also
consider optimization strategies for these operations.

Array cell organization inside a chunk can be viewed as another
chunking problem — at lower scale. Thus, recursive chunking can
be applied. Everything discussed earlier applies directly to the more
confined space. The depth of the recursion can be decided during
chunking. In Soroush et al. (2011), the authors set for a two-level
recursion. The benefit of such a strategy is again the reduction on the
number of cells that are inspected in range queries. Notice, though, that
the I/O unit at the upper-most level remains the chunk.

5.4.1 Dense Chunks

The standard order in which cells are stored for dense grids is identical
to the order in which chunks are linearized on storage — same order
for dimensions. While other dimension orderings are possible, it is not
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clear what effect they have on query response time. However, the most
important criterion for dense grids is the storage reduction that can be
obtained by discarding the indexes corresponding to array cells inside a
chunk. This technique is known as dimension suppression (Stonebraker
et al., 2011; Cheng and Rusu, 2014). It reduces significantly the size of
the chunk — for highly-dimensional grids — thus, the amount of data
that has to be read from storage. The only requirement for dimension
suppression to be applicable is the existence of an implicit mapping
function from an index to the corresponding cell inside the chunk —
exactly the same idea as for chunk linearization.

5.4.2 Sparse Chunks

In the case of sparse arrays, it is not that clear how to store cells
inside a chunk. The simplest idea is to completely ignore the ordering
and to process any query by scanning all the cells. This is perfectly
reasonable since checking if a cell has to be included in the processing of
a given query takes only a conditional if instruction. Given the purely
relational format of sparse array data, any indexing technique based
on dimensions or attributes — including bitmap indexing — is equally
applicable. In particular, bitmap indexing along dimensions (Wu et al.,
2006) represents a secondary method to discard overlapping chunks for
range queries. The only effect of any indexing technique is reducing the
number of cells that have to be inspected — at the cost of building the
index. As mentioned before, the benefits are unclear.

In Goil and Choudhary (1997), the authors provide a complete
overview on how to organize cells inside a chunk for sparse arrays. They
analyze the storage requirement of every technique as a function of
multiple parameters, such as dimensionality, density, and size of the
array cell. They also provide detailed analytical cost formulas for the
time it takes to answer point and range queries for each of the analyzed
schemes. The storage schemes presented in Goil and Choudhary (1997)
are:

e Indezx-value pairs. This is the straightforward relational representa-
tion of sparse data. Index-value pairs are known as the coordinate
(COO) representation for sparse matrices in BLAS libraries for
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linear algebra. The order of the pairs inside the chunk can be
arbitrary or it can follow the dimensions.

Offset-value pairs. The same principle behind linearizing chunks
on storage is applied to linearizing array cells inside the chunk.
While absolute coordinates have to be stored for chunks, only the
relative position in the chosen order is stored for array cells.
Compressed sparse dimensions. In this representation, one of the
dimensions is chosen as the principal dimension. In the case of
sparse 2-D tensors, we have compressed sparse row (CSR) and
compressed sparse column (CSC) format. The position of every
non-empty array cell is stored on this principal dimension in a 1-D
vector. The cells are also stored in a corresponding 1-D vector. For
the remaining dimensions, the transition from one index value to
the next is recorded as positions in the 1-D vectors with indexes
and array cells, respectively. While the size of the first two vectors
depends only on the number of non-empty cells, the size of the last
vector is equal to Zj-\;l ( fi;l |Di\), where D}y is the principal
dimension. Determining the ordering of the dimensions in order
to minimize the storage is quite straightforward. That is not the
case for determining the principal dimension.

Sparse-dense split storage. Dimensions are split into dense and
sparse. When the dimensionality of the original array is reduced
to the number of dense dimensions, the resulting arrays — one for
every combination of the sparse dimensions — are either dense
or empty. Empty arrays do not need to be stored at all. However,
what have to be stored are the indexes of the sparse dimensions
for which there exist dense arrays.

Bit-encoded sparse storage. Rather than storing the index of each
dimension as a basic numeric type, e.g., int or long, the minimum
number of bits sufficient to represent the cardinality of every
dimension is used. This has the potential to result in storage
reduction — especially when chunking is used. Point queries
benefit from this representation since index matching becomes
a bit manipulation operation. However, answering range queries
becomes more intricate.
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5.5 Mapping Chunks to Storage

Declustering (Moon and Saltz, 1998) studies how to distribute chunks
across disks in a multi-disk environment — shared-disk or shared-
nothing architecture. The formal declustering representation requires a
function to be defined from the chunk linearization to the disk domain:

Map 4y, [1 s Zchunks] — [1 ce HD} s

5.9
where Z punks is number of chunks, HD is number of disks (5.9)

Map 4. partitions the chunks over the available disks. The objective
is to find mappings that evenly distribute the chunks across all the
available disks (Moon and Saltz, 1998). This results in spreading the
disk I/O evenly across disks, thus maximizing the overall throughput.
While this can be achieved on average, there will always be queries for
which more chunks — if not all — have to be read from the same disk,
resulting in degraded I/O performance.

In order to get access to a given array cell, two mappings have to be
applied in sequence, i.e., mapping composition. First, the chunk that
contains the array cell has to be identified using either Map;;,,j;ci or
Map .ypiici- Then, Map gy, is applied on the result. The same procedure
is followed for range queries, with individual calls to Map 4, for every
chunk in the overlapped region.

5.56.1 Data Partitioning Declustering

We introduce possible forms for Map ;. that are immediate extensions
from data partitioning schemes in parallel databases (DeWitt and Gray,
1991). The main difference is that there is no mapping from an array
cell to a given chunk in data partitioning. Rather, the mapping is from
a tuple attribute to a chunk — if present at all.

Round-robin. The declustering mapping function for a chunk with
index z is defined as:
Map,ound-robin () = (x +¢) mod HD + 1 (5.10)

where mod is the modulo operation and c is a constant that determines
the index of the disk to which the first chunk is assigned. Incrementing
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the result is necessary only because numbering the disks starts from 1
instead of 0. The idea is to assign chunks sequentially to disks based
on their position in the linear order. The distance between two chunks
assigned to the same disk is HD. Each disk receives at least {Zcﬁilgkﬂ
chunks. To make things concrete, we consider an example with 9 chunks
indexed 1 to 9 and 3 disks, i.e., HD = 3, indexed 1 to 3. The value of
c is set to 1. Map,,und-ropin 8ssigns chunks {2,5,8} to disk 1, chunks
{3,6,9} to disk 2, and chunks {1,4, 7} to disk 3, respectively.

Range. In range-based mapping, the chunks are split into HD groups,
every group containing % chunks — we assume that Z nunks 1S a
multiple of HD. The difference from round-robin is that the groups
contain consecutive chunks, assigned by the mapping;:

T - HD"
Zchunks

Mapygnge 2) = | (5.11)
Following the example given in round-robin mapping, the chunks as-
signed to disk 1 are {1,2,3}. Disk 2 is assigned chunks {4, 5,6}, while
disk 3, chunks {7,8,9}.

Hash or pseudo-random. The standard mapping function used in
hash-based partitioning is defined as:

Mappaen () = [(a-z+b) mod P] mod HD +1 (5.12)

where a and b are random numbers, while P is a large prime number. On
average, the same number of chunks are assigned to every disk. However,
the chunks assigned to a disk depend strictly on the parameters of the
hash mapping. In the example with 9 chunks and 3 disks, we consider
a=3,b=2,and P = 13. With these parameters, chunks {8,9} are
assigned to disk 1, chunks {4,5,6,7} to disk 2, and chunks {1,2,3}
to disk 3, respectively. In order to enforce that chunks are uniformly
distributed across disks — not in groups, as in this example — a
combination between round-robin and hash can be devised such that in
every run of HD chunks, every disk gets a chunk. Inside a run, chunks
are randomly assigned to disks, rather than following a fixed pattern.
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5.5.2 Intermediate Mapping Declustering

Instead of assigning chunks to disks based on the linearization produced
by the implicit or the explicit mapping, the assignment can be done
starting from the intermediate mapping Map .- In this case, the
input to Map 4, is the multidimensional coordinate in the chunk space:

Map gigi-chuni * C1 X C2 X -+ x Cn — [1... HD| (5.13)

where the symbols have the same meaning as defined previously. There
are various forms Map .- chuni €202 take. In the following, we present the
most common declustering methods that use the intermediate mapping
as introduced in Moon and Saltz (1998).

Disk modulo (DM). In the DM scheme, chunk [i,i9,...,iy] is as-
signed to disk:

Mappyy ([i1, 2, ... ,in]) = (i1 +i2 + - +iny) mod HD+1 (5.14)

Even though the assignment may seem simple, the DM mapping is
known to be strictly optimal — exactly the minimum number of chunks
is read from every disk — for many cases of partial match queries, includ-
ing all partial match queries with only one unspecified attribute (Moon
and Saltz, 1998). However, DM does not scale for range queries as the
number of disks is increased. This limits drastically its applicability.

Fieldwise XOR (FX). The FX scheme replaces the summation opera-
tion in DM with a bitwise XOR operation on the binary representation
of the chunk coordinates. Chunk [i1, i, ...,ix] is assigned to disk:

Mappyx ([i1, 2, ..., in]) = (i1 ®io® -+ ®iy) mod HD+1 (5.15)

where 7; is the binary representations of index j in the chunk space.
FX has similar characteristics to DM — when the number of disks and
the size of each dimension are a power of two, FX is optimal for partial
match queries. The scalability for range queries remains problematic.
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Cyclic. The cyclic allocation scheme introduced in Prabhakar et al.
(1998) is a general declustering method for 2-D dense grids. Chunk
[i1,42] is assigned to disk:

Map ey ([i1,42]) = (H * i1 +1i2) mod HD + 1 (5.16)

where H is chosen to be relatively prime with HD. This results in
separating proximal chunks in both dimensions on different disks —
neighboring chunks on the same row are assigned to consecutive disks,
while neighboring chunks on the same column are assigned to disks
having distance H apart. The condition that H and HD are relatively
prime guarantees that chunks are assigned to all the available disks
before considering the same disk again. It is straightforward to remark
that DM is an instantiation of the cyclic allocation scheme when H = 1.
Given a value for HD, it is possible to create an entire class of cyclic
allocations that choose all the relatively prime values between 1 and HD
for H — if HD is prime, the number of classes is the largest. However,
not all of the classes provide the same performance. Identifying the best
value for H requires a time-consuming exhaustive search. Even if the
search space is drastically reduced, a close to optimal value for H can
be found with high probability.

The scheme with the best performance that avoids the exhaustive
search is based on Fibonacci numbers (Prabhakar et al., 1998). Given a
value for HD, H is chosen such that H = F (F~! (HD) — 1), where F(z)
is the closed-form equation for the " Fibonacci number obtained after
solving the recursion — if HD is a Fibonacci number, H is the previous
Fibonacci number based on this equation. If HD is not a Fibonacci
number and the resulting H is not even relatively prime with HD, H is
forced to be a relatively prime number with HD by finding the closest
such number to the result obtained from the equation.

There are two problems with this approach. First, it is limited to 2-D
arrays. It is not clear how to generalize it to higher multidimensional
spaces and if the analysis holds in higher dimensions. The second
problem is the performance measure used in the paper. For a given size,
all the queries across the entire space are considered and their error is
averaged. Then, the errors are averaged again over all possible sizes.
The problem is that the number of queries is highly different across
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sizes and the maximum error is also highly dependent on the query size.
As a result, the impact an individual query error has on the overall
error is not uniform across all the query sizes.

5.6.3 Space-filling Curves

Another alternative to assign chunks to disks is based on the lineariza-
tion provided by space-filling curves, rather than by multidimensional
chunk coordinates. A space filling curve visits all the points in a multi-
dimensional space exactly once and never crosses itself. In this solution,
chunks are first linearized using a space-filling curve that maps a mul-
tidimensional space into a linear sequence, while preserving spatial
proximity. Then, they are assigned to disks in round-robin fashion.
Unlike cyclic declustering — which enforces that neighboring chunks
on both dimensions are spread apart as far as possible — space-filling
curves guarantee this property only for a subset of the dimensions.
Formally, chunk [i;,1i2,...,iy] is assigned to disk:

Mappee ([11, 72, - - -, iN]) = space (1,42, ... ,iny) mod HD+1 (5.17)

where space is a space-filling curve — a complicated function at the
border between implicit and explicit mappings. Out of the many space-
filling curves proposed in the literature, the linearization based on
Hilbert curves (Faloutsos and Bhagwat, 1993) is shown to provide the
best performance both for partial match, as well as range queries across
multidimensional spaces, when the number of disks is large.

5.5.4 Similarity-based Graph-theoretic Declustering

The main idea behind the previously presented declustering methods is
to make sure that neighboring chunks get assigned to different disks.
This results in spreading the I/O throughput across many disks in
the case of queries that select spatially close regions, thus improved
execution time. The degree to which this goal is achieved is a property
of every method. The approach taken in the similarity-based methods
presented in Moon et al. (1996) and Liu and Shekhar (1995) is to
formulate declustering as a graph partitioning problem. The graph is
generated by creating a vertex for every chunk and creating an edge
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for every pair of chunks — complete graph. The edges are weighted
by the probability that their adjacent vertices are accessed together
by a query. Declustering corresponds to a multi-way partitioning of
the graph. Since the goal is to minimize response time by maximizing
parallelism in disk access, chunks — vertices in the graph — that are
likely to be accessed together should be assigned to different disks —
separate convex components in the graph. This problem is a variant
of the Max-Cut problem, which is known to be NP-complete. As a
result, the similarity-based graph-theoretic methods for declustering
are heuristic algorithms for Max-Cut and its converse — the Min-Cut
problem.

5.5.5 Block-cyclic Declustering

Instead of applying declustering to a full array, a different alternative is
to partition the array into multiple sub-arrays and then apply declus-
tering for each sub-array separately. The same or different declustering
strategies can be applied for every sub-array. This approach is known
as block-cyclic declustering (Soroush et al., 2011). It splits an array into
regular blocks of chunks and declusters every block individually, e.g.,
with round-robin partitioning. In certain cases, block-cyclic declustering
spreads dense array regions more evenly than one-level methods. More-
over, due to the compatibility with BLAS level 2 and level 3 operations,
block-cyclic declustering is the preferred representation for dense matrix
operations in ScaLAPACK (Choi et al., 1992).

5.6 Relational Chunking

Data partitioning (DeWitt and Gray, 1991) is the concept corresponding
to array chunking on relational data. While data partitioning represents
the main strategy for parallel data processing, it is also a simplified
form of indexing. In a relational setting, the tuples of a relation are split
into multiple segments and assigned to different execution nodes for
processing. Since every process works on a smaller dataset, a speedup
proportional to the number of processing nodes can be obtained in
optimal conditions. Moreover, some segments can be ignored when exe-
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cuting certain types of queries. For example, in the case of a range query,
a segment that does not overlap with the range can be safely discarded.
The minimum and maximum value in the segment are necessary for
this decision. They represent the primitive index data.

There are three general data partitioning schemes. In round-robin
partitioning, tuples are assigned to segments sequentially based on their
position in the database file. This guarantees that all the segments have
the same number of tuples — plus/minus one. In range partitioning,
the tuples having values in the same range are grouped together in a
segment. This can be done either by dividing the domain into equal
size segments — equi-width — or by having the same number of tuples
in every segment — equi-depth. The last scheme — hash partitioning —
assigns tuples to segments based on the value of a random hash function
applied to the tuple. This guarantees that tuples with the same value
are located in the same segment. While the segment to which a tuple is
assigned can be determined for every scheme, only range partitioning
groups tuples with consecutive values together. This is exactly the goal
of array chunking — assign neighboring cells to the same chunk. As
such, array chunking is equivalent to multidimensional range-based data
partitioning across the array dimensions (Cheng and Rusu, 2014).

5.7 Tensor Chunking

In the context of tensors, the most common chunking strategies are
targeted at the matrix multiplication primitive. Given the relatively
simple — but complete — access pattern, in which every row from one
matrix is paired with every column from the other matrix, the space of
chunking alternatives is rather limited. This space is further constrained
by the dependency between the chunking of the two input matrices
— which determines the chunking of the result matrix. Specifically, in
order to reduce the number of accessed cells, the left matrix has to be
stored in row-major format, while the right matrix in column-major
format. If that is not the case, rechunking is necessary — which requires
expensive network traffic in a distributed setting.

The chunking strategies for a matrix follow directly from the rep-
resentation of an array as a relation (Section 2.4). The most common



144 Multidimensional Array Storage

strategies are row slice or row strip (Figure 5.2(c)), column slice or
column strip, and regular or tile (Figure 5.2(a)). These strategies are
all arbitrary chunking methods introduced in Section 5.2.1. Storing the
entire matrix as a single chunk — or single tuple — is also relevant
in the context of matrix multiplication because it is amenable to full
replication — or broadcasting — which eliminates the requirement for
rechunking and, thus, can reduce network traffic.

5.7.1 Optimal Chunking for Linear Algebra Programs

The optimal chunking for a linear algebra program consisting of matrix
operations over a set of input matrices — which are pre-chunked at
creation — depends upon the types of operators and the available imple-
mentations. It requires finding the chunking type and its corresponding
parameters, e.g., the tile sizes, for every operator, such that the fastest
execution of the overall program is achieved.

Cost-based adaptive rechunking for linear algebra matrices is im-
plemented in the BUDS system (Gao et al., 2017). In this case, only
four chunking strategies are allowed — exhaustive sparse, row-sliced,
column-sliced, and compressed dense. A storage format corresponds to
every form of chunking. Moreover, conversion procedures are defined
between any two forms of chunking. When a matrix is part of a linear al-
gebra operation, the optimal chunking for that operation is determined.
If this is not the same as the storage chunking, a conversion is executed
as long as its cost is below the cost of performing the operation on
the suboptimal chunking. It is important to notice that this strategy
does not consider the chunk shape as a parameter since linear algebra
operations are always performed on the complete matrix — there is no
subsampling for a matrix.

Optimal chunking is modeled as a graph annotation optimization
problem in Luo et al. (2021). Operators are represented as vertices, while
edges correspond to the matrix operands. Vertices are annotated with the
implementation of the operator and the format — or chunking — of the
result matrix. Edges are annotated with the rechunking transformation
— if any — applied to the associated matrix operand. An execution
time cost function is assigned to every annotation in the graph. The
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parameters of the cost function — including the number of floating point
operations, the network traffic in bytes, and the size of the intermediate
matrix operands — are estimated with a pre-trained regression model.
The goal is to find those annotations that minimize the overall cost of
the graph. This can be done efficiently for a tree-shaped graph — in
time linear in the number of vertices — with a dynamic programming
algorithm — which can be extended to a general directed acyclic graph
(DAG) at the expense of an exponential increase in time complexity.

Other solutions that optimize the execution of linear algebra pro-
grams do not consider the combination of chunk layout, operator im-
plementation, and rechunking transformation over the entire program.
Cumulon (Huang et al., 2013) uses a fixed size tiled matrix layout and
automatically optimizes linear algebra programs in terms of operator
implementations. DMac (Yu et al., 2015) considers only the row/column
strip and matrix as single tuple chunking configurations. Based on the
chunking of the input matrices, the transformations required by every
operator are determined based on the order and dependency among
operators. This is done independently for every operator. The imple-
mentation of an operator is chosen based on the computed chunking
using heuristics that define a holistic communication cost model. In
SystemML (Boehm et al., 2016), the chunk layout is fixed for the base
matrices and is passed unchanged through the other linear algebra
operators. MatFast (Yu et al., 2017) introduces a cost model for ma-
trix rechunking based on the required data transfer. This cost model
is used to determine the optimal chunking of a particular operator.
A linear algebra expression consisting of several operators is greedily
optimized by tuning the layout of every operator independently. The
only supported layouts are row/column strip and matrix as single tuple.
DistME (Han et al., 2019) considers tiled chunking as a generalization
of all the other strategies for stand-alone matrix multiplication. The
optimal tile size is determined through exhaustive search such that the
required communication is minimized. The optimization space is limited
to tiles having size a multiple of the basic tile size.
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5.7.2 Loop Tiling

While array chunking is static — the range on every dimension is
fixed during processing — tensors are often dynamically (re-)chunked
based on the characteristics of the hardware platform. This dynamic
rechunking has been studied extensively in the compiler and high per-
formance computing (HPC) communities under the name loop tiling
or blocking (Irigoin and Triolet, 1988; Wolf, 1989; Renganarayana and
Rajopadhye, 2008; Luo, 2020). The goal of loop tiling is to generate
optimal chunk sizes for the given memory capacity and configuration
in order to increase data locality and parallelism. The focus on mem-
ory access and parallel processing are the main differences from array
chunking.

Loop tiling is formulated as an optimization problem with the
objective to determine the optimal chunk size that results in the fastest
execution under the constraints of cache locality and access reuse (Wolf
and Lam, 1991). Since the optimization problem cannot be solved
efficiently, heuristics are often applied (Dongarra and Schreiber, 1990).
Lowenthal (2000) assigns different tile sizes to the CPUs in a multi-
processor environment automatically. The running time of the first few
block operations is collected and used to decide the tile size for the
subsequent blocks. Kisuki et al. (2000) extend this approach into an
iterative algorithm to choose the tile sizes, while (Nikolopoulos, 2004)
uses different tile sizes for single-thread and multi-thread execution to
avoid cache conflicts between threads. Jordan et al. (2012) present a
multi-objective optimization formulation designed to find the optimal
tile sizes and number of threads for a parallel linear algebra program.
At compile time, a set of candidate solutions is generated. The best
solution is selected at runtime by considering the execution context and
the weight of the different terms in the objective. Leung et al. (2010)
present an optimized tiling strategy that exploits the parallelism and
data locality on GPUs. Li et al. (2019b) extend this approach with
a batching engine, while Kernert et al. (2016) and Hong et al. (2019)
design adaptive tiling strategies for sparse matrices.
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5.8 Data Cube Chunking

As discussed in Section 2.6, data cubes can be stored either in a mul-
tidimensional (MOLAP) format or a relational (ROLAP) format. Con-
sequently, the chunking strategies for arrays apply to MOLAP, while
relational data partitioning applies to ROLAP. In the case of MOLAP,
several aspects specific to data cubes have to be considered in chunking.
The first aspect is the categorical property of the dimensions. Since
this precludes ordering, the set of values assigned to a chunk has to be
associated with every chunk — unlike the range boundaries for numer-
ical dimensions. Second, due to the heterogeneous structure of some
data cubes — consisting both of dense and sparse regions — a hybrid
chunking strategy is more appropriate. For example, dense regions of the
cube are stored in dense chunks, whereas the sparse regions are grouped
together in sparse chunks. This strategy can be extended further, such
that the sparse regions are stored in their original relational format and
the measures are computed on-demand — as in the case of ROLAP. This
hybrid storage strategy is known as HOLAP (Chaudhuri et al., 2011).

5.9 Summary

e From the multitude of chunking strategies proposed in the litera-
ture — including arbitrary, workload-driven, recursive, update-
optimized, and adaptive — the most popular are regular and
sliced chunking, which are also among the simplest.

o Regular chunks are linearized on storage in row/column major
order, snake row/column major order, or with space-filling curves.
The chunks can be subsequently partitioned/declustered across
multiple devices — disks or nodes in a cluster — based on round-
robin, range, hash, cyclic, or graph partitioning functions.

e Dimension suppression is the generally optimized layout for dense
chunks, while for sparse chunks, there are multiple compressed
layouts — including COO, CSR, and CSC.

o Tensors/matrices are chunked using the regular or sliced strategy,
resulting in three common layouts — row strip, column strip, and
tile.
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In this section, we study strategies and algorithms that implement
the array algebra primitives introduced in Section 4 over the chunked
array storage presented in Section 5. We focus on parallel processing
techniques in a distributed array database having a shared-nothing
architecture over a cluster of workers — or nodes — each hosting an
instance of the query processing engine and having its local attached
storage. This processing architecture is depicted in Figure 6.1, which
illustrates how the chunks of the sparse array in Figure 5.1(b) are
distributed across the three nodes X, Y, and Z.

The coordinator is the single query input point into the system.
The coordinator stores the system catalog and manages the nodes and
their access to the catalog. The chunks of an array are distributed —
and possibly replicated — across all the workers, which share access to
a centralized system catalog that maintains information about active
nodes, array schemas, and chunk distribution. In order to determine
the chunks required by a query and their location, a multidimensional
index — such as an R-tree (Guttman, 1984) — is built over the chunk
boundaries. The index provides the first level of pruning for the efficient
evaluation of dimensional indexing and subsampling queries. Access to
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the index and all the other catalog data structures has to incur minimal
overhead. Thus, the catalog is stored in memory. The query optimizer
— also resident on the coordinator — is responsible for computing
the optimal execution plan that minimizes the overall query processing
time. The parameters that are considered include the chunks transferred
among nodes, the transfer schedule, the chunk access plan, and the
overlap between processing and communication. Chunk metadata is the
main source of data used to compute the execution plan.

Coordinator

‘ Catalog metadata ‘

chunk

metadata
Y

‘ Query optimizer ‘

execution plan

(o ey ey 1)
Query [CHUNKS| Query C:”’j Query
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Figure 6.1: Multidimensional array processing system architecture.

The query processor resident on every node implements algorithms
for the array algebra primitives. The defining characteristic of the prim-
itives is that they operate on chunks of variable dimensionality and
size (Widmann and Baumann, 1998). The algorithms include accessing
the chunks from local storage and performing the computation corre-
sponding to the algebra operators. Additionally, the query processor
contains a data transfer module that moves chunks between nodes.
Data transfer is handled by the underlying distributed computing in-
frastructure — such as Hadoop (Hadoop Development Team, 2020) and
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Spark (Zaharia et al., 2010) — or is implemented on top of optimized
communication libraries such as MPI (MPI Forum, 2022). The execution
plan provided by the query optimizer specifies the processing details
and the communication strategy, which is overseen by the coordinator.
Duggan and Stonebraker (2014) consider an elastic environment —
specific to cloud computing — in which the number of worker nodes
can increase at runtime proportionally with the size of the arrays. As
more chunks are appended to an array — for example, based on a time
dimension — more working nodes are added to the cluster. Duggan
and Stonebraker (2014) introduce the cyclic workload model consisting
of three phases — data ingestion, rechunking, and query processing
— that are performed repeatedly. Rechunking is the main operation
in this model. It is performed when a sufficiently large number of
chunks are ingested to require the addition of nodes. In order to execute
rechunking efficiently, incremental algorithms that allocate the new
chunks to the added nodes are devised. These algorithms are derived
from the declustering techniques presented in Section 5.5. In addition
to transferring the chunks to the assigned nodes, only the catalog at the
coordinator has to be updated. Queries are executed separately, as in a
static environment. This is the setting we follow in the presentation.

6.1 Array Processing Paradigms

In this section, we introduce several paradigms to implement the array
algebra primitives. These paradigms define a common chunk-based
interface for all the primitives, which allows for their composition into
queries that implement complex array processing tasks. Since some of
the algebra primitives are second-order functions having a functional
parameter, the processing paradigms can also include an interface for
the definition of the functional parameter. We classify the paradigms
based on this functional interface. At one end of the spectrum, we have
the UDF/UDO paradigm, which supports general functions without
any particular interface. Map-Reduce imposes a strict interface of three
functions, while the GLA paradigm defines a more extensive interface
consisting of both required and optional functions.
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6.1.1 User-defined Functions (UDF) and Operators (UDO)

ArrayDB. ArrayDB (Marathe and Salem, 2002) implements the AML
algebra (Section 4.2), in which arbitrary UDFs are applied to arrays
following a structured strategy. AML execution plans pipeline chunks
from the input array through operators and generate results one chunk
at a time by choosing the optimal result generation order. The execution
plan is an operator tree that contains an internal node for every SUB,
MERGE, and APPLY primitive, and a leaf node for the input array.
The leaf node is a special instance of APPLY that serves input chunks.
Based on the catalog metadata, the nodes in the tree are annotated
with dimensionality and schema information. During query optimization,
the original query tree is transformed into an equivalent one that is
more efficient to evaluate using a multi-step top-down tree traversal
heuristic. The cost measure is the number of UDF invocations in the
APPLY operators in the tree. The tree with the smallest number of UDF
invocations — which are treated as black boxes — is considered optimal.
Since successive operators must have compatible chunk shapes and
generation orders, several rechunking operators are added to the plan.
This introduces a second round of query optimization that minimizes the
memory used by the operators. The position of the rechunking operators
is determined with a bottom-up dynamic programming algorithm. The
optimal query plan is executed bottom-up in a pipelined pull-based
strategy anchored by calls to the GetNext (chunk) iterator.

ArrayUDF. ArrayUDF (Dong et al., 2017) provides a generic im-
plementation for the second-order AMIL APPLY primitive that is
parametrized with different functions for the neighborhood cells, de-
pending on their position relative to the center. In addition to the
generalization to multiple UDFs, these functions can be defined only
on a subset of the neighborhood and they are not restricted to simple
aggregations. ArrayUDF uses the stencil abstraction to define the UDFs
corresponding to a pattern/shape. The execution of a stencil is split
across the array chunks, which are determined dynamically based on the
neighborhood shape. This is possible because ArrayUDF is targeted at
a shared-disk architecture in which the storage is separated from compu-
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tation. In this architecture, the nodes incur similar overhead to access
all the chunks of an array since there is no distinction between local and
remote chunks. In order to allow for fully parallel execution and elimi-
nate communication altogether, cells at chunk boundaries are replicated
into ghost zones. Complex operations are decomposed into a sequence
of stencils that are treated independently. There are no inter-stencil
optimizations since all the intermediate arrays are materialized.

SciDB. SciDB (Cudre-Mauroux et al., 2009; Stonebraker et al., 2011)
implements the ArrayQL algebra primitives (Section 4.6) as UDFs and
UDOs. UDFs are scalar functions with cell arguments that return a
single value as result. UDOs take one or more arrays as arguments and
produce a new array. In addition to the primitives provided by SciDB,
the user is given the possibility to implement other types of operators
— structural or value-based. A SciDB query execution plan consists
of a series of successive UDFs and UDOs, which are instances of the
APPLY primitive with different functions as argument. APPLY provides
a standard pull-based interface with a GetNext (chunk) function that
operates over array chunks. The main idea behind the SciDB query
execution is to identify segments of successive operators that can be
executed in pipelined fashion on a single node. These operators are
scheduled and executed on the nodes where the input chunks are stored.
Unless successive UDFs/UDOs are commutative, the structure of the
query execution plan cannot be altered. Thus, query optimization focuses
on parallelizing individual UDF /UDO operators and pipelining array
chunks between operators. Whenever chunks have to be transferred
across nodes, this is done in a carefully coordinated process. After every
processing step, intermediate chunk statistics are gathered and used for
the optimization and scheduling of the next segment of operators. The
optimization and scheduling are executed dynamically at runtime.

6.1.2 Map-Reduce

The multidimensional data processing system Titan (Chang et al., 1997)
and its successor T2 (Chang et al., 1998) introduce the Map-Reduce
paradigm as a generic parallel architecture to implement the array
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algebra primitives using a unified interface. Later, Map-Reduce has been
popularized by Google for highly parallel/distributed computing (Dean
and Ghemawat, 2008). Map-Reduce applies the following second-order
functions to input chunks in order to produce the result chunks:

e Transform: transform input chunk cells into items. This function
is performed concurrently by the nodes.

e Map: map the transformed items to output chunk cells. The
coordinator assigns cells to output chunks and determines the
node storing the chunk. The nodes transfer data among themselves
directly.

¢ Reduce: aggregate all the items mapped to the same cell to com-
pute the output value. This function is performed concurrently.

The defining characteristic of Map-Reduce is customization — Trans-
form, Map, and Reduce can be parametrized with any processing func-
tion. If the required functions are not already available, the user has
the ability to implement them by following a well-defined interface.
When the functional parameters passed to the Map-Reduce interface
are associative decomposable, i.e., commutative and associative, both
distributive and algebraic, the input and output chunks can be efficiently
processed in parallel and in any order.

Albeit originally introduced as public implementations of the Map-
Reduce paradigm for customizable tasks over arbitrary formatted
datasets, Hadoop and Spark have evolved into much more compre-
hensive ecosystems that also encompass array processing. The chunking
provided by these systems does not follow the semantics of array chunk-
ing, in which adjacent cells are grouped together in order to achieve
data locality. As a result, array chunking has to be implemented as the
initial step of any computation — which is expensive and unnecessary.
Moreover, the processing strategy in these systems is batch-oriented
and does not readily support range predicates on dimensions. These
shortcomings have led to the development of array-optimized exten-
sions in Hadoop and Spark. SciHadoop (Buck et al., 2011) introduces
primitive array chunking and the dimension subsampling primitive in
Hadoop. SIDR (Buck et al., 2012) decouples the sequential Hadoop
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execution of Map and Reduce into separate asynchronous tasks for
every result chunk. Spangle (Kim et al., 2021) extends Spark with array
chunking, and bitmasks and bitwise operations that encode valid cells
in sparse arrays. Spangle supports both array algebra primitives as well
as linear algebra operations on matrices, implemented using the Spark
functionality. Overall, these extensions to Hadoop and Spark require a
significant engineering effort to embed standard array techniques into
Map-Reduce implementations targeted at unordered key-value data
collections. However, the contributions to multidimensional array data
management are rather limited.

6.1.3 Generalized Linear Aggregates (GLA)

The GLA interface for massively parallel data aggregation is introduced
in the GLADE system (Cheng et al., 2012) and extended to multidi-
mensional array processing in EXTASCID (Cheng and Rusu, 2014). A
GLA is an associative-decomposable aggregate interface consisting of
four user-defined functions — Init, Accumulate, Merge, and Finalize
— that process array cells independently before combining their partial
states into the final result. The semantic of these functions is similar to
the Map-Reduce paradigm. Init corresponds to Transform, Accumulate
to Map, while the compound Merge and Finalize to Reduce.
Additionally, GLAs are enhanced with functions specific to array
operations. BeginChunk is invoked before the cells inside a chunk are
processed. EndChunk is similar to BeginChunk, invoked after processing
the chunk cells instead. These two functions operate at chunk granularity.
They are the places where side-effect operations are executed. For
example, array cells can be sorted according to a dimension that makes
the processing more efficient in BeginChunk. In EndChunk, data that
are part of the GLA state and do not require further merging can be
materialized to disk — resulting in significant reduction in memory
usage. The difference between Init and BeginChunk, and Terminate
and EndChunk, respectively, is that BeginChunk and EndChunk can be
invoked multiple times for the same GLA, once for every chunk. This
is because GLAs are used across chunks. Merging is invoked in two
places. LocalMerge puts together local GLAs created on the same
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processing node, while RemoteMerge is invoked for GLAs computed at
different nodes. This distinction provides optimization opportunities
depending on the chunking strategy — when chunks corresponding
to the same array are stored on the same node, only LocalMerge is
required. Terminate is called after all the GLAs are merged together
in order to finalize the computation, while LocalTerminate is invoked
locally after the GLAs at a processing node are merged.

Cheng and Rusu (2014) show how all the primitives in the ArrayQL
algebra can be expressed in terms of functions from the GLA interface.
They even provide a mapping for the more complex AML APPLY
operator — which is not optimally supported in Map-Reduce. It is
important to notice that not all the interface methods have to be
implemented for every array algebra primitive. Overall, while GLAs are
similar in spirit to Map-Reduce since they provide a unified interface to
express array operations, they are more generalizable. Moreover, they
also integrate organically with relational data.

6.2 Array Operators

In this section, we present algorithms for the array algebra primitives
introduced in Section 4. We focus on the primitives that require data
processing beyond the catalog metadata stored at the coordinator. These
include SUBSAMPLE, FILTER, APPLY, REDUCE, and JOIN. Their
corresponding relational algebra operators are selection, projection,
group by aggregation, and join, respectively.

6.2.1 Indexing on Dimensions (SUBSAMPLE)

Subsampling — or positional indexing on dimensions — can take multi-
ple forms depending on the type of indexing — point or range — and
the number of dimensions it is applied to — all or a subset. In the most
selective case, there is a point predicate on every dimension, which re-
quires access to a single chunk. Dimensions without conditions — which
include their entire range — lead to the inclusion of all the chunks in the
corresponding hyperplane to the result. Subsampling is implemented
as an index scan operator based on chunking (Section 5.2). The goal
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is to access from storage only the chunks that overlap with the range
predicate. In a subsequent refinement step — applied to the accessed
chunks — only the cells within the range predicate are extracted. Since
the execution time is dominated by the number of accessed chunks,
the optimization strategies are targeted at designing effective chunking
methods — which are discussed extensively in Section 5.

6.2.2 Filter on Attributes (FILTER)

Since the array is chunked and organized based on dimensions, filters
on attribute values require inspecting all the chunks. This operations
corresponds to a full sequential scan. In the worst case, all the array
data have to be accessed. However, if columnar storage is used for
the attributes (Papadopoulos et al., 2016), the amount of data read
from storage can be reduced — only the required attributes are read.
The number of accessed chunks can be further reduced by storing
the minimum and maximum value — the range — of each attribute
across chunks (Cheng and Rusu, 2014). While the range can be large
since the attribute values are not clustered, reductions are possible for
certain range queries. Another alternative is to build an unclustered
index that stores the chunks where every distinct value of the attribute
appears (Blanas et al., 2014). However, this solution requires additional
space for storing the index and additional time to access the index prior
to the data — as with any index structure.

COMPASS (Xing and Agrawal, 2018) partitions the cells of a chunk
based on the value of an attribute. This results in buckets that group
cells with close values together — instead of adjacent cells. Every bucket
stores the dimensional indices of the assigned cells together with the
residual attribute values normalized to the lower bucket boundary. Given
the unknown cell assignment to buckets, the indices have to be stored
explicitly for every cell. Dimension suppression is not possible any-
more. The COMPASS storage layout is essentially combining dimension
chunking with attribute range-based partitioning in order to optimize
queries with selections on both dimensions and attributes. However,
improvements are limited only to the case when the range on dimensions
matches exactly chunk boundaries and an attribute selection is present.
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6.2.3 Aggregation (APPLY + REDUCE)

Unlike relational aggregation — which groups tuples based on their
value — array aggregations are structural — they group array cells
based on their positional relationship. The structural relationship is
encoded as a shape/pattern argument to the APPLY primitive that is
evaluated for every cell in the array and results in an array with the
same size. This is different from relational aggregation, which generally
results in a smaller table. The values in the new array are obtained by
performing the REDUCE primitive over the cells covered by the shape.
Wang et al. (2014) classify structural aggregations based on the shape
into grid, sliding, hierarchical, and circular, while Choi et al. (2019)
define top-k aggregates over overlapped and disjoint subarrays.

There are two approaches to perform structural aggregations over
chunked arrays. The first approach uses overlapped chunking (Sec-
tion 5.2.2) in order to confine the computation to a single chunk and
avoid data transfer. The main benefit is that all the chunks can be
processed concurrently without any synchronization — aggregation
becomes trivially parallel. The requirement is that the shape param-
eters for all the queries are known beforehand since the shapes are
used to perform chunking. Additionally, overlapped chunking increases
storage because of cell replication. ArrayStore (Soroush et al., 2011)
and ArrayUDF (Dong et al., 2017) — among others — implement this
strategy.

The second strategy for structural aggregation is characteristic to
the GLA processing paradigm presented in Section 6.1.3. It consists
of two stages. During local aggregation, all the cells that are internal
to a chunk are processed in parallel. The cells at chunk boundaries
require access to cells from other chunk(s). These are handled in the
merging stage by transferring them to the same node. Merging can also
be performed concurrently across chunks. Further optimizations are
possible for reduce functions that are associative-decomposable since
they are insensitive to the execution order. Compared to overlapped
chunking, the merged strategy is independent of chunking and the shape
parameter, thus, more general. Moreover, the overhead incurred by data
transfer can be overlapped with the aggregate computation.
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6.2.4 Joins (JOIN)

Structural — or dimension:dimension — joins (Section 4.6) are specific
only to array databases because the chunking of the arrays is used to
optimize data transfer among nodes and local processing at a node. The
other types of array joins require value-based repartitioning, which is
standard for relational joins. As such, we focus on algorithms for struc-
tural array equi-joins and their generalization to shape-based similarity
join.

Structural join. The standard algorithm to implement array equi-join
is a special form of nested-loop join operating at chunk level (Algorithm
3 in Soroush et al. (2011)). The join iterates over chunks of the outer
array «. For every chunk, it looks up the corresponding chunks in
the inner array 3, retrieves them all, and joins the outer chunk with
every of the inner chunks in turn. The join between two chunks is itself
implemented as nested loops iterating over chunk cells. If the cells in
the chunks are sorted according to dimensions, the optimal merge join
algorithm can be executed instead.

The structural join algorithm can be readily implemented in a
distributed array database. Once the joining cells are determined for
an outer chunk — or all the outer chunks — the node identifies their
location by querying the catalog on the coordinator. A message is sent to
the corresponding node for every chunk and, when the chunk is received,
the output cells in the output array 7 are computed. While the degree of
parallelism across nodes is maximized, there are several problems with
such an asynchronous decentralized approach. Although every node
aims to minimize the amount of transferred data — it behaves locally
optimal — there is no guarantee that the overall data are minimized.
In fact, this is very unlikely since nodes do not coordinate at all. As a
consequence, the actual data transfer can be severely imbalanced due to
the contention for network bandwidth. In the extreme case, all the nodes
in the cluster send/receive data to/from the same node. Load-balancing
beyond what is achievable with a uniform chunk distribution to nodes
is not considered at all in structural join.
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Baumann and Merticariu (2015) propose an alternative in which
the joining chunks across the two arrays are grouped into components
that are processed as a single unit. The components are computed as
an Euler circuit in a bipartite graph, in which chunks are the vertices
and edges correspond to joins. Every component is assigned to a node
for processing. The node requests the chunks — which can belong to
any of the two arrays — following a sequential order that guarantees
that result cells are incrementally produced and chunks are minimally
accessed. The benefit of this solution is that it reduces the amount
of transferred data by moving a chunk only once — in some cases,
multiple transfers are still necessary. The drawback is the decrease in
the number of tasks executed concurrently, from one for every chunk
in the outer array to one for every component. The overall impact of
these changes to structural join depends on the initial chunking of the
two input arrays.

Map-Reduce join. In the structural join algorithm, the computa-
tion is executed exclusively at nodes storing chunks from the outer
array «. Unless these chunks are distributed across the entire cluster,
there are nodes that do not participate in join processing. Moreover, if
chunk distribution is not even, there is load imbalance. Map-Reduce
join (Blanas et al., 2010) — as a direct extension of distributed Grace
hash join (Dewitt et al., 1990) — guarantees that all the nodes in the
cluster participate in join processing. Load-balancing is enforced at
runtime through dynamic assignment of chunks to nodes. The tradeoff
to achieve these two goals is network traffic. Map-Reduce join is far
from network-optimal because it transfers the complete arrays over the
network.

Map-Reduce join works as follows. The result array is divided into
logical non-overlapping chunks, i.e., join units. These are computed
from the schema of the result array — specified by the user, or inferred
by the system in some restricted situations. Join units are computed at
the coordinator and sent to all the nodes storing data from arrays o and
B, or they are encoded directly into the Map hash function. Every node
partitions the cells it stores over the join units. This is done concurrently
across all the nodes. Cells in array « are assigned to a single join unit.
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Cells in array g are assigned either to a single join unit — for equi-join —
or they can be replicated in several units — for similarity join. The data
alignment phase, i.e., shuffling, transmits all the partitions belonging to
the same join unit to a single node for the computation of the result
7. In the case of distributed hash join, the assignment of join units to
nodes is static and uniform. In Map-Reduce join, tasks are assigned
dynamically at runtime to better adapt to the processing capacity of
the nodes, resulting in more adaptive load-balancing.

Shuffle join. In structural join, every node minimizes its local data
receiving, while Map-Reduce join ignores communication completely.
Shuffle join (Duggan et al., 2015b) aims to minimize the overall data
transfer imposed by the execution of an array equi-join, while guarantee-
ing some form of load-balancing. It extends upon the track join minimal
network traffic distributed hash algorithms introduced in Polychroniou
et al. (2014). The main idea is to consider the assignment of join units
to nodes as a global optimization problem and solve it after all the
nodes finish their local partitioning. The amount of data each node has
in a join unit is the principal decision variable. Several algorithms are
considered, including a simple minimum bandwidth greedy heuristic
that assigns a join unit to the node storing the largest portion of cells
in the unit; a tabu search algorithm that incorporates load-balancing
into the minimum bandwidth heuristic; and an integer programming
formulation that optimizes the end-to-end execution time. The proposed
analytical cost model has the inherent limitation that communication
and computation cannot be overlapped across the join units assigned
to the same node. Moreover, the order in which a node has to send its
partitions is not computed — it is arbitrary. A global synchronization
mechanism that enforces a single node to transmit data to a destination
at any time instant is deployed in order to prevent network congestion.
However, this can have the negative effect of stalling nodes.

Array similarity join. Zhao et al. (2016) design a parallel algorithm for
the shape-based array similarity join operator introduced in Section 4.6.
This algorithm is an optimized structural join that minimizes the overall
data transfer and network congestion while providing load-balancing
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across the nodes that store array chunks. The algorithm has two stages

— optimization and execution. In the optimization phase, the algorithm
computes an optimal execution plan for every worker node. The plan
consists of three components — transfer graph, transfer schedule, and
data access plan. Finding the optimal plan is challenging because it
involves solving a complex non-linear optimization problem. The pro-
posed solution decomposes the original optimization problem into three
separate sub-problems — one for every plan component — and solves
them independently using graph-based heuristic algorithms. At query
execution, the algorithm overlaps I/O — disk and network — with join
computation at chunk granularity. Network transfer and local disk I/0
are each handled by a separate thread. The join between two chunks
is executed in a separate worker thread. The algorithm is configured
with a pool of worker threads, allocated based on the number of CPU
cores available in the system. This allows for several pairs of chunks to
be joined concurrently. All the threads — I/O and workers — execute
asynchronously and coordinate through message passing.

Li et al. (2020) introduce a shuffle-based algorithm for band-joins,
which are a restricted form of array similarity joins with symmetric
shapes. Since the input arrays are not grid-partitioned — or chunked —
the join requires a complete data shuffle, similar to Map-Reduce join.
The algorithm applies a recursive partitioning scheme based on the band
parameter and using samples from the input arrays. This partitioning
allows for a finer-grained replication of the array cells across nodes,
which results in less data transfer compared to standard grid chunking.

Join algorithm comparison. Table 6.1 summarizes the properties of
the array join algorithms. Structural and similarity join are the most
general of these algorithms. Map-Reduce and shuffle join are in the
same family of equi-join algorithms. Extensions to array similarity join
and other types of joins are possible, however, they incur costly modi-
fications. Shuffle join is the only algorithm that aims to minimize the
overall data transfer. Map-Reduce join incurs heavy all-to-all communi-
cation, while structural join targets only local optimizations at every
node. Network congestion is addressed only by shuffle join through a
runtime global synchronization mechanism that gives writing access
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on a link to a single sender. Load-balancing is supported as a runtime
reactive process in Map-Reduce join. The approach in shuffle join is
to embed load-balancing into the data transfer scheduling. Thus, only
Map-Reduce and shuffle join include all the nodes — not only the
ones storing the join arguments — in the processing. Since they do
not consider the initial chunking, Map-Reduce and shuffle join require
complete data repartitioning and mapping to the output array space. As
a result, repartitioning incurs unnecessary data replication. The array
similarity join operator extends the benefits of the other algorithms by
minimizing the overall transfer and network congestion while providing
load-balancing across the nodes that store data, but without completely
repartitioning and replicating the arrays.

Table 6.1: Comparison of array join algorithms.

H Structural Map-Reduce Shuffle Array similarity
Targeted join general equi-join equi-join general
Data transfer locally optimal suboptimal globally optimal globally optimal
Network congestion || ignored ignored runtime optimal scheduling
Load-balancing ignored runtime reactive static optimized static optimized
Processing nodes store one of w or B all all store a or 3
Repartitioning not required complete complete not required

Replication minimally required suboptimal suboptimal minimally required

6.3 Advanced Array Processing Techniques

In this section, we present advanced processing techniques for array data.
These techniques build upon the general processing paradigms and the
algorithms implementing the array primitives. We discuss materialized
views, versioning, provenance, and uncertainty — all of which are current
research topics in data management and databases.

6.3.1 Views

Zhao et al. (2017) introduce the concept of materialized array views de-
fined over complex shape-based similarity join aggregate queries. Since
shape-based array similarity join is a generalization of array equi-join
and distance-based similarity join, materialized array views cover an
extensive class of array algebra operations. With regard to SQL, array
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views include the class of join views with standard aggregates. The
incremental array view maintenance is considered under batch updates
to the base arrays. Batch updates are essential for amortizing the cost
of network communication and synchronization in a distributed envi-
ronment. There are two primary challenges posed by incremental array
view maintenance under batch updates. The first challenge is identifying
the cells in the base arrays that are involved in the maintenance compu-
tation and the cells that require update in the array view. The second
challenge is due to the distributed nature of array databases. Given the
current distribution of the arrays and the view, the challenge is to find
the optimal strategy — data transfer and computation balancing — to
integrate the updates into the view.

Zhao et al. (2017) model distributed array view maintenance as an
optimization formulation that computes the optimal plan to update
the view. The optimization continuously repartitions the array and
the view based on a window of past batch updates. In the long run,
repartitioning improves view maintenance time by grouping relevant
portions of the array and the view and by distributing join computation
across the cluster. Meanwhile, repartitioning does not incur additional
time because it takes advantage of the communication required in view
maintenance. Since the optimization cannot be solved efficiently, the
formulation is decomposed into three separate stages — differential view
computation, view chunk reassignment, and array chunk reassignment

— that are solved independently by effective cost-based heuristics. The
materialized views are integrated in optimizing similarity join queries
using an analytical cost model that chooses the best alternative between
a complete similarity join and a differential query on the view.

6.3.2 Versioning

The idea behind versioning is the requirement to never modify the array
in place. Every modification has to generate another version of the
original array. Some of the versions are given names, while the majority
are identified based on a sequential identifier assigned automatically by
the system. Maintaining versions allows for novel time travel queries.
These queries retrieve a particular version of the array at a given instance
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in time or return the transformations data go through across a subset
of the versions. Abstractly, array versioning corresponds to adding a
new time dimension to the original array, while time travel queries are
either slice or range queries along the time dimension.

An array versioning system has to address several problems. The first
— and most important — is how to minimize the storage space occupied
by the versions? The naive solution to materialize every version inde-
pendently results in storage proportional with the number of versions.
The observation allowing for improved solutions is that new versions
modify only a small portion of the array. Thus, materializing only the
modifications has the potential to save significant storage. Alternatively,
a delta array that contains only the difference between the base array
and a version can be generated. The second question is which version to
materialize? Under the assumption that the newest version is queried
more frequently, the newest version should be materialized. To reduce
the number of previous versions that have to be re-encoded based on
every new version, older versions are maintained as the difference from
the immediately successive version. This way, a chain of delta versions
in which version one is materialized as the difference from version two,
version two as the difference from version three, and so on, results.
When versions are maintained as deltas, answering time travel queries is
more complicated since heavier computation — combining deltas with
a materialized version — is required. Thus, efficiently answering time
travel queries with deltas is the third versioning problem to consider.

Three solutions for maintaining and querying versioned arrays are
built on top of SciDB. All of them consider the simplified problem of
versioning single-valued arrays with regular chunking. The main idea is
to store a single materialized version of a chunk and all its deltas inside
the same chunk.

Seering et al. (2012) study how to optimally encode a series of
consecutive versions given at once under the assumption that queries
across all the versions are equally probable — materializing the last
version is not optimal in this case. The goal is to determine which
versions to materialize and based on which materialized version to create
deltas for the non-materialized versions. The problem is formulated as
a graph having versions as vertices. Edges represent deltas from one
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version to another and are annotated with the storage required by the
delta. The optimal version to materialize and the sequence of deltas
are computed as the minimum spanning tree of the resulting graph —
where the root corresponds to the materialized version.

Soroush and Balazinska (2013) and Xing et al. (2018) consider a
scenario where versions of the same array are created incrementally,
one after another. The assumption is that the most recent version is
queried more frequently than the previous ones and the probability of
querying a version decreases with its age. Thus, the most recent version
is materialized and every other version is stored as a delta from the
immediately successive version. When a new version is created, only the
second newest version has to be delta encoded from the newly created
version. The storage space required by the versions is reduced by delta
and run-length compression applied at chunk level. The execution time
increases with the age of the queried version since a larger number of
deltas have to be merged. Soroush and Balazinska (2013) introduce
skip links — delta encodings between non-consecutive similar versions —
that are built lazily while evaluating queries. Only skip links to the most
recent version are considered and only when querying an old version.
Skip links are also used to provide faster approximate answers to other
non-similar time travel queries.

6.3.3 Provenance

Scientific processing consists of workflows of operators that take as
input arrays, apply multiple transformations, and generate an output
array. Given an output cell, it is common to ask what are the cells
in the input arrays on which the output cell depends? Or the inverse
equivalent query, what are the output cells that depend on a given input
cell? To complicate the problem further, these types of queries can be
asked for any pair of operators in the workflow, not necessarily the
source and the result arrays. To answer these queries after the workflow
is processed — without entirely re-executing it — lineage data have to
be stored for every operator in the workflow — in both directions. If
such data are generated at cell level for all the arrays in the workflow,
the amount of additional space may be larger than the original data.
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Also, it is not guaranteed that answering the provenance queries is going
to be faster than re-executing the workflow. Determining which data
to materialize and which to recompute is the fundamental question in
array provenance.

SubZero (Wu et al., 2013) is a prototype system for managing
array provenance data. It is based on the idea of region lineage as
an intermediate level to generate and store lineage data based on
locality. SubZero introduces a lineage API that allows developers to
expose lineage data from UDFs through mapping functions. Given a
workflow consisting of a series of operators, SubZero uses an optimization
framework to select the optimal strategy to generate lineage data for
a given workload. Multiple strategies to generate lineage data are
considered for every operator and their corresponding cost. SubZero can
record and store the lineage data at workflow runtime or it can decide
that it is more efficient to re-execute the workflow, case in which the
lineage data are generated only during the execution of the provenance
query — after answering the query, the provenance data are discarded.

Every operator in the workflow can support multiple types of lineage
data. Black-box lineage data record only the input and output arrays
of every operator together with the execution parameters. Cell-level
lineage records pairs of (input, output) array cells, where the output cell
is dependent on the input cell. An input/output cell can be part of many
pairs. Region lineage is similar to cell-level at a coarser granularity — all-
to-all cell-level lineage applies between every cell in the input region and
every cell in the output region. Multiple strategies to generate and store
the region lineage data are presented. Operators can implement one or
more strategies. In full lineage, all the region pairs are stored explicitly. In
mapping lineage, only two mapping functions — forward and backward
— have to be specified for an operator. Every function specifies the output
coordinates as a function of the input cell coordinates. The functions
do not depend on cell content. They are structural array primitives. No
lineage data are stored in this case. At query time, the lineage can be
computed for every cell based on the coordinates.
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6.3.4 Uncertainty

Uncertainty can manifest in array databases in two different ways —
value uncertainty and position uncertainty (Peng and Diao, 2015). Value
uncertainty corresponds to the situation when the value of an attribute
is modeled by a probability density function, and is an immediate
extension of probabilistic databases. Position uncertainty applies to
dimensions. In this case, the indices of a cell are uncertain. They are
modeled by a multidimensional probability density function. Essentially,
the values at a particular index combination can belong to multiple
cells — identified by different indices. From a chunking perspective,
position uncertainty implies cell replication across chunks. Moreover,
value uncertainty is a direct consequence of position uncertainty. The
inclusion of uncertainty in the structure and content of an array requires
defining the semantics of the array primitives over probability density
functions and designing efficient algorithms to evaluate the uncertainty-
enhanced primitives.

Ge and Zdonik (2010) assume that the values of an array attribute
are drawn from an unknown probability density function. They also
assume that the values exhibit positional correlation, which means that
neighboring cells are more likely to have similar values. The proposed A*-
tree is designed to capture these positional correlations in a hierarchical
tree structure similar to a quad-tree index. The leaves of the tree contain
the cell values in the array, while the intermediate nodes encode the
correlation among the corresponding children nodes. The nodes in the
first intermediate level encode correlations among adjacent cells. The
nodes at higher levels capture the correlation among cells that are farther
apart. A*-tree supports the efficient execution of reduce and structural
join array algebra primitives through Monte Carlo sampling (Ge et al.,
2011), which can be performed top-down from the root of the tree by
applying aggressive pruning.

Peng and Diao (2015) define the possible range of an array cell as the
subarray within the bounds of which the cumulative probability to find
the cell is approximately one. The range on a dimension is determined
as a constant number of standard deviations from the position of the
cell. Based on the possible range associated with every cell, probabilistic
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subsampling and structural join operators are defined. They both take
a threshold parameter as input argument and include a cell in the result
if its probability at a location that overlaps with the range predicate is
larger than the threshold. This change requires the transformation of set
membership operations from the original primitives into range overlap
checks in probabilistic subsampling and structural join. The standard
solution to handle range overlapping is boundary cell replication across
chunks. Peng and Diao (2015) introduce a variant that replicates only
the cells having large positional variance according to their probability
density function. In order to support efficient structural joins, an index
is built over the cell range overlap of the inner array. This allows fast
identification of the relevant cell pairs in the inner loop of the nested
loop join algorithm — which becomes indexed nested loop join.

6.4 In-situ Array Processing

Dense arrays — or grids — generated by scientific applications are
stored in raster files with a self-describing format, which makes them
queryable, portable, and sharable. A raster file can contain one or more
arrays, each with its own chunking. There are multiple popular raster
file formats, including FITS (The FITS Support Office, 2022), Geo-
TIFF (Open Geospatial Consortium, 2022), HDF5 (The HDF5 Group,
2020), and netCDF (UniData, 2022). Every format is accompanied by
a corresponding 1/0 library that provides access to the arrays at chunk
granularity. The access is done programmatically through function calls
that identify the chunks based on their dimensions. More advanced
libraries that implement a large range of array algebra primitives are
either integrated with the access libraries or built on top of them. Two
such advanced libraries are netCDF Operators (NCO) (The netCDF
Development Team, 2022) and Geospatial Data Abstraction Library
(GDAL) (The GDAL Development Team, 2022) — which supports
more than 100 different raster formats and implements primitives on a
general intermediate array representation.

The goal of in-situ array processing is to access data directly in the
raster file format — without loading in the array database. This can be
achieved by integrating the raster 1/O libraries within the array scan
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operators. The new bridge operators produce chunks by retrieving the
corresponding data from the file and mapping to the in-memory format
of the array database — known to all the other operators. This is the
approach taken by Wang et al. (2013a) who implement a subsampling
scan operator that maps complex dimensional range predicates into I/0O
library calls. In subsequent work, Wang et al. (2014) push the execution
of structural — or chunk-level — aggregates to the scan operator.
SDS/Q (Blanas et al., 2014) introduces an index scan operator for cell
value filters based on an external bitmap index. ArrayBridge (Xing
et al., 2018) implements both a scan and a save operator that converts
SciDB chunks to HDF5 files. The save operator allows for the creation
of multiple versions of an array under modification operations and the
execution of time travel queries — which are pushed to the scan operator.
Data Vaults (Ivanova et al., 2012) implement just-in-time loading and
caching to preserve the converted arrays inside the MonetDB database.
Zhao et al. (2018) design a distributed caching layer on top of raster
files to speed up access to frequently queried cells. The chunking in the
cache is based on the workload and can be different from the one in the
raw files. In summary, the purpose of all these solutions is to reduce
the number of raster file accesses and minimize the number of chunks
passed to the upstream array primitives.

A more advanced form of in-situ processing performs array opera-
tions by invoking the already existing functions in some of the raster
file libraries. This approach is taken by ChronosDB (Zalipynis, 2018),
which delegates the complete execution of array operations to the NCO
and GDAL libraries. The main limitation of these libraries is the single-
node single-file architecture without support for array chunking and
distributed processing. ChronosDB addresses these shortcomings by
implementing a coordinator that manages the invocation of local library
instances running on the cluster nodes. Upon receiving a command —
that has the same syntax as the corresponding library function — the
coordinator forwards it to the nodes, which perform it on their local
files. However, since the files are chunks of a distributed logical array,
the local outputs of the command have to be composed to generate the
complete result. This composition introduces two problems. First, the
operations required may be different from the original library function.
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Thus, in order to implement the distributed version, the composition
required by every function has to be determined. The composition can
be quite different from the original command and may not even be
available as a library function — case in which additional logic has to
be implemented. The second problem is that the composition requires
data transfer among nodes, which has to be newly added on top of the
raster library. In addition to these issues, ChronosDB has to create a
unified catalog with chunk metadata over the raster files. This requires
the identification of the files that store subarrays — or chunks — from
the same logical array and, subsequently, dimension alignment and
rechunking. Since these operations are performed in-situ on the raster
file, the user has to manually copy the files to the nodes. Consequently,
converting a single-node raster library into a distributed version requires
significant effort that goes well beyond invoking separate instances of
the same function at every node.

6.5 Relational Array Processing

The standard approach to support array processing inside a database
is to integrate arrays in the relational data model. Given the multiple
representations of arrays as relations — introduced in Section 2.4 —
several processing strategies are possible. In the case of array as table
representation, the array primitives can be mapped directly to rela-
tional algebra operators and SQL. However, the mapping can result in
complex sequences of operators that are both unintuitive and inefficient.
The reason for this is the complete reliance on relational operators,
which leads to the inability of applying array-specific optimizations.
The processing strategies for the other representations depend on the
availability of a composite array data type and corresponding opera-
tors. When these are supported, array operations can be included in
queries as direct function calls. This leads to mixed queries that consist
of relational operators and array primitives. Since the optimizations
across the two types of operators are mostly limited to the placement
of the array primitives within the relational execution plan, achieving
the best performance is challenging. When the composite data type is
unavailable, arrays are encoded as binary large objects (BLOB), which
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are processed exclusively through external user-defined functions (UDF).
These can reside inside the database or at the application level. In the
first case, the optimizations are minimal since UDFs are treated as black
boxes by the query optimizer. For the later, the database provides only
storage while the application has to implement all the necessary array
processing — including optimizations across primitives.

(S)RAM. (S)RAM (Ballegooij, 2004; Cornacchia et al., 2008) im-
plement the (S)RAM array algebra (Section 4.3) on top of the Mon-
etDB/X100 relational database system (Idreos et al., 2012; Boncz et
al., 2005) using the array as table representation. The array algebra
primitives are mapped into relational algebra expressions containing
selection, join, group by, and other relational algebra operators. The
execution is purely relational. The benefit of such an approach is that
an existing system — MonetDB in this case — is used for processing.
No system has to be rebuilt from scratch. The disadvantage is that
the mapping is not always optimal due to the impedance mismatch
between relations and arrays. RAM is further extended to a parallel
setting in Ballegooij et al. (2005). Two rules — partitioning and aggre-
gation — that allow array-specific query decomposition as an extension
of the relational set semantics are introduced. Partitioning allows for
sub-arrays of the same array to be evaluated in parallel whenever there
is no dependency between cells. Aggregation allows for commutative
and associative functions over arrays to be evaluated concurrently.

6.6 Tensor Processing

Optimized matrix multiplication implementations follow the approach
pioneered by Goto and van de Geijn (Goto and Geijn, 2008; Goto and
Geijn, 2009). The logical operations involved in this approach are matrix
partitioning, sub-matrix packing, and the invocation of highly-optimized
multiplication kernels. The input matrices A and B, as well as the result
matrix C, are successively partitioned into sub-matrices labeled A;,
Bj, and C), that fit into the various levels of the cache hierarchy. The
sub-matrices A; and B; are packed — or copied — into temporary
buffers in a special storage format that facilitates vectorization and
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memory locality. The size of these sub-matrices is determined by cache
blocking parameters, such that A; is resident in the L2 cache while B;
is retained in the L3 cache. These sub-matrices are then fed into an
optimized inner kernel that performs the actual matrix multiplication
operation. In the BLIS approach (Zee and Geijn, 2015), the sub-matrices
are further partitioned according to register block sizes, such that a
pair of input blocks fit into L1 cache while the result C), is stored in
CPU registers.

6.6.1 Distributed Matrix Multiplication

The three-stage approach can be extended to large-scale matrix multi-
plication in a distributed environment (Choi et al., 1992; Thomas and
Kumar, 2018). In this case, the three stages of the process are reparti-
tioning the input matrices among tasks (matrix repartition), performing
local matrix multiplication within each task (local multiplication), and
aggregating the intermediate results of local matrix multiplication (ma-
trix aggregation). Since the number of operations in local multiplication
is the same, the challenge is reducing the communication overhead that
occurs in matrix repartition and aggregation. There are methods that
perform communication only in the repartition stage (Boehm et al.,
2016), methods that incur most of their communication in aggrega-
tion (Gu et al., 2017), methods that have high overall communication
while minimizing memory usage (Seo et al., 2010; Yu et al., 2015; Yu
et al., 2017), and methods that optimize across both communication
and memory usage (Han et al., 2019). Among these methods, three
algorithms stand out.

In broadcast matrix multiplication, matrix A is chunked into row
strips while matrix B is fully replicated across all the cluster nodes.
This allows for the computation of the result matrix C' in a single step,
without the need for aggregation. Matrix C' has the same chunking as
A. Broadcast matrix multiplication requires that at least a row from
the larger matrix and the entire smaller matrix fit in memory.

In cross product matrix multiplication, matrix A is chunked into
column strips while matrix B is chunked into row strips. The multipli-
cation between a column strip and its corresponding row strip generates
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only a partial aggregate of the result cell. In order to compute the
complete result, a subset of the partial aggregates equal in size to the
result matrix has to be replicated across all the cluster nodes. However,
this does not result in having result matrix C fully replicated across all
the cluster nodes — C' is generated chunked into column strips, just as
A.

Replicated matrix multiplication — known as 3D matrix multiplica-
tion (Agarwal et al., 1995) — reduces the amount of data transferred
during matrix aggregation by replicating the input matrices A and B —
which are chunked as tiles — multiple times in the matrix repartitioning
stage. A is replicated J times, where J is the number of tiles along
dimension j in B, while B is replicated I times, where I is the number
of tiles along dimension i in A. The result matrix C is replicated P
times, where P is the number of tiles along dimension p in A and B,
respectively. The allocation of the replicated tiles to nodes is controlled
by their contribution to the result matrix tiles. The optimal allocation
has to consider the overall communication across the repartitioning
and aggregation stages (Jankov et al., 2021). These three methods for
distributed matrix multiplication are implemented in some shape by all
the tensor processing systems.

Cumulon. Cumulon (Huang et al., 2013) considers the multiplication
of tiled matrices stored in a distributed file system. The multiplica-
tion consists only of local multiplication and matrix aggregation. It is
assumed that the matrices are properly partitioned, thus, there is no
need for matrix repartition. In local multiplication, all the intersecting
pairs of tiles from the two matrices are multiplied following the 3D
matrix multiplication algorithm. This is done by reading a pair of tiles
from the distributed file system, performing the multiplication using
the JBLAS library, and writing the intermediate result tile back to the
distributed file system. In matrix aggregation, all the intermediate tiles
that contribute to a result cell are read and aggregated to produce the
final result. Reading and writing from/to the distributed file system
may require network data transfer. Cumulon optimizes for the minimum
number of processing nodes that can perform a matrix multiplication
within a given time budget. For this, it considers both the execution
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time of an in-memory matrix multiplication task — constrained by the
memory capacity — as well as the network transfer time required by a
node. Estimates for these quantities are derived from simulation with
different matrix sizes and tiling factors. The optimal number of nodes
is found using a search algorithm that considers values between easy-
to-determine lower and upper bounds. Overall, the main characteristic
of Cumulon is that it considers a dynamic cloud environment in which
the number of processing nodes can be assigned at runtime.

DMac. DMac (Yu et al., 2015) optimizes the execution of a chain of
matrix multiplication and transpose operations. Matrix repartition is
necessary to convert between row and column strip chunking, and for
broadcasting a matrix to all the processing nodes. Repartitioning can
be performed at every operation in the chain and incurs an afferent
communication cost. DMac aims to minimize the overall communication
cost across the entire chain of operations. This corresponds to finding
the optimal chunking across the entire chain. DMac introduces two
heuristics that traverse the chain of operations in order and make local
partitioning decisions based on the previous operations in the chain. The
cost of local matrix multiplication is not included in the optimization.
Moreover, since full rows and columns belong to the same chunk, the
result matrix is directly obtained without further aggregation. The
main limitations of DMac are the reduced chunking strategies with
fixed sizes, the simple communication cost model that depends only on
the matrix size, and the suboptimal local matrix multiplication kernels.
Nonetheless, DMagc is the first attempt that includes repartitioning in
the optimization of a chain of matrix operations.

SystemML. SystemML (Boehm et al., 2016) optimizes the implemen-
tation of every matrix operator independently — or a small group of
operators fused into a compound operator (Boehm et al., 2018). The
core of SystemML is a hybrid sparsity-aware fixed block size matrix
library — with square blocks of 1000 x 1000 cells — which operates on
the entire matrix on a single node, or blocks of a matrix in a distributed
setting. The matrix library provides seven matrix multiplication physical
operators requiring different degrees of data repartitioning and network
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communication. The best operator for a given task is selected based
on memory estimates, data, and cluster characteristics. While matrix
repartitioning is avoided as much as possible, this is not done with a
principled cost-based solution since data transfer is not considered in the
selection. The reason for this approach is the reliance on a multi-level
distributed cache buffer pool that stores matrices in-memory, evicts
them when necessary, and handles data exchange among processing
nodes transparently. For a chain of matrix multiplications, SystemML
exploits the associativity property and orders the multiplications in a
way that avoids large intermediate results. Moreover, if a sparse matrix
is involved in the multiplication, the result cells are computed only for
the non-zero entries.

MatFast. MatFast (Yu et al., 2017) estimates the sparsity of intermedi-
ate matrices in order to minimize the memory usage and communication
cost of a chain of sparse matrix multiplications. For this, the optimizer
uses data dependency among matrices, dynamic cost-based analysis, and
rule-based heuristics to determine how to partition the input and inter-
mediate matrices. The sparsity of a matrix multiplication is estimated
by sampling rows and columns from the two matrices and computing
the number of non-zero entries in their outer product. In the case of a
chain, the multiplication that results in the sparsest matrix is performed
first. Then, the process is repeated until a single matrix is obtained. The
intuition behind this approach is that sparser matrices are smaller and
result in less data transfer. The assignment of the partitioning scheme
to every matrix in the chain is done using a cost model that considers
the network traffic required to repartition a matrix. The cost model is
based on the size of the matrix, which corresponds to sparsity for sparse
matrices. The cost model is integrated in a greedy plan generator that
assigns the partitioning to a matrix in the chain starting from the result
matrix, following with the intermediate multiplications, and ending
with the input matrices. This planning applies repartitioning closer to
the input matrices since their cost can be estimated more accurately.
Although MatFast supports tile-based partitioning, the cost model is
defined only for row/column strip and matrix as single tuple chunking.
Thus, tile-based matrix multiplication is not considered in processing.
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DistME. DistME (Han et al., 2019) performs distributed multipli-
cation of tile-based partitioned matrices in a cloud setting where the
number of processing nodes is variable. Given a number of nodes,
DistME determines the maximum size of the tile-based chunks that
can be multiplied in the available memory. Then, the two matrices
are repartitioned accordingly in a preprocessing step executed before
the multiplication is performed. Multiplication starts with the reparti-
tioned matrices and proceeds by pairing the corresponding tiles, which
are locally multiplied with an optimized BLAS GPU kernel. Since the
GPU memory is limited, additional repartitioning is required. Moreover,
the execution of the GPU kernels is streamed in order to reduce data
transfer. This results in optimal performance for matrix multiplication.

TRA. TRA (Yuan et al., 2021) defines a set of equivalence rules for
kernel function composition and repartitioning applied to the physical
operators in the tensor algebra. There are four physical operators in
TRA — two for repartitioning, broadcast and shuffle, and two for local
tensor operations, multiplication and aggregation. The equivalence rules
provide mappings among combinations of these operators. However,
TRA does not provide an enumeration algorithm for the generation
of the equivalent mappings. The execution cost of an expression of
operators is assessed with a cost model that measures only the data
transferred over the network, which corresponds to the cardinality of
the tensor. This is appropriate only for dense tensors. The computation
of an operation is not included in the cost model because operations
are executed through functions from optimized kernel libraries. These
functions have the same execution cost when performed on tensors
with the same dimensionality. Thus, the only relevant decision for
performance is whether to shuffle or broadcast a tensor. The TRA cost
model is enhanced with terms corresponding to execution in subsequent
work by the same authors (Jankov et al., 2021). In this case, tiled
matrix multiplication is also considered in addition to broadcast and
shuffle. The enhanced cost model takes as input the distribution of the
tiles across the cluster nodes and performs a pilot run over the tile
dimensions in order to compute the cost of each matrix multiplication
algorithm. The execution plan corresponding to the minimum cost
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solution is determined with a heuristic algorithm that assigns pairs of
relevant tiles greedily to the computing nodes.

6.6.2 Compressed Sparse Linear Algebra

Matrix compression is implemented in SystemML (Elgohary et al., 2016)
in order to reduce the size of the tiled matrices that have to be trans-
ferred among the processing nodes. Compression is applied to every
partition of the matrix independently only if all the operations the
matrix is part of can be performed on the compressed matrix. The set
of operations is limited to element-wise operations and matrix-vector
multiplication, and does not include the general matrix multiplication.
Moreover, only the input matrices are compressed — not the intermedi-
ates. Matrix compression is a combination between lossless compression
techniques such as dictionary coding, run-length encoding, and offset-list
encoding, and sparse matrix formats such as COO, CSR, and CSC. The
compression method is applied independently to a single column or a
group of correlated columns. The optimal method is selected based on
the format and sparsity of the data (Sommer et al., 2019). An alternative
row oriented compression scheme derived from the Lempel-Ziv-Welch
(LZW) algorithm is introduced in Li et al. (2019a), which has a higher
compression ratio for wide short matrices.

6.7 Data Cube Processing

The data cube processing algorithms proposed in the literature can be
classified into four main categories based on the format they use to com-
pute and store the data cube. Relational-OLAP (ROLAP) algorithms
use relational operators and standard SQL to compute the data cube,
and materialized views for storage. Multidimensional-OLAP (MOLAP)
methods use multidimensional arrays for storage and access to the
aggregates. Graph-based algorithms employ specialized tree-like graph
data structures. Finally, integrated algorithms compute the data cube
while compressing the aggregates at the same time. Out of these four
classes, ROLAP algorithms are the most common because of their direct
application of relational processing — which allows for their immediate
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integration with a standard database. Morfonios et al. (2007) provide
a comprehensive survey of the ROLAP algorithms. Several of these
algorithms (Wang et al., 2013b; Nandi et al., 2012; Milo and Altshuler,
2016) are extended to the parallel/distributed Map-Reduce framework
by maximizing the degree of parallelism used for the computation of
overlapping cuboids while minimizing the amount of transferred data.

Given our focus on multidimensional arrays, we present here only
the concepts behind the MOLAP algorithms. MOLAP stores the base
data from which the data cube is computed — as well as the data
cube — as multidimensional arrays, where the measure values are
determined by the position of the cell in the dimension space. The cube
construction algorithms generate smaller dimensionality arrays from the
base array by slicing along all the possible combinations of dimensions
and aggregating the measure values along the eliminated dimension(s). A
naive implementation of this approach considers each of the exponential
number of dimension combinations — or cuboids — separately and
always starts from the base data. Optimized algorithms overlap the
computation of multiple cuboids in a single pass over the base data
and reuse the higher dimensionality cuboids in the computation of the
lower dimensionality ones. The Multi-Way Array algorithm (Zhao et al.,
1997) works on a base data array regularly chunked and generates all
the cuboids that make the data cube in a single scan over the chunks
of the base array. This requires simultaneously loading a significant
number of the base array chunks in memory. The Multi-Way Array
algorithm introduces several optimizations to reduce the amount of
required memory. These optimizations target the order in which to
scan the base array chunks and the identification of the most suitable
cuboid from which to derive a lower dimensional cuboid — multiple
choices are possible since the cuboids form a lattice. The MM-Cubing
algorithm (Shao et al., 2004) reduces the memory usage of Multi-Way
Array by identifying and computing only the high density cuboid cells
— the iceberg cells. Thus, MM-Cubing is optimized for skewed high-
dimensional data.
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6.8 Summary

e The traditional architecture for multidimensional array processing
is a shared-nothing cluster consisting of a coordinator and multiple
worker nodes. The chunks of the array are distributed across the
nodes and processed concurrently. Optimizations are targeted at
minimizing the network traffic among the worker nodes.

e The array processing paradigms have a two-level functional pro-
gramming structure. The top level is an execution framework that
implements a determined workflow consisting of higher level func-
tions — or functionals — that take actual processing operations —
or functions — as arguments. The bottom level consists of an ap-
plication programming interface (API) for implementing concrete
array operations as UDFs. Functionals execute operations by in-
voking the UDF arguments using the fixed API. Map-Reduce and
GLA are the most common functional array processing paradigms.

e The implementation of array algebra operators is characterized by
handling the neighboring chunks resulted from the range-based
partitioning along the array dimensions. The array similarity join
operator, which generalizes shape-based neighborhood relation-
ships, is the most illustrative example of this type of processing.

e In-situ processing is an important requirement for scientific array
data because of the extensive use of specialized data formats
and the breadth of the corresponding processing libraries. As
illustrated by ChronosDB, the challenge of in-situ processing
consists in efficiently composing primitive functions into complex
workflows that implement general array operations.

e It is recommended to implement tensor operations as wrappers
over linear algebra functions from highly optimized libraries. In
the case of matrix multiplication, this is best achieved with tiled
or block chunking. The efficient execution of linear algebra ex-
pressions containing chains of matrix multiplications requires the
rechunking of intermediate results — which becomes the main
objective to optimize. The TRA system achieves this goal with a
rechunking optimizer and 3D replication matrix multiplication.
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Multidimensional Array Systems

A recent survey by Baumann et al. (2021) aggregates the most impor-
tant array technologies and categorizes their implementation in real
systems. However, its reach is limited since it does not include tensor
and data cube systems. In this section, we start from the categorization
introduced in Baumann et al. (2021) and extend it with the missing
parts. We present full-stack array databases, raster extensions to rela-
tional databases, tensor processing systems, and OLAP data cubes. We
focus our attention on functional systems that are available for use, are
under consistent development, and provide reasonable documentation
to understand how they implement the defining array concepts. This
excludes from discussion unmaintained prototypes and undocumented
systems without open-source code — which is the case for most of the
Map-Reduce prototypes and the distributed tensor processing systems.

7.1 Array Databases

Array database systems are characterized by an array algebra and query
language in which the array operations are declaratively specified, an
execution engine that implements the algebra operators and an eventual
query optimizer that selects among multiple operator implementations,
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and a chunk-based storage manager. Additionally, concurrent multi-user
operation with transactional support and an access control mechanism
provide the complete functionality of a relational database. In this
section, we present four systems that implement these requirements
at different levels of completeness starting from scratch, while in the
subsequent section we introduce alternatives that start from a full-fledge
relational database and enhance it with multidimensional array support.

RasDaMan. RasDaMan (“Raster Data Manager”) (RasDaMan Devel-
opment Team, 2022) is the pioneer array database, which is at version
10.0 as of this writing. RasDaMan is available both as open-source
in a community edition as well as a more extensive commercial enter-
prise version with dedicated support. According to the developers, the
source code in the two versions is identical. Queries can be submitted
to RasDaMan both from a command line interface as well as through
connection APIs from multiple programming languages, including C++,
Java, Python, and R. Moreover, RasDaMan is integrated in a RESTful
web server for geographical (geo) services.

RasDaMan supports dense multidimensional arrays of arbitrary
size, dimension, and structure through the declarative query language
RasQL (Section 4.4) paired with internal execution, storage, and query
optimization. RasQL supports a wide range of array operations, includ-
ing dimensional transformations, geometric mappings, clipping, scaling,
concatenation, cross product, and grouped aggregations. Additionally,
RasQL supports INSERT/DELETE/UPDATE modification operations
on arrays and CREATE/DROP/ALTER operations on collections. Con-
ceptually, arrays are defined as types consisting of a spatial domain for
dimensions and a subtype for cells. An array type can be encapsulated
into a set supertype that includes a specification for empty cells. This
is how sparse arrays are declared in RasQL. Concrete instances of an
array type are created as tuples of a collection having a set supertype.
The collection is the equivalent of the table in relational databases.
Physically, arrays are chunked using the arbitrary strategies presented
in Section 5.2.1 and stored either as files in the operating system or
BLOBS in a PostgreSQL database. In the former case, chunk metadata
— which takes the form of a multidimensional index — is stored in an
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embedded SQLite database, while in the latter, it is stored together
with the data in PostgreSQL. RasDaMan also provides direct external
array access to a variety of file formats through the GDAL library (The
GDAL Development Team, 2022). Moreover, the arrays resulted from
RasQL queries can be exported to different file formats for display in
visualization and web applications.

The RasDaMan engine (Baumann et al., 1998) includes all the com-
ponents of a standard relational DBMS. The query parser transforms
a RasQL query into an execution tree of array algebra operators. The
query optimizer transforms the query tree into a more efficient execu-
tion plan based on algebraic query rewriting rules and chunk layout
information. The goal is to access only the necessary chunks and find
the optimal order in which to process the chunks. The execution en-
gine has a materialized architecture in which the array operators are
invoked through function calls that take as input chunks and produce
output chunks. Since chunks are processed in a streaming fashion, this
strategy minimizes memory usage. Moreover, chunks can be processed
concurrently by separate threads — as long as there is no dependency
among them. Extensive implementation details for chunk processing
in RasDaMan are presented in Widmann and Baumann (1998). Ras-
DaMan does not provide intra-query distributed processing of arrays
chunked across multiple nodes — a RasQL query is executed entirely
at a single node. Nonetheless, multiple RasQL queries can be processed
concurrently across a federation of peer RasDaMan servers that fully
replicate their array storage. However, this configuration has to be set
up manually by an administrator.

Overall, RasDaMan is a complete database system for dense arrays
— or rasters. It provides an extensive set of functional and user features,
including a large variety of operations over raster data in different
formats, programming interfaces, management utilities, and web access.
The lack of optimal support for sparse arrays and distributed processing
are some of the most important limitations in RasDaMan. Moreover,
while linear algebra operations can be expressed as RasQL grouping
aggregations, their implementation is not fully optimized.
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SciDB. SciDB (Paradigm4, 2022a) is a parallel database with a shared-
nothing architecture initiated as the technological solution to process
the high-resolution sky images acquired by the Large Synoptic Survey
Telescope (LSST). This direction has been completely abandoned by now
as the focus of SciDB has become drug discovery and precision medicine.
Currently, SciDB is the computing platform of the REVEAL suite of
medical applications commercialized by the Paradigm4 company. Since
workflow management and reproducibility are paramount in medicine,
SciDB includes a complex multi-versioning control system with no in-
place data updates. As of this writing, SciDB is available both as open-
source in a community edition as well as a more extensive commercial
enterprise version. Unlike RasDaMan, the enterprise edition includes
considerably more features (Paradigm4, 2022b) and is at least two
releases ahead — version 21.8 for enterprise compared to version 19.11
for community. Queries can be submitted to SciDB using the command
line interface iquery client. The commercial REVEAL platform also
provides Python and R connection APIs. Queries have to be expressed
in the Array Functional Language (AFL), which consists of function
compositions that allow for coding complex features. The declarative
Array Query Language (AQL) (Section 4.6) is only under experimental
development since its functionality is completely subsumed by AFL.

Sparse arrays are implemented as a special encoding of dense arrays
in SciDB. While this allows for a single common processing interface,
it also precludes certain optimizations specific to sparse arrays. The
storage layer includes array decomposition, chunk overlapping, and
uses chunk compression. Array decomposition consists in splitting an
array with multiple values in a cell into separate arrays with a single
value in every cell. This is a generalization of the column-stores ideas
to arrays. Chunk overlapping consists in storing the same array cells
in multiple chunks to increase the level of parallelism in execution.
Immediate drawbacks of this include increased storage and more com-
plex management. Several compression techniques are extended from
column-stores, including null suppression, run-length encoding (RLE),
subtraction from an average value, and delta encoding. They are applied
on a chunk-by-chunk basis, with different chunks possibly compressed
differently.
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All the SciDB operators are implemented as UDFs. While some
operators are built-in and provided with the system, the user is given
the freedom to implement any other operators using the extension
features provided by UDFs. Extensibility in SciDB follows the pattern
introduced in PostgreSQL (The PostgreSQL Development Team, 2020).
A user can add to the system: user-defined data types (UDT); scalar
user-defined functions (UDF) taking arguments user-defined types and
returning a single value; user-defined aggregates (UDA), which allow
special aggregate computation for the newly defined types, expressed
as a group of functions invoked according to a well-established pat-
tern; and user-defined operators (UDO) taking arrays as arguments
and producing an array as the result. The SciDB operators can be
divided into several classes: structural, e.g., slice, subsample, reshape,
concatenate, cross-product, join, etc.; value-based, e.g., filter, aggregate,
apply, project, etc.; statistical, e.g., bernoulli, kendall, pearson, quantile,
etc.; and linear algebra, e.g., gemm, gesvd, spgemm, etc. The linear
algebra operators are wrappers over the optimized ScaLAPACK imple-
mentations (ScaLAPACK Development Team, 2022). Additionally, a
large variety of statistical functions applied in biology and medicine
are also available. However, many of these are included only in the
commercial enterprise edition.

While both RasDaMan and SciDB implement the chunked array
model, only SciDB supports parallel chunk processing across computing
nodes. RasDaMan executes a query entirely at a single node. Thus, it
has limited scalability. SciDB includes a larger variety of statistical and
optimized linear algebra operators. However, RasDaMan supports a
considerably larger number of array/raster formats. Data loading in
SciDB is a serious bottleneck as it requires two steps. First, an array
is ingested as a 1-D vector. Second, the vector is repartitioned into
the corresponding multidimensional array. The RasDaMan community
edition is feature complete compared to its enterprise version. This is not
the case for SciDB, whose community edition is rather unmaintained.

Ophidia. Ophidia (CMCC Foundation, 2022b) is an open-source par-
allel framework for processing multidimensional arrays. It is targeted at
scientific applications that process heterogeneous data and require inten-
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sive analysis. Ophidia provides a native API written in C, exposed also
as a Python interface (CMCC Foundation, 2022a). The API consists of
standard array operators, including indexing, subsampling, rechunking,
and aggregation, statistical primitives imported from various libraries
such as the GNU Scientific Library (GSL), and import/export func-
tions from/to various data formats, including FITS, NetCDF, JSON,
and HTML. New operators can be added to the API as long as they
follow a template implementation. The array operators can be invoked
independently or combined in composite workflows defined as JSON
objects. Similar to a query execution tree made of relational operators,
a workflow specifies the dependencies and the arrays passed among op-
erators. Additionally, workflows can include control flow primitives such
as branches and loops. This brings workflows closer to an imperative
interface instead of a declarative query language.

Ophidia splits the dimensions of an array into explicit and implicit.
Only the explicit dimensions are used for chunking. The implicit dimen-
sions impact the rendering of the cells inside a chunk. A separate chunk
is created for every combination of the explicit dimensions’ values, which
are used as the key for node assignment and parallel processing. Since
Ophidia does not support stencil operations, this chunking does not
impact processing negatively. However, in order to reduce the number
of chunks, the number of non-empty cells on the explicit dimensions
has to be small. This implies that explicit dimensions are sparse, while
implicit dimensions are dense. This insight is specific to data cubes,
where is applied to minimize the number of materialized cuboids. As
such, Ophidia can be viewed as a data cube system for scientific data.

TileDB. TileDB (TileDB, Inc., 2022a) is an open-source embedded
array storage library with support for both dense and sparse arrays.
TileDB’s goal is to be the equivalent of sqlite for array databases.
It has a native C++ API exposed through a variety of other program-
ming languages, including Python, R, Java, and Go. TileDB provides
efficient array storage with zero-copy access in multiple formats — in file
systems and cloud object stores. At the application level, TileDB is in-
tegrated with geospatial libraries such as GDAL, distributed computing
frameworks such as Spark, and relational databases such as MariaDB.
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A user can interact with TileDB only through its functional API
(TileDB, Inc., 2022b). There is no support for function composition
in declarative queries. Moreover, the only operation provided by the
API is range selection — or subsampling — on dimensions. Although
this functionality is quite limited, the update-optimized chunking (Sec-
tion 5.2.5) implemented by TileDB is its defining feature. It allows for
the efficient execution of time travel queries over a sequence of array
versions as well as highly concurrent read/write array access. This type
of processing is not transparently supported by any other system or
library.

7.2 Relational Array Systems

In this section, we present two relational databases that provide spe-
cialized support for arrays and raster data through object-relational
extensions such as user-defined data types (UDT) and user-defined
functions (UDF). Both of these systems implement storage optimiza-
tions for dense arrays in the form of index suppression and chunking.
They also have a deep integration with the GDAL library (The GDAL
Development Team, 2022), which implements a large variety of functions
on many raster file formats.

PostgreSQL arrays & PostGIS rasters. PostgreSQL (The PostgreSQL
Development Team, 2020) supports variable-length dense multidimen-
sional arrays as table attributes. The array type is a collection of
elements having the same base type. Array attributes can be referred
in SQL queries exactly as any other attributes. The main operations on
arrays are indexing and a series of structural functions such as contain-
ment, append, and concatenation. None of the array algebra operators
introduced in Section 4.6 are built-in. Function unnest is of particular
relevance because it expands an array attribute into a relation with a
tuple for every element in the array. The layout of the array on storage
is row-major — without chunking. Consequently, the array functions
take the complete array as an argument. Since functions are treated
as black boxes by the optimizer, no optimizations are applied during
query execution.
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PostGIS (The PostGIS Development Team, 2022), the spatial Post-
greSQL package, provides extensive support for rasters — or dense
arrays — by integrating the GDAL library. The raster2pgsql data
loader is at the core of PostGIS. It converts rasters from any of the
formats supported by GDAL to the internal PostgreSQL representation
and loads them as tuples into a table. Chunking can be applied dur-
ing loading, case in which every chunk becomes a separate tuple. The
type of the raster attribute is a special user-defined data type specified
using the object-relational PostgreSQL extension mechanism. In order
to take advantage of chunking in subsampling queries, a spatial index
has to be built on the raster column after loading. The only solution
to include raster attributes in SQL queries is through functions. Post-
GIS includes an extensive set of raster functions, which are wrappers
over the corresponding GDAL functions. The arguments to the GDAL
functions are passed as string expressions in the wrappers. Overall,
the PostGIS approach is a SQL frontend for GDAL functions, where
cross-function optimizations are not possible due to the PostgreSQL
execution mechanism.

Oracle Spatial GeoRaster. Multidimensional arrays are supported in
Oracle through the GeoRaster feature (Oracle, 2022b) available in the
Oracle Spatial package. GeoRaster manages the storage and processing
of both the array metadata — as an XML document — and the array
cells — as a GeoRaster table consisting of a spatial extent attribute for
the dimensions and a BLOB attribute for the values. A raster is chunked
into regular chunks — or blocks — that are stored as the tuples of a
GeoRaster table. Incomplete chunks are padded. The maximum size of
a chunk is 4 GB, which can be compressed using the JPEG algorithm.
Sparse arrays are supported through bitmap masks indicating the non-
empty cells, which are associated with every chunk. In the case of
a completely empty chunk, no BLOB is associated with the spatial
extent. Rasters can be grouped into pyramids of different sizes and
degrees of resolution through resampling and interpolation operations.
A pyramid is treated as a composite object with the individual rasters
identified by their resolution level. GeoRaster provides an extended set
of array algebra operators, including polygon subsampling, stencil-based
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interpolation, and pyramid construction. These operators are formalized
in a raster algebra language that is an extension to Oracle PL/SQL.
This combination allows the specification of raster analyses as closed
algebraic expressions of raster operators. The operators are exposed
both as functions in PL/SQL queries and directly through their native
Java API. Some of the operators have parallel chunk- and cell-based
implementations. GeoRaster is fully integrated with the GDAL library
and provides concurrent batch loading and exporting to the supported
raster file formats. Overall, GeoRaster is a complete solution for raster
processing inside a relational database using object-relational extensions
— with their corresponding advantages and limitations.

7.3 Tensor Systems

The BLAS operations (Wikipedia, 2020) introduced in Section 3.3 are
widely implemented in linear algebra libraries optimized for various com-
puting architectures. Examples of such libraries include the Intel Math
Kernel Library (MKL) (Wikipedia, 2022b) optimized for Intel CPUs,
the cuBLAS library (NVIDIA, 2022) optimized for NVIDIA GPUs, and
the ScaLAPACK library (ScaLAPACK Development Team, 2022) for
parallel distributed memory architectures. These libraries contain a
large variety of operations, making their complete reimplementation
virtually impossible. They also provide bindings from many program-
ming languages, including C/C++, Python, R, and Julia. Finally, the
linear algebra kernels provided by these libraries are highly optimized
through an extensive development cycle. Given the significant amount of
effort necessary to replicate the functionality and performance of these
libraries, the reasonable approach is to integrate the existing kernels
in higher-level systems. This is exactly the approach taken by data
analytics systems such as MADIib and SystemML, and deep learning
frameworks such as PyTorch, TensorFlow, and Apache MXNet. While
all these systems include tensors in their API, the underlying implemen-
tation is inherited from a tensor library. In the following, we discuss the
integration in more detail and present the NumPy array library, which
has become the standard API for tensor operations.
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BLAS library wrappers. The common approach to integrate BLAS
library functions into a tensor processing system is to encapsulate them
into a wrapper. The wrapper performs two tasks — translation between
the data representations corresponding to tensor processing and the
BLAS library, and function invocation. First, the tensor operands are
mapped into the BLAS library data structures. Then, the BLAS function
is executed. Finally, the result is mapped back to the data structures
in the tensor system. For this process to be efficient, the overhead of
data translation has to be minimized — which can be quite challenging.
This is the reason why dual solutions consisting of a wrapper and a
limited reimplementation are proposed. The wrapper provides generality
by supporting the invocation of any function from the BLAS library
while the reimplementation avoids data translation, which can result in
better performance. This approach is taken by the MADIib (MADIlib
Development Team, 2022) and RMA (Dolmatova et al., 2020) libraries
for in-database analytics. A subset of the linear algebra operations are
implemented both as standalone UDFs — in MADIib — or a sequence
of MonetDB low-level operators — in RMA — as well as wrappers to
functions from the Eigen library (Eigen Development Team, 2010) — in
MADIib — or Intel MKL — in RMA. AIDA (D’silva et al., 2018), which
integrates MonetDB and NumPy (NumPy Development Team, 2022),
exploits the use of C arrays as internal data structures in both systems.
This allows for sharing the same memory space and passing pointers to
arrays as function arguments — which eliminates data translation.

NumPy, xarray, and Dask. NumPy (Harris et al., 2020) is the pri-
mary array programming library in the Python programming language.
What makes NumPy so extensively used are the breadth and depth of
its API. The API includes a tremendous variety of array processing
functions, ranging from multiple types of indexing, value-based selection,
vectorization, broadcasting, and reductions to reshaping, concatenat-
ing, padding, searching, sorting, and counting on arrays. Additionally,
NumPy implements an extensive set of linear algebra and statistical
operations — CPU-accelerated by the OpenBLAS and Intel MKL li-
braries. Moreover, NumPy can read and write arrays from/to different
file formats. All this functionality is integrated into an intuitive API that
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closely mimics a mathematical formalism. The NumPy API is adopted
by other specialized array libraries, including PyData/Sparse for sparse
arrays, CuPy for GPU-optimized arrays, Dask for distributed arrays,
and xarray for labeled arrays. Moreover, the API is becoming a standard
for adding hardware acceleration to other libraries — including Tensor-
Flow (TensorFlow Development Team, 2022) and PyTorch (PyTorch
Development Team, 2022). To facilitate interoperability among libraries,
NumPy provides protocols that allow these specialized arrays to be
passed as arguments to NumPy functions. In turn, NumPy dispatches
the operations to the corresponding library based on the type of the
arguments. This allows programmers to port their code across platforms
with minimal modifications.

NumPy arrays are the data structure at the core of the library. A
NumPy array consists of a pointer to a contiguous memory region and
associated metadata to interpret the data stored there. The metadata
include the shape, the cell data type, and the strides. They correspond
to the main components of a multidimensional array. The shape de-
fines the dimensions of the array while the cell data type defines the
array attributes. The strides specify the physical layout of the array
in memory as the number of bytes at which the next cell on every
dimension is located. The strides depend on the cell data type size.
Since the stride on a dimension is constant, only row- and column-major
chunking — and their multidimensional extensions — are supported.
Overall, NumPy arrays are a standard in-memory multidimensional
array implementation.

The xarray library (Hoyer and Hamman, 2017) decorates NumPy
arrays with labels in the form of dimensions, coordinates, and attributes.
These labels are explicitly assigned to the corresponding elements in the
array definition. While dimensions and attributes have a direct corre-
spondent, coordinates are aliases for values on the range of a dimension.
The labels can be integrated in NumPy expressions by replacing the
positional indexing with a more intuitive named notation. This notation
is a direct extension of the pandas library relational API to multidi-
mensional arrays. While a pandas.DataFrame is a collection of vectors

— or series — aligned based on their position, an xarray.Dataset is
a collection of NumPy arrays aligned along their shared dimensions.
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The xarray.Dataset allows for the creation of multidimensional arrays
with cells having a composite data type by grouping NumPy arrays that
share all their dimensions. This corresponds to slicing the composite
array into a group of identical arrays, with one basic array for every
attribute. At the implementation level, xarray builds a map from labels
to NumPy arrays and transparently converts the named notation to
NumPy API function calls (NumPy Development Team, 2022). Thus,
it extensively reuses the NumPy functionality. At the I/O level, the
similarity between the xarray.Dataset and the NetCDF file format
allows for the direct memory mapping of a NetCDF file to an in-memory
xarray.Dataset object. Overall, the xarray.Dataset follows closely
our definition of multidimensional arrays from Section 2.1. The labels
allow the creation of named array algebra queries that go beyond the
indexed expressions from NumPy.

A Dask Array (The Dask Development Team, 2022) consists of
multiple NumPy arrays arranged into a grid. The individual NumPy
arrays represent the physical chunks of the complete Dask array. The
Dask library manages the storage, location, and processing of the
chunks. It supports streamed execution on CPU and GPU — in which
chunks are processed one at a time in order to reduce memory usage —
and distributed processing across multiple computing nodes. The Dask
library API inherits the NumPy API while adapting the implementation
to chunk-based processing, which can be performed in parallel. While
much of the NumPy API is implemented, the linear algebra functions
are the most notable omission to date. Additionally, the API includes
functions to rechunk and reshape an array. The chunks are identified
by their index combination and are organized into a Dask graph for
processing. Moreover, chunks can have overlapped boundaries. Overall,
Dask arrays are a scalable extension of NumPy arrays with an almost
identical interface. They come the closest to a Python array database.

7.4 Data Cube Systems

A comprehensive list of commercial and open source OLAP databases
— as well as their detailed comparison — is available online (Wikipedia,
2022a). Three of these systems — Oracle Essbase, IBM Cognos, and
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Apache Kylin — provide comprehensive data cube support. Although
these three systems are classified as MOLAP, the input data are stored
either in flat files or relational tables. Since only the data cube aggre-
gates are materialized as multidimensional chunked arrays, the more
appropriate category for these systems is Hybrid OLAP — or HOLAP.
As a comparison, Pentaho Mondrian (Pentaho, 2022) stores both the
input data and the data cube in relational tables. Thus, it is purely RO-
LAP. While SQL is heavily used to build the data cube over relational
data, access to the cube cells and cuboids is expressed in the MultiDi-
mensional eXpressions (MDX) query language (Whitehorn et al., 2005)
developed at Microsoft and adopted extensively in OLAP servers. With
the exception of Apache Kylin and a few other open source systems, all
the other OLAP servers support MDX as their user API. For execution,
MDX is mapped either to SQL or positional access to the data cube
cells. In the following, we present more details on the three data cube
systems introduced above.

Oracle Essbase. The Oracle Essbase multidimensional database (Ora-
cle, 2022a) allows the user to specify dense and sparse dimensions when
defining a data cube. The sparse dimensions are used to chunk the data
cube. A dense chunk — or block — is created for every combination of
the sparse dimensions for which there exists at least one non-empty cell.
A good partitioning of the dimensions into dense and sparse groups
results in a small number of chunks with as few empty cells as possible.
The cells of a chunk are linearized in the order in which the dimensions
are defined. A chunk is fully expanded in memory when processed while
being compressed when materialized on secondary storage. Accessing a
data cube cell is a two-stage process. First, the chunk containing the
cell is identified based on the values of the sparse dimensions. This
is efficiently achieved with a multidimensional index over the sparse
dimensions. Second, the cell is directly accessed in the chunk — which is
completely loaded in memory — by indexing along the dense dimensions.
Only point access to the data cube cells is possible — no range access is
supported. The computation of the data cube is specified in a scripting
language — or rules file — that defines the measures corresponding to
a data cell and what source data they are derived from. Supported data
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sources include flat files, relational tables, and spreadsheets. By default,
data cube computation is serial, thus, inefficient.

IBM Cognos. The IBM Cognos Dynamic Cubes (Beryoza et al., 2015)
are an in-memory middleware that builds and provides efficient access to
a data cube using the MDX language. The data cube is defined over a star
schema relational database following the referential integrity constraints
embedded in such a schema. This requires only the identification of the
fact table — the dimensions are derived from the referential integrity
constraints. Cognos Data Cubes maximize the portion of the data cube
that is cached in memory based on the cube definition and the user
access patterns — which are closely logged and monitored. Cells that are
not cached are automatically computed on-demand by running queries
against the underlying database. Upon startup, the data cube is built
bottom-up until the memory capacity is exhausted. Given that the data
cube is memory resident and is not materialized to secondary storage, the
access is based on the dimension values used as the key in a hash table.
This allows for the pruning of empty cells, which impacts positively
the memory utilization. Moreover, dimension based access simplifies
cache management. Since data cube building is mapped as SQL queries,
parallel execution is delegated to the multi-query processing capabilities
of the underlying database.

Apache Kylin. Kylin (Kylin Development Team, 2022) is an open-
source project that supports the distributed building and querying
of data cubes. As of version 4.0, a cube is built over relational data
extracted from a database — or flat files — using the Spark framework.
The cuboids making the data cube are stored as separate columnar
Parquet files, which can be queried independently using Spark SQL.
The first step in the workflow requires the definition of the data cube
model as a star schema consisting of a fact table and several lookup
tables connected by key/foreign-key relationships. The dimensions and
measures of the data cube are selected from the attributes in these
tables. In order to reduce the number of computed — and stored —
cuboids, dimensions can be split into aggregation groups and classified
as mandatory or joint. This is equivalent to partitioning the overall
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dimension space into smaller sub-spaces and selecting only a subset for
evaluation. Kylin also provides a cube planner advisor that recommends
the most relevant cuboids to build based on their estimated size and
query frequency. Once the data cube model is complete, the cuboids
are built concurrently in an optimized Spark application that shares
computation among connected cuboids and reuses the already computed
cuboids whenever possible. By storing every cuboid as a separate Parquet
file, Kylin implements a form of chunking that allows direct access to
the relevant dimensions. This is done in a relational SQL syntax with
SparkSQL.

7.5 Summary

e RasDaMan and SciDB are the only two full-stack array databases
that have all the components of a database — from an array query
language to chunk-based storage. While RasDaMan is optimized
for single machine, SciDB has a scalable distributed architecture.

e TileDB aims to become an embedded array database similar to
sqlite. The update-optimized storage layer and support for time-
travel queries based on multi-versioned updates are its distinguish-
ing features. However, TileDB uses the NumPy API to specify
operations on arrays instead of a declarative query language.

o Rasters are integrated in relational databases such as PostgreSQL
and Oracle through storage optimizations and external function
invocation to generic libraries such as GDAL. The query ex-
pressiveness of this approach is limited by the SQL support for
function composition. Since sparse arrays map to relations natu-
rally, multidimensional indexes are sufficient to achieve reasonable
efficiency.

e The NumPy API is the accepted notation to abstractly express
linear algebra operations over tensors. It provides the desired
separation between the mathematical specification and the target
architecture — be it (multi-) CPU, GPU, or a distributed cluster.

e Most of the OLAP data cube systems fall under the category of
HOLAP because they use the multidimensional representation
only for the cube — which is built over data extracted from
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relational tables. In order to minimize the cube building time
and storage space, the dimensions are split based on density,

resulting in many low-dimensional cuboids instead of a single
high-dimensional cube.
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Future Directions

In this work, we survey the research on multidimensional array data
management from a database perspective. Unlike previous surveys that
are limited to raster processing in the context of scientific data (Rusu and
Cheng, 2013; Baumann et al., 2021; Zalipynis, 2021), our perspective on
multidimensional array data management considers all types of arrays
— rasters, data cubes, and tensors. We identify and analyze the most
important research ideas on arrays proposed over time. We cover all
data management aspects, from array algebras and query languages to
storage strategies, execution techniques, and operator implementations.
Moreover, we discuss which research ideas are adopted in real systems
and how are they integrated in complete data processing pipelines.
We also compare the differences between arrays and the unordered
set-based relational data model at every step in the presentation. Up to
this point, the survey summarizes concisely the most relevant work on
multidimensional array data management and organizes the material
to provide an accurate perspective on the state-of-the-art in array
processing. In this section, we provide several suggestions for future
work in the field following the organization of this survey.

196
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Array algebras and query languages. Although no array algebra
and query language have gained general acceptance to date, there
are proposals that have become the de-facto standard for every type
of array. RasQL (Misev and Baumann, 2014) lies at the foundation
of the SQL/MDA standard for querying raster data through SQL.
While SQL/MDA follows the RasDaMan approach of integrating rasters
as table attributes, it does not include an exhaustive set of raster
operations. The GDAL library (The GDAL Development Team, 2022)
represents a good starting point in this direction. However, the effective
integration of GDAL into SQL/MDA requires further research. The
MDX query language (Whitehorn et al., 2005) — which provides direct
access to data cube cells and cuboids — is used extensively in OLAP
servers. Its formalization as a standard for data cube navigation is
the natural next step. NumPy (Harris et al., 2020) defines a complete
API for tensor operations, including linear algebra and many other
operators. Nonetheless, its array data structures are primitive. They do
not have support for chunking and partitioning. In order to scale the
NumPy API to large distributed infrastructures, these issues have to be
carefully addressed. The Tensor Relational Algebra (Yuan et al., 2021),
which models tensors concisely as binary relations from dimensions to
valued tiles, is a first step in that direction. However, its applicability is
limited due to the reduced set of supported operations. Moreover, the
optimization space is constrained by two communication patterns.
While the existing solutions are targeted at a specific array type
— raster, data cube, or tensor — and address the integration with the
relational data model, a fundamental question that remains unanswered
is how to design a generic data model and query language that encompass
these specializations? Furthermore, how to include other data structures
— such as polygons, hierarchies, and graphs — that can be represented as
multidimensional arrays? One could argue that the relational data model
already satisfies these requirements. The major problem is that the
corresponding relational expressions are not practical and do not have
efficient implementations. Hybrid data models and polystores (Duggan
et al., 2015a; Alotaibi et al., 2019; Koutsoukos et al., 2021) are recent
alternatives that address these shortcomings with a layered abstraction
that maps to any of the underlying data structures. Further work is
needed in order to assess their generality and evaluate their performance.
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Array storage. Chunking is the defining characteristic of array data
management. As such, it has received extensive attention in the database
literature, as illustrated in Section 5. However, the vast majority of the
work focuses on optimally chunking persistent arrays for a single class of
operations — most commonly, dimension subsampling. Sequences of lin-
ear algebra operations, which are specific to machine learning workloads,
make chunking considerably more complicated because they generate
intermediate tensors. In this case, chunking becomes a dynamic problem
that has to be solved independently for every expression at runtime.
The optimal chunking depends both on the sequence of operations as
well as the input tensors — including their dimensions and cell density.
Since this problem is related to database query optimization — albeit
more complicated because it requires the simultaneous identification of
the operators and the chunking — the initial solutions proposed in the
literature follow a relational database approach. They are based on sim-
ilar data synopses and cost models. However, these do not capture well
the intrinsic dimensionality of tensors and the characteristics of tensor
operations. Consequently, specialized solutions tailored at multidimen-
sional tensors have to be devised. These include novel dimension-aware
data statistics and chunk-based cost models.

The use of heterogeneous architectures consisting of a diverse set
of computing devices — such as CPU, GPU, TPU, and FPGA — has
become more common — especially in raster processing and machine
learning applications. Since memory capacity and hierarchy vary signifi-
cantly from device to device, the optimal chunking has to be adapted to
every configuration. This includes the chunking of the base arrays as well
as that of intermediate arrays. Similar to relational databases — where
the format of a table is abstracted out — the chunking of an array has
to be separated from its definition. This separation allows the user to
focus on the logical array operations while the system can automate and
optimize the physical implementation details. For something like this to
be feasible, the user has to at least specify the target architecture. The
system has to provide optimized implementations as well as rechunking
routines for every architecture. The rechunking includes both packing
and unpacking functions for converting between different array formats.
While this entire process can be automated, we also anticipate the need



199

for “chunking advisors” that enhance the existing tuning advisors from
relational databases in order to keep the user in the loop.

Array processing. The development of novel array processing tech-
niques is largely driven by domain-specific applications. This has started
with raster images in different science domains and has continued with
materialized data cubes in business analytics and tensor processing in
machine learning and Al. Given the extensive use of multidimensional
arrays as a representation formalism, we see this trend to continue.
However, going forward, the tools developed by domain experts have
to be better integrated with data management capabilities in order
to reduce the amount of work replication. The common approach of
adding functionality to a data management system is not sustainable,
as illustrated by the development of in-situ processing techniques. To
address this issue, foundational work on designing generic interfaces
that allow the conceptual composition of various libraries is further
needed. The NumPy API (NumPy Development Team, 2022) is a good
initial step in this direction.

Array systems. None of the existing array data management systems
fully supports all three types of arrays — rasters, data cubes, and tensors.
Systems are optimized for a specific array type and may provide some
functionality for the others. While this approach is perfectly motivated
by manageable complexity and better performance, the design of a
generic multidimensional array data management system remains an
intriguing topic to explore.
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