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ABSTRACT

Communication is pivotal for the emergence of coordination and cooperation within teams. As a result, communication plays an important

role in team dynamics as better communication between teammates can lead to more efficient and successful teams. To better understand

communication dynamics and their impact on team performance, we develop a modelling framework of two-agent interaction dynamics in a

discrete-time fashion. Our proposed model considers the communications between two agents based on each agent's personality and their
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individual impact on any received communication. Combined with data, we perform mathematical analysis and bifurcation diagrams to study

how agents' personality and training may impact the quality of the team's communications and therefore their performance in task

completion. The validations and parameter estimations of our model from data could potentially help us to select team members that could

work together efficiently, and train members in the established team to collaborate better.
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As a social species, human beings have been using language to communicate with each other. Communication plays a crucial role in

facilitating cooperation and coordination among humans in the completion of various tasks [1,6,19,21,26,27]. For instance, in software

engineering, effective communication among team members is imperative to ensure the delivery of high quality projects [31,35]. The sharing

of information and effective communication among team members significantly contribute to the success of a project [22]. Studies

conducted with college students have demonstrated a strong correlation between improved communication quality and their ability to

achieve higher financial revenue through business projects [32]. Brewer and Holmes conducted a communication exercise with

undergraduate students [4]. Their findings revealed that clear and precise communication among team members enhances overall team

functioning and reduces instances of miscommunication. Moreover, a clear understanding of terminology among all team members helps

mitigate communication problems [4].

With advancing technology, human interaction has expanded to include interactions between various agents, encompassing autonomous

agents. Autonomous agents refer to ‘a computer-based entity that is individually recognized as occupying a distinct team member role’ [30].

O'Neill [30] defines Human-Autonomy teams as

interdependence in activity and outcomes involving one or more humans and one or more

autonomous agents, wherein each human and autonomous agent is recognized as a unique team member

occupying a distinct role on the team, and in which the members strive to achieve a common goal

as a collective.

Currently, on the day to day life, civilians have a human-automation communication, which primarily involves humans issuing commands to

the automation and the automation then executes the commands or responds to the questions posed by the human. For example, individuals

can use their phones to perform simple tasks, such as making calls or sending texts, and drivers can delegate the driving task to the car's

built-in automation. However, in the near future, we will need to consider that autonomous agents could possess significantly improved

communication capabilities with humans, and have the ability to take initiative, issue orders to both human and autonomous counterparts

[14], and make their own decisions.

It is crucial to understand the team dynamics between humans and autonomous devices, as robots are not only utilized for daily tasks but

also assigned increasingly important roles, such as aiding urban search and rescue (USAR) teams. Robots are used for tireless searching,

positioning sensors, assessing damage, providing survivors with radio transmitters or supplies, guiding tool placement, and determining

survivor position and location under rubble [28]. However, currently, USAR robots are manually controlled by human operators [29].

Ideally, a USAR robot should posses the ability to communicate effectively, efficiently, and autonomously with human team members, as

well as adapt to difficult and stressful situations. What kind of communication interactions would occur if we introduced a completely

autonomous agent capable of being an ideal team member? Bartlett and Cooke conducted an experiment that sheds light on the dynamics of

human and automation interactions [2]. The study concluded that a fully autonomous robot will lead to a better team performance and lower

FUNDING

1. Introduction



workload since the operator could transfer some responsibilities to the robot.

Nonlinear dynamics and mathematical modelling have been powerful tools in studying interactions of species in ecological communities [8–

11]. Those approaches have become important tools implemented in complex psychological systems to gain a better understanding of

human behaviour [3]. Linear and/or nonlinear differential equations have been used to model interactions between two individuals since the

work of Strogatz [37], who modelled the affection between Romeo and Juliet using a two-dimensional system of linear differential

equations. Sprott [36] expanded upon these models by introducing a third person and modelling a love triangle. Sprott modified Strogatz's

model by using a four-dimensional system of nonlinear differential equations. Killworth and Bernard derived a three-dimensional differential

equation to model dynamic changes in human affective and effective interaction within a closed group [20]. These equations are capable of

representing the intensity of person A's feelings towards person B, measuring the probability of A talking to B at any given moment, and

quantifying A's sensitivity to external opinions over time. The equations incorporate functions that regulate person A's desire to engage in a

conversation based on available time, measure the difficulty of finding time for a conversation, and assess the probability of person A

discussing person B with person C, which may influence the interaction between A and B.

There have been several discrete-time models proposed for two-person interactions [18,24,38,39]. Jaffe and his collaborators derived a

probabilistic model in which each individual makes statistically independent decisions, influenced by their immediate prior state and the state

of the opposite individual [18]. The parameters in the model allow for measuring person A's bias towards a certain response, sensitivity to

their own and the other's previous behaviour, and the interaction between person A's response tendencies and the previous behaviours [39].

Malone's model is similar to Jaffe's, but it incorporates the assumption that both person A and B have individual predispositions to make

specific responses [24]. Thus, the probability of person A and person B having a certain response is a weighted average of their

predisposition and the situational effect determined by the previous response [39]. These two weights are expressed as probabilities.

Thomas and Martin's model introduces dynamics to the intra-individual and inter-individual variables [40]. Consequently, the current

interactive behaviour is determined by the probability summation of self-regulatory and interactive effects. Suppes and Atkinson's model

allows for Persons A and B to be reinforced independently during each iteration [38]. This reinforcement occurs after the response is given

and depends on the responses of A and B, allowing for two scenarios. In the first scenario, and individual can be conditioned to a response

if it is reinforced. In the second scenario, the individual can be conditioned to the other individual's response using a probability if the

response is not reinforced [39].

Gottman [17] developed nonlinear discrete models for marriage dynamics, represented through their coding system, called the Specific

Affect Coding System (SPAFF). SPAFF enables the coding of emotional interactions in marital and family settings [16]. Gottman's marital

models are two-dimensional, representing the behaviour scores of husbands and wives. Each mathematical equation incorporates a linear

function to describe the individual's own dynamics or uninfluenced behaviour, bilinear and object functions to describe the influence of one

individual on the other, and repair and damping functions. Repair functions respond to excessive negativity from a partner, while damping

functions respond to excessive positivity. These models can determine which couples are in a happy and stable marriage, in an unhappy but

stable marriage, or have divorced. Additionally, Gottman's models have been used to analyse gay and lesbian marriages, revealing distinct

differences compared to heterosexual marriages. Gottman's modelling approach provides a foundation for modelling communication

dynamics between two agents in a nonlinear fashion.

Motivated by Bartlett and Cooke's work and experiment on cooperation between two agents in a USAR team [2], we derive a two-

dimensional discrete-time model with delay to understand the communication dynamics in a team based on experimental data. Building upon

Gottman's modelling approach [17], our model is tailored to describe the communication between team members during task execution,

which involves a turn-taking dynamic. Additionally, our proposed nonlinear second-order discrete-time model can be validated using

collected data obtained at discrete time intervals. We aim to address the following questions through the study and validation of our model:

(1) How may different factors impact communication dynamics? What factors benefit or harm the team? (2) How do these factors

differentially affect teams with varying levels of performance? (3) What characteristics are present in a high-performing team?

The remainder of this paper is structured as follows: Section 2 presents the derivation of a discrete-time mathematical model that describes

speech dynamics for an individual as well as communication dynamics between two individuals. In Section 3, we analyse the proposed

model and explore potential dynamics, including the number of equilibrium points and their stability. Section 4, focuses on bifurcation analysis

and validates the model using experimental data to gain insights into how key parameters impact team performance, how communication

can enhance performance in pre-established teams, and how to select team members with high expected performance. Finally, in the

concluding section, we summarize our work and provide a brief discussion of our results.

Communication is influenced by personality variables, including self-esteem, cognitive complexity, authoritarianism, optimism, empathy,

interaction involvement, and conversational sensitivity [12]. A study conducted by Joanne Chung-Yan Chan and Po Yi Sy (2016) found a

positive correlation between intercultural communication and personality traits such as agreeableness, openness, and conscientiousness in

2. Model derivation



nursing students [7]. Similarly, another study showed a positive relationship between communication skills and empathy in hospice nurses, as

well as a correlation between social and communication skills and effective performance in hospice nursing [34]. Thus, we begin by

constructing a model for an individual that illustrates the intrinsic dynamics of their communication style. Building upon the modelling

approaches by [5,17], we assume that in the absence of the other agent, the thought process and uninfluenced behaviour can be represented

by the following discrete time map

ui +1 = uie
r1 1−

ui

k1
,

where  denotes the person's emotional inertia or resistance to change, while  represents the average communicative level, reflecting

their ability to verbally convey information. The discreet time model (1) is well-known as ‘Ricker's Map’ in ecology whose dynamics are

well studied (see [8,11] Jim Cushing's work).

The intrinsic communication dynamics of (1) are determined by the emotional inertia , as shown in the bifurcation diagram in Figure 1(b).

A high emotional inertia indicates that a person's emotional state is less likely to change, making them more impervious to external or

internal influences [23]. In this case, a lower value of  (e.g. ) signifies higher emotional inertia, as the system reaches a steady

state more quickly and is less prone to change (see Figure 1(b)). Conversely, low emotional inertia implies that a person's emotional state is

more susceptible to change, suggesting that a greater susceptibility to environmental or psychological demands [23]. This behaviour is

depicted in Figure 1(b) when , where chaotic behaviour is observed in the system. Therefore, a higher emotional inertia, represented

by a smaller value of , leads to a higher level of predictability in the person's emotional state. Thus, the bifurcation diagram in Figure 1(b)

proves to be useful in determining the person's emotional inertia. To illustrate this, the speech dynamics of a single agent are depicted in

Figure 1(a). This time series provides insights into the dynamics of an individual's uninfluenced behaviour. In this example, we selected an

emotional inertia value of , which resulted in chaotic behaviour that captures the agent's frequent changes in state of mind.

We extend the model from Equation (1) to include interaction and influencing behaviour from a second agent, denoted as V. Let 

represent the rate of speech in words per response time (s.), reflecting communication from Agent U to Agent V during interaction i.

Similarly,  denotes communication from Agent V to Agent U at interaction i. We assume that the communication follows a turn-taking

dynamic, making discrete-time representation appropriate. In this scenario, Agent U initiates the interaction with Agent V. Figure 2(a)

provides a diagram illustrating these assumptions. Additionally, each agent possesses their own uninfluenced behaviour, as described by

Equation (1), and their own functional response (influenced behaviour) in response to the opposing agent, which will be explained below.

Motivated by Gottman's modelling approach for married couples [17] and the available data (Figure 2(b)), we propose the following two-

agent communication model:

( )
r1 k1

r1

r1 r1 < 2

r1 > 2

r1

r1 = 2.8

 Time series simulation of one-agent speech dynamics is displayed on (a); and bifurcation diagram from the one-agent 

model on (b).

Figure 1.
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u2i +1 = u2i −1exp r1 1 −

u2i −1

k1 −

βuvv2i

1 + γuvu2i −1v2i

�

influences from V

v2( i +1) = v2iexp r2 1 −

v2i

k2 −

βvuu2i +1

1 + γvuv2iu2i +1

�

influences from U for i = 1, 2, 3, …, n

Here, i represents the turns taken by Agent U and Agent V to communicate with each other (i.e. odd turns correspond to u and even turns

correspond to v). The functional response of each individual, reflecting the influenced behaviour, follows Holling's Type II and is expressed

as  for Agent U; and  for Agent V. In these expressions, the parameters  and  can be positive or negative,

representing nonlinear impacts from previous communications. The parameters  and  are non-negative and represent the damping

effects that Agent U and Agent V, respectively, use to regulate and respond to previous communications from both agents. Both β and γ

are related to the impact of communication during conversations within a given task. Therefore, β and γ can be adjusted and adapted

through proper training.

To establish a connection between our model and the experimental data presented in Figure 2(b), we assign initial conditions  and .

This allows us to determine the values of  and  using the following equations:

( ( ) )

( ( ) )
βuvv2i

1+γuvu2i−1v2i

βvuu2i+1

1+γvuv2iu2i+1 βuv βvu

γuv γvu

 (a) Diagram of the testbed performed in article ‘Human-robot teaming in urban search and rescue’ [2] and describes the 

dynamics of our two-agent model. Additional details of the experimental testbed can be found in Section 4.1. (b) An example of the 

collected data in Bartlett and Cooke's study.

Figure 2.

u1 v2

u3 v4



u3 = u1exp r1 1 −

u1

k1 −

βuvv2

1 + γuvu1y2

v4 = v2exp r2 1 −

v2

k2 −

βvuu3

1 + γvuv2u3

This relationship can also be understood through the diagram shown in Figure 2(a). For the convenience of mathematical analysis and

expressions, we introduce new variables by letting , , and  be the initial conditions. Consequently, our model (2)

can be equivalently represented by the following set of equations:

xi +1 = xiexp r1 1 −

xi

k1 −

βxyyi

1 + γxyxiyi

yi +1 = yiexp r2 1 −

yi

k2 −

βyxxi +1

1 + γyxyixi +1 for i = 1, 2, 3, …, n

where i denotes the turns taken by Agent U, now referred to as Agent X, and Agent V, now referred to as Agent Y, during their

communication. Notably, there is a delay term  in the expression for  in (2b). Consequently, the model (2a)–(2b) can be expressed

as follows:

xi +1 = xiexp r1 1 −

xi

k1 −

βxyyi

1 + γxyxiyi

yi +1 = yiexp r2 1 −

yi

k2 −

βyxxiexp r1 1 −

xi

k1 −

βxyyi

1+γxyxiyi

1 + γyxyixiexp r1 1 −

xi

k1 −

βxyyi

1+γxyxiyi

We will use Equation (3) to study the model's local stability of steady states.

In summary, our two-dimensional communication discrete-time Model (2) incorporates delay impacts to describe the communication

dynamics between two agents, based on the following five assumptions:

1 The thought processes and communication style of each agent are modelled by the Ricker's map, Equation (1), representing their

( ( ) )

( ( ) )
xi = u2i−1 yi = v2i {x0, y0}

( ( ) )

( ( ) )
xi+1 yi+1

( ( ) )

( ( )

( ( ) )

( ( ) ) )



uninfluenced behaviour.

2 Communication between the two agents occurs in a turn-taking manner and is conveyed discretely.

3 Agent X initiates the communication.

4 Agent X's response at turn i + 1 is influenced by the communications that took place at turn i from Agent X and Agent Y.

5 Agent Y's response at turn i + 1 is influenced by its own communication at turn i and the response from Agent Y at turn i + 1.

Our derived Model (2) provides a structured framework for understanding and analysing the complexity of human communication. This

allows us to identify the key variables, relationships, and assumptions that underlie the verbal interactions. Our theoretical analysis, in the

following section, will inform us of the potential dynamics of the system, as well as the effect of the parameters in the dynamics of

communication, which will help us address our first question. We will use the available data to validate our proposed model (2), and then do

parameter estimations under varied conditions to predict and examine the dynamics. This is explored in three data fittings in Section 4. After

the initial model and data fitting in Section 4.2, we perform additional two scenarios of parameter estimations with the aim of gaining insights

into different potential outcomes and their implications our second and third questions. Thus, through model fitting and parameter

exploration, we can apply the model to the selection of two agents who can collaborate effectively to achieve optimal team performance.

Model (2) is continuously differentiable on  with nonnegative initial conditions . As a starting point, we establish the

reasonableness of our model by proving it is positive invariant and bounded as follows:

Theorem 3.1

Model (2) is positive invariant and bounded in .

The detailed proof of Theorem 3.1 can be found in Appendix A.

Next, we examine the equilibria of Model (2) by solving Equations (2a) and (2b) when they are equal to zero. This yields the following

equations:

x�exp r1 1 −

x�

k1 −

βxyy
�

1 + γxyx
�y�

− x� = 0

y�exp r2 1 −

y�

k2 −

βyxx
�

1 + γyxy
�x�

− y� = 0

From equations (4a) and (4b), Model (2) can have three boundary equilibria: (1) the no-communication equilibrium (where there is no

communication between Agent X and Agent Y): ; (2) the no communication from Agent X equilibrium ; (3)

the no communication from Agent Y equilibrium . The following theorem discusses the existence and stability of the three

boundary equilibria. The dynamics of the interior equilibria (existence and stability) are explored in the subsequent subsection.

Theorem 3.2

Model (2) always has the no-communication equilibrium  which is always unstable since  and . Moreover,

3. Model dynamics

R2
+ → R2

+ x0, y0 � R2
+

Positive Invariance and Boundedness

R2
+

3.1. Equilibria

( ( ) )

( ( ) )
3.1.1. Boundary equilibria

E0,0 = (0, 0) E0,y� = (0, k2)

Ex� ,0 = (k1, 0)

Boundary Equilibria Dynamics

E0,0 = (0, 0) r1 > 0 r2 > 0



Model (2) always has an additional boundary equilibrium  which is locally asymptotically stable whenever  and 

, otherwise, it is unstable. Lastly, the boundary equilibrium  always exists and is locally asymptotically stable

whenever  and .

The detailed proof of Theorem 3.2 can be found in the Appendix A. The implications of the boundary equilibria stability conditions are as

follows:

The equilibrium point  is stable if and only if  and . This implies that Agent Y is more affected by Agent X's

communication ( ) compared to Agent Y's personality ( ) and Agent X's communication level ( ). Due to Agent Y's personality,

Agent Y becomes overwhelmed by Agent X's high level of communication ability. Finally, Agent X's personality value ( ) should be

between 0 and 2. Thus, Agent X has a high emotional inertia and dominates the conversation, overwhelming Agent Y and hindering

their ability to communicate back.

The equilibrium point  is stable if and only if  and . Given the symmetry of the model, the implications for

this boundary equilibrium are similar to . Hence, in this boundary equilibrium Agent Y's personality value ( ) should be

between 0 and 2. Agent Y has a high emotional inertia and dominates the conversation, overwhelming Agent X and inhibiting their

ability to communicate back.

We can explore the potential number of interior equilibria of the general Model (2) by analysing the nullclines. Solving Equations ( (2a))

and (2b) for y and x, respectively, we obtain the following equations:

E0,y� = (0, k2) βxy >

r1

k2

0 < r2 < 2 Ex� ,0 = (k1, 0)

βyx >

r2

k1 0 < r1 < 2

Ex� ,0 βyx ≥

r2

k1 0 ≤ r1 ≤ 2

βyx r2 k1

r1

E0,y� βxy ≥

r1

k2 0 ≤ r2 ≤ 2

Ex� ,0 r2

 Description of parameters from Model (2).Table 1.

Parameter Description Value

r1 Emotional inertia of Agent X (0, 4]

r2 Emotional inertia of Agent Y (0, 4]

k1 Average communicative level of Agent X R+

k2 Average communicative level of Agent Y R+

βxy Nonlinear impacts that Agent Y has on Agent X R

βyx Nonlinear impacts that Agent X has on Agent Y R

γxy Damping effects that Agent X can regulate and respond to Agent Y's communication R+

γyx Damping effects that Agent Y can regulate and respond to Agent X's communication R+

 Summary of boundary equilibrium dynamics. LAS: locally asymptotically stable.Table 2.

Equilibrium Existence Stability

E0,0 Always Since  and ,  is always unstable.r1 > 0 r2 > 0 E0,0

Ex� ,0 = (k1, 0) Always
LAS iff  and , otherwise it is unstable.βyx >

r2

k1 0 < r1 < 2

E0,y� = (0, k2) Always
LAS iff  and , otherwise it is unstable.βxy >

r1

k2 0 < r2 < 2

3.1.2. Interior equilibria of the general model



y =

r1(k1 − x)

r1γxyx
2 − r1k1γxyx + k1βxy

x =

r2(k2 − y)

r2γyxy
2 − r2k2γyxy + k2βyx

From the numerators of Equations ( (5a)) and ( (5b)), we define  and 

. Since both equations are quadratic, we consider three distinct cases based on the expression .

\it{Case 1.} The equation h1(x) = 0 has no roots when βxy >

r1k1γxy

4
.

\it{Case 2.} The equation h1(x) = 0 has one root when βxy =

r1k1γxy

4
.

\it{Case 3.} The equation h1(x) = 0 has two roots when βxy <

r1k1γxy

4
.

Similarly, the expression  follows the same three cases with their corresponding parameters. To determine the possible number of

interior equilibria numerically, we utilize Equation ( (5a)) and find solutions for the following quadratic equation

y2( − r2γyxx) + y(k2r2γyxx − r2) + k2r2 − k2βyxx = 0

Theorem 3.3

Model (2) can have either five, three, two, or one interior equilibria depending on the values of its strictly positive parameters 

 and  defined in Table 1 and on conditions in (6).

Model (2) has exactly five interior equilibrium points if

Case (5a):

βxy

γxy >

r1k1

4
,

βyx

γyx >

r2k2

4
, and

βxy

γxy > r1 1 −

1

k1 2γyx

k2βyx

r2γyx − k2
2

OR Case (5b):

h1(x) = r1γxyx
2 − r1k1γxyx + k1βxy h1(y) = r2γyxy

2 − r2k2γyxy + k2βyx

h1(x) = 0

h1(y) = 0

Interior equilibria existence conditions for General Model

r1, r2, k1, k2, γxy, γyx βxy, βyx � R

( ( √ ) )



βxy

γxy ≤

r1k1

4
,

βyx

γyx >

r2k2

4
, 0 < k1 <

1

γxy ,

1

2
≥

r1

k2βxy + 1 −

4βyx

r2k2γyx ,

and

βyx

γyx >

r2

γxy 2

k1βxy

r1γxy − k1

1 −

1

k2γxy 2

k1βxy

r1γxy − k1
2

OR Case (5c):

βxy

γxy ≤

r1k1

4
,

βyx

γyx ≤

r2k2

4
,

1

2
≥

r1

k2βxy + 1 −

4βyx

r2k2γyx , and 0 < k1 <

1

γxy

Model (2) has exactly three interior equilibrium points if

Case (3a):

βyx
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γxy 2

k1βxy

r1γxy − k1

1 −

1

k2γxy 2
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Model (2) has exactly two interior equilibrium points if

Case (2):
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The detailed proof of Theorem 3.3 can be found in Appendix A. In Figure 3, we observe the number of possible interior equilibria of

Model (2) through the behaviour of the system's nullclines. Each subfigure represents an example of each case in Theorem 3.3.

The implication of the interior equilibria existence conditions is as follows:

Case 5a and 5b (see Figure 3(a ,b)): Larger positive values of the ratios  and  might contribute to satisfying all conditions. This

emphasizes that the nonlinear impacts ( ) are relatively strong compared to the damping effects ( ). Thus, an increase in the

impacts of one agent on another is beneficial for the existence of five equilibrium points.

Case 5c (see Figure 3(c)): Smaller values of the ratios , possibly negative, and  will help satisfy conditions 1, 2, and 3. This

indicates that the nonlinear impacts are relatively weaker compared to damping effects. Additionally, a smaller ratio of how

emotionally inert Agent X is to the combined influence of the average communicative level and nonlinear impacts from Agent Y (

) and a smaller value of  can satisfy condition 3. A larger value of Agent X's damping capability ( ) could satisfy condition

4.

Case 3a and 3b (see Figure 3(d ,e)): It is necessary to have a larger value of communication level ( ) compared to the value of

the ratio of how strongly Agent X's actions impact Agent Y to the combined influence of emotional inertia and damping effects that

Agent Y can regulate ( ). Additionally, a larger value of the ratio  is needed, indicating the nonlinear impacts are relatively

strong compared to damping effects. Conversely, we need a smaller value of the ratio , indicating the nonlinear impacts are

( )
 Plots of Equations (5a) and (7) reflecting the examples of cases described in Theorem 3.3. The figures reflect the possible 

number of interior equilibria points (black points). The grey dashed lines represent the asymptotes of nullclines. Lines coloured in blue, 

orange and green correspond to each nullcline of Model (2). (a) Case (5a), (b) Case (5b), (c) Case (5c), (d) Case (3a), (e) Case 

(3b), (f) Case (2a), (g) Case (2b), (h) Case (1a).

Figure 3.
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relatively weaker compared to damping effects. Lastly, for Case 3b, it is possible for the ratio  to be negative, whereas  will be

positive. Conversely, in Case 3a, both ratios can only be positive.

Case 2a (see Figure 3(f)): A smaller and positive value of the ratio  can satisfy condition 1, while a larger value of the ratio 

can satisfy conditions 2 and 3. This means that the nonlinear impacts on Agent X are relatively weaker compared to their damping

capabilities. Conversely, Agent Y's nonlinear impacts are relatively strong compared to their damping capabilities.

Case 2b (see Figure 3(g)): Smaller, possibly negative, values of the ratios  and  can satisfy both conditions. This suggests that

both agents' nonlinear impacts are relatively weaker compared to their damping capabilities.

Case 1a (see Figure 3(h)): A larger value of  compared to  could satisfy condition 3. In this case, a larger value of the ratio 

 can satisfy conditions 1 and 4, while a smaller value of , possibly negative, can satisfy conditions 2, 3, and 4. This indicates that

the nonlinear impacts on Agent X are relatively strong compared to their damping capabilities. Conversely, Agent Y's nonlinear

impacts are relatively weaker compared to their damping capabilities.

For all conditions in (6), Model (2) can only have either five, three, two, or one interior equilibria. The number of interior equilibria is

determined by the positive intercepts of the nullclines,

p3(x) =

r1(k1 − x)

r1γxyx
2 − r1k1γxyx + k1βxy and

p1, 2(x) =

−1

2γyxx 1 − k2γyxx ± r2(r2(1 + k2γyxx)2 − 4k2βyxγyxx
2)

Figure C1 shows the possible number of equilibria by graphing all three nullclines and using the three cases for  and  as

conditions for  and . In Figure C1, we use blue, orange, and green lines to represent Case 1, 2, or 3, respectively, from the conditions

in (6). The circle markers are coloured purple, magenta, black, and dark green to identify five, three, two, or one intersection(s),

respectively, between the functions. Solid, dashed, and dotted lines are used to represent the change of parameters with respect to one

function and therefore indicate in the number of positive intersections. Appendix D contains the details of the parameter values used in each

plot.

We observe that all conditions yield either five or three possible interior equilibria. Nullcline  will always intersect the positive y-axis

and remain in the first quadrant, resulting in two intersections with  in most cases. Thus, Figure 4 exemplifies the conditions under

which nullcline  will intersect  once or thrice, leading to one out of three interior equilibria or three out of five interior equilibria.

These two nullclines will intersect thrice if . Otherwise, they will intersect only once. Therefore, if the impact of

previous communication on Agent Y's emotional inertia (small ) is greater than Agent X's damping effect on their communicative level (

), we can have up to five interior equilibria. A distinct finding is that if there are two possible interior equilibria under a given case, we

could not find conditions for the existence of only one interior equilibrium. Similarly, if we found one possible interior equilibrium, we could

not find conditions for the existence of two interior equilibria under the same conditions. Refer to Figures C1a and C1c to observe these

dynamics. Moreover, we observe a minimum of two interior equilibria whenever  or . Thus, the impact of Agent

X's or Agent Y's previous communication should be less than or equal to one-fourth of their emotional inertia, communication ability, and

damping effect capability. Otherwise, the agents can be overwhelmed by the interaction. We study the stability of the interior equilibria in

Section 5 through simulated bifurcation diagrams.

In this section, we explore the existence and stability of the interior equilibria in the symmetric model, where , , 

 and . This means that both agents in the team have the same personality and training, and Model (2) becomes:
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x = xexp r 1 −

x

k
−

βy

1 + γxy

y = yexp r 1 −

y

k
−

βx

1 + γyx

From the exponential function in system (8), we can derive the following equations to plot the system's nullclines:

y =

r(k − x)

rγx2 − rkγx + kβ

x =

r(k − y)

rγy2 − rkγy + kβ

Let  and  be equilibrium of Model (8). Then by substitution of Equation (9a) in Equation  (9b), we obtain the fifth degree polynomial

f(x) = − kβ( − rγx2 + krγx + r − kβ)( − rγx3 + krγx2 − rx − kβx + kr)

The quadratic function  can be solved explicitly from which we derive two equilibria  in

Equation (10). Equilibria  is obtained from the cubic function . The system has

five possible interior equilibrium points. However, only two of them can be expressed explicitly as follows:
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 Nullclines  and  showing the existence of one interior equilibria when  and the existence of three 

interior equilibria when .

Figure 4. p1(x) p3(x) ε =

√k1

γxy

< xc√

ε > xc

x� y�

g1(x) = − rγx2 + krγx + r − kβ Ex�
1,2

,y�
1,2

Ex�
j

,y�
j

, j = 3, 4, 5 g2(x) = − rγx3 + krγx2 − rx − kβx + kr

( [ √ ] [ √ ])

( [ √ ] [ √ ])



Thus, the interior equilibrium points , where j = 1, 2 exist if .

Theorem 3.4

Model (8) can have the following dynamics depending on the values of its strictly positive parameters  and  defined in Table 1.

Equilibria Existence:

• Model (8) has five interior equilibrium points if

γ >

27

k2

and

2r

k
+

2krγ

9
< β <

r(k2γ − 3)

3k
.

• Model (8) has three interior equilibrium points ( ) if

γ ≤

27

k2

and

r

k
< β <

r(k2γ + 4)

4k
,

OR

γ >

27

k2

and

r

k
< β <

2r

k
+

2krγ

9

• Model (8) will always have one interior equilibria ( ).

Equilibria Stability:

• Equilibria  are always unstable.

• Equilibria  is locally asymptotically stable if

β > 0, r < 1,

k

2
< x

�
3 , and kβ − rγ(k − x

�
3 )2 > 1.

The proof of Theorem 3.4 can be found in Appendix A. Figure 5 illustrates the number of possible interior equilibria for the symmetric

Model (8). The corresponding parameter values used for each plot are provided in the figure. The symmetric Model (8) can have only five,

three, or one interior equilibrium point. The existence of only two equilibrium points were not found in the system. This can be attributed to

the team being formed by two individuals with the same personality and receiving identical training to complete their task (strictly symmetric

model). Thus, when forming a team with similar personalities and training, the possibility of finding bistability decreases. The number of

interior equilibria in Model (8) is determined by the positive intercepts of the functions  and 

. In Figure 5, the number of intersections is represented by purple, magenta, and green dots for five, three, and one

interior equilibria, respectively. Figure 6 depicts the bifurcation diagrams for both agents with respect to parameter β. The figure shows the

three boundary and five interior equilibria that can exists in Model 8. The blue points represent source equilibria, the red indicate sink

equilibria, and green indicate saddle points. Thus, only one interior equilibria can be stable. The proof of Theorem 3.4 can be found in the
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Appendix, and a summary of the conditions for each case can be found in Table 3. The stability conditions for  and  are

provided in Theorem 3.4.

Note: LAS: locally asymptotically stable.

In Figure 5, we can observe that the equilibria  and  exist only when there are a total of three or five interior equilibria. As

indicated in Table 3, due to the symmetry of  and , both equilibrium points are unstable since the condition for their

existence ( ) contradicts stability condition. On the other hand, equilibrium  always exists and can be stable if the

psychological and environmental effects of both agents are positive ( ), both agents exhibit a high level of emotional inertia (r<1), the

agents' communication level is greater than half of their communicative level ( ), and the combined impact of the agents'
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,y�
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2

 Plots of nullclines (9a) and equation . The figures reflect the possible number of interior equilibria points for symmetric 

Model (8). The model has five (purple points), or three (magenta points), or one (dark green points) interior equilibria. The grey dashed 

line represents the asymptote of nullcline 9a. The solid, dashed and dotted lines correspond to the change in parameters for both 

nullclines. (a) r = 0.2, k = 7.1,   (b) r = 0.2, k = 7.1, ,  (c) r = 1.4, k = 5, , 

Figure 5. g1(x)

β = 0.335 γ = 1 β = 0.284 γ = 0.8 β = 0.175 γ = 0.1

 Bifurcation diagram with respect to β for the symmetric model (8). The diagram shows boundary and interior equilibria of 

the system, where blue represents stable equilibria, red indicates sink points, and green indicates saddle points. The following parameter 

values were used r = 0.2, k = 7.1, .

Figure 6.

γ = 1

 Summary for the existence of interior equilibrium for symmetric Model (8).Table 3.

Equilibrium Existence Stability

E3 Always LAS if , r<1, , and , otherwise they are

unstable.
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communication, emotional inertia (r), damping capability (γ), and communicative level (k) is smaller than the impact of the psychological and

environmental effects (β) on the communication level.

Similar to the application of Gottman's model to married couples [17], Model (2) can be applied to the communication between any two

individuals. However, our focus lies on studying communication within a two-agent team. Communication serves as the foundation for

coordination and cooperation, making it crucial in teamwork. Various agencies, such as the military, aeronautics and space researchers, and

first responders, regularly undertake high-risk and critical operations that require collaboration among team members. Whether these

operations involve protecting national security or saving civilian lives, the teams must effectively achieve their primary goals while

minimizing risks and avoiding casualties. Consequently, agencies, such as the military and NASA, invest in and foster partnerships with

research institutions to further studies in team dynamics with the aim to study the effects on team performance, situation awareness, and

team coordination [13,15,25].

To gain insights into the required autonomy level for an effective two-agent human-robot team, we refer to Bartlett and Cooke's 2015 study

[2]. Their experiment involved a two-agent interaction, similar to what we can expect in USAR situations. Bartlett and Cooke devised a

search and rescue scenario using the videogame Minecraft. The virtual environment they created represented a collapsed office building, in

which the two-agent team has to navigate. The internal agent, a human, acting as an independent and intelligent robot, was responsible for

navigating the environment and ‘rescuing’ victims. The external agent, a human, had the task of guiding the internal agent. Both agents

were seated side-by-side with a divider between them (see Figure 2(a)). The external agent could only observe the events inside the

videogame and was provided with a map of the building to direct the internal agent's movements. However, the environment deliberately

contained inconsistencies such as missing or additional walls and misplaced doorways, which were not reflected in the map provided to the

external agent. Victims were represented by green and blue blocks, while hazards were depicted by pink blocks. The internal agent had to

locate and click on all the green and blue blocks within eight minutes, while avoiding the pink blocks. Clicking on pink or blue blocks after

eight minutes would negatively impact the team's overall performance score. Successful completion of the task required constant

communication, coordination, and shared knowledge among team members. The recorded data included information such as the speaker

(operator or robot), communication time (in seconds), lag between communications (in seconds), and word count per message (see

Figure 2(b)). As participants were recruited to form the two-agent teams, we treat the recorded data from the robot as if it were generated

by a second human agent.

The data collected by Bartlett and Cooke consists of a set of 40 teams with team performance scores ranging from 13 to 41 [2]. We

divided the teams into three categories: low-performing, medium-performing, and high-performing teams. Among the teams, there were nine

low-performing teams with scores between 13 and 19, twenty medium-performing teams with scores between 20 and 29, and eleven high-

performing teams with scores between 30 and 41. It is worth noting that only one team achieved a score of 41, making it an outlier.

Throughout the remainder of this section, we will refer to the external agent in the data as Agent X, and the internal agent as Agent Y. It is

important to note that in the figures presented, the x-axis represents interactions. For example, Interaction 1 corresponds to one verbal

communication from Agent X and the subsequent response from Agent Y. The y-axis depicts the value of , which

indicates the ratio of the speaker's communication density to the time taken to respond to the previous communication. Additionally, the

figures illustrate the data and the corresponding model fitting for the three performance levels. The data is segregated based on Agent X'

communication (Figures (a), (c) and (e)) and Agent Y's communication (Figures (b), (d) and (f)). For each performance group, we

calculated the average  per interaction, represented by black dots in the figures. For example, we determined the average for

Agent X's communication at Interaction 1 across all low-performing teams, which corresponds to the first black dot in Figures (a). Finally,

the standard error of the calculated mean is visualized using a grey shaded area.

The data, as shown in Figure C2, highlights several notable differences among the performance groups and agents, and Table 4 presents

the mean data for each agent at various performance levels. In the following data observations we define density of communication as the

value of words/lag on each interaction, and communication variability as the change of words/lag value between interaction i and

interaction i + 1.

Agent X demonstrates greater variability and density of communication across all performance levels compared to

Agent Y. This means that, on average, Agent X communicates more frequently than Agent Y in the given scenarios.

The team dynamics established by the experimental task involve Agent X as the leader and decision-maker. In this team

dynamic, it is expected that Agent X will communicate more by requesting information and conveying strategy changes, while Agent

Y navigates the scenario.

4. Application in team dynamics

4.1. Dataset

words/lag(sec. )

words/lag(s. )



Communication density increases for both agents as performance improves.

Some low-performing teams exhibit inadequate or sporadic communication from either agent.

In low-performing teams, Agent Y exhibits a decrease in communication density and variability after approximately one hundred

interactions.

In high-performing teams,

Agent Y's communication variability and density show an upward trend, with values ranging from 1 to 10 words per lag.

Agent X maintains a more consistent variability (4–9 words per lag) during the intermediate section of the task.

Agents in medium-performing teams display less variability between interactions. That is, the difference between the value

of words per lag at interaction i and interaction i + 1 is small.

A higher difference in communication between the agents leads to lower team performance. The difference in mean data

between Agent X and Agent Y ( ) decreases for the medium-performing and high-performing groups. In the low-performing

group, the difference is 4.5, while in the medium-performing and high-performing groups, the differences are 2.9 and 3.6,

respectively.

Having a smaller difference may not be optimal for the team (e.g. in a medium-performing team).

Model (2) assumes that communication is influenced by personality, such as emotional inertia and communicative level; and training, such

as environmental impact and damping capabilities. The available data provides us an opportunity to validate our proposed model and provide

us a baseline value of those key parameters after validation. Thus, in this section we will first fit the eight parameters of Model (2) to

estimate the agents' emotional inertia, their psychological and environmental impacts during the task completion, and their damping

capability. Our initial fitting (see Figure C2 and Table 5) suggests that our model is plausible and thus can obtain a baseline for our

parameter values. With this baseline, we can now study how does the agents' training change if the team is composed of two agents with

similar personality. Thus, we perform a second fitting were fix the parameters of emotional inertia and mean communicative level (

). Additionally, we want to explore how we can compose the best team possible if the same training is given to both agents. Then,

our third fitting only is performed for parameters  and , while  and  are fixed. The methodology for the parameter

estimations in this section was completed with the aid of MATLAB R2022a software and the coded algorithm for the fitting can be found in

Appendix B.

°

°
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°

 Summary of experimental data collected by Bartlett and Cooke [2].Table 4.

  Agents  

Data Mean Performance

¯
X

¯
Y

¯
Y −

¯
X

 Low 6.56 2.04 −4.52

 Medium 5.59 2.61 −2.98

 High 6.78 3.13 −3.65

4.2. Model fitting

r1,2, k1,2

r1,2 k1,2 βxy,yx γxy,yx

 Parameter estimations of all eight parameters of Model (2) for teams with different levels of performance.Table 5.

 Parameters   

Performance (Ngreen↓)

r1

(Ngreen↓)

r2

(Ngreen↓)

k1

(red↑)

k2

(Ngreen↓)

βxy

(red↑)

βyx

(Ngreen↓)

γxy

(red↑)

γyx Agent X

MSE

Agent Y

MSE

Low 3.1993 3.3383 5.8158 2.0598 6.3591 0.3511 3.9948 0.1202 12.2030 2.0230

Medium 3.2793 3.2931 5.2387 2.4998 2.9034 2.5929 2.0798 4.0432 10.1178 1.5699

High 3.0519 2.9977 5.3669 2.8423 1.1647 1.207 2.2948 4.1082 13.0897 2.3115



Figure 7( a,b) shows the fitted model for high-performing teams where all eight parameters were estimated. The remaining plots for low-

and medium-performing team can be found in Figure C2. Table 5 contains the fitted values of all parameters of different team performance

levels with the mean squared error (MSE) corresponding to each agents' data. Table 6 contains the rate of change of the parameters

corresponding to each agent on a certain level of performance. Based on the fitted parameters, we draw the following conclusions:

 All figures correspond to data from high-performing teams. Black dots represent the data mean, the grey area is the 

standard error of the mean at each interaction, and the purple and orange lines represent the model predicted values for Agent X and 

Agent Y communication, respectively. Model fitting of all eight parameters of Model (2) are depicted on figures (a) and (b), fitting of 

parameters corresponding to agents' training when agents have consistent personality are depicted on figures (c) and (d), and fitting of 

parameters corresponding to agents' personality when agents have consistent training are depicted on figures (c) and (d). The fitted 

parameter values can be found in Tables 5, 7, and 9. (a) Fitting of all model parameters (b) Fitting of all model parameters (c) Fitting 

with consistent agent personality.  (d) Fitting with consistent agent personality.  (e) Fitting with consistent 

agent training.  (f) Fitting with consistent agent training. .

Figure 7.

r1 = r2 = 3.2 k1 = k2 = 3.97

βxy = βyx = 2.42 γxy = γyx = 2.77

 Rate of change calculation between all the parameters corresponding to Agent X and Agent Y for different levels of 

performance.

Table 6.

 Rate of Change

Performance Δr = r2 − r1 Δk = k2 − k1 Δβ = βyx − βxy Δγ = γyx − γxy



Note: We fixed parameters  and  for all performance levels.

Note: Parameters  and  are fixed for all performance levels.

Both  and  decrease as team performance increases. This suggests that high-performing teams have agents with higher and

similar emotional inertia, indicating that their emotional stability is not easily affected by their surroundings and experiences.

The value of  also decreases as performance increases. This indicates that high-performing teams have agents with more

similar emotional inertia, contributing to their overall emotional stability.

The parameter  decreases, while  increases as performance increases, resulting in a decrease in the distance

between the parameters ( ). This implies that in higher-performing teams, Agent Y participates more in the conversation by

transmitting more information.

Agent X must decrease their mean communicative level to allow for a more dense interaction from Agent Y.  This

adjustment in communicative levels ensures that Agent Y's increased participation in the conversation is accommodated.

Low 0.139 −3.7560 −6.008 −3.8746

Medium 0.0138 −2.7389 −0.3105 1.9634

High −0.0542 −2.5246 0.0423 1.8134

 Parameter estimations for three performance levels.Table 7.

 Parameters   

Performance r1 r2 k1 k2 (Ngreen↓)

βxy

(red↑)

βyx

(Ngreen↓)

γxy

(red↑)

γyx Agent X

MSE Agent Y MSE

Low 3.2 3.2 3.97 3.97 4.4047 2.2785 5.8693 0.6649 12.9475 1.4254

Medium 3.2 3.2 3.97 3.97 0.2291 2.8316 0.1902 1.0917 13.5473 1.6651

High 3.2 3.2 3.97 3.97 −0.692 8.9071 4.3172 4.5713 13.2696 2.2004

r1 = r2 = 3.2 k1 = k2 = 3.97

 Rate of change calculation between all the parameters related to training corresponding to Agent X and Agent Y for 

different levels of performance.

Table 8.

 Rate of Change

Performance Δβ = βyx − βxy Δγ = γyx − γxy

Low −2.1262 −5.2044

Medium 2.6025 0.9015

High 9.5991 0.2541

 Parameter estimations for three performance levels.Table 9.

 Parameters   

Performance (Ngreen↓)

r1

(Ngreen↓)

r2

(red↑)

k1

(red↑)

k2

βxy βyx γxy γyx

Agent X

MSE

Agent Y

MSE

Low 3.0943 3.1864 5.5501 3.1799 2.42 2.42 2.77 2.77 9.17523 2.0804

Medium 3.0372 3.1054 5.5441 3.4890 2.42 2.42 2.77 2.77 10.3117 2.5278

High 2.9519 3.1227 7.7731 3.8441 2.42 2.42 2.77 2.77 13.2334 3.2802

βxy = βyx = 2.42 γxy = γyx = 2.77

r1 r2

Δr

k1 k2

|Δk |

°



The fitting reflects the data's behaviour. A larger value of k  is fitted for Agent X ( ).

The parameter  decreases, while an overall increase in  is observed. This indicates that the psychological and

environmental impacts are higher on Agent Y in medium-performing teams compared to low and high-performing teams.

Agent X has a higher psychological and environmental impact than damping capabilities ( ). This imbalance

affects Agent Y since Agent X, as the leader responsible for strategy and planning, directly impacts and influences Agent Y.

Agent X's damping capabilities ( ) generally decrease, while Agent Y's damping capabilities ( ) increase. This

dynamic is favourable for the team, as Agent Y's ability to better assess situations and the environment allows Agent X to have a

lower negative psychological impact and focus on strategy and planning.

The rate of change of β and γ becomes positive, and the distance between the parameters ( , ) significantly

decreases as performance increases. This highlights the importance of both agents having the ability and training to assess

different obstacles and be minimally affected by unique events based on their past experiences and training.

We conducted a second fitting in which the parameters related to the personality of Agent X and Agent Y (r, k) were fixed across team

performance levels and among agents, i.e. , . The objective was to examine how training for the agents should be modified if

both agents in the team have the same or similar personality. For this fitting, we calculated the averages of , , , and  obtained in

the previous fitting (Table 5), resulting in  and .

Figure 7( c,d) illustrates the fitted model for high-performing teams, where only the βs and γs were estimated. The remaining plots for low-

and medium-performing team can be found in Figure C3. Table 7 presents the fitted values of all parameters for different team

performance levels, along with the mean squared error corresponding to each agent's data. Table 8 displays the rate of change of the fitted

parameters for each agent at specific performance levels. Based on the fitted parameters, the following conclusions can be drawn:

The estimated value of  shows a significant decrease, while  increases as performance increases. Thus, resulting in

an increased  of 9.5991 for the high-performing team. This indicates that Agent Y receives and manages a majority of the

negative psychological and environmental impacts, and a larger  value contributes to improved team performance.

The parameter  exhibits an overall decrease, whereas  steadily increases with team performance. This suggests that

Agent X's damping capability decreases, while Agent Y's damping capability increases as team performance improves.

In the medium-performing team, the lower value of  may be attributed to the decreased value of . This implies

that the subpar performance of the medium-performing team is due to both agents having low damping capability and

experiencing minimal psychological and environmental effects.

The rate of change of γ becomes positive, and the difference between both parameters ( ) decreases as the

team's performance improves.  This indicates that as team performance improves, both agents' damping capabilities undergo

positive changes, and the difference between their damping capabilities decreases.

A higher  and lower  are beneficial to the team's performance. This suggests that a larger difference in β values and a

smaller difference in γ values contribute to improved team performance.

A team with better performance includes an Agent Y who, as the first agent to encounter challenging situations, can

assess and control obstacles and situations more effectively.  This implies that in high-performing teams, Agent Y's ability to

handle challenging situations leads to better overall team performance.

Agent X does not experience the negative effects of these events and can focus on strategy and decision-making. This

highlights that when Agent Y effectively handles challenging situations, Agent X is not negatively impacted, allowing them to

concentrate on strategic planning and decision-making.

The third data fitting starts with the assumption that , , and then estimates the values of other parameters to investigate

how the personalities of both agents would change across different levels of performance when they receive identical training. Thus, we

aimed to determine how we can form a team based solely on the agents' personality to achieve higher performance. For this fitting, we

calculated the averages of , , , and  obtained in the first fitting (Table 5), resulting in  and .

Figure 7( e,f) illustrates the fitted model for high-performing teams, where only the rs and ks were estimated. The remaining plots for low-

and medium-performing team can be found in Figure C4. Table 9 presents the fitted values of the parameters for different team

performance levels, along with the mean squared error corresponding to each agent's data. Table 10 displays the rate of change of the fitted
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parameters for each agent at specific performance levels. Based on the fitted parameters, the following conclusions can be drawn:

The estimated value of  exhibits a decrease, while  shows an overall decrease as the team's performance improves.

This suggests that both agents' emotional inertia decreases with improved team performance.

Agent X demonstrates higher emotional inertia across all three performance levels ( ).

In the medium-performing team, Agent Y has slightly higher emotional inertia (smaller ) compared to the high-

performing team.

High-performing teams have a slight increase of 0.2 for .

For a high-performing team, we require Agent X to have a higher emotional inertia  and a distinctly higher

communicative level .

The parameter estimation for  is very similar for the low and medium-performing teams. The estimated value for the

high-performing team increases by 2.2 units.

On the other hand,  steadily increases with performance improvement. This indicates that as team performance improves,

the value of  also increases.

The model captures the behaviour of the data, where the mean communicative level is higher for Agent X ( ).

This finding suggests that the model interprets the behaviour of a higher communicative level exhibited by Agent X compared to

Agent Y.

There is a decrease of 1.6 units in . This implies that the difference between Agent X's and Agent Y's

communicative level decreases by 1.6 units as team performance improves.

There are instances when it is not possible to change the members of an established team or create the ideal team. Therefore, studying the

effect of each component(s) of communication on the dynamics can help us understand how communication is influenced and how it can be

improved by exploring the parameters values of the high-performing team. Thus, we generated bifurcation diagrams for each of the eight

parameters in the system and used the fitted parameters for the high-performing team from Table 5. Figure 8 specifically focuses on the

parameters corresponding to Agent X, while the remaining diagrams can be found in Figure C5 in C. In Figure 8, each row represents one

parameter, each column represents an agent, and the vertical grey line represents the fitted value of the parameter for which we are

plotting the bifurcation diagram. The blue points in the figure represent stable points, red represents unstable points, and green points

represent saddle points. Stable points indicate unchanging communication between the agents, where either both agents or one agent

maintains a consistent communication style (words/lag value).

 Rate of change calculation between all the parameters related to personality corresponding to Agent X and Agent Y for 

different levels of performance.

Table 10.

 Rate of Change

Performance Δr = r2 − r1 Δk = k2 − k1

Low 0.0921 −2.3702

Medium 0.0682 −2.0551

High 0.1708 −3.9290

r1 r2

° r1 > r2

° r2

° Δr

° r1 < 3
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° Δk

4.3. Bifurcation diagrams and parameter exploration

 Bifurcation diagrams with respect to parameters , , , and  in Model (2). The baseline parameters used 

correspond to high-performing teams and can be found in Table 5. The diagram shows interior equilibria of the system, where blue 

represents stable equilibria, red indicates sink points, and green indicates saddle points.

Figure 8. r1 k1 βxy γyx



By analysing the estimated parameters from the experimental data and observing the variation in each parameter's value, we find that the

model can exhibit one, two, or three equilibria. However, most of these equilibria tend to be saddles or sources (unstable), except for a small

interval  for parameter , where stability is observed. The fitted values and the range of values around parameters , , and 

 result in three sources. On the other hand, the fitted value and the range of values around parameter  yield one saddle and two

sources. Considering that the experimental data displays complicated behaviour, consequently, our bifurcation diagrams primarily depict

unstable equilibria, further study of the parameters' effect on communication is warranted. Therefore, we conduct numerical simulations to

explore how may each parameter impact communication dynamics as follows.

By using the parameters for high-performing teams from Table 5 as the baseline, we individually perform a  change in each

parameter to explore the impact of changes in each of the eight parameters on the communication dynamics of the two-agent team. To

[0.42, 0.47] k1 r1 βxy

γxy k1

Δ = ± 0.5



measure the change in communication, we observe the percentage change in the calculated MSE from Table 5 and the new MSE of a new

simulation (see Figure 9). Now, let's delve into the specific findings, highlighting the parameters that have the most significant influence on

communication dynamics when their values are increased or decreased.

Parameters , , , , and  are the most sensitive to change. The change in these parameters has a more pronounced

effect on communication dynamics when their values are decreased or increased by 0.5.

The β parameters are the only ones sensitive to both increase and decrease. Parameters  and  have different effects on

communication depending on the direction of change.

Decreasing  has a greater effect on communication than increasing it. A very low value of psychological and

environmental impact for the lead team member may lead to reduced focus and situational awareness of potentially high-risk

events.

Increasing  has a more significant impact on communication than decreasing it. Agent Y, responsible for

navigating and interacting with the high-risk environment, may inadequately communicate crucial details, leading to erroneous

assessments and decisions by Agent X.

The emotional inertia is the least resilient parameter. The parameter r affects communication whether it increases or

decreases.

A low value of r (high emotional inertia) makes it challenging for an agent to transition between emotional states,

potentially prolonging negative emotions.

A high value of r (low emotional inertia) allows emotions to change more rapidly.

Agent Y's communicative level ( ) is another parameter with low resilience.

Decreasing Agent Y's communicative level reduces the information received by Agent X, limiting their understanding of

the situation and decision-making abilities.

Increasing Agent Y's communicative level may overwhelm Agent X with excessive communication, hindering effective

communication of the next plan of action.

It is important to note that the increase or decrease of these parameters does not inherently imply better or worse outcomes. The ideal level

of emotional inertia, for example, may vary depending on the context and circumstances. Some situations may require individuals who

posses stability and continuity in their emotional experiences, while others may necessitate individuals who can quickly adapt and shift their

emotional states. Therefore, our parameter exploration provides insights into which elements of human communication are more likely to

affect communication dynamics in an established team when perturbed.

 Percentage of MSE change in relation to the MSE values of each agent listed in Table 5. The calculation is performed by 

varying each parameter individually by a change of .

Figure 9.
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In this study, we proposed a discrete-time mathematical model that considers communication between two agents based on their individual

personalities and the impact of received communication. We adopted a population dynamics approach to establish our modelling framework,

applying it to examine the communication dynamics between Agent X ( ) and Agent Y ( ) working collaboratively on a task through

a two-dimensional system of difference equations with delay. Our model, coupled with data analysis, aims to address the following

questions: (1) How may different factors impact communication dynamics? What factors benefit or harm the team? (2) How do these

factors differentially affect teams with varying levels of performance? (3) What characteristics are present in a high-performing team?

Based on the available experimental data, we observed that high-performing teams exhibit continuous and active communication, with

Agent X assuming a leadership role. Teams with poor or sporadic communication from either agent performed inadequately, resulting in low

team scores. The experimental data displayed chaotic behaviour, indicating that communication between agents never stabilizes. This

observation addresses question (3) from the data analysis perspective.

To further investigate communication dynamics, we conducted a theoretical analysis of our proposed model (2). Our analysis revealed that

the model can have multiple types of interior equilibria: five, three, two, or one. Considering the complexity of the general model, we studied

the dynamics of the symmetrical model by assuming that two agents are identical. The symmetric Model (8) can possess the same types of

interior equilibria as the general model with at least one equilibrium ( ) always existing. Our analysis implied that the symmetrical

model can have only one stable interior equilibrium  when certain conditions are met: both agents exhibit positive psychological and

environmental effects ( ), high emotional inertia (r<1), communication levels greater than half of their respective communicative levels

( ), and the combined impact of communication, emotional inertia (r), damping capability (γ), and communicative level (k) is smaller

than the impact of psychological and environmental effects (β) on the communication level.

Stable equilibria in the system indicate a consistent communication pattern between agents, where either both agents or one agent maintains

a consistent communication style (words/lag value). Given that unchanging communication between agents is not reflective of the

experimental data, then the mentioned conditions for stability of the equilibrium  can harm the team's communication and

performance. These theoretical findings provide insights into the factors that can either benefit or harm the team, addressing the first

question.

We further gained more insights into our research questions by exploring the effect of parameter variations on different scenarios through

parameter estimation. By fitting all eight parameters of the model, we found that high-performing agents maintain emotional stability

regardless of their surroundings and experiences. In high-performing teams, Agent Y contributes more to the conversation by transmitting

more information (see Figure 7(a,b) and Table 5). Medium-performing teams exhibit higher psychological and environmental impacts on

Agent Y compared to low and high-performing teams. As performance improves, Agent X's damping capabilities generally decrease, while

Agent Y's damping capabilities increase. This allows Agent X to focus on strategy and planning while Agent Y better assesses situations

and the environment. When both agents possess the same emotional inertia and communicative level, Agent Y receives and manages a

majority of the negative psychological and environmental impacts, leading to improved team performance. This can be observed by the

increased values of parameters  and  in Table 7. Additionally, as the first agent to encounter challenging situations, Agent Y's

effective assessment and control of obstacles and situations contribute to enhanced team performance. Agent Y's adept handling of

obstacles and situations also reduces the negative impact on Agent X, enabling them to concentrate on strategic tasks.

We explored a scenario in which both agents undergo the same training to ensure equal responsiveness to their teammate's communication,

with both agents being equally affected by their teammate's communication. As team performance improves, both Agent X and Agent Y

exhibit increasing emotional inertia, with Agent Y demonstrating slightly higher emotional inertia in medium-performing teams (see Table 9).

Additionally, Agent Y's communicative level consistently increases as team performance improves, while Agent X consistently maintains a

higher mean communicative level than Agent Y across all performance levels. For optimal performance, Agent X should possess both

higher emotional inertia and a notably higher communicative level compared to Agent Y.

Our bifurcation diagrams and parameter exploration demonstrated that the agents' emotional inertia, Agent Y's communicative level, and

the agents' psychological and environmental impact are the most sensitive communication elements affecting the agents' communication

dynamics as observed from the percentage MSE change in Figure 9. High emotional inertia poses challenges for agents in transitioning

between emotional states, while low emotional inertia allows emotions to change rapidly. A low value of psychological and environmental

impact for the lead team member may lead to reduced focus and situational awareness, affecting their ability to identify high-risk events.

Decreasing Agent Y's psychological and environmental impact may result in inadequate communication of crucial details, leading to

incorrect assessments and decisions by Agent X. Reducing Agent Y's communicative level limits the information received by Agent X,

hindering their understanding of the situation and decision-making abilities. Conversely, increasing Agent Y's communicative level may

overwhelm Agent X with excessive communication.

The current model incorporates important features of two agents' interactions, and yet it could be improved in several aspects due to
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limitations. Firstly, it excludes the effect of different levels of workload, which can impact communication quality between agents and final

team performance. Secondly, it does not consider the level of trust between team members, an important factor influencing decision-making

and mutual reliance. Additionally, due to data limitations, we were unable to incorporate team performance as a function of time. Another

major limitation of the model is the omission of information content and quality provided by each agent. Nevertheless, despite these

limitations, our presented model lays a foundation and yields promising results regarding the implications of teams with members possessing

similar personalities or receiving adequate training. Furthermore, it sheds light on how these dynamics change when one or both agents have

different personalities or experience varied impacts from their teammate.
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