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ABSTRACT

Communication is pivotal for the emergence of coordination and cooperation within teams. As a result, communication plays an important
role in team dynamics as better communication between teammates can lead to more efficient and successful teams. To better understand
communication dynamics and their impact on team performance, we develop a modelling framework of two-agent interaction dynamics in a

discrete-time fashion. Our proposed model considers the communications between two agents based on each agent's personality and their


http://dx.doi.org/10.1080/10236198.2024.2343834

individual impact on any received communication. Combined with data, we perform mathematical analysis and bifurcation diagrams to study
how agents' personality and training may impact the quality of the team's communications and therefore their performance in task
completion. The validations and parameter estimations of our model from data could potentially help us to select team members that could

work together efficiently, and train members in the established team to collaborate better.
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1. Introduction

As a social species, human beings have been using language to communicate with each other. Communication plays a crucial role in
facilitating cooperation and coordination among humans in the completion of various tasks [1,6,19,21,26,27]. For instance, in software
engineering, effective communication among team members is imperative to ensure the delivery of high quality projects [31,35]. The sharing
of information and effective communication among team members significantly contribute to the success of a project [22]. Studies
conducted with college students have demonstrated a strong correlation between improved communication quality and their ability to
achieve higher financial revenue through business projects [32]. Brewer and Holmes conducted a communication exercise with
undergraduate students [4]. Their findings revealed that clear and precise communication among team members enhances overall team
functioning and reduces instances of miscommunication. Moreover, a clear understanding of terminology among all team members helps

mitigate communication problems [4].

With advancing technology, human interaction has expanded to include interactions between various agents, encompassing autonomous
agents. Autonomous agents refer to ‘a computer-based entity that is individually recognized as occupying a distinct team member role’ [30].

O'Neill [30] defines Human-Autonomy teams as

interdependence in activity and outcomes involving one or more humans and one or more
autonomous agents, wherein each human and autonomous agent is recognized as a unique team member
occupying a distinct role on the team, and in which the members strive to achieve a common goal
as a collective.

Currently, on the day to day life, civilians have a human-automation communication, which primarily involves humans issuing commands to
the automation and the automation then executes the commands or responds to the questions posed by the human. For example, individuals
can use their phones to perform simple tasks, such as making calls or sending texts, and drivers can delegate the driving task to the car's
built-in automation. However, in the near future, we will need to consider that autonomous agents could possess significantly improved
communication capabilities with humans, and have the ability to take initiative, issue orders to both human and autonomous counterparts

[14], and make their own decisions.

It is crucial to understand the team dynamics between humans and autonomous devices, as robots are not only utilized for daily tasks but
also assigned increasingly important roles, such as aiding urban search and rescue (USAR) teams. Robots are used for tireless searching,
positioning sensors, assessing damage, providing survivors with radio transmitters or supplies, guiding tool placement, and determining

survivor position and location under rubble [28]. However, currently, USAR robots are manually controlled by human operators[29].

Ideally, a USAR robot should posses the ability to communicate effectively, efficiently, and autonomously with human team members, as
well as adapt to difficult and stressful situations. What kind of communication interactions would occur if we introduced a completely
autonomous agent capable of being an ideal team member? Bartlett and Cooke conducted an experiment that sheds light on the dynamics of

human and automation interactions [2]. The study concluded that a fully autonomous robot will lead to a better team performance and lower



workload since the operator could transfer some responsibilities to the robot.

Nonlinear dynamics and mathematical modelling have been powerful tools in studying interactions of species in ecological communities [8—
11]. Those approaches have become important tools implemented in complex psychological systems to gain a better understanding of
human behaviour [3]. Linear and/or nonlinear differential equations have been used to model interactions between two individuals since the
work of Strogatz[37], who modelled the affection between Romeo and Juliet using a two-dimensional system of linear differential
equations. Sprott [36] expanded upon these models by introducing a third person and modelling a love triangle. Sprott modified Strogatz's
model by using a four-dimensional system of nonlinear differential equations. Killworth and Bernard derived a three-dimensional differential
equation to model dynamic changes in human affective and effective interaction within a closed group [20]. These equations are capable of
representing the intensity of person A's feelings towards person B, measuring the probability of A talking to B at any given moment, and
quantifying A's sensitivity to external opinions over time. The equations incorporate functions that regulate person A's desire to engage in a
conversation based on available time, measure the difficulty of finding time for a conversation, and assess the probability of person A

discussing person B with person C, which may influence the interaction between A and B.

There have been several discrete-time models proposed for two-person interactions [18,24,38,39]. Jaffe and his collaborators derived a
probabilistic model in which each individual makes statistically independent decisions, influenced by their immediate prior state and the state
of the opposite individual [18]. The parameters in the model allow for measuring person A's bias towards a certain response, sensitivity to
their own and the other's previous behaviour, and the interaction between person A's response tendencies and the previous behaviours [39].
Malone's model is similar to Jaffe's, but it incorporates the assumption that both person A and B have individual predispositions to make
specific responses [24]. Thus, the probability of person A and person B having a certain response is a weighted average of their
predisposition and the situational effect determined by the previous response [39]. These two weights are expressed as probabilities.
Thomas and Martin's model introduces dynamics to the intra-individual and inter-individual variables [40]. Consequently, the current
interactive behaviour is determined by the probability summation of self-regulatory and interactive effects. Suppes and Atkinson's model
allows for Persons A and B to be reinforced independently during each iteration [38]. This reinforcement occurs after the response is given
and depends on the responses of A and B, allowing for two scenarios. In the first scenario, and individual can be conditioned to a response
if it is reinforced. In the second scenario, the individual can be conditioned to the other individual's response using a probability if the

response is not reinforced [39].

Gottman[17] developed nonlinear discrete models for marriage dynamics, represented through their coding system, called the Specific
Affect Coding System (SPAFF). SPAFF enables the coding of emotional interactions in marital and family setting§16]. Gottman's marital
models are two-dimensional, representing the behaviour scores of husbands and wives. Each mathematical equation incorporates a linear
function to describe the individual's own dynamics or uninfluenced behaviour, bilinear and object functions to describe the influence of one
individual on the other, and repair and damping functions. Repair functions respond to excessive negativity from a partner, while damping
functions respond to excessive positivity. These models can determine which couples are in a happy and stable marriage, in an unhappy but
stable marriage, or have divorced. Additionally, Gottman's models have been used to analyse gay and lesbian marriages, revealing distinct
differences compared to heterosexual marriages. Gottman's modelling approach provides a foundation for modelling communication

dynamics between two agents in a nonlinear fashion.

Motivated by Bartlett and Cooke's work and experiment on cooperation between two agents in a USAR tean{2], we derive a two-
dimensional discrete-time model with delay to understand the communication dynamics in a team based on experimental data. Building upon
Gottman's modelling approach[17], our model is tailored to describe the communication between team members during task execution,
which involves a turn-taking dynamic. Additionally, our proposed nonlinear second-order discrete-time model can be validated using
collected data obtained at discrete time intervals. We aim to address the following questions through the study and validation of our model:
(1) How may different factors impact communication dynamics? What factors benefit or harm the team? (2) How do these factors

differentially affect teams with varying levels of performance? (3) What characteristics are present in a high-performing team?

The remainder of this paper is structured as follows: Section?2 presents the derivation of a discrete-time mathematical model that describes
speech dynamics for an individual as well as communication dynamics between two individuals. In Section3, we analyse the proposed
model and explore potential dynamics, including the number of equilibrium points and their stability. Section 4, focuses on bifurcation analysis
and validates the model using experimental data to gain insights into how key parameters impact team performance, how communication
can enhance performance in pre-established teams, and how to select team members with high expected performance. Finally, in the

concluding section, we summarize our work and provide a brief discussion of our results.

2. Model derivation

Communication is influenced by personality variables, including self-esteem, cognitive complexity, authoritarianism, optimism, empathy,
interaction involvement, and conversational sensitivity [12]. A study conducted by Joanne Chung-Yan Chan and Po Yi Sy (2016) found a

positive correlation between intercultural communication and personality traits such as agreeableness, openness, and conscientiousness in



nursing students [7]. Similarly, another study showed a positive relationship between communication skills and empathy in hospice nurses, as
well as a correlation between social and communication skills and effective performance in hospice nursing [34]. Thus, we begin by
constructing a model for an individual that illustrates the itrinsic dynamics of their communication style. Building upon the modelling
approaches by [5,17], we assume that in the absence of the other agent, the thought process and uninfluenced behaviour can be represented

by the following discrete time map

where 7] denotes the person's emotional inertia or resistance to change, while k| represents the average communicative level, reflecting
their ability to verbally convey information. The discreet time model (1) is well-known as ‘Ricker's Map’ in ecology whose dynamics are
well studied (see [8,11] Jim Cushing's work).

The intrinsic communication dynamics of (1) are determined by the emotional inertia 7, as shown i the bifurcation diagram in Figure 1(b).
A high emotional inertia indicates that a person's emotional state is less likely to change, making them more impervious to external or
mternal influences [23]. In this case, a lower value of 7| (e.g. 7| < 2) signifies higher emotional inertia, as the system reaches a steady
state more quickly and is less prone to change (see Figure 1(b)). Conversely, low emotional inertia implies that a person's emotional state is
more susceptible to change, suggesting that a greater susceptibility to environmental or psychological demands [23]. This behaviour is
depicted in Figure 1(b) when 7| > 2, where chaotic behaviour is observed in the system. Therefore, a higher emotional inertia, represented
by a smaller value of 7, leads to a higher level of predictability in the person's emotional state. Thus, the bifurcation diagram in Figure 1(b)
proves to be useful in determining the person's emotional inertia. To illustrate this, the speech dynamics of a single agent are depicted in
Figure 1(a). This time series provides insights into the dynamics of an individual's uninfluenced behaviour. In this example, we selected an

emotional inertia value of | = 2.8, which resulted in chaotic behaviour that captures the agent's frequent changes in state of mind.

Figure 1. Time series simulation of one-agent speech dynamics is displayed on (a); and bifurcation diagram from the one-agent

model on (b).
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We extend the model from Equation (1) to include interaction and nfluencing behaviour from a second agent, denoted as V. Let u;
represent the rate of speech in words per response time (s.), reflecting communication from Agent U to Agent V during interaction i.
Similarly, v; denotes communication from Agent V to Agent U at interactioni. We assume that the communication follows a turn-taking
dynamic, making discrete-time representation appropriate. In this scenario, Agent U initiates the interaction with Agent V. Figure 2(a)
provides a diagram illustrating these assumptions. Additionally, each agent possesses their own uninfluenced behaviour, as described by
Equation (1), and their own functional response (influenced behaviour) in response to the opposing agent, which will be explained below.
Motivated by Gottman's modelling approach for married couples[17] and the available data (Figure 2(b)), we propose the following two-

agent communication model:
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Here, i represents the turns taken by Agent U and Agent V to communicate with each other (i.e. odd turns correspond to # and even turns

correspond to v). The functional response of each individual, reflecting the influenced behaviour, follows Holling's Type I1 and is expressed
Buvi Pttt

as [Tnti-1V2i for Agent U; and I raatiet o Agent V. In these expressions, the parameters f,,, and f3,,, can be positive or negative,

representing nonlinear impacts from previous communications. The parameters y,,, and y,,, are non-negative and represent the damping

effects that Agent U and Agent V, respectively, use to regulate and respond to previous communications from both agents. Both £ and y

are related to the impact of communication during conversations within a given task. Therefore,f and y can be adjusted and adapted

through proper training.

Figure 2. (a) Diagram of the testbed performed in article ‘Human-robot teaming in urban search and rescue’ [2] and describes the
dynamics of our two-agent model. Additional details of the experimental testbed can be found in Section 4.1. (b) An exanple of the
collected data in Bartlett and Cooke's study.

‘ Interaction 2(i + 1).

Agent U — AgentV Time| Time La; # of Words
n Agent | | () € | # of Words “Time Lag_
bl u4 |Operator 0 1 4 4.00
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To establish a connection between our model and the experimental data presented n Figure 2(b), we assign initial conditions #{ and v,.

This allows us to determine the values of u3 and v4 using the following equations:
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This relationship can also be understood through the diagram shown in Figure2(a). For the convenience of mathematical analysis and

expressions, we introduce new variables by letting x; = up;—1, ¥; = vp;, and {x(, ¢} be the mitial conditions. Consequently, our model (2)

can be equivalently represented by the following set of equations:
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where i denotes the turns taken by Agent U, now referred to as Agent X, and Agent V, now referred to as Agent Y, during their

communication. Notably, there is a delay term x;; | in the expression for y;, in (2b). Consequently, the model (2a)—(2b) can be expressed
as follows:
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We will use Equation (3) to study the model's local stability of steady states.

In summary, our two-dimensional communication discrete-time Model(2) incorporates delay impacts to describe the communication

dynamics between two agents, based on the following five assumptions:

1 The thought processes and communication style of each agent are modelled by the Ricker's map, Equation(1), representing their



uninfluenced behaviour.

2 Communication between the two agents occurs in a turn-taking manner and is conveyed discretely.

3 Agent X initiates the communication.

4 Agent X's response at turn i + 1 is influenced by the communications that took place at turn i from Agent X and Agent Y.

5 Agent Y's response at turn i + 1 is influenced by its own communication at turn / and the response from Agent Y at turn i + 1.

Our derived Model(2) provides a structured framework for understanding and analysing the complexity of human communication. This
allows us to identify the key variables, relationships, and assumptions that underlie the verbal interactions. Our theoretical analysis, in the
following section, will inform us of the potential dynamics of the system, as well as the effect of the parameters in the dynamics of
communication, which will help us address our first question. We will use the available data to validate our proposed model (2), and then do
parameter estimations under varied conditions to predict and examine the dynamics. This is explored in three data fittings in Section 4. A fter
the initial model and data fitting in Section 4.2, we perform additional two scenarios of parameter estimations with the aim of gaining insights
into different potential outcomes and their implications our second and third questions. Thus, through model fitting and parameter

exploration, we can apply the model to the selection of two agents who can collaborate effectively to achieve optimal team performance.

3. Model dynamics
Model (2) is continuously differentiable on R2+ — R2+ with nonnegative initial conditions x, yo [ Ri. As a starting point, we establish the

reasonableness of our model by proving it is positive invariant and bounded as follows:

Theorem 3.1

Positive Invariance and Boundedness

Model (2) is positive invariant and bounded in R%r.

The detailed proof of Theorem 3./ can be found in Appendix A.

3.1. Equilibria
Next, we examine the equilibria of Model(2) by solving Equations (2a) and (2b) when they are equal to zero. This yields the following

equations:
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3.1.1. Boundary equilibria

From equations (4a) and (4b), Model(2) can have three boundary equilibria: (1) the no-communication equilibrium (where there is no
communication between Agent X and Agent Y): Eq g = (0,0); (2) the no communication from Agent X equilibrium Eqg,y0 = 0,k5); (3)
the no communication from Agent Y equilibrium Ey 1 o = (k,0). The following theorem discusses the existence and stability of the three

boundary equilibria. The dynamics of the interior equilibria (existence and stability) are explored in the subsequent subsection.

Theorem 3.2

Boundary Equilibria Dynamics

Model(2) always has the no-communication equilibrium Eg g = (0,0) which is always unstable since 71 >0 and r, > 0. Moreover,



1
Model (2) always has an additional boundary equilibrium Eg,y0 = (0,k5) which is locally asymptotically stable whenever ,Bxy >k and
0 <rp <2, otherwise, it is unstable. Lastly, the boundary equilibrium Ey 1/ o = (k1,0) always exists and is locally asymptotically stable
"

whenever £, > k1 and 0 < ry <2

The detailed proof of Theorem 3.2 can be found in the Appendix A. The implications of the boundary equilibria stability conditions are as
follows:
"

e The equilibrium point Ey - ¢ is stable if and only if ﬂ)“ > ki and 0 < r; < 2. This implies that Agent Y is more affected by Agent X's
communication (ﬁyx) compared to Agent Y's personality () and Agent X's communication level (k). Due to Agent Y's personality,
Agent'Y becomes overwhelmed by Agent X's high level of communication ability. Finally, Agent X's personality value (r}) should be
between 0 and 2. Thus, Agent X has a high emotional inertia and dominates the conversation, overwhelming Agent Y and hindering

their ability to communicate back.
2l
e The equilibrium point Eq,y is stable if and only if ﬂxy > ko and 0 < rp < 2. Given the symmetry of the model, the implications for
this boundary equilibrium are similar to Ex1 . Hence, in this boundary equilibrium Agent Y's personality value () should be
between 0 and 2. Agent Y has a high emotional inertia and dominates the conversation, overwhelming A gent X and inhibiting their

ability to communicate back.

Table 1. Description of parameters from Model (2).

Parameter Description Value
1 Emotional inertia of Agent X (0,4]
) Emotional inertia of Agent Y (0,4]
kq Average communicative level of Agent X Ry
ko Average communicative level of Agent Y Ry
ﬁxy Nonlinear impacts that Agent Y has on Agent X R

,Byx Nonlinear impacts that Agent X has on Agent Y R

Yy Damping effects that Agent X can regulate and respond to Agent Y's communication R

Vyx Damping effects that Agent Y can regulate and respond to Agent X's communication R

Table 2. Summary of boundary equilibrium dynamics. LAS: locally asymptotically stable.
Equilibrium Existence ~ Stability
Eg,0 Always Since r1 > 0.and rp > 0, Eg g is always unstable.

L)
Ey0 o= (k1,0) Always r
x7,0 = (1,0) ® LASfff, > M and 0 <y <2, otherwise it i unstable.

r

E =0,k Always -
oy =0k Y LAS iff B,,,> k2 and 0 < 1y < 2, otherwise it is unstable.

3.1.2. Interior equilibria of the general model

We can explore the potential number of interior equilibria of the general Model (2) by analysing the nullclines. Solving Equations ((2a))

and (2b) for y and x, respectively, we obtain the following equations:
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From the numerators of Equations ( (5a)) and ( (5b)), we define /((x) = rlyxyxz - rlkly)g;c + klﬁ)g, and hy(y) = rzywy2 - rzkzyyxy + kQﬁyx
. Since both equations are quadratic, we consider three distinct cases based on the expression /1(x) = 0.

Vlklyxy

\it{Case 1.} The equation /(x) = 0 has no roots when = 4

rlklyxy
\it{Case 2.} The equation /(x) = 0 has one root when ,Bxy -4

rlklyxy

\it{Case 3.} The equation /(x) = 0 has two roots when iy < 4

Similarly, the expression /1(y) = 0 follows the same three cases with their corresponding parameters. To determine the possible number of
interior equilibria numerically, we utilize Equation ( (5a)) and find solutions for the following quadratic equation

y2(— rzyyxx) + y(kzrzyyxx — 7))+ hyry — kzﬁ’yxx =0

Theorem 3.3

Interior equilibria existence conditions for General Model

Model(2) can have either five, three, two, or one interior equilibria depending on the values of its strictly positive parameters
r, 7.k, ko, Y Py and ﬁxy, ﬂyx ] R defined in Table / and on conditions in (6).

e Model (2) has exactly five interior e quilibrium points if

e Case (5a):
1
R
@ rlkl & 7’2]{2 @ k] 2Vyx 7'2ny _ k2

2
yxy> 4 , yyx> 4 ,and yxy>r1 1_

OR Case (5b):



By ik P ik 1
e 4 T 4 g <o 25 kb o N = T2k
1"2 1
klﬂxy klﬁxy
& Yy 2\ — k, kzyxy 2 \| "My — k,
y 2
and 7 > =
OR Case (5¢):
ﬂxy ]"lkl ﬁyx 7"2k2 1 rl 4ﬂyx i

Ty 4 = 5 22k2ﬁxy+ l—rzkzyyx,and O<k1<yxy

5

e Model (2) has exactly three interior equilibrium points if

o Case (3a):
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1
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OR Case (3b):
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e Model (2) has exactly two interior e quilibrium points if
o Case (2):
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The detailed proof of Theorem 3.3 can be found in Appendix A. In Figure3, we observe the number of possible interior equilibria of
Model (2) through the behaviour of the system's nullclines. Each subfigure represents an example of each case in Theorem 3.3.

Figure 3. Plots of Equations (52) and (7) reflecting the examples of cases described in Theorem 3.3. The figures reflect the possible
number of interior equilibria points (black points). The grey dashed Iines represent the asymptotes of nullclines. Lines coloured in blue,
orange and green correspond to each nullcline of Model (2). (a) Case (5a), (b) Case (Sb), (c) Case (5¢), (d) Case (3a), (¢) Case

(3b), (f) Case (2a), (g) Case (2b), (h) Case (1a).
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The implication of the interior equilibria existence conditions is as follows:

by P

e Case 5a and 5b (see Figure 3(a ,b)): Larger positive values of the ratios ' and "* might contribute to satisfying all conditions. This
emphasizes that the nonlinear impacts (ﬂxy’yx) are relatively strong compared to the damping effects (ny,yx)‘ Thus, an increase in the
impacts of one agent on another is beneficial for the existence of five equilibrium points.

Py P

e Case 5c (see Figure 3(c)): Smaller values of the ratios Ty, possibly negative, and T will help satisfy conditions 1, 2, and 3. This
indicates that the nonlinear impacts are relatively weaker compared to damping effects. Additionally, a smaller ratio of how
emotionally inert Agent X is to the combined influence of the average communicative level and nonlinear impacts from Agent Y (
Ul P
kQ’B’W) and a smaller value of " can satisfy condition 3. A larger value of Agent X's damping capability (ry) could satisfy condition
4.

e Case 3a and 3b (see Figure 3(d ,)): It is necessary to have a larger value of communication level (k7) compared to the value of
the ratio of how strongly Agent X's actions impact Agent Y to the combined influence of emotional inertia and damping effects that

B b
Agent Y can regulate ('2%). Additionally, a larger value of the ratio "* is needed, indicating the nonlinear impacts are relatively
P

strong compared to damping effects. Conversely, we need a smaller value of the ratio ’, indicating the nonlinear impacts are



Py B
relatively weaker compared to damping effects. Lastly, for Case 3b, it is possible for the ratio ™ to be negative, whereas " will be
positive. Conversely, in Case 3a, both ratios can only be positive.

by B
e Case 2a (see Figure 3()): A smaller and positive value of the ratio ™ can satisfy condition 1, while a larger value of the ratio "
can satisfy conditions 2 and 3. This means that the nonlinear impacts on Agent X are relatively weaker compared to their damping
capabilities. Conversely, Agent Y's nonlinear impacts are relatively strong compared to their damping capabilities.
by Bs
o Case 2b (see Figure 3(g)): Smaller, possibly negative, values of the ratios ’w and " can satisfy both conditions. This suggests that
both agents' nonlinear impacts are relatively weaker compared to their damping capabilities.
B
e Case la (see Figure 3(h)): A larger value of &k compared to "7 could satisfy condition 3. In this case, a larger value of the ratio
o 2
" can satisfy conditions 1 and 4, while a smaller value of T possibly negative, can satisfy conditions 2, 3, and 4. This indicates that
the nonlinear impacts on Agent X are relatively strong compared to their damping capabilities. Conversely, Agent Y's nonlinear

impacts are relatively weaker compared to their damping capabilities.

For all conditions in(6), Model(2) can only have either five, three, two, or one interior equilibria. The number of interior equilibria is

determined by the positive intercepts of the nullclines,

ri(ky —x)

2
—rik +k
p3()C) _ rlyx;\}C 1 lyx)}C llgxy and
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2y
1@ =T 1=y \/rz(rz(l + ey 0) — 4y,

Figure C1 shows the possible number of equilibria by graphing all three nullclines and using the three cases for /21(x) = 0 and /;(y) = 0 as
conditions for ﬁxy and ﬁyx In Figure C1, we use blue, orange, and green lines to represent Case 1, 2, or 3, respectively, from the conditions
in(6). The circle markers are coloured purple, magenta, black, and dark green to identify five, three, two, or one intersection(s),
respectively, between the functions. Solid, dashed, and dotted lines are used to represent the change of parameters with respect to one
function and therefore indicate in the number of positive intersections. Appendix D contains the details of the parameter values used in each

plot.

We observe that all conditions yield either five or three possible iterior equilibria. Nullcline po(x) will always intersect the positive y-axis

and remain in the first quadrant, resulting in two intersections with p3(x) in most cases. Thus, Figure 4 exemplifies the conditions under

which nullcline p;(x) will intersect p3(x) once or thrice, leading to one out of three interior equilibria or three out of five interior equilibria.
P

ky
These two nullclines will intersect thrice if x¢ = P < e= \". Otherwise, they will intersect only once. Therefore, if the impact of

previous communication on Agent Y's emotional inertia (small x°) is greater than Agent X's damping effect on their communicative level (
x¢ < &), we can have up to five interior equilibria. A distinct finding is that if there are two possible interior equilibria under a given case, we

could not find conditions for the existence of only one interior equilibrium. Similarly, if we found one possible interior equilibrium, we could
not find conditions for the existence of two interior equilibria under the same conditions. Refer to Figures Cla and Clc to observe these
rikiyy 12k
ERT RS

X's or Agent Y's previous communication should be less than or equal to one-fourth of their emotional inertia, communication ability, and

dynamics. Moreover, we observe a minimum of two interior equilibria whenever ﬁW < . Thus, the impact of Agent

damping effect capability. Otherwise, the agents can be overwhelmed by the interaction. We study the stability of the interior equilibria in
Section 5 through simulated bifurcation diagrams.

3.1.3. Interior equilibrium of the symmetric model

In this section, we explore the existence and stability of the interior equilibria in the symmetric model, where k = k| =k, r =r| =1y,
Y=Y = D and f = ﬂxy = ,Byx, This means that both agents in the team have the same personality and training, and Model (2) becomes:
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From the exponential function in system (8), we can derive the following equations to plot the system's nullclines:

r(k —x)
= ryx? — rkyx + kf
rk—y)

o= Tk + kB

F5

Figure 4. Nullclines p;(x) and p5(x) showing the existence of one interior equilibria when & = < x¢ and the existence of three
mterior equilibria when & > x€.

4 4

—p,y(x)

-=p,(x) p,(x) asymptote
3r 1 ] i Sttt Sl
2 2}

V51 and p, (£)-p,(¢)

(a) (b)

Let x' and y “be equilibrium of Model (8). Then by substitution of Equation (9a) in Equation (9b), we obtain the fifth degree polynomial

Ax) = — kB(— ryx® + kryx + = kB)(— x> + krpx® — rx — kfx + k)

The quadratic function gj(x) = —ryx2+kryx +r—kp can be solved explicitly from which we derive two equilibria EXl Y12 in

Equation (10). Equilibria Ey| =3,4,5 is obtained from the cubic function g(x) = — ryx3 + kryx2 —rx — kpx + kr. The system has
i

oY} "/
five possible interior equilibrium points. However, only two of them can be expressed explicitly as follows:
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Thus, the interior equilibrium points Ey! where j =1, 2 exist if k< p< 4k
i

ayj ’
Theorem 3.4

Interior equilibria existence conditions for Symme tric model

Model (8) can have the following dynamics depending on the values of its strictly positive parameters 7, k,y and £ [ R defined in Table 1.

(1) Equilibria Existence:

e Model (8) has five interior equilibrium points if

27 2r  2kry r(k%y — 3)

22
y>k and + <ﬁ< 3k

*  Model (8) has three interior equilibrium points (Ex yJj =12, 3) if
i

27 r r(k%y + 4)

72
b ma Kep<
OR
27 r 2r  2kry
y>k2 and K<p< ki O

e Model (8) will always have one interior equilibria (EX; ,ysﬂ).

(2) Equilibria Stability:
e Equilibria E; 1 v = 1,2,4,5 are always unstable.
>

e Equilibria Ex3”,y3 is locally asymptotically stable if
k
2 O 042
L >0, r<l1, <xy, and AKB—rylk—x;)°> 1.

The proof of Theorem 3.4 can be found in Appendix A. Figure5 illustrates the number of possible interior equilibria for the symmetric
Model (8). The corresponding parameter values used for each plot are provided in the figure. The symmetric Model(8) can have only five,
three, or one interior equilibrium point. The existence of only two equilibrium points were not found in the system. This can be attributed to
the team being formed by two individuals with the same personality and receiving identical training to complete their task (strictly symmetric

model). Thus, when forming a team with similar personalities and training, the possibility of finding bistability decreases. The number of

NrCpe=1) CAlr(1+Hox R4y

interior equilibria in Model(8) is determined by the positive intercepts of the functions py (x) = 2 and
r(k—x)

p3x) = ket igure 5, the number of intersections is represented by purple, magenta, and green dots for five, three, and one

interior equilibria, respectively. Figure 6 depicts the bifurcation diagrams for both agents with respect to parameter . The figure shows the

three boundary and five interior equilibria that can exists in Model 8. The blue points represent source equilibria, the red indicate sink

equilibria, and green indicate saddle points. Thus, only one interior equilibria can be stable. The proof of Theorem 3.4 can be found in the



Appendix, and a summary of the conditions for each case can be found in Table 3. The stability conditions for E and E are

X1 oY1 Xy Y2
provided in Theorem 3.4.

Figure 5. Plots of nullclines (9a) and equation g (x). The figures reflect the possible number of interior equilibria points for symmetric
Model (8). The model has five (purple points), or three (magenta points), or one (dark green points) interior equilibria. The grey dashed
line represents the asymptote of nullclne 9a. The solid, dashed and dotted lines correspond to the change in parameters for both

nullchnes. (a) ¥=0.2, k=7.1, =0335y=1(b)r=02,k=7.1, p=0284, y=0.8(c)r=1.4, k=5, f=0.175, y=0.1
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Figure 6. Bifurcation diagram with respect to § for the symmetric model (8). The diagram shows boundary and interior equilibria of
the system, where blue represents stable equilibria, red indicates sink points, and green indicates saddle points. The following parameter
values were used 7=0.2, k=7.1, y = 1.
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Table 3. Summary for the existence of interior equilibrium for symmetric Model (8).

Equilibrium  Existence Stability
k
| O Always LASif p>0,r<1, 2 < xT, and kf —ry(k *xT)z > 1, otherwise they are
unstable.
. r r(k2y+4)
Ej,] =L2| ¢ <p< T Unstable
2
2
y> " and
E:.j =45 Unstable
i ¥ 2oy )
k + 9 < ﬁ < 3k
Note: LAS: locally asymptotically stable.
In Figure 5, we can observe that the equilibria EXl R and E,‘2 s exist only when there are a total of three or five interior equilibria. As
indicated in Table 3, due to the symmetry of EXI’ vy and EXZ’ s both equilibrium points are unstable since the condition for their
(K2 +4)
4k

existence (f < ) contradicts stability condition. On the other hand, equilibrium Ex; Vs always exists and can be stable if the

psychological and environmental effects of both agents are positive (5 > 0), both agents exhibit a high level of emotional inertia (#<1), the
k

agents' communication level is greater than half of their communicative level (2 <x), and the combined impact of the agents'



communication, emotional inertia (»), damping capability (y), and communicative level (k) is smaller than the impact of the psychological and

environmental effects () on the communication level.

4. Application in team dynamics

Similar to the application of Gottman's model to married couples[17], Model(2) can be applied to the communication between any two
individuals. However, our focus lies on studying communication within a two-agent team. Communication serves as the foundation for
coordination and cooperation, making it crucial in teamwork. Various agencies, such as the military, aeronautics and space researchers, and
first responders, regularly undertake high-risk and critical operations that require collaboration among team members. Whether these
operations involve protecting national security or saving civilian lives, the teams must effectively achieve their primary goals while
minimizing risks and avoiding casualties. Consequently, agencies, such as the military and NASA, invest in and foster partnerships with
research institutions to further studies in team dynamics with the aim to study the effects on team performance, situation awareness, and
team coordination [13,15,25].

4.1. Dataset

To gain insights into the required autonomy level for an effective two-agent human-robot team, we refer to Bartlett and Cooke's 2015 study
[2]. Their experiment involved a two-agent interaction, similar to what we can expect in USAR situations. Bartlett and Cooke devised a
search and rescue scenario using the videogame Minecraft. The virtual environment they created represented a collapsed office building, in
which the two-agent team has to navigate. The internal agent, a human, acting as an independent and intelligent robot, was responsible for
navigating the environment and ‘rescuing’ victims. The external agent, a human, had the task of guiding the internal agent. Both agents
were seated side-by-side with a divider between them (see Figure 2(a)). The external agent could only observe the events inside the
videogame and was provided with a map of the building to direct the internal agent's movements. However, the environment deliberately
contained inconsistencies such as missing or additional walls and misplaced doorways, which were not reflected in the map provided to the
external agent. Victims were represented by green and blue blocks, while hazards were depicted by pink blocks. The internal agent had to
locate and click on all the green and blue blocks within eight minutes, while avoiding the pink blocks. Clicking on pink or blue blocks after
eight minutes would negatively impact the team's overall performance score. Successful completion of the task required constant
communication, coordination, and shared knowledge among team members. The recorded data included information such as the speaker
(operator or robot), communication time (in seconds), lag between communications (in seconds), and word count per message (see
Figure 2(b)). As participants were recruited to form the two-agent teams, we treat the recorded data from the robot as if it were generated

by a second human agent.

The data collected by Bartlett and Cooke consists of a set of 40 teams with team performance scores ranging from 13 to 41[2]. We
divided the teams into three categories: low-performing, medium-performing, and high-performing teams. Among the teams, there were nine
low-performing teams with scores between 13 and 19, twenty medium-performing teams with scores between 20 and 29, and eleven high-

performing teams with scores between 30 and 41. It is worth noting that only one team achieved a score of 41, making it an outlier.

Throughout the remainder of this section, we will refer to the external agent in the data as Agent X, and the internal agent as Agent Y. It is
important to note that in the figures presented, the x-axis represents interactions. For example, Interaction 1 corresponds to one verbal
communication from Agent X and the subsequent response from Agent Y. The y-axis depicts the value of words/lag(sec. ), which
indicates the ratio of the speaker's communication density to the time taken to respond to the previous communication. Additionally, the
figures illustrate the data and the corresponding model fitting for the three performance levels. The data is segregated based on Agent X'
communication (Figures (a), (¢) and (e)) and Agent Y's communication (Figures (b), (d) and (f)). For each performance group, we
calculated the average words/lag(s. ) per interaction, represented by black dots in the figures. For example, we determined the average for
Agent X's communication at/nteraction 1 across all low-performing teams, which corresponds to the first black dot in Figures (a). Finally,

the standard error of the calculated mean is visualized using a grey shaded area.

The data, as shown in Figure C2, highlights several notable differences among the performance groups and agents, and Table 4 presents
the mean data for each agent at various performance levels. In the following data observations we define density of communication as the
value of words/lag on each interaction, and communication variability as the change of words/lag value between interaction i and

interaction i + 1.

e Agent X demonstrates greater variability and density of communication across all performance levels compared to
Agent Y. This means that, on average, Agent X communicates more frequently than Agent Y in the given scenarios.

e The team dynamics established by the experimental task involve Agent X as the leader and decision-maker. In this team
dynamic, it is expected that Agent X will communicate more by requesting information and conveying strategy changes, while A gent

Y navigates the scenario.



e Communication density increases for both agents as performance improves.
e Some low-performing teams exhibit inade quate or sporadic communication from either agent.
o In low-performing teams, Agent Y exhibits a decrease in communication density and variability after approximately one hundred
interactions.
¢ In high-performing teams,
° Agent Y's communication variability and density show an upward trend, with values ranging from 1 to 10 words per lag.

° Agent X maintains a more consistent variability (4-9 words per lag) during the intermediate section of the task.

e Agents in medium-performing teams display less variability between interactions. That is, the difference between the value
of words per lag at interaction / and interaction i + 1 is small.

e A higher difference in communication between the agents leads to lower team performance. The difference in mean data

between Agent X and Agent Y (Y —X) decreases for the medium-performing and high-performing groups. In the low-performing
group, the difference is 4.5, while in the medium-performing and high-performing groups, the differences are 2.9 and 3.6,
respectively.

° Having a smaller difference may not be optimal for the team (e.g. in a medium-performing team).

Table 4. Summary of experimental data collected by Bartlett and Cooke [2].

Agents

Data Mean Performance X Y w2k

Low 6.56 2.04 —4.52
Medium 559 261 298
High 6.78 3.13 —3.65

4.2. Model fitting

Model (2) assumes that communication is influenced by personality, such as emotional inertia and communicative level; and training, such
as environmental impact and damping capabilities. The available data provides us an opportunity to validate our proposed model and provide
us a baseline value of those key parameters after validation. Thus, in this section we will first fit the eight parameters of Model(2) to
estimate the agents' emotional inertia, their psychological and environmental impacts during the task completion, and their damping
capability. Our initial fitting (see Figure C2 and Table 5) suggests that our model is plausible and thus can obtain a baseline for our
parameter values. With this baseline, we can now study how does the agents' training change if the team is composed of two agents with
similar personality. Thus, we perform a second fitting were fix the parameters of emotional inertia and mean communicative level (
71.2,k1,2)- Additionally, we want to explore how we can compose the best team possible if the same training is given to both agents. Then,
our third fitting only is performed for parameters 1 » and ky 5, while ﬁxy’yx and Vi, A€ fixed. The methodology for the parameter
estimations in this section was completed with the aid of MATLAB R2022a software and the coded algorithm for the fitting can be found in
Appendix B.

Table 5. Parameter estimations of all eight parameters of Model (2) for teams with different levels of performance.

Parameters
r1 ) kq ky ﬁw ﬁ)“ Txy Vyx Agent X  AgentY
Performance (Ngreen]) (Ngreen|) (Ngreen|) (red?) (Ngreen|) (redf) (Ngreen|) (redf) MSE MSE
Low 3.1993 3.3383 5.8158 2.0598  6.3591 0.3511  3.9948 0.1202  12.2030 2.0230
Medium 3.2793 3.2931 5.2387 2.4998 2.9034 2.5929  2.0798 4.0432  10.1178 1.5699

High 3.0519 2.9977 5.3669 2.8423  1.1647 1.207  2.2948 4.1082  13.0897 2.3115



Figure 7( a,b) shows the fitted model for high-performing teams where all eight parameters were estimated. The remaining plots for low-
and medium-performing team can be found in Figure C2. Table 5 contains the fitted values of all parameters of different team performance
levels with the mean squared error (MSE) corresponding to each agents' data. Table 6 contains the rate of change of the parameters

corresponding to each agent on a certain level of performance. Based on the fitted parameters, we draw the following conclusions:

Figure 7. All figures correspond to data from high-performing teans. Black dots represent the data mean, the grey area is the
standard error of the mean at each interaction, and the purple and orange lines represent the model predicted values for Agent X and
Agent Y communication, respectively. Model fitting of all eight parameters of Model (2) are depicted on figures (a) and (b), fitting of
parameters corresponding to agents' training when agents have consistent personality are depicted on figures (c) and (d), and fitting of
parameters corresponding to agents' personality when agents have consistent training are depicted on figures (c) and (d). The fitted
parameter values can be found in Tables 5, 7, and 9. (a) Fitting of all model parameters (b) Fitting of all model parameters (c) Fitting
with consistent agent personality. 7| = r, = 3.2 (d) Fitting with consistent agent personality. k| = k, = 3.97 (e) Fitting with consistent
agent training, f,, = f,, = 2.42 (f) Fitting with consistent agent training. y,, =7, = 2.77.
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Table 6. Rate of change calculation between all the parameters corresponding to Agent X and Agent Y for different levels of
performance.

Rate of Change

Performance  Ar=ry—ry Ak =ky—ky AB=PBun—By Ay=7n"7y



Low 0.139 —3.7560 —6.008 —3.8746
Medium 0.0138 —2.7389 —0.3105 1.9634

High —0.0542 —2.5246 0.0423 1.8134

Table 7. Parameter estimations for three performance levels.

32 32 397 397 44047 2.2785 5.8693 0.6649 12.9475 1.4254
Medium 32 32 397 397 02291 2.8316 0.1902 1.0917 13.5473 1.6651
High 32 32 397 397 —0.692 8.9071 43172 4.5713 13.2696 2.2004

Note: We fixed parameters 7| = r, = 3.2 and k; = ky = 3.97 for all performance levels.

Table 8. Rate of change calculation between all the parameters related to training corresponding to Agent X and Agent Y for
diferent levels of performance.

—2.1262 —5.2044
Medium 2.6025 0.9015
High 9.5991 0.2541

Table 9. Parameter estimations for three performance levels.

3.0943 3.1864 5.5501 3.1799 242 242 277 277 9.17523 2.0804
Medium 3.0372 3.1054 5.5441 3.4890 242 242 277 277 103117 2.5278
High 2.9519 3.1227 7.7731 3.8441 242 242 277 277 13.2334 3.2802

Note: Parameters S, = B, = 2.42 and yy, = 7, = 2.77 are fixed for all performance levels.

e Both ry and r decrease as team performance increases. This suggests that high-performing teams have agents with higher and
similar emotional inertia, indicating that their emotional stability is not easily affected by their surroundings and experiences.

e The value of Ar also decreases as performance increases. This indicates that high-performing teams have agents with more
similar emotional inertia, contributing to their overall emotional stability.

e The parameterk; decreases, while k) increases as performance increases, resulting in a decrease in the distance
between the parameters (|Ak|). This implies that in higher-performing teams, Agent Y participates more in the conversation by
transmitting more information.

° Agent X must decrease their mean communicative level to allow for a more dense interaction from Agent Y. This

adjustment in communicative levels ensures that Agent Y's increased participation in the conversation is accommodated.



° The fitting reflects the data's behaviour. A larger value of k is fitted for Agent X (Ak < 0).

e The parameterﬂxy decreases, while an overall increase in ﬂyx is observed. This indicates that the psychological and
environmental impacts are higher on Agent Y in medium-performing teams compared to low and high-performing teams.

e Agent X has a higher psychological and environmental impact than damping capabilities $xy> yxy). This imbalance
affects Agent Y since Agent X, as the leader responsible for strategy and planning, directly impacts and influences Agent Y.

* Agent X's damping capabilities (»,,) generally decrease, while Agent Y's damping capabilities (y,,) increase. This
dynamic is favourable for the team, as Agent Y's ability to better assess situations and the environment allows Agent X to have a
lower negative psychological impact and focus on strategy and planning.

e The rate of change off and y becomes positive, and the distance between the parameters (|Af|, |Ay|) significantly
decreases as performance increases. This highlights the importance of both agents having the ability and training to assess

different obstacles and be minimally affected by unique events based on their past experiences and training.

4.2.1. Consistent agent personality

We conducted a second fitting in which the parameters related to the personality of Agent X and Agent Y (r, k) were fixed across team
performance levels and among agents, i.e. 7| = o, k1 = k. The objective was to examine how training for the agents should be modified if
both agents in the team have the same or similar personality. For this fitting, we calculated the averages of r{, 75, k{, and k) obtained in
the previous fitting (Table 5), resulting in ; =y = 3.2 and ky = ky = 3.97.

Figure 7( c.d) illustrates the fitted model for high-performing teams, where only the s and ys were estimated. The remaining plots for low-
and medmum-performing team can be found in Figure C3. Table 7 presents the fitted values of all parameters for different team
performance levels, along with the mean squared error corresponding to each agent's data. Table & displays the rate of change of the fitted

parameters for each agent at specific performance levels. Based on the fitted parameters, the following conclusions can be drawn:

e The estimated value ofﬁxy shows a significant decrease, while ﬁ'yx increases as performance increases. Thus, resulting in
an increased Af of 9.5991 for the high-performing team. This indicates that Agent Y receives and manages a majority of the
negative psychological and environmental impacts, and a larger Af value contributes to improved team performance.

 The parameter yy, exhibits an overall decrease, whereas P steadily increases with team performance. This suggests that
Agent X's damping capability decreases, while Agent Y's damping capability increases as team performance improves.

° In the medium-performing team, the lower value ofy,g, may be attributed to the decreased value of ﬁ)g, This implies
that the subpar performance of the medium-performing team is due to both agents having low damping capability and
experiencing minimal psychological and environmental effects.

° The rate of change of y becomes positive, and the difference between both parameters (|Ay|) decreases as the
team's performance improves. This indicates that as team performance improves, both agents' damping capabilities undergo

positive changes, and the difference between their damping capabilities decreases.

e A higher Af and lower Ay are beneficial to the team's performance. This suggests that a larger difference inff values and a
smaller difference in y values contribute to improved team performance.

e A team with better performance includes an Agent Y who, as the first agent to encounter challenging situations, can
assess and control obstacles and situations more effectively. This implies that in high-performing teams, Agent Y's ability to
handle challenging situations leads to better overall team performance.

o Agent X does not experience the negative effects of these events and can focus on strategy and decision-making. This
highlights that when Agent Y effectively handles challenging situations, Agent X is not negatively impacted, allowing them to

concentrate on strategic planning and decision-making.

4.2.2. Consistent agent training

The third data fitting starts with the assumption that ﬂxy = ﬂyx, Yo = Yy and then estimates the values of other parameters to investigate
how the personalities of both agents would change across different levels of performance when they receive identical training. Thus, we
aimed to determine how we can form a team based solely on the agents' personality to achieve higher performance. For this fitting, we

calculated the averages of ﬂxy, and Vyx obtained in the first fitting (Table 5), resulting in ﬁxy = ﬁyx =242 and Y=V = 2.77.

Py Vg
Figure 7( e.f) illustrates the fitted model for high-performing teams, where only the s and ks were estimated. The remaining plots for low-
and medium-performing team can be found in Figure C4. Table 9 presents the fitted values of the parameters for different team

performance levels, along with the mean squared error corresponding to each agent's data. Table 10 displays the rate of change of the fitted



parameters for each agent at specific performance levels. Based on the fitted parameters, the following conclusions can be drawn:

Table 10. Rate of change calculation between all the parameters related to personality corresponding to Agent X and Agent Y for
different levels of performance.

Rate of Change

Performance Ar=ry—ry Ak =ky—k

Low 0.0921 —2.3702
Medium 0.0682 —2.0551
High 0.1708 —3.9290

o The estimated value of r| exhibits a decrease, while r, shows an overall decrease as the team's performance improves.
This suggests that both agents' emotional inertia decreases with improved team performance.
° Agent X demonstrates higher emotional inertia across all three performance levels (r; > r)).
° In the medium-performing team, Agent Y has slightly higher emotional mertia (smaller ;) compared to the high-
performing team.
° High-performing teams have a slight increase of 0.2 for Ar.
° For a high-performing team, we require Agent X to have a higher emotional inertia7; <3 and a distinctly higher

communicative level k| > k.

e The parameter estimation for & is very similar for the low and medium-performing teams. The estimated value for the
high-performing team increases by 2.2 units.

e On the other hand, k; steadily increases with performance improvement. This indicates that as team performance improves,
the value of k5 also increases.

e The model captures the behaviour of the data, where the mean communicative level is higher for Agent X (k; > kj).
This finding suggests that the model interprets the behaviour of a higher communicative level exhibited by Agent X compared to
Agent Y.

© There is a decrease of 1.6 units in Ak. This implies that the difference between Agent X's and Agent Y's

communicative level decreases by 1.6 units as team performance improves.

4.3. Bifurcation diagrams and parameter exploration

There are instances when it is not possible to change the members of an established team or create the ideal team. Therefore, studying the
effect of each component(s) of communication on the dynamics can help us understand how communication is influenced and how it can be
improved by exploring the parameters values of the high-performing team. Thus, we generated bifurcation diagrams for each of the eight
parameters in the system and used the fitted parameters for the high-performing team from Table 5. Figure & specifically focuses on the
parameters corresponding to Agent X, while the remaining diagrams can be found in Figure C5 in C. In Figure8, each row represents one
parameter, each column represents an agent, and the vertical grey line represents the fitted value of the parameter for which we are
plotting the bifurcation diagram. The blue points in the figure represent stable points, red represents unstable points, and green points
represent saddle points. Stable points indicate unchanging communication between the agents, where either both agents or one agent

maintains a consistent communication style (words/lag value).

Figure 8. Bifurcation diagrams with respect to parameters 7, ky, B, and Px in Model (2). The baseline parameters used
correspond to high-performing teams and can be found in Table 5. The diagram shows interior equilibria of the system, where blue
represents stable equilibria, red indicates sink points, and green indicates saddle points.
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By analysing the estimated parameters from the experimental data and observing the variation in each parameter's value, we find that the
model can exhibit one, two, or three equilibria. However, most of these equilibria tend to be saddles or sources (unstable), except for a small
interval [0.42,0.47] for parameter k1, where stability is observed. The fitted values and the range of values around parameters 7y, ﬁW and
Yy result in three sources. On the other hand, the fitted value and the range of values around parameter & yield one saddle and two
sources. Considering that the experimental data displays complicated behaviour, consequently, our bifurcation diagrams primarily depict
unstable equilibria, further study of the parameters' effect on communication is warranted. Therefore, we conduct numerical simulations to

explore how may each parameter impact communication dynamics as follows.

By using the parameters for high-performing teams from Table 5 as the baseline, we individually perform a A = + 0.5 change in each

parameter to explore the impact of changes in each of the eight parameters on the communication dynamics of the two-agent team. To



measure the change in communication, we observe the percentage change in the calculated MSE from Table 5 and the new MSE of a new
simulation (see Figure 9). Now, let's delve into the specific findings, highlighting the parameters that have the most significant influence on

communication dynamics when their values are increased or decreased.

Figure 9. Percentage of MSE change in relation to the MSE values of each agent listed in Table 5. The calculation is performed by
varying each parameter individually by a change of A = £ 0.5.
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o Parameters ry, 1y, ky, ﬁxy, and ﬁyx are the most sensitive to change. The change in these parameters has a more pronounced
effect on communication dynamics when their values are decreased or increased by 0.5.
e The f parameters are the only ones sensitive to both increase and decrease. Parameters ﬁxy and ﬁyx have different effects on
communication depending on the direction of change.
© Decreasing Py, has a greater effect on communication than increasing it. A very low value of psychological and
environmental impact for the lead team member may lead to reduced focus and situational awareness of potentially high-risk
events.
° Increasing ,Byx has a more significant impact on communication than decreasing it. Agent Y, responsible for
navigating and interacting with the high-risk environment, may inadequately communicate crucial details, leading to erroneous

assessments and decisions by Agent X.

e The emotional inertia is the least resilient parameter. The parameter r affects communication whether it increases or

decreases.
° A low value of r (high emotional inertia) makes it challenging for an agent to transition between emotional states,

potentially prolonging negative emotions.

° A high value of r (low emotional inertia) allows emotions to change more rapidly.

e Agent Y's communicative level (k;) is another parameter with low resilience.
° Decreasing Agent Y's communicative level reduces the information received by Agent X, limiting their understanding of
the situation and decision-making abilities.

° Increasing Agent Y's communicative level may overwhelm Agent X with excessive communication, hindering effective

communication of the next plan of action.

It is important to note that the increase or decrease of these parameters does not inherently imply better or worse outcomes. The ideal level
of emotional inertia, for example, may vary depending on the context and circumstances. Some situations may require individuals who
posses stability and continuity in their emotional experiences, while others may necessitate individuals who can quickly adapt and shift their
emotional states. Therefore, our parameter exploration provides insights into which elements of human communication are more likely to

affect communication dynamics in an established team when perturbed.

5. Conclusion



In this study, we proposed a discrete-time mathematical model that considers communication between two agents based on their individual
personalities and the impact of received communication. We adopted a population dynamics approach to establish our modelling framework,
applying it to examine the communication dynamics between Agent X (x;4;) and Agent Y (y;+1) working collaboratively on a task through
a two-dimensional system of difference equations with delay. Our model, coupled with data analysis, aims to address the following
questions: (1) How may different factors impact communication dynamics? What factors benefit or harm the team? (2) How do these

factors differentially affect teams with varying levels of performance? (3) What characteristics are present in a high-performing team?

Based on the available experimental data, we observed that high-performing teams exhibit continuous and active communication, with
Agent X assuming a leadership role. Teams with poor or sporadic communication from either agent performed inadequately, resulting in low
team scores. The experimental data displayed chaotic behaviour, indicating that communication between agents never stabilizes. This

observation addresses question (3) from the data analysis perspective.

To further investigate communication dynamics, we conducted a theoretical analysis of our proposed model (2). Our analysis revealed that
the model can have multiple types of interior equilibria: five, three, two, or one. Considering the complexity of the general model, we studied
the dynamics of the symmetrical model by assuming that two agents are identical. The symmetric Model(8) can possess the same types of
interior equilibria as the general model with at least one equilibrium (EX3: ,y3:) always existing. Our analysis implied that the symmetrical
model can have only one stable interior equilibrium EX; s when certain conditions are met: both agents exhibit positive psychological and

environmental effects (£ > 0), high emotional inertia (»<I), communication levels greater than half of their respective communicative levels
k

(2< x), and the combined impact of communication, emotional inertia (), damping capability (y), and communicative level (k) is smaller

than the impact of psychological and environmental effects () on the communication level.

Stable equilibria in the system indicate a consistent communication pattern between agents, where either both agents or one agent maintains
a consistent communication style (words/lag value). Given that unchanging communication between agents is not reflective of the
experimental data, then the mentioned conditions for stability of the equilibrium EX; ,y, can harm the team's communication and
performance. These theoretical findings provide insights into the factors that can either benefit or harm the team, addressing the first

question.

We further gained more insights into our research questions by exploring the effect of parameter variations on different scenarios through
parameter estimation. By fitting all eight parameters of the model, we found that high-performing agents maintain emotional stability
regardless of their surroundings and experiences. In high-performing teams, Agent Y contributes more to the conversation by transmitting
more information (see Figure 7(a,b) and Table 5). Medum-performing teams exhibit higher psychological and environmental impacts on
Agent Y compared to low and high-performing teams. As performance improves, Agent X's damping capabilities generally decrease, while
Agent Y's damping capabilities increase. This allows Agent X to focus on strategy and planning while Agent Y better assesses situations
and the environment. When both agents possess the same emotional inertia and communicative level, Agent Y receives and manages a
majority of the negative psychological and environmental impacts, leading to improved team performance. This can be observed by the
increased values of parameters ,Byx and Yy in Table 7. Additionally, as the first agent to encounter challenging situations, Agent Y's
effective assessment and control of obstacles and situations contribute to enhanced team performance. Agent Y's adept handling of

obstacles and situations also reduces the negative impact on Agent X, enabling them to concentrate on strategic tasks.

We explored a scenario in which both agents undergo the same training to ensure equal responsiveness to their teammate's communication,
with both agents being equally affected by their teammate's communication. As team performance improves, both Agent X and Agent Y
exhibit increasing emotional inertia, with Agent Y demonstrating slightly higher emotional inertia in medium-performing teams (see Table 9).
Additionally, Agent Y's communicative level consistently increases as team performance improves, while Agent X consistently maintains a
higher mean communicative level than Agent Y across all performance levels. For optimal performance, Agent X should possess both

higher emotional inertia and a notably higher communicative level compared to Agent Y.

Our bifurcation diagrams and parameter exploration demonstrated that the agents' emotional inertia, Agent Y's communicative level, and
the agents' psychological and environmental impact are the most sensitive communication elements affecting the agents' communication
dynamics as observed from the percentage MSE change in Figure9. High emotional inertia poses challenges for agents in transitioning
between emotional states, while low emotional inertia allows emotions to change rapidly. A low value of psychological and environmental
impact for the lead team member may lead to reduced focus and situational awareness, affecting their ability to identify high-risk events.
Decreasing Agent Y's psychological and environmental impact may result in inadequate communication of crucial details, leading to
incorrect assessments and decisions by Agent X. Reducing Agent Y's communicative level limits the information received by Agent X,
hindering their understanding of the situation and decision-making abilities. Conversely, increasing Agent Y's communicative level may

overwhelm Agent X with excessive communication.

The current model incorporates important features of two agents' interactions, and yet it could be improved in several aspects due to



limitations. Firstly, it excludes the effect of different levels of workload, which can impact communication quality between agents and final
team performance. Secondly, it does not consider the level of trust between team members, an important factor influencing decision-making
and mutual reliance. Additionally, due to data limitations, we were unable to incorporate team performance as a function of time. Another
major limitation of the model is the omission of information content and quality provided by each agent. Nevertheless, despite these
limitations, our presented model lays a foundation and yields promising results regarding the implications of teams with members possessing
similar personalities or receiving adequate training. Furthermore, it sheds light on how these dynamics change when one or both agents have

different personalities or experience varied impacts from their teammate.
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