Research Data Management Track Paper

SIGMOD 21, June 20-25, 2021, Virtual Event, China

COMPASS: Online Sketch-based Query Optimization for
In-Memory Databases

Yesdaulet Izenov, Asoke Datta, Florin Rusu, Jun Hyung Shin
University of California Merced
{yizenov,adatta2,frusu,jshin33}@ucmerced.edu

ABSTRACT

Cost-based query optimization remains a critical task in relational
databases even after decades of research and industrial develop-
ment. Query optimizers rely on a large range of statistical synopses
for accurate cardinality estimation. As the complexity of selections
and the number of join predicates increase, two problems arise.
First, statistics cannot be incrementally composed to effectively
estimate the cost of the sub-plans generated in plan enumeration.
Second, small errors are propagated exponentially through joins,
which can lead to severely sub-optimal plans. In this paper, we
introduce COMPASS, a novel query optimization paradigm for
in-memory databases based on a single type of statistics—Fast-
AGMS sketches. In COMPASS, query optimization and execution
are intertwined. Selection predicates and sketch updates are pushed-
down and evaluated online during query optimization. This allows
Fast-AGMS sketches to be computed only over the relevant tuples—
which enhances cardinality estimation accuracy. Plan enumeration
is performed over the query join graph by incrementally composing
attribute-level sketches—not by building a separate sketch for every
sub-plan. We prototype COMPASS in MapD - an open-source paral-
lel database — and perform extensive experiments over the complete
JOB benchmark. The results prove that COMPASS generates bet-
ter execution plans — both in terms of cardinality and runtime
— compared to four other database systems. Overall, COMPASS
achieves a speedup ranging from 1.35X to 11.28X in cumulative
query execution time over the considered competitors.

CCS CONCEPTS

« Information systems — Query optimization; Query plan-
ning; Main memory engines.

KEYWORDS

join cardinality estimation; sketches; permutation distance

ACM Reference Format:

Yesdaulet Izenov, Asoke Datta, Florin Rusu, Jun Hyung Shin. 2021. COM-
PASS: Online Sketch-based Query Optimization for In-Memory Databases.
In Proceedings of the 2021 International Conference on Management of Data
(SIGMOD °21), June 20-25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3448016.3452840

() @

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD 21, June 20-25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3452840

804

1 INTRODUCTION
Consider query 6a from the JOB benchmark [25]:

SELECT MIN(k.keyword), MIN(n.name), MIN(t.title)

FROM cast_info AS ¢i, keyword AS k,
movie_keyword AS mk, name AS n, title AS t

WHERE

> selection predicates

k.keyword = ’marvel-cinematic-universe’ AND
n.name LIKE ’%Downey%Robert%’ AND
t.production_year > 2010 AND

> join predicates
k.id = mk.keyword_id AND
t.id = mk.movie_id AND
t.id = ci.movie_id AND

ci.movie_id = mk.movie_id AND
n.id = ci.person_id

The query has 3 selection predicates — point, subset, and range —
and joins 5 tables with 5 join predicates—there is a triangle sub-
query between tables t, mk, and ci. The corresponding join graph is
depicted in Figure 1. For each join, the graph contains a named edge
el—e5 that connects the tables involved in the join predicate. For
example, edge e1 represents the join predicate k.id = mk.keyword_id.
Figure 1 also includes the execution plans together with their cost
— the total cardinality of the intermediate results — for COMPASS
and the four other databases considered in the paper. Although
all the plans are left-deep trees, their cost ranges from 1,249 to
215 millions tuples. This is entirely due to the statistics used for
cardinality estimation.

MapD [53] does not use any statistics, thus its cost is orders of
magnitude higher. The plan is determined by sorting the tables in
decreasing order of their size—number of tuples. MonetDB [54] has
a rule-based optimizer with minimum support for statistics [13],
which generates a better plan. The reason why both of these systems
have primitive optimizers is because they are relatively “young” and
are targeted at modern architectures. They try to compensate bad
plans with highly-optimized execution engines that make use of
extensive in-memory processing supported by massive multithread
parallelism and vectorized instructions. However, this approach is
clearly limited. PostgreSQL [55] and the industrial-grade DBMS A
are “mature” databases with advanced query optimizers. In order
to find the much better plan, they use a large variety of statis-
tics. Histograms, most frequent values, and number of distincts
are used to estimate the selectivity of the point predicate on at-
tribute k.keyword and of the range predicate on t.production_year.
The subset LIKE predicate on n.name is estimated with table-level
samples. Estimating join cardinality requires correlated statistics
on the join attributes. While such statistics exist, e.g., correlated

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

MonetDB ©) MapD ©) PostgreSQL, 6) oy COMPASS ©)
/ \ DBMS A / \ / \
B \ /N \
keyword title ¢~ name O\ 1194) o (1194) o (224 on ©) ,y ot
k t) _ n / \ / \
id ia”"\id \'di/ / \ ‘ / \ ‘ / \ ‘ / X ‘
i ; e & I (17M) Ik (10K) otk an c n (1242) o, t
£ 5 / \ea | > > > > "
< N o 7N\ N &, N
keyword_id movie_id movie_id person_id 3 215M
D N L (300K) d @IM).; ot (G o (14) g i
- . 4 2
movie_keyword movie_id " cast_info ™\ N / ‘
mk movie i?i4w / b i / 3 l / \
— o mk a mk n Ok mk t Ok mk
t Cost ~17M Cost ~ 215M k Cost = 1249 \ k Cost = 1262 /

Figure 1: Join graph and corresponding execution plans for query JOB 6a. The numbers represent cardinality.

samples [17, 24, 44], they require the existence of indexes on every
join attribute combination, which severely limits their applicability
in the case of multi-way joins. As a result, even advanced opti-
mizers rely on crude formulas that assume uniformity, inclusion,
and independence—which are likely to produce highly sub-optimal
execution plans [23]. Since implementing and maintaining these
many statistics requires considerable effort, it is completely under-
standable that only mature systems implement them.

Problem. We investigate how to design a lightweight — yet ef-
fective — query optimizer for modern in-memory databases. We
have two design principles. First, we aim to capitalize on the highly-
parallel execution engine in the query optimization process. Since
query execution is already fast, it is challenging to minimize the
overhead incurred by the additional optimization. Second, the type
and number of synopses included in the optimizer has to be min-
imal. Our goal is to employ a single type of synopsis built for
single-attributes only. The challenge is to design a composable -
and consistent — synopsis that provides incremental cardinality
estimates for the sub-plans generated in plan enumeration.

COMPASS query optimizer. We introduce the online sketch-
based COMPASS query optimizer. Fast-AGMS sketches [5] are the
only statistics present in COMPASS. These sketches are a type of
correlated synopses for join cardinality estimation [36, 37] that
use small space, can be computed efficiently in a single scan over
the data, are linearly composable, and — more importantly — have
statistically high accuracy. These properties allow for Fast-AGMS
sketches to be computed online in COMPASS by leveraging the
optimized parallel execution engine in modern databases. This
is realized by decomposing query processing into two stages per-
formed before and after the optimization. In the first stage, selection
predicates are pushed-down and Fast-AGMS sketches are built con-
currently only over the relevant tuples. Sketches are built for each
two-way join independently—not for every combination of tables.
In the query optimization stage, plan enumeration is performed
over the join graph by incrementally composing the correspond-
ing two-way join sketches in order to estimate the cardinality of
multi-way joins. The optimal join ordering is finally passed to the
execution engine to finalize the query. As shown in Figure 1, COM-
PASS identifies a plan as good as PostgreSQL and DBMS A, while
relying exclusively on sketches. In addition to the novel query opti-
mization paradigm, we make the following technical contributions:

e We present a systematic approach of using sketches for join
cardinality estimation in a query optimizer. We do this for two
types of sketches—AGMS [1] and Fast-AGMS [5].

805

e We introduce two novel strategies to extend Fast-AGMS sketches
to multi-way join cardinality estimation. The first strategy —
sketch partitioning — is a theoretically sound estimator for a
given multi-way join. Since it does not support composition,
sketch partitioning is not scalable for join order enumeration.
The second strategy — sketch merging — addresses scalability
by incrementally creating multi-way sketches from two-way
sketches. Although this is done heuristically for a certain multi-
way join taken separately, all the multi-way joins with a given
size are equally impacted. This property guarantees consistency
in plan enumeration.

We prototype COMPASS in MapD and perform extensive exper-
iments over the complete 113 queries in JOB benchmark. The
results prove the reduced overhead COMPASS incurs - below 500
milliseconds — while generating similar or better execution plans
compared to the four databases systems included in Figure 1.
COMPASS outperforms the other databases both in terms of the
number of queries it obtains the best result on, as well as on the
cumulative workload runtime. This is the case when the optimal
plans are performed in PostgreSQL, DBMS A, and MapD.

2 PRELIMINARIES

Cost-based query optimization. The query optimization prob-
lem [4, 23, 25, 48] consists in finding the best execution plan — which
typically corresponds to the one with the fastest execution time —
for a given query. The search space is defined over all the valid plans
- combinations of relational algebra operators — which can answer
the query correctly. The number of potential plans is exponentially
factorial in the number of tables. Thus, inspecting all of them is not
practical for a large number of tables. Plan enumeration is the proce-
dure that defines the plans in the search space. Since the execution
time of a plan cannot be determined without running it — which
defeats the purpose — alternative cost functions are defined. The
most common cost function is the total size — or cardinality — of the
intermediate results produced by all the operators in the plan. This
function captures the correlation between the amount of accessed
data and execution time. Computing the cardinality of a relational
algebra operator is itself a difficult problem and requires knowledge
about the processed data. This knowledge is captured by incomplete
statistics—or synopses. Different classes of statistics [6] are useful
for different relational operators. For example, attribute histograms
and number of distinct values are optimal for selection predicates,
while correlated samples are better for join predicates. With sta-
tistics, the cardinality can only be estimated. While accurate for

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

(o A

COMPASS QUERY OPTIMIZER

SELECT 3138 Biei § &8 & M U818 6 Win 8 MW 0676 8 @ : (:)__Queries on base tables >
MIN(k keyword), MIN(n.name), MIN(t title) - Cardinality Estimation . g8 6 8 a3 fsiefn et e 0

EROM. - . exact cardinalities <
cast_info AS ci, % *d @ c
keyword AS k, Push-Down Selection sketches < =
movie_keyword AS mk, materialized intermediates ~
name AS n, SELECTCOUNT(*) = [* *iviveccconqgrssssnsnss i

haAgt | FROM title AS t =

>, 3 rear > 2 .
k.keyword = 'marvel-cinematic-universe' AND - | WHERE t.production_year > 2010 Plan Enumeration > g
n.name LIKE '%Downey%Robert%' AND ' I></ \(m
t.production_year > 2010 AND . S . 7\, w
k.id = mk.keyword_id AND ’ . 5 o o o n L
tid = mk.movie_id AND Sketch Build N)X{(i %
t.id = ci.movie_id AND VRN
ci.movie_id = mk.movie_id AND tid (e2) k mk
n.id = ci.person_id tid (e3) (mk o
K -- ~— -@—Optimal plan >

/

Figure 2: COMPASS workflow: online sketch-based query optimization for in-memory databases.

simple predicates over a small number of attributes, cardinality
estimation becomes harder for correlated predicates and multi-way
joins. This is not necessarily a problem if all the plans are equally
impacted. However, estimation errors vary widely across sub-plans,
which can lead to highly suboptimal plans. The COMPASS query
optimizer includes solutions both for effective plan enumeration,
as well as incremental cardinality estimation.

Sketches. Sketch synopses [6] summarize the tuples of a rela-
tion as a set of random values. This is accomplished by projecting
the domain of the relation on a significantly smaller domain using
random functions or seeds. In the case of joins, correlation between
attributes is maintained by using the same random function. While
sketches compute only approximate results with probabilistic guar-
antees, they satisfy several major requirements of a query optimizer
for in-memory databases—single-pass computation, small space,
fast update and query time, and linearity:

o A sketch is built by streaming over the input data and considers
each tuple at most once.

A basic sketch is composed of a single counter and one or more
random seeds—a few bytes. In order to improve accuracy, a stan-
dard method is to use multiple independent basic sketch instances.
The number of instances is derived from the desired accuracy

and confidence levels. In practice, very good accuracy can be
achieved with sketches having size in kilobytes.
e The update of a sketch with a new tuple consists in generating
one or more random values and adding them to the sketch counter.
The answer to a query involves simple arithmetic operations on
the sketch. In the case of multiple sketches, both the update and
query are applied to all the instances. Overall, update and query
time are linearly proportional with the sketch size.
A sketch can be computed by partitioning the input relation into
multiple parts, building a sketch for every part, and then merging
the partial sketches. This mergeable property makes sketches

amenable for parallel query processing [5, 6] and optimization.

While previous work addresses how to apply sketches to certain
cardinality estimation problems, we are not aware of any work that
integrates sketches effectively with plan enumeration.

806

3 THE COMPASS APPROACH

In this section, we provide a high-level description of the COMPASS
query optimization paradigm.

Workflow. The workflow performed by the COMPASS query
optimizer is depicted in Figure 2. It consists of a two-step process
that requires interaction with the query processor. First, the opti-
mizer extracts the selection predicates and join attributes for every
table. A sketch is built for every join attribute while performing
the selection query on the base table, and only over the tuples
that satisfy the predicate. Figure 2 shows the procedure for table
title, which has a range predicate and two join conditions—although
both join predicates involve the same attribute t.id, two independent
sketches have to be built. COMPASS leverages the high-parallelism
of in-memory databases and the mergeable property of sketches to
execute this process with minimal overhead. Two additional opti-
mizations can be applied to further reduce the overhead. Sketches
for join attributes from tables without selection predicates can be
built offline and plugged-in directly. Sketches can be built only over
a sample [35], which, however, incurs a decrease in accuracy. In
the second step of the workflow, plan enumeration is performed by
estimating the cardinality of all the sub-plans using the sketches
built in the first step. This is possible only because the attribute-
level sketches we design are incrementally composable. Otherwise,
separate sketches have to be built for every enumerated sub-plan.
In our example, there are two sketches on attribute t.id, one for join
e2 and one for join e3 in the join graph (Figure 1). The sketch for
e2 is included in all the sub-plans that contain this join attribute—
similar for e3. In a sub-plan that includes both e2 and e3, these two
sketches are first merged and then used in estimation as before.
This process is performed incrementally during plan enumeration.
Finally, the optimal plan is submitted for execution together with
any materialized intermediates.

Partitioned query execution. As shown in Figure 2, COM-
PASS intertwines query optimization and evaluation by partitioning
execution into push-down selection (step 1) and join computation
(step 3). Query optimization, i.e., join ordering plan enumeration, is
performed in-between these two stages. Since plan enumeration and
join computation are standard, we focus on push-down selection,
where online sketch building is performed. Push-down selection

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

/ Push-Down Selection \ Fast-AGMS Sketch
skkeid
2 zky N . ay) ayz ay e &' (z)
e o
2 zky o (k. keyword)—p 2 hl‘ 611 aypai +E1H(2) azp asp
h3 & | —O—p
Tp : ;
4 —_— :
Tk 2 % o ” gel ()
X / . o }N ary a2 a,, @/,
1 ® glk-keyword id
/ \ g ay ey +EL(Y) aip
Qg pe +& (v) asp azp
Median Y =
n z . (ki @ skii™4) - shh :
v 2 (kK 2 sk™) - sk a1 a.) &6 (1) arp | b
glmk-movie_id
ay; a1y o Gy +E2(2)
Ym Zm Yoo 05 (aRmA skmE sk i :
\ Qg +65°(2) ap azp
q :
3 + e
ary ar a §(2))
@ skt-id
5 ; a ay e £2(w) ay
. 2\ ————— g2 / L : ’
wy wyr -~ hi Ef A .
1 o2 2 a + 67 (w az2
wy wys ——a(t. year)—s! h3 & | —e—> - ’
w: .
\ NE 5| :
2 2 S
wy R/ &/ ma ar a + & (w)

Figure 3: Cardinality estimation for query JOB 6a with (Fast-)AGMS sketches.

computes the exact selectivity cardinalities for all the base tables
that have selections. This is similar to the ESC approach introduced
in [38]. However, in addition to predicate evaluation, COMPASS
also builds sketches for every join attribute in the table by piggy-
backing on the same traversal—sketch building is performed during
the selection. Notice that this works both for sequential and index
scans. It is important to emphasize that only the tuples that sat-
isty the predicate are included in the sketch, which increases their
accuracy significantly. Moreover, the sketch update overhead is
kept to the minimum necessary. While the exact cardinalities and
sketches are always materialized due to their reduced size and role
in optimization, the decision to materialize the selection output —
the intermediate result — depends on its size. COMPASS follows
the same approach as in [38]. If the intermediate size is smaller
than a threshold, it is materialized. Otherwise, it is not, since the
space reduction does not compensate for the access time reduction.
Notice that, even when intermediates are not materialized, sketches
still contain only the relevant tuples for join cardinality estimation.

Plan enumeration. The join attribute-level sketches computed
during push-down selection can be composed to estimate the cardi-
nality of any valid join order - excluding cross products — generated
during plan enumeration. In most cases, cross products are ignored
by join enumeration algorithms anyway [24]. As shown in Sec-
tion 4, sketch composition consists of two stages. First, the sketches
of all the relevant join attributes in a table are merged together. An
attribute is relevant for a partial join order if its join is part of the
order. Second, the sketches across tables are combined to estimate
the cardinality of the join order. Since the overall composition con-
sists only of arithmetic operations, sketches can be integrated into
any enumeration algorithm—exhaustive, bushy, or left-deep.

807

Sketches vs. other synopses. The decision to use only sketches
in COMPASS may seem questionable given that sketches are de-
signed for specific stream processing tasks, while databases support
generic batch-oriented execution. To put it differently, there is a spe-
cific sketch for every streaming query, while synopses are for the
entire database. To achieve generality, COMPASS has to build a set
of sketches for every query—except base tables without predicates.
However, this is done concurrently with push-down selection and
is highly-parallel, resulting in low overhead (Section 6). As a result,
sketches do not require any maintenance under modification oper-
ations since they are built on the current data. This is not possible
for any of the other database synopses. The benefit of having query-
specific synopses is also exploited in [24], where index-based join
sampling - a variation of ROX chain sampling [17] - is introduced.
Index-based join sampling is performed during the plan enumera-
tion of every query under the corresponding selection predicates.
Since the sample size — both minimum and maximum - is carefully
controlled, index-based join sampling has improved memory usage
and accuracy because it avoids empty results. Compared to sketches,
though, this sampling strategy has two serious shortcomings. First,
it requires the existence of an index and complete frequency dis-
tribution on every join attribute. Sketches require nothing beyond
the data. Second, the estimation of every join cardinality requires
separate sampling from each of the involved tables. Since this pro-
cess is time-consuming, plan enumeration is performed bottom-up
- or breadth-first - in a limited time budget. Sketches can be com-
posed incrementally in any order without the need to access data.
Moreover, they capture correlations by design.

4 SKETCH CARDINALITY ESTIMATION

In this section, we present how the class of AGMS sketches are
applied for estimating the cardinality of complex queries involving

Research Data Management Track Paper

selection predicates and multi-way joins. We organize the presen-
tation around the original AGMS sketches [1], which have known
solutions to these problems. However, AGMS sketches are too in-
efficient to be accurate and cannot be integrated in query plan
enumeration. This leads us to the Fast-AGMS sketches [5], which
are asymptotically more efficient and have been shown to be statis-
tically more accurate [36, 37]. However, Fast-AGMS sketches are
limited to estimating two-way join cardinality. Our main contribu-
tions are to extend Fast-AGMS sketches to multi-way joins and to
effectively integrate them in query plan enumeration.

4.1 AGMS and Fast-AGMS Sketches

The basic AGMS sketch [1] of an attribute consists of a single
random value sk that summarizes the values of all the tuples in
the relation. For example, all the values of attribute id from ta-
ble keyword can be summarized by a sketch sk(k.id) computed as
sk(k.id) = X ;ex € (t.id), where & is a family of {+1, -1} random
variables that are 4-wise independent. Essentially, a random value
of either +1 or —1 is associated to each point in the domain of at-
tribute k.id. Then, the corresponding random value is added to the
sketch sk(k.id) - initialized to 0 — for each tuple ¢ in table keyword.
Since all the tuples are combined in the same sketch sk(k.id), the
sketch value can be far away from the frequency of each single
attribute value. However, the 4-wise independence property of &
guarantees that, for any group of at most 4 different attribute val-
ues, the product of their corresponding & values is 0 on expectation.
This, in turn, allows for each individual attribute value frequency
to be unbiasedly estimated by multiplying the sketch with the cor-
responding ¢ random value. For example, the frequency of k.id = 5
is estimated by the product sk(k.id) - £(5).

The accuracy of this estimator is poor since a table with any
number of tuples is summarized as a single number. The standard
technique to improve accuracy is to build multiple independent
basic sketch estimators. This is achieved by using independent
families of random variables . It is theoretically proven that, in
order to obtain an estimator with relative error at most € with
confidence 8, O (1/62 log (1/6)) basic sketches are necessary. As
shown in Figure 3, they are grouped into a matrix of r rows and b
columns. Then, the final AGMS estimator is obtained by averaging
the b instances in each row and taking the median over the resulting
r averages. Thus, an AGMS sketch has Q(r - b) update and query
time, and its space usage is also Q(r - b).

While Fast-AGMS sketches preserve the (r X b) matrix struc-
ture of AGMS sketches, they define a complete row of b counters
as a basic sketch element (Figure 3). Only one of these counters
is updated for every tuple, thus, a factor b reduction in update
time is obtained. The updated counter is chosen by a random hash
function h associated with the row. The purpose of h is to spread
tuples with different values as evenly as possible—tuples with the
same key still end up in the same bucket. On average, a factor b
less tuples collide on the same counter, which preserves the fre-
quency of each of them better. Since a full row is a sketch element,
a single ¢ family of random variables is associated with every row.
Thus, a Fast-AGMS sketch with r rows requires only r indepen-
dent hash and ¢ random functions. The value of a counter j is
sk(k.id); = Yyek, h(tid=j £ (t.id). The Fast-AGMS sketch estimates

808

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

the frequency of k.id = 5 by the product sk(k.id)s) - £(5), which,
although has the same variance as the AGMS estimator [5], has
much better statistical accuracy [36].

4.2 Two-Way Join Cardinality Estimation

Consider the join el between tables movie_keyword and keyword
with predicate mk.keyword_id=k.id (Figure 1). The cardinality of
this join operator can be estimated with two (Fast-)AGMS sketches
sk(k.id) and sk(mk.keyword_id) built on the join attributes. As
depicted in Figure 3, the requirement is that these sketches share
the same random functions & (and h, for Fast-AGMS)—£¢! and h¢!
are associated with edge el. The hash function h lands identical
keys to the same bucket, while ¢ guarantees that join keys with the
same value are assigned the same {+1, —1} random value—they are
correlated. Since the difference between the AGMS and Fast-AGMS
estimator is minor, we give only the former:

b
Est(lel]) = Z sk(k.id); - sk(mk.keyword_id);
Jj=1

The basic Fast-AGMS unbiased estimator for the cardinality of
le1| sums up the products of the corresponding sketch buckets.
Summation is necessary because h partitions the tuples. Due to
the 2-universal and 4-wise independence properties of h¢! and
&1, respectively, this estimator is unbiased. The final estimate is
obtained by taking the median of the r independent basic sketches.
Thus, the complexity of sketch-based join cardinality estimation is
building the sketches. This requires a scan over the tuples in each of
the two tables. Fast-AGMS sketches update Q(r) counters for each
tuple, while the estimate is computed in Q(r - b) time. This assumes
that the random number generators have small seeds and produce
their values fast—aspects that require careful implementation.

4.3 Multi-Way Join Cardinality Estimation

We show how to extend AGMS sketches to multi-way join cardinal-
ity estimation. For this, we add the join e2 between movie_keyword
and title to el and aim to estimate the cardinality of this 3-table
query. Following the approach for two-way joins, a sketch is built
for edge €2 on attributes mk.movie_id and t.id, respectively. These
sketches share their own family £¢? of random variables. Since
two attributes from mk participate in join operators with other
tables, we have to preserve their tuple connection. This is achieved
by creating a single composed sketch sk(mk.k_id, mk.m_id) in-
stead of separate sketches for each attribute [9]. The value of
sk(mk.k_id, mk.m_id) is computed as:

sk(mk k_id,mk.m_id)= »" £ (tk_id)- £ (tm_id)
temk

where the product of the two random variables is added to the
sketch. The cardinality estimator is defined as the product of the
three sketches in this case:

Est(le1 U e2|) = sk(k.id) - sk(mk.k_id,mk.m_id) - sk(t.id) =
D D D Crid) - £ (vh_id) - €% (ym_id) - £ (zid)

xek yemk z€t

As long as the families £¢! and £¢2 are independent, this estimator
is unbiased. However, its variance can be exponentially worse than

Research Data Management Track Paper

mk.keyword_id 1 1 1
mk.movie_id 1

SIGMOD 21, June 20-25, 2021, Virtual Event, China

4 4 8 9 2
2 7 5 7 6 9 1

kid 0 1 3 4 5 8 9 13
tid 1 2 3 4 5 6
sk (k.id) 1) = x4
° ! 2 8 £({1,4,5,6,8,13)) = +1
1 2 0 -1 £1{0,2,3,9) = -1
mkmovie_id Sketch Partitioning
E‘ 0 1 2 3
HEEE 1 0 -1
5
1] A 1 0 2
El2] o 1 0 0
3| 0 0 0 0
sk par (mk)
sk, (tid)
o 7 2 3 W) = (x +2)%4
0 1 1 0 £2({1,3,4,7) = +1

£2({2,5,6,9)) = -1

Skik1 (mk.keyword_id)
0 1 2 3

2 -1 0

Sketch Merging
1 2 3
-1

2 | 4 _
/ 3| o 0
Skmerge (ki1 @ skmia)

Skmka (mk.movie_id)
0 1 2 3

3 0

mk.keyword_id

o|lo|o|o
o|lL| LA

Figure 4: Fast-AGMS sketches for multi-way join cardinality estimation on query JOB 6a.

that of the two-way join estimator. This strategy can be generalized
to complex queries involving any number of tables and joins by
using independent random families ¢ for every join predicate.

As far as we know, there is no work that extends Fast-AGMS
sketches to multi-way join estimation. The main problem is posed
by the requirement to combine the independent hash functions 76!
and h¢? for the two join attributes. In the case of the £ random vari-
ables, the composition is realized through their multiplication. The
hash functions allocate the attributes to different buckets, which
means that the bucket indices have to be composed. It is unknown
how to do this in the basic sketch vector such that the relationship
between the tuple attributes is not lost.

4.4 Plan Enumeration

In order to apply AGMS sketches to join order enumeration, a sep-
arate sketch has to be employed for every subset of joins—which
is an exponential number. For example, 7 separate sketches have
to be built for table mk because it has 3 join predicates. There
are two reasons for this. AGMS sketches cannot be incrementally
composed, e.g., sk(mk.k_id, mk.m_id) cannot be computed from
sk(mk.k_id) and sk(mk.m_id). The inverse also does not work. The
sub-sketch for a subset of attributes cannot be extracted from a
larger sketch, e.g., sk(mk.k_id) or sk(mk.m_id) cannot be derived
from sk(mk.k_id, mk.m_id). These operations are not possible be-
cause of the order of multiplication and addition with the random
families £. In practice, all the sketches for a table can be built in
a single scan. However, since the update time per AGMS sketch
is linear in the sketch size, updating an exponential number of
sketches becomes dominant. Moreover, the space requirement for
all the sketches is also a problem. In summary, the application of
AGMS sketches to join order enumeration is not scalable, while
Fast-AGMS sketches work only for two-way joins.

5 FAST-AGMS SKETCH JOIN ORDERING

We present two strategies to extend Fast-AGMS sketches to multi-
way join cardinality estimation. The first strategy — sketch parti-
tioning - is a theoretically sound estimator for a given multi-way

809

join. Its limitation is that it cannot be composed/decomposed, thus,
it is not scalable for plan enumeration. The second strategy — sketch
merging — addresses the scalability issue by incrementally creating
multi-way sketches from two-way sketches. Although this is done
heuristically for a certain multi-way join taken separately, all the
multi-way joins with a given size are equally impacted. We show
empirically that this property is a good surrogate for accuracy—
which is much harder to consistently achieve in join enumeration.

5.1 Sketch Partitioning

The idea of sketch partitioning is to reorganize the b buckets of the
elementary sketch into a (b; x bz) 2-D matrix—as done in [3] for
frequency sketches. h¢! hashes a tuple mk(k_id, m_id) to one of
the b1 rows, while ~¢2 hashes to one of the by columns. Then, only
the counter at indices [h“(k_id), hez(m_id)] is updated with the
product £¢1(k_id) - £¢2(m_id). This process is depicted in Figure 4.
For example, tuple (6,3) in mk adds 1 to the counter [2,1]. h¢!
guarantees that all the tuples with k_id = 6 are hashed to row
2, while h¢% sends tuples with m_id = 3 to column 1. Conflicts
happen only when the output of both hash functions is identical.
Given the quadratic number of buckets compared to the sketch
for a single attribute — while the number of tuples is the same —
conflicts are less frequent. The cardinality estimate for the 3-table
join k =« mk < t is obtained by summing up all the entries in
the matrix resulted after the scalar multiplication between sk(k.id)
and every row in skpqr¢ (mk), followed by the scalar multiplication
between the transpose of sk(t.id) and every column in skpqars (mk).
This can be written as:

Est(letuez) = > > skilil - skpart(mioli, j] - skelj]

0<i<b 0<j<by

It can be shown theoretically that this estimator is unbiased follow-
ing the same proof as for AGMS sketches in [9]. Moreover, given the
larger size of sketch skpars (mk), its accuracy is expected to be better.
This procedure can be generalized to any number of join attributes
by partitioning - or replicating — b into the corresponding number
of dimensions. For example, a table with 3 joins has a 3-D tensor as

Research Data Management Track Paper

its sketch, with one dimension for every join attribute. Thus, there
is a polynomial factor increase in the size of the sketch and the
estimate computation. This has to be carefully accounted for in the
overall memory budget since the likelihood of conflicts varies with
the dimensionality of the sketch tensor. The constraint to have the
same number of buckets for a join predicate, e.g., sk(k.id) has as
many buckets as the number of rows in skpart(mk), makes mem-
ory allocation among sketches more complicated than for the 1-D
AGMS sketch vectors.

Partitioned Fast-AGMS sketches are not scalable for join order
enumeration. This is because separate sketches are required for
every join. For example, in Figure 4, the 2-D sketch skpgqrs(mk) is
used for the 3-way join k = mk > t, while the 1-D sketches sk,
and sk, 1, are used for the 2-way joins k =« mk and t > mk, respec-
tively. Building and storing these many sketches is impractical in
query optimization. One alternative is to build only the sketches for
up to k-way joins and use other methods to estimate higher-order
join cardinality. This strategy is applied for run-time join samples
in [24]. The drawback is that other statistics are required for the
higher-order joins and the interaction between these statistics and
sketches has to be carefully controlled.

Our goal is to exclusively use sketches. Intuitively, we want to
be able to either generate the 2-D sketch from the 1-D sketches
or extract the 1-D sketches from the 2-D sketch. Unfortunately,
none of these have a clear solution for Fast-AGMS sketches. The
composition of sk,,r; and sk,,z» requires to determine how to
combine all the pairs of buckets in the 1-D sketches in order to
compute the quadratic number of entries in the 2-D sketch. Since the
identity of tuples is lost when they are inserted in the 1-D sketch, it
is not possible to recreate the tuple and determine its corresponding
2-D bucket. Moreover, due to conflicts in the £ random functions,
we do not even know how many tuples belong to a 1-D bucket. For
example, bucket 1 in sk, z; is 2 even though 4 tuples are hashed
to it. The extraction of a 1-D sketch from the 2-D sketch also does
not work because of the & variables. Specifically, the update by the
product £€! - £€2 makes it impossible to retrieve the value of a 1-D
bucket by summing up the corresponding 2-D buckets. For example,
the value of bucket 0 in sk, ;1 is not the sum of the buckets in row 0
of sketch skpqrs (mk). This is true only for hash-based sketches [3].

5.2 Sketch Merging

We introduce the sketch merging heuristic as a lightweight method
to compose two-way join Fast-AGMS sketches in order to estimate
the cardinality of multi-way joins. The procedure works as follows.
We build sketches for every two-way join predicate independently,
as shown in Figure 4. The number of sketches corresponding to a
table is equal to the number of joins it participates in. For example,
tables k and ¢ have one sketch, while mk has two sketches. We
estimate any join combination generated during plan enumeration
using only these sketches. The two-way joins k »« mk and t »
mk are estimated optimally with the sketch pairs (sky, sk,,,x;) and
(skt, skyyio), respectively. For the 3-way join k »« mk »< £, we create
amerged sketch skmerge(mk) = sk i1 ®skyy o from the two 2-way
join sketches on demand during plan enumeration. This merged
sketch approximates the partitioned sketch skpqr(mk) computed
with the same random functions, without accessing the tuples. A

810

SIGMOD 21, June 20-25, 2021, Virtual Event, China

bucket [i, j] in skmerge is set to the value having the minimum
absolute magnitude among the corresponding [i] and [j] buckets
in the two basic sketches:

o] = { Skmial], i [5kmili1] < [kl
skmkalils 1 |skpica L] > |skimicalJ]]
For the example in Figure 4, bucket [0,0] is set to —2 because
|3] > | — 2|, while bucket [0, 2] to 0 because |0| < |3|. The reason for
this merge procedure is multifolded. The interaction between the
random functions & is considered - albeit not through a direct mul-
tiplication — by preserving the sign of the value in the basic sketch.
The absolute magnitude corresponds to the maximum number of tu-
ples with a given join key that are hashed to the bucket—assuming
no conflicts. These tuples are partitioned across the buckets of the
other join key. The minimum is chosen because this is the maximum
number of tuples that can have identical values for both join keys
when considered together. However, this is an overestimate because
the exact tuple pairing is lost. This can be seen when comparing the
magnitude of the values in the two 2-D sketches in Figure 4. In fact,
sketch merging is likely to always overestimate join cardinality.
The only caveat is the interaction between the ¢ functions.

Sketch merging can be generalized to any number of joins by ap-
plying the procedure iteratively. Moreover, (n+1)-D sketches can be
derived incrementally from n-D sketches in a single step—without
the need to always start from the basic sketches. This property can
be exploited to speed up the computation and reduce memory usage
in bottom-up plan enumeration since only the highest-dimensional
sketches have to be maintained. An even more important property
of sketch merging is that it is consistent in how it handles the multi-
way joins with the same number of predicates. Specifically, all these
joins rely on the same basic sketches and the same assumptions
for merging. Thus, it is likely that these estimates exhibit similar
accuracy behavior—same type of errors for equal join size.

1102 a0
i
10! ’l‘ .
]
¢ | -
9 100 =2 - B30
g LTI .
310 g
S]
B L] 5
2107 L Ez
o -3
g
‘g 107 ! 3
| =
i]
10-4/—— 95th|pertentile 3.
—— 75thipergentjle E
5 10-5|—— med|an H Aﬁ% Illﬁ
o
g —— 25th|percentjle ﬁ
3 o-s L Sth percenti -,-H ;LALHTITHf ¥‘IJ\T:
12 3 4 s 6 78 90 e EnEeEvEE s e e E
number of joins number of joins

(a) estimate/true (b) L1-distance
Figure 5: Accuracy ratio (a) and L1-distance between the es-
timated sketch permutation and the correct join order (b).

In order to verify this claim, we depict the accuracy of sketch
merging for the JOB queries in Figure 5. We use two measures to
quantify accuracy. The first is the ratio between the sketch estimate
and the true cardinality for all the enumerated sub-plans having
at most ten joins (Figure 5a). We observe that the median ratio is
within a factor of 10 for up to six joins, which is better than any
previous practical results [24]. For a larger number of joins, sketch

Research Data Management Track Paper

merging generates underestimates systematically. In previous re-
sults [25], this behavior occurs starting from 3-way joins.

4-way join mkveacivanvak | mkeacivanvsat | mkoacivakoat
True cardinality 6 1194 1224
Sketch merging 198 18M 6.5M

Table 1: 4-way join L1 permutation distance for JOB 6a.

The second measure is the normalized L1 distance [51] between
the permutation generated by sketch merging and the correct join
order. Given n sub-plans of the same size, the correct order C is
obtained by sorting them in increasing order of their cardinality.
The permutation corresponding to sketch merging S is obtained
by sorting the sub-plans based on the sketch estimates. The L1
distance is defined as .7 |S; — C;|, the sum of the differences
between the position in the permutation and the correct order.
For example, the L1 distance for the 4-way joins in query JOB
6a (Table 1) is 0 + 1 + 1 = 2. The normalized L1 distance — we
divide the distance by the number of sub-plans in the query - is
depicted in Figure 5b. The closer the distance is to zero, the more
similar is the permutation to the correct order. For reference, we
plot the line corresponding to the maximum L1 distance. The join
orders generated by sketch merging have an L1 distance that is
significantly below the maximum. In particular, for 2-way join sub-
plans, the distance is almost zero, while for sub-plans with more
joins, the distance is constantly below 10. This confirms that sketch
merging selects orders that are close to optimal most of the time.

6 EMPIRICAL EVALUATION

We perform an extensive experimental study over the complete JOB
benchmark [25] in order to evaluate the performance of COMPASS
and compare it against four other database query optimizers (Fig-
ure 1). Our main goal is to determine whether COMPASS is a com-
plete optimizer, rather than limit ourselves only to the Fast-AGMS
sketch accuracy—which is depicted in Figure 5. This requires an
effective integration of cardinality estimation in plan enumeration.
To this end, our evaluation investigates the following questions:

e What is the quality of the query execution plans generated by
COMPASS? We measure plan quality as the total cardinality of
the intermediate results since this is independent from specific
execution engine optimizations. Moreover, logical optimizers use
cardinality information as the main criterion to rank plans.

e What is the execution time - or runtime — for the COMPASS
plans? Since this is highly dependent on the underlying query
processing engine, we execute the plans in MapD, PostgreSQL,
and DBMS A. This allows us to identify the correlation — if there
is one — between plan quality and execution time.

e What is the overall JOB workload runtime? While individual
queries allow for localized analysis, the workload execution time
measures the reliability of COMPASS. However, due to the high
variance in JOB query complexity, this measure alone is not an
absolute indicator of the quality of an optimizer.

e What is the optimization overhead incurred by sketch merging
in plan enumeration? While significantly improving upon sketch
partitioning, it is not clear if online sketch merging during push-
down selection is small enough to be practical.

811

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

6.1 Experimental Setup

Implementation. We implement COMPASS in MapD (version
3.6.1) [53]. The source code is publicly available [46]. MapD has
a highly-parallel GPU-accelerated query execution engine. Rela-
tional operators are compiled into CUDA kernels that are executed
concurrently across the SIMD GPU architecture. In order to reduce
data movement, MapD compiles multiple relational operators into
a single CUDA kernel. For joins, this corresponds to a worst-case
optimal join algorithm [32]. The MapD query optimizer, however, is
not as sophisticated as its execution engine. It relies on the Calcite
SQL compiler [52] to get a lexicographic - in the order in which the
query is written — query execution plan. The join order is computed
based on a primitive heuristic that sorts the tables in decreasing
order of their cardinality. Moreover, selection predicates are not
considered in the optimization. COMPASS brings a principled cost-
based optimization procedure to the MapD query optimizer.

The COMPASS implementation consists of two modules—a scan
operator that integrates Fast-AGMS sketch construction with push-
down selection and a lightweight join order enumeration algorithm.
For sketch construction, we adapt a publicly available two-way join
Fast-AGMS sketch implementation [50] to the MapD CUDA kernel
APL This requires parallelizing both the update and the estimation
functions. The scan operator filters only the relevant tuples to be
passed to the sketch update. Since separate sketch instances are
created for every GPU block, this requires an additional merge
stage—currently performed on the CPU.

The COMPASS plan enumeration algorithm uses the join graph
in Figure 1 to guarantee that only valid join orders are considered
and cross products are ignored. Plan enumeration becomes a graph
traversal problem. The algorithm performs a greedy depth-first
search (DFS) traversal that adds tables incrementally to the current
partial join order. At each step, the table that has the lowest cardinal-
ity estimate when joined with the already selected tables is added
to the plan. The estimates are computed using the (multi)-way join
Fast-AGMS sketches. A table is a candidate only if it joins with a
table that is already part of the plan. While the incremental step is
clear, the initialization is not. Rather than choosing a single starting
table, COMPASS performs join enumeration from all the tables in
the query. This enlarges the space of candidate plans—all of which
are left-deep trees. However, a stopping criterion that compares the
current estimate with the best estimate so far, prunes sub-optimal
plans early. In summary, COMPASS considers a number of plans
that is at most equal with the number of tables in the query.

Database systems & hardware. In addition to MapD, the other
three systems we use are PostgreSQL (version 11.5), MonetDB (ver-
sion 11.33.11), and the commercial DBMS A. PostgreSQL and DBMS
A are used as common ground in all the experiments because of
their extensibility. Both of them allow us to inject and execute
the join orders computed by the other databases—the CROSS JOIN
statement in PostgreSQL and the hints in DBMS A, respectively.
We configure PostgreSQL with 16GB memory per operator, 32GB
OS buffer cache size, and we force the optimizer to use dynamic
programming in plan enumeration for queries with no more than
18 join predicates. These settings follow prior art [25]. We use an
optimized docker image publicly available for DBMS A, while for
MonetDB we keep the default configuration. All the systems run

Research Data Management Track Paper SIGMOD ’21, June 20-25, 2021, Virtual Event, China

10000 MapD MonetDB __ PgsoL
£ 4 i w
§ Rl e | 'I‘v':‘ E ’ l‘rm" - "/\'W\[VJ\I' .
R 5 ! -
100 E E E E mPgSQL DBMS A E E
N 1T - AM
F v LB o i i W
g 11:&’;,/A\Li\hr..|(l h o rlr{Jw. "”fvﬂm&iﬁ\.-...ﬁl?wj, LAY W:MJ,{ \A :‘"‘MJJ‘V'M i N UL\ W ‘\é—ﬁﬂﬂﬁuﬁ%* \,.M; Wi
" Number of j1<'))i-r}9predicates 2028 “o Nu.mber of jlt'))i-r:ll?)redicates. 2028 “9 Nu.mber of}gi-%gpredicates 2028 “9 Nur.nber uf}gi-r}gpredicates. 2028
Figure 6: Cardinality and runtime — in PostgreSQL and DBMS A - as a normalized ratio to COMPASS.
on a Ubuntu 16.04 LTS machine with 56 CPU cores (Intel Xeon execution plans are obtained by performing the query in each sys-
E5-2660), 256GB RAM, and an NVIDIA Tesla K80 GPU. tem. These are subsequently injected in PostgreSQL and DBMS
Dataset and query workload. We perform the experiments on A, and executed on the same execution engine. The cardinalities
the IMDB dataset [45], which has been used extensively to evaluate are generated by executing all the subqueries in the plan in the
query optimizers [23] and has become a de-facto standard. The JOB corresponding order—which is done in PostgreSQL. This informa-
benchmark [49] defines 113 queries — grouped into 33 families — tion is extracted from the individual plans. Figure 6 depicts the
over the IMDB dataset. These queries vary significantly in their results — cardinality on the upper part of the figure, runtime on the
complexity, with the simplest one having 4 joins and the most lower part — normalized to COMPASS. All the values are divided
complex one having 28 joins. This variability manifests itself in by the COMPASS results—represented as a horizontal dotted line
execution times that are highly-different. To compensate for this, at position 1 on the y-axis. A point below this line means that the
we split the queries into three groups and examine each group other system has a better result, otherwise, COMPASS performs
separately. These groups are based on the number of joins in the better. The results are grouped by the number of joins in the JOB
query: groupl contains queries with 4-9 joins; group2, 10-19 joins; queries (x-axis) and separated by two dotted vertical lines.
and group3, queries with 20-28 joins, respectively. MapD consistently produces execution plans that have cardi-
Methodology. To quantitatively assess the quality of a join nality two orders of magnitude or larger than COMPASS. With a
order plan, we use two metrics—intermediate result cardinality few exceptions, all MapD plans are worse. There is one such query
and query execution time. The total cardinality of the intermediate — the discontinuity going to zero in the figure — that indeed has
results quantifies how many tuples are produced by all the joins cardinality zero and MapD correctly detects it. However, this is
in the plan. The lower this number is, the better the plan. This is only a matter of chance because the first join in the plan - be-
the primary metric used in logical query optimization to estimate tween the largest tables in the query — does not produce any results.
the cost of a plan. However, the actual execution time depends on The reason for this poor plan quality is the lack of statistics in the
specific query processing optimizations. Thus, the execution time MapD query optimizer. Decisions are taken solely based on the full
is not entirely correlated with the cardinality. table cardinality—the number of tuples before any selection predi-
In order to fairly evaluate the join orders produced by every cate. Therefore, the resulting plans are highly sub-optimal. While
database, we use both PostgreSQL and DBMS A as common ground. runtime follows cardinality — with many results 100X slower than
First, we run the queries in each database and collect their join COMPASS - the correlation between the two is not complete. There
plans. Then, we inject these plans into PostgreSQL and DBMS A, are several queries for which the MapD cardinality is considerably
respectively, and measure their runtime. Moreover, we execute all worse, while the execution time is similar or better than COMPASS.
the subqueries in the plans to compute the intermediate cardinality. This is the case for some of the complex queries with 20 or more
Notice that every system generates its plan independently based joins executed in PostgreSQL. In this situation, MapD chooses a
on its own algorithm and statistics. PostgreSQL and DBMS A serve large well-connected table early in the plan. This allows it to check
as common execution engines for all the plans. We argue that this many join predicates at the beginning and prune a large number
procedure allows for a holistic comparison of the query optimizers— of tuples. On the other hand, COMPASS - and the other systems
independent of the execution engine. — start from small tables on the periphery of the join graph and

make their way to the highly-connected tables in the center. This

strategy produces many staged intermediate results that increase
6.2 Results the runtime. While the runtime trend across PgSQL and DBMS A is
similar, we observe that queries with 20 or more joins are handled
better by DBMS A, while queries with less than 20 joins are faster
in PgSQL. This is an indication that DBMS A is better optimized
for complex queries.

Query-level analysis. In this experiment, we compare COMPASS
against every other system for each query in the JOB benchmark.
We measure both the intermediate result cardinality, as well as
the execution time—taken as the median value over 9 runs. The

812

Research Data Management Track Paper

@
S

20 OMapDE MonetDBOPgSQLN DBMS AE COMPASS
33

(=
w

o
=3

w

S

39

19 21
- 10l
|

MapD MonetDB PgSQL DBMS A COMPASS

N
5]

.

o

Total number of queries won
8
Number of queries won
N
S

o

0~
Joins 4-9

(a) Cardinality comparison (b) Cardinality vs join number

n
N
o
=3

Total number of queries wol

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

OMapD
EMonetDB
OPgSQL
DBMS A
ECOMPASS

mPgSQL 8281 40

75 74
o sd | &
35
1419
N

MapD MonetDB PgSQL DBMS A COMPASS

2 «
2 8
0
g
]
=
]
>
@
8

3

11 12

N

o
P
o

Number of queries won
N
S

o

0
Joins 49(Pg) 4-9(A) 10-19(Pg) 10-19(A) 20-28(Pg) 20-28(A)

(c) Runtime comparison (d) Runtime vs join number

Figure 7: Distribution of winning queries in terms of cardinality and runtime in PostgreSQL and DBMS A.

The trend of the cardinality results in MonetDB follows the one
in MapD. While the majority of the results are worse than COM-
PASS, the ratio is smaller than for MapD. This improvement is due to
the more advanced rule-based MonetDB query optimizer with lim-
ited statistics support. However, compared to the full sketch-based
COMPASS, the MonetDB cardinalities are considerably worse—
many times an order of magnitude or more. Interestingly enough,
though, the corresponding query runtimes fare much better than
predicted by the cardinality. With few exceptions, they are always
within a factor of 10 — more often less — off of COMPASS. More-
over, they are independent of query complexity and do not exhibit
spikes. Overall, the MonetDB runtimes are the most consistent with
COMPASS across both PgSQL and DBMS A. This is because the
MonetDB query optimizer finds plans that are executed similarly
to COMPASS—albeit they have higher cardinality.

The cardinality results for PostgreSQL — PgSQL in the figure -
are the closest to COMPASS among all the systems. This is entirely
due to the advanced statistics the PostgreSQL optimizer employs.
While mildly better than COMPASS for several queries, PostgreSQL
still exhibits spikes that go beyond a factor of 1000X. The reason
is the failure to detect correlations between join attributes. Since
the plans are optimized for the PostgreSQL execution engine in
this case, we expect the runtimes to be optimal. This is indeed the
case for queries with less than 20 joins. However, for 20 or more
joins, the PostgreSQL runtime is considerably worse compared to
COMPASS. This is where the PostgreSQL optimizer drops dynamic
programming in plan search. With a few exceptions where there are
dramatic spikes that go beyond 100X, the PgSQL plans executed in
DBMS A perform as well as or better than in PostgreSQL itself. This
is especially true for the complex queries having 20 or more joins.
Overall, COMPASS generates more stable plans than PostgreSQL.
Although not specifically optimized for it, PostgreSQL executes
them as fast — or faster — than its own plans.

The commercial DBMS A produces plans that have consistently
higher cardinality than COMPASS across all the JOB queries. This
clearly shows that the employed statistics do a poor job at estimat-
ing the join cardinality. However, when executed in PostgreSQL,
these plans have unexpectedly good runtimes—except for queries
with more than 20 joins. This is likely due to the more complex
cost function that considers other parameters beyond cardinality in
determining the optimal plan. Interestingly enough, when execut-
ing its own plans, DBMS A does not fare better than PostgreSQL,
except for the complex queries with more than 20 joins. In fact,
DBMS A has worse runtime for queries with 10 to 20 joins. The
runtimes of DBMS A and COMPASS are close to each other and

813

always within a factor of 10X. This confirms that the COMPASS
plans are also optimal for DBMS A.

Aggregated workload statistics. We aggregate the query-level
results (Figure 6) in order to obtain an overall view of the relative
performance of the compared systems. These aggregated results are
depicted in Figure 7. They give the total number of queries for which
a database performs the best, as well as the distribution as a function
of the number of joins in the query. In the case of cardinality, a
database is counted if it achieves the minimum cardinality among
all the databases. For runtime, a database is counted if it comes
within 10% of the fastest runtime—computed as the median of 9
runs. This bound compensates for variations in the environment.

Based on Figure 7a, COMPASS achieves the plan with the mini-
mum cardinality for 63 out of the 113 JOB queries. This represents
approximately 56% of the workload. PostgreSQL (PgSQL) comes in
second place with 39 queries. The other three databases obtain the
best cardinality in less than 20% of the queries each, with MapD
winning only 7 queries. The careful reader notices that the sum
of the winning queries is larger than 113. This is because there
are queries for which two or more systems achieve the same best
cardinality—case in which we count each of them. The distribution
of the winning queries in terms of the number of joins is depicted
in Figure 7b. While for the simpler queries with less than 10 joins
all the systems perform similarly, COMPASS clearly dominates the
others when the complexity increases. PostgreSQL is the only other
database that performs sufficiently well, however, only for queries
with a moderate number of joins. These results prove the benefit
of using statistics in query optimization, especially for complicated
queries. While the PostgreSQL statistics perform well for simple to
moderate queries, COMPASS sketches are less sensitive to the num-
ber of joins in the query—they provide more consistent estimates.
Moreover, COMPASS is not heavily impacted by the greedy join
enumeration algorithm. When PostgreSQL switches from dynamic
programming — more than 18 joins - it fails to find any best plan.

The aggregated runtime results in PgSQL and DBMS A are de-
picted in Figure 7c and 7d. They follow closely the corresponding
cardinality results—with one exception. The runtime for the com-
mercial DBMS A is much better than its cardinalities anticipate—
DBMS A has the best runtime for 63 and 74 queries, while its cardi-
nality is best only for 21 queries. The reasons are outlined when
the individual query results are discussed. Additionally, DBMS A
benefits from the bound on runtime since it often comes within
the fastest system. Overall, COMPASS achieves the fastest run-
time for 82 (PgSQL) and 81 (DBMS A) out of the 113 JOB queries
- 72% of the workload — which is more than any other database.

Research Data Management Track Paper

10000

1000

Overhead (ms) [log]
B
5
8

o
5

-

10-19

20-28

Number of join predicates

(a) Sketch building overhead

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

-~ MapD
Query execution
COMPASS

Number of join predicates

(b) Query runtime

Figure 8: Performance of the COMPASS optimizer implementation in MapD.

This proves the superiority of the identified plans and confirms
the correlation between cardinality and runtime. The correlation
manifests more clearly for queries with a larger number of joins
because of the higher runtime, which makes ties more unlikely.
Moreover, the correlation is stronger for PgSQL than for DBMS
A since the number of winning queries is higher in DBMS A for
all systems except COMPASS. A careful reader observes that the
runtime results are higher than the cardinality results for all the
systems—and larger than 113 when summed up. This is because it
is more common to have close-enough runtimes than it is to have
the same cardinality—multiple counting is more frequent. Based on
these results, we conclude that COMPASS is the optimizer with the
most consistent and resilient plans on the JOB benchmark.

Database Runtime (minutes) | Ratio to COMPASS

PgSQL DBMS A | PgSQL DBMS A
MapD >300 >300 >23 >13
MonetDB 27.52 35.71 2.19 1.65
PgSQL 103.00 244.31 8.20 11.28
DBMS A 70.72 29.22 5.63 1.35
COMPASS 12.56 21.66 1.00 1.00

Table 2: JOB benchmark runtime in PgSQL and DBMS A.

Total workload runtime. The runtimes for the complete JOB
workload execution in PostgreSQL and DBMS A using the plans
generated by each database are included in Table 2. Given the high
variance among queries, these numbers have to be taken with a
grain of salt since they may be dominated by a few complex queries
with a large number of joins. Nonetheless, we follow prior art [3, 39]
and include them together with the aggregated workload statistics.
As expected, COMPASS has the overall fastest runtime. Somewhat
unexpectedly, MonetDB comes in second for the PgSQL execution
with a runtime that is almost twice as large as that of COMPASS.
The reason is because MonetDB does not fail dramatically for any
of the JOB queries. While it performs consistently slower, it never
derails on heavily sub-optimal plans. The runtime for PgSQL and
DBMS A in PgSQL is dominated by the long-running queries with
20 or more joins, which pull the total time to more than 8X and 5X
that of COMPASS. These outliers are sufficient to skew the overall
runtime. In the case of MapD, there are 30 queries that do not finish
execution even after a timeout of 20 minutes per query. Thus, the
very large runtime. When the workload is executed in DBMS A, all
systems except DBMS A incur an increase in runtime. The increase

814

is most significant for COMPASS as it stands at 50% more than
in PgSQL. On the other hand, DBMS A has a reduction of more
than 50% of its PgSQL runtime. Nonetheless, COMPASS still has
the overall fastest runtime, which is 35% faster than DBMS A.

COMPASS overhead. We measure the optimization overhead
of building Fast-AGMS sketches, as well as that of sketch-based
plan enumeration, for the COMPASS MapD implementation. Sketch
building can be performed either on GPU or CPU, while merging
and plan enumeration are performed on CPU. The results are de-
picted in Figure 8a. As expected, sketch building is more efficient on
GPU than on CPU due to the higher degree of parallelism. In both
cases, the optimization overhead increases with the number of joins
in the query. For GPU, the overhead is in the order of hundreds of
milliseconds (ms), with a maximum of around 500 ms for certain
complex queries. For CPU, the overhead is always below 5 seconds,
which is relatively small for queries that take minutes to run. Given
that this is only a prototype, we believe that the sketch overhead
can be further reduced with more optimized code.

Database Queries won | Runtime (minutes) | Ratio to COMPASS
MapD 42 47.64 7.67
COMPASS 74 6.21 1.00

Table 3: JOB benchmark execution in MapD.

Runtime in MapD. We evaluate the impact COMPASS has on
the MapD database. For this, we replace the default MapD query
optimizer with COMPASS and execute the JOB benchmark in both
scenarios. We measure the end-to-end query runtime, as well as
only the query execution time without optimization—these are the
same in MapD. Figure 8b depicts the results for every query. We
observe that MapD outperforms COMPASS for the simple and some
moderate queries. This may be surprising given the primitive MapD
query optimizer. However, its execution engine is quite different
from PostgreSQL. It is highly-optimized for parallel in-memory
processing. This alleviates the need for careful optimization on sim-
ple queries. For more complicated queries, though, sketch-based
optimization pays off as COMPASS finds considerably better plans.
In fact, MapD fails for 8 queries and times out after 30 minutes
for 8 other queries. COMPASS finishes all the queries and is faster
than MapD for 74 of them, which represents 65% of the workload.
The total runtime for the 97 queries MapD successfully runs is
included in Table 3. COMPASS has a runtime of 6.21 minutes to
MapD’s 47.64—which is a net speedup of 7.67X. This proves both
that sketches can be effectively computed at runtime, as well as

Research Data Management Track Paper

their benefit to generate better query plans, which result in faster
execution. The last point is clear when we compare only the execu-
tion time, without optimization overhead. There are less than ten
COMPASS plans that have execution time larger than MapD.

6.3 Summary

Based on the presented results, we can answer the questions raised

at the beginning of the experimental section:

o COMPASS generates query plans with the lowest cardinality
among all the considered systems for 56% of the queries in
the workload. This percentage increases to 65% for complicated
queries with 10 or more joins.

o The better plans identified by COMPASS translate into faster
query runtimes in PostgreSQL, DBMS A, and MapD. Out of the
113 JOB queries, COMPASS achieves the fastest runtime for more
than 80 in PostgreSQL and DBMS A, and 74 in MapD. This con-
firms the correlation between cardinality and runtime. DBMS A
is the only database that does not satisfy this correlation, which
can be problematic for a user.

e COMPASS and MonetDB are the only databases that perform
all the JOB queries without serious hiccups both in PostgreSQL
and DBMS A. The other systems have several queries for which
the runtime “explodes”. This results in significantly higher work-
load runtime. On the PostgreSQL engine, COMPASS outperforms
MonetDB by a factor of 2.19X, while on DBMS A by 1.65X. DBMS
A optimizes queries specifically for its engine, resulting in a sig-
nificant reduction in runtime compared to PostgreSQL. However,
COMPASS is faster by a factor of 1.35X. Moreover, COMPASS is
at least 7.67X faster than MapD.

o The overhead incurred by the COMPASS optimizer in MapD is
less than 500 milliseconds on GPU and less than 5 seconds on
CPU. While this may be too large for simple queries, it results
in faster execution for more than 91% of the queries. We plan to
optimize our implementation in the future.

The extended version of the paper [15] contains more details and

additional experiments.

7 RELATED WORK

Cardinality estimation. While exhaustive surveys on query op-
timization [4, 48] argue that each component is important in find-
ing the optimal plan, Leis et al. [23, 25] show experimentally that
cardinality estimation is the most dominant component in query
optimization. However, consistency in estimations is more impor-
tant than high accuracy only for a limited number of instances.
There are four mainstream cardinality estimation approaches in the
literature—histograms, sampling techniques, sketches, and, more re-
cently, machine learning models. While histograms can provide ac-
curate selectivity estimation for a single attribute in a relation [14],
it is difficult for them to capture correlations between cross-join
attributes [34], thus limiting their applicability to joins. Unlike
histograms, sampling techniques [24, 31] can detect arbitrary cor-
relations for common values. However, samples are sensitive to
skewed and sparse data when few tuples are selected by a query [42].
Estimating the cardinality of multi-way joins with AGMS sketches
is introduced in [8, 9], while a statistical analysis of two-way join
sketch-based techniques is performed by Rusu and Dobra [36, 37].

815

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Vengerov et al. [40] present an extension to AGMS sketches that
captures selection predicates, while Cai et al. [3] introduce bound
sketches that provide theoretical upper bounds for cardinality esti-
mation. Kernel density models for cardinality estimation (KDE) are
introduced in [12, 18]. They are built on samples extracted either
from the base tables or the join. While their accuracy is shown
to be superior to any other method on JOB queries over at most
five tables — the simplest in the benchmark - it is not clear how
to generalize and fully integrate KDE models in plan enumeration.
Specifically, the KDE implementation [47] builds a separate estima-
tor for every query. No details are provided on how to apply the
estimator to query sub-plans derived from the main query, which
is the centerpiece of plan enumeration.

Query reoptimization. In order to overcome the inherent mis-
estimations in the query optimizer, Adaptive Query Processing [7]
allows the query processor to modify the optimal query plan com-
puted by the optimizer in case of large deviations from the true cardi-
nality values detected at runtime. The Mid-Query Re-Optimizer [16],
ROX [17], and SkinnerDB [39] re-run the query optimizer at run-
time in the case of large differences between estimations and the
true cardinalities. These approaches use the output of the query
executor and sampling techniques to re-estimate the cardinalities
based on already computed intermediate join outputs and change
the query plan whenever the estimated values deviate significantly.
In the self-adaptable LEO optimizer [30], the query engine mon-
itors and uses the feedback from the execution engine in order
to adjust the histogram-based synopses for better performance in
subsequent queries. Eddies [2] process batches of tuples by follow-
ing dynamic routing policies during query execution. Unlike these
systems, COMPASS performs query optimization as a single stage,
while query execution is partitioned into two phases—before and
after the optimization.

Machine learning for query optimization. Using machine
learning techniques and deep neural networks is a recent trend in
query optimization. Join order enumeration [22, 28, 29], cardinality
estimation [19, 20, 26, 27, 33, 41], selectivity estimation [10, 11, 43],
and index structures [21] have been active research directions. For
example, Kipf et al. [19] use multi-set convolutional neural net-
works in order to model join and selection predicates, and capture
join correlations in the data. Marcus et al. [29] use reinforcement
learning in order to efficiently explore the search space and find op-
timal join order plans. Different from these approaches, COMPASS
uses traditional randomized algorithms to estimate cardinality.

8 CONCLUSIONS AND FUTURE WORK

We introduce the online sketch-based COMPASS query optimizer,
which uses exclusively Fast-AGMS sketches for cardinality estima-
tion and plan enumeration. We show that COMPASS outperforms
four other databases on all the considered metrics over the JOB
benchmark. In future work, we plan to investigate alternative merg-
ing strategies for Fast-AGMS sketches in order to support multi-way
joins and SIMD-optimized sketch algorithms — for CPU and GPU -
with lower overhead.

Acknowledgments. This work is supported by NSF award number
2008815 and by a U.S. Department of Energy Early Career Award
(DOE Career).

Research Data Management Track Paper

REFERENCES

(1]

[11]

[12

=
&

[14]

[15

[16]
[17]

[18

[19]

[21]

[22]

[23]

[24

N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking Join and Self-Join
Sizes in Limited Storage. In PODS 1999, pages 10-20.

R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing.
In SIGMOD 2000, pages 261-272.

W. Cai, M. Balazinska, and D. Suciu. Pessimistic Cardinality Estimation: Tighter
Upper Bounds for Intermediate Join Cardinalities. In SIGMOD 2019, pages 18-35.
S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In
PODS 1998, pages 34-43.

G. Cormode and M. Garofalakis. Sketching Streams Through the Net: Distributed
Approximate Query Tracking. In VLDB 2005, pages 13-24.

G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for Mas-
sive Data: Samples, Histograms, Wavelets, Sketches. Foundation and Trends in
Databases, 4:1-294, 2012.

A. Deshpande, Z. Ives, and V. Raman. Adaptive Query Processing. Foundations
and Trends in Databases, 1(1):1-140, 2007.

A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing Complex Aggre-
gate Queries over Data Streams. In SIGMOD 2002, pages 61-72.

A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-Based Multi-query
Processing over Data Streams. In EDBT 2004, pages 551-568.

A.Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri. Selectivity
Estimation for Range Predicates Using Lightweight Models. PVLDB, 12(9):1044-
1057, 2019.

S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. Multi-
Attribute Selectivity Estimation Using Deep Learning. CoRR, arXiv:1903.09999v2,
2019.

M. Heimel, M. Kiefer, and V. Markl. Self-Tuning, GPU-Accelerated Kernel Density
Models for Multidimensional Selectivity Estimation. In SIGMOD 2015, pages
1477-1492.

S.Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, and M. Kersten. MonetDB:
Two Decades of Research in Column-oriented Database Architectures. IEEE Data
Engineering Bulletin, 35(1):40-45, 2012.

Y. E. Ioannidis and S. Christodoulakis. On the Propagation of Errors in the Size
of Join Results. SIGMOD Record, 20(2):268-277, 1991.

Y. Izenov, A. Datta, F. Rusu, and J. H. Shin. Online Sketch-based Query Optimiza-
tion. CoRR, arXiv:2102.02440, 2021.

N. Kabra and D. J. DeWitt. Efficient Mid-query Re-optimization of Sub-optimal
Query Execution Plans. In SIGMOD 1998, pages 106-117.

A.R. Kader, P. Boncz, S. Manegold, and M. van Keulen. ROX: Run-time Optimiza-
tion of XQueries. In SIGMOD 2009, pages 615-626.

M. Kiefer, M. Heimel, S. Bref3, and V. Markl. Estimating Join Selectivities using
Bandwidth-Optimized Kernel Density Models. PVLDB, 10(13):2085-2096, 2017.

A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned Cardinali-
ties:Estimating Correlated Joins with Deep Learning. In CIDR 2019.

A. Kipf, D. Vorona, J. Muller, T. Kipf, B. Radke, V. Leis, P. Boncz, T. Neu-
mann, and A. Kemper. Estimating Cardinalities with Deep Sketches. CoRR,
arXiv:1904.08223v1, 2019.

T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case for Learned
Index Structures. In SIGMOD 2018, pages 489-504.

S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica. Learning to Opti-
mize Join Queries With Deep Reinforcement Learning. CoRR, arXiv:1808.03196v2,
2018.

V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How
Good Are Query Optimizers, Really? PVLDB, 9(3):204-215, 2015.

V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann. Cardinality Estima-
tion Done Right: Index-Based Join Sampling. In CIDR 2017.

816

&
o

@
=

&
=)

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann.
Query Optimization Through the Looking Glass, and What We Found Running
the Join Order Benchmark. VLDB Journal, 27:643-668, 2018.

H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality Estimation Using
Neural Networks. In CASCON 2015, pages 53-59.

T. Malik, R. C. Burns, and N. V. Chawla. A Black-Box Approach to Query
Cardinality Estimation. In CIDR 2007.

R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil,
and N. Tatbul. Neo: A Learned Query Optimizer. VLDB Journal, 12(11), 2019.
R. Marcus and O. Papaemmanouil. Deep Reinforcement Learning for Join Order
Enumeration. In aiDM 2018.

V. Markl, G. M. Lohman, and V. Raman. LEO: An Autonomic Query Optimizer
for DB2. IBM Systems Journal, 42(1):98-106, 2003.

M. Muller, G. Moerkotte, and O. Kolb. Improved Selectivity Estimation by Com-
bining Knowledge from Sampling and Synopses. PVLDB, 9(11):1016-1028, 2018.
H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-Case Optimal Join Algorithms.
In PODS 2012, pages 37-48.

J. Ortiz, M. Balazinska, J. Gehrke, and S. Sathiya Keerthi. An Empirical Analysis
of Deep Learning for Cardinality Estimation. CoRR, arXiv:1905.06425v2, 2019.
V.Poosala and Y. E. Ioannidis. Selectivity Estimation Without the Attribute Value
Independence Assumption. In VLDB 1997, pages 486-495.

F. Rusu and A. Dobra. Sketching Sampl(-:clp Data Streams. In ICDE 2009, pages
381-392.

F. Rusu and A. Dobra. Statistical Analysis of Sketch Estimators. In SIGMOD 2007,
pages 187-198.

F. Rusu and A. Dobra. Sketches for Size of Join Estimation. TODS, 33(15), 2008.
J. H. Shin, F. Rusu, and A. Suhan. Exact Selectivity Computation for Modern
In-Memory Database Query Optimization. CoRR, arXiv:1901.01488v1, 2019.

L. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonakakis. SkinnerDB:
Regret-Bounded Query Evaluation via Reinforcement Learning. In SIGMOD 2019,
pages 1153-1170.

D. Vengerov, A. C. Menck, M. Zait, and S. P. Chakkappen. Join Size Estimation
Subject to Filter Condition. PVLDB, 8(12):1530-1541, 2015.

L. Woltmann, C. Hartmann, M. Thiele, D. Habich, and W. Lehner. Cardinality
Estimation with Local Deep Learning Models. In aiDM 2019, pages 1-8.

W. Wu. Sampling-Based Cardinality Estimation Algorithms: A Survey and An
Empirical Evaluation, 2012.

Z.Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-
stein, S. Krishnan, and I. Stoica. Selectivity Estimation with Deep Likelihood
Models. CoRR, arXiv:1905.04278v2, 2019.

F. Yu, W. Hou, C. Luo, D. Che, and M. Zhu. CS2: A New Database Synopsis for
Query Estimation. In SIGMOD 2013.

P. Boncz. The IMDB Dataset. http://homepages.cwi.nl/~boncz/job/imdb.tgz.

Y. Izenov. The COMPASS Query Optimizer. https://github.com/yizenov/compass_
query_optimizer.

M. Kiefer. join-kde. https://github.com/martinkiefer/join-kde.

G. Lohman. Is Query Optimization a Solved Problem? https://wp.sigmod.org/
2p=1075, 2014.

G. Rahn. Join Order Benchmark (JOB). https://github.com/gregrahn/join-order-
benchmark.

F. Rusu. Sketches for Size of Join Estimation. https://faculty.ucmerced.edu/frusu/
Projects/Sketches.
StackExchange. Distance Between Two Permutations? https://math.

stackexchange.com/questions/2492954/distance-between-two-permutations.
Apache Calcite. https://calcite.apache.org.

MapD. www.omnisci.com.

MonetDB. www.monetdb.org.

PostgreSQL. www.postgresql.org.

