

selection predicates and multi-way joins. We organize the presen-

tation around the original AGMS sketches [1], which have known

solutions to these problems. However, AGMS sketches are too in-

efficient to be accurate and cannot be integrated in query plan

enumeration. This leads us to the Fast-AGMS sketches [5], which

are asymptotically more efficient and have been shown to be statis-

tically more accurate [36, 37]. However, Fast-AGMS sketches are

limited to estimating two-way join cardinality. Our main contribu-

tions are to extend Fast-AGMS sketches to multi-way joins and to

effectively integrate them in query plan enumeration.

4.1 AGMS and Fast-AGMS Sketches

The basic AGMS sketch [1] of an attribute consists of a single

random value sk that summarizes the values of all the tuples in

the relation. For example, all the values of attribute id from ta-

ble keyword can be summarized by a sketch sk(k .id) computed as

sk(k.id) =
∑

t ∈k ξ (t.id), where ξ is a family of {+1,−1} random

variables that are 4-wise independent. Essentially, a random value

of either +1 or −1 is associated to each point in the domain of at-

tribute k.id. Then, the corresponding random value is added to the

sketch sk(k .id) – initialized to 0 – for each tuple t in table keyword.

Since all the tuples are combined in the same sketch sk(k .id), the

sketch value can be far away from the frequency of each single

attribute value. However, the 4-wise independence property of ξ

guarantees that, for any group of at most 4 different attribute val-

ues, the product of their corresponding ξ values is 0 on expectation.

This, in turn, allows for each individual attribute value frequency

to be unbiasedly estimated by multiplying the sketch with the cor-

responding ξ random value. For example, the frequency of k .id = 5

is estimated by the product sk(k .id) · ξ (5).

The accuracy of this estimator is poor since a table with any

number of tuples is summarized as a single number. The standard

technique to improve accuracy is to build multiple independent

basic sketch estimators. This is achieved by using independent

families of random variables ξ . It is theoretically proven that, in

order to obtain an estimator with relative error at most ϵ with

confidence δ , O
(

1/ϵ2 log (1/δ)
)

basic sketches are necessary. As

shown in Figure 3, they are grouped into a matrix of r rows and b

columns. Then, the final AGMS estimator is obtained by averaging

theb instances in each row and taking the median over the resulting

r averages. Thus, an AGMS sketch has Ω(r · b) update and query

time, and its space usage is also Ω(r · b).

While Fast-AGMS sketches preserve the (r × b) matrix struc-

ture of AGMS sketches, they define a complete row of b counters

as a basic sketch element (Figure 3). Only one of these counters

is updated for every tuple, thus, a factor b reduction in update

time is obtained. The updated counter is chosen by a random hash

function h associated with the row. The purpose of h is to spread

tuples with different values as evenly as possible—tuples with the

same key still end up in the same bucket. On average, a factor b

less tuples collide on the same counter, which preserves the fre-

quency of each of them better. Since a full row is a sketch element,

a single ξ family of random variables is associated with every row.

Thus, a Fast-AGMS sketch with r rows requires only r indepen-

dent hash and ξ random functions. The value of a counter j is

sk(k.id)j =
∑

t ∈k,h(t.id)=j ξ (t.id). The Fast-AGMS sketch estimates

the frequency of k .id = 5 by the product sk(k .id)h(5) · ξ (5), which,

although has the same variance as the AGMS estimator [5], has

much better statistical accuracy [36].

4.2 Two-Way Join Cardinality Estimation

Consider the join e1 between tables movie_keyword and keyword

with predicate mk.keyword_id=k.id (Figure 1). The cardinality of

this join operator can be estimated with two (Fast-)AGMS sketches

sk(k .id) and sk(mk .keyword_id) built on the join attributes. As

depicted in Figure 3, the requirement is that these sketches share

the same random functions ξ (and h, for Fast-AGMS)—ξ e1 and he1

are associated with edge e1. The hash function h lands identical

keys to the same bucket, while ξ guarantees that join keys with the

same value are assigned the same {+1,−1} random value—they are

correlated. Since the difference between the AGMS and Fast-AGMS

estimator is minor, we give only the former:

Est (|e1|) =

b
∑

j=1

sk(k.id)j · sk(mk.keyword_id)j

The basic Fast-AGMS unbiased estimator for the cardinality of

|e1| sums up the products of the corresponding sketch buckets.

Summation is necessary because h partitions the tuples. Due to

the 2-universal and 4-wise independence properties of he1 and

ξ e1, respectively, this estimator is unbiased. The final estimate is

obtained by taking the median of the r independent basic sketches.

Thus, the complexity of sketch-based join cardinality estimation is

building the sketches. This requires a scan over the tuples in each of

the two tables. Fast-AGMS sketches update Ω(r) counters for each

tuple, while the estimate is computed in Ω(r ·b) time. This assumes

that the random number generators have small seeds and produce

their values fast—aspects that require careful implementation.

4.3 Multi-Way Join Cardinality Estimation

We show how to extend AGMS sketches to multi-way join cardinal-

ity estimation. For this, we add the join e2 between movie_keyword

and title to e1 and aim to estimate the cardinality of this 3-table

query. Following the approach for two-way joins, a sketch is built

for edge e2 on attributes mk.movie_id and t.id, respectively. These

sketches share their own family ξ e2 of random variables. Since

two attributes from mk participate in join operators with other

tables, we have to preserve their tuple connection. This is achieved

by creating a single composed sketch sk(mk .k_id,mk .m_id) in-

stead of separate sketches for each attribute [9]. The value of

sk(mk .k_id,mk .m_id) is computed as:

sk(mk.k_id,mk.m_id) =
∑

t ∈mk

ξ e1 (t.k_id) · ξ e2 (t.m_id)

where the product of the two random variables is added to the

sketch. The cardinality estimator is defined as the product of the

three sketches in this case:

Est (|e1 ∪ e2|) = sk(k.id) · sk(mk.k_id,mk.m_id) · sk(t.id) =
∑

x ∈k

∑

y∈mk

∑

z∈t

ξ e1 (x.id) · ξ e1 (y.k_id) · ξ e2 (y.m_id) · ξ e2 (z.id)

As long as the families ξ e1 and ξ e2 are independent, this estimator

is unbiased. However, its variance can be exponentially worse than

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

808

merging generates underestimates systematically. In previous re-

sults [25], this behavior occurs starting from 3-way joins.

4-way join mk ⊲⊳ ci ⊲⊳ n ⊲⊳ k mk ⊲⊳ ci ⊲⊳ n ⊲⊳ t mk ⊲⊳ ci ⊲⊳ k ⊲⊳ t

True cardinality 6 1194 1224

Sketch merging 198 18M 6.5M

Table 1: 4-way join L1 permutation distance for JOB 6a.

The second measure is the normalized L1 distance [51] between

the permutation generated by sketch merging and the correct join

order. Given n sub-plans of the same size, the correct order C is

obtained by sorting them in increasing order of their cardinality.

The permutation corresponding to sketch merging S is obtained

by sorting the sub-plans based on the sketch estimates. The L1

distance is defined as
∑n
i=1 |Si − Ci |, the sum of the differences

between the position in the permutation and the correct order.

For example, the L1 distance for the 4-way joins in query JOB

6a (Table 1) is 0 + 1 + 1 = 2. The normalized L1 distance – we

divide the distance by the number of sub-plans in the query – is

depicted in Figure 5b. The closer the distance is to zero, the more

similar is the permutation to the correct order. For reference, we

plot the line corresponding to the maximum L1 distance. The join

orders generated by sketch merging have an L1 distance that is

significantly below the maximum. In particular, for 2-way join sub-

plans, the distance is almost zero, while for sub-plans with more

joins, the distance is constantly below 10. This confirms that sketch

merging selects orders that are close to optimal most of the time.

6 EMPIRICAL EVALUATION

We perform an extensive experimental study over the complete JOB

benchmark [25] in order to evaluate the performance of COMPASS

and compare it against four other database query optimizers (Fig-

ure 1). Our main goal is to determine whether COMPASS is a com-

plete optimizer, rather than limit ourselves only to the Fast-AGMS

sketch accuracy—which is depicted in Figure 5. This requires an

effective integration of cardinality estimation in plan enumeration.

To this end, our evaluation investigates the following questions:

• What is the quality of the query execution plans generated by

COMPASS? We measure plan quality as the total cardinality of

the intermediate results since this is independent from specific

execution engine optimizations. Moreover, logical optimizers use

cardinality information as the main criterion to rank plans.

• What is the execution time – or runtime – for the COMPASS

plans? Since this is highly dependent on the underlying query

processing engine, we execute the plans in MapD, PostgreSQL,

and DBMS A. This allows us to identify the correlation – if there

is one – between plan quality and execution time.

• What is the overall JOB workload runtime? While individual

queries allow for localized analysis, the workload execution time

measures the reliability of COMPASS. However, due to the high

variance in JOB query complexity, this measure alone is not an

absolute indicator of the quality of an optimizer.

• What is the optimization overhead incurred by sketch merging

in plan enumeration? While significantly improving upon sketch

partitioning, it is not clear if online sketch merging during push-

down selection is small enough to be practical.

6.1 Experimental Setup

Implementation. We implement COMPASS in MapD (version

3.6.1) [53]. The source code is publicly available [46]. MapD has

a highly-parallel GPU-accelerated query execution engine. Rela-

tional operators are compiled into CUDA kernels that are executed

concurrently across the SIMD GPU architecture. In order to reduce

data movement, MapD compiles multiple relational operators into

a single CUDA kernel. For joins, this corresponds to a worst-case

optimal join algorithm [32]. The MapD query optimizer, however, is

not as sophisticated as its execution engine. It relies on the Calcite

SQL compiler [52] to get a lexicographic – in the order in which the

query is written – query execution plan. The join order is computed

based on a primitive heuristic that sorts the tables in decreasing

order of their cardinality. Moreover, selection predicates are not

considered in the optimization. COMPASS brings a principled cost-

based optimization procedure to the MapD query optimizer.

The COMPASS implementation consists of two modules—a scan

operator that integrates Fast-AGMS sketch construction with push-

down selection and a lightweight join order enumeration algorithm.

For sketch construction, we adapt a publicly available two-way join

Fast-AGMS sketch implementation [50] to the MapD CUDA kernel

API. This requires parallelizing both the update and the estimation

functions. The scan operator filters only the relevant tuples to be

passed to the sketch update. Since separate sketch instances are

created for every GPU block, this requires an additional merge

stage—currently performed on the CPU.

The COMPASS plan enumeration algorithm uses the join graph

in Figure 1 to guarantee that only valid join orders are considered

and cross products are ignored. Plan enumeration becomes a graph

traversal problem. The algorithm performs a greedy depth-first

search (DFS) traversal that adds tables incrementally to the current

partial join order. At each step, the table that has the lowest cardinal-

ity estimate when joined with the already selected tables is added

to the plan. The estimates are computed using the (multi)-way join

Fast-AGMS sketches. A table is a candidate only if it joins with a

table that is already part of the plan. While the incremental step is

clear, the initialization is not. Rather than choosing a single starting

table, COMPASS performs join enumeration from all the tables in

the query. This enlarges the space of candidate plans—all of which

are left-deep trees. However, a stopping criterion that compares the

current estimate with the best estimate so far, prunes sub-optimal

plans early. In summary, COMPASS considers a number of plans

that is at most equal with the number of tables in the query.

Database systems & hardware. In addition to MapD, the other

three systems we use are PostgreSQL (version 11.5), MonetDB (ver-

sion 11.33.11), and the commercial DBMS A. PostgreSQL and DBMS

A are used as common ground in all the experiments because of

their extensibility. Both of them allow us to inject and execute

the join orders computed by the other databases—the CROSS JOIN

statement in PostgreSQL and the hints in DBMS A, respectively.

We configure PostgreSQL with 16GB memory per operator, 32GB

OS buffer cache size, and we force the optimizer to use dynamic

programming in plan enumeration for queries with no more than

18 join predicates. These settings follow prior art [25]. We use an

optimized docker image publicly available for DBMS A, while for

MonetDB we keep the default configuration. All the systems run

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

811

Figure 6: Cardinality and runtime – in PostgreSQL and DBMS A – as a normalized ratio to COMPASS.

on a Ubuntu 16.04 LTS machine with 56 CPU cores (Intel Xeon

E5-2660), 256GB RAM, and an NVIDIA Tesla K80 GPU.

Dataset and query workload.We perform the experiments on

the IMDB dataset [45], which has been used extensively to evaluate

query optimizers [23] and has become a de-facto standard. The JOB

benchmark [49] defines 113 queries – grouped into 33 families –

over the IMDB dataset. These queries vary significantly in their

complexity, with the simplest one having 4 joins and the most

complex one having 28 joins. This variability manifests itself in

execution times that are highly-different. To compensate for this,

we split the queries into three groups and examine each group

separately. These groups are based on the number of joins in the

query: group1 contains queries with 4-9 joins; group2, 10-19 joins;

and group3, queries with 20-28 joins, respectively.

Methodology. To quantitatively assess the quality of a join

order plan, we use two metrics—intermediate result cardinality

and query execution time. The total cardinality of the intermediate

results quantifies how many tuples are produced by all the joins

in the plan. The lower this number is, the better the plan. This is

the primary metric used in logical query optimization to estimate

the cost of a plan. However, the actual execution time depends on

specific query processing optimizations. Thus, the execution time

is not entirely correlated with the cardinality.

In order to fairly evaluate the join orders produced by every

database, we use both PostgreSQL and DBMS A as common ground.

First, we run the queries in each database and collect their join

plans. Then, we inject these plans into PostgreSQL and DBMS A,

respectively, and measure their runtime. Moreover, we execute all

the subqueries in the plans to compute the intermediate cardinality.

Notice that every system generates its plan independently based

on its own algorithm and statistics. PostgreSQL and DBMS A serve

as common execution engines for all the plans. We argue that this

procedure allows for a holistic comparison of the query optimizers—

independent of the execution engine.

6.2 Results

Query-level analysis. In this experiment, we compare COMPASS

against every other system for each query in the JOB benchmark.

We measure both the intermediate result cardinality, as well as

the execution time—taken as the median value over 9 runs. The

execution plans are obtained by performing the query in each sys-

tem. These are subsequently injected in PostgreSQL and DBMS

A, and executed on the same execution engine. The cardinalities

are generated by executing all the subqueries in the plan in the

corresponding order—which is done in PostgreSQL. This informa-

tion is extracted from the individual plans. Figure 6 depicts the

results – cardinality on the upper part of the figure, runtime on the

lower part – normalized to COMPASS. All the values are divided

by the COMPASS results—represented as a horizontal dotted line

at position 1 on the y-axis. A point below this line means that the

other system has a better result, otherwise, COMPASS performs

better. The results are grouped by the number of joins in the JOB

queries (x-axis) and separated by two dotted vertical lines.

MapD consistently produces execution plans that have cardi-

nality two orders of magnitude or larger than COMPASS. With a

few exceptions, all MapD plans are worse. There is one such query

– the discontinuity going to zero in the figure – that indeed has

cardinality zero and MapD correctly detects it. However, this is

only a matter of chance because the first join in the plan – be-

tween the largest tables in the query – does not produce any results.

The reason for this poor plan quality is the lack of statistics in the

MapD query optimizer. Decisions are taken solely based on the full

table cardinality—the number of tuples before any selection predi-

cate. Therefore, the resulting plans are highly sub-optimal. While

runtime follows cardinality – with many results 100X slower than

COMPASS – the correlation between the two is not complete. There

are several queries for which the MapD cardinality is considerably

worse, while the execution time is similar or better than COMPASS.

This is the case for some of the complex queries with 20 or more

joins executed in PostgreSQL. In this situation, MapD chooses a

large well-connected table early in the plan. This allows it to check

many join predicates at the beginning and prune a large number

of tuples. On the other hand, COMPASS – and the other systems

– start from small tables on the periphery of the join graph and

make their way to the highly-connected tables in the center. This

strategy produces many staged intermediate results that increase

the runtime. While the runtime trend across PgSQL and DBMS A is

similar, we observe that queries with 20 or more joins are handled

better by DBMS A, while queries with less than 20 joins are faster

in PgSQL. This is an indication that DBMS A is better optimized

for complex queries.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

812

(a) Cardinality comparison (b) Cardinality vs join number (c) Runtime comparison (d) Runtime vs join number

Figure 7: Distribution of winning queries in terms of cardinality and runtime in PostgreSQL and DBMS A.

The trend of the cardinality results inMonetDB follows the one

in MapD. While the majority of the results are worse than COM-

PASS, the ratio is smaller than forMapD. This improvement is due to

the more advanced rule-based MonetDB query optimizer with lim-

ited statistics support. However, compared to the full sketch-based

COMPASS, the MonetDB cardinalities are considerably worse—

many times an order of magnitude or more. Interestingly enough,

though, the corresponding query runtimes fare much better than

predicted by the cardinality. With few exceptions, they are always

within a factor of 10 – more often less – off of COMPASS. More-

over, they are independent of query complexity and do not exhibit

spikes. Overall, the MonetDB runtimes are the most consistent with

COMPASS across both PgSQL and DBMS A. This is because the

MonetDB query optimizer finds plans that are executed similarly

to COMPASS—albeit they have higher cardinality.

The cardinality results for PostgreSQL – PgSQL in the figure –

are the closest to COMPASS among all the systems. This is entirely

due to the advanced statistics the PostgreSQL optimizer employs.

While mildly better than COMPASS for several queries, PostgreSQL

still exhibits spikes that go beyond a factor of 1000X. The reason

is the failure to detect correlations between join attributes. Since

the plans are optimized for the PostgreSQL execution engine in

this case, we expect the runtimes to be optimal. This is indeed the

case for queries with less than 20 joins. However, for 20 or more

joins, the PostgreSQL runtime is considerably worse compared to

COMPASS. This is where the PostgreSQL optimizer drops dynamic

programming in plan search. With a few exceptions where there are

dramatic spikes that go beyond 100X, the PgSQL plans executed in

DBMS A perform as well as or better than in PostgreSQL itself. This

is especially true for the complex queries having 20 or more joins.

Overall, COMPASS generates more stable plans than PostgreSQL.

Although not specifically optimized for it, PostgreSQL executes

them as fast – or faster – than its own plans.

The commercial DBMS A produces plans that have consistently

higher cardinality than COMPASS across all the JOB queries. This

clearly shows that the employed statistics do a poor job at estimat-

ing the join cardinality. However, when executed in PostgreSQL,

these plans have unexpectedly good runtimes—except for queries

with more than 20 joins. This is likely due to the more complex

cost function that considers other parameters beyond cardinality in

determining the optimal plan. Interestingly enough, when execut-

ing its own plans, DBMS A does not fare better than PostgreSQL,

except for the complex queries with more than 20 joins. In fact,

DBMS A has worse runtime for queries with 10 to 20 joins. The

runtimes of DBMS A and COMPASS are close to each other and

always within a factor of 10X. This confirms that the COMPASS

plans are also optimal for DBMS A.

Aggregatedworkload statistics.We aggregate the query-level

results (Figure 6) in order to obtain an overall view of the relative

performance of the compared systems. These aggregated results are

depicted in Figure 7. They give the total number of queries for which

a database performs the best, as well as the distribution as a function

of the number of joins in the query. In the case of cardinality, a

database is counted if it achieves the minimum cardinality among

all the databases. For runtime, a database is counted if it comes

within 10% of the fastest runtime—computed as the median of 9

runs. This bound compensates for variations in the environment.

Based on Figure 7a, COMPASS achieves the plan with the mini-

mum cardinality for 63 out of the 113 JOB queries. This represents

approximately 56% of the workload. PostgreSQL (PgSQL) comes in

second place with 39 queries. The other three databases obtain the

best cardinality in less than 20% of the queries each, with MapD

winning only 7 queries. The careful reader notices that the sum

of the winning queries is larger than 113. This is because there

are queries for which two or more systems achieve the same best

cardinality—case in which we count each of them. The distribution

of the winning queries in terms of the number of joins is depicted

in Figure 7b. While for the simpler queries with less than 10 joins

all the systems perform similarly, COMPASS clearly dominates the

others when the complexity increases. PostgreSQL is the only other

database that performs sufficiently well, however, only for queries

with a moderate number of joins. These results prove the benefit

of using statistics in query optimization, especially for complicated

queries. While the PostgreSQL statistics perform well for simple to

moderate queries, COMPASS sketches are less sensitive to the num-

ber of joins in the query—they provide more consistent estimates.

Moreover, COMPASS is not heavily impacted by the greedy join

enumeration algorithm. When PostgreSQL switches from dynamic

programming – more than 18 joins – it fails to find any best plan.

The aggregated runtime results in PgSQL and DBMS A are de-

picted in Figure 7c and 7d. They follow closely the corresponding

cardinality results—with one exception. The runtime for the com-

mercial DBMS A is much better than its cardinalities anticipate—

DBMS A has the best runtime for 63 and 74 queries, while its cardi-

nality is best only for 21 queries. The reasons are outlined when

the individual query results are discussed. Additionally, DBMS A

benefits from the bound on runtime since it often comes within

the fastest system. Overall, COMPASS achieves the fastest run-

time for 82 (PgSQL) and 81 (DBMS A) out of the 113 JOB queries

– 72% of the workload – which is more than any other database.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

813

(a) Sketch building overhead (b) Query runtime

Figure 8: Performance of the COMPASS optimizer implementation in MapD.

This proves the superiority of the identified plans and confirms

the correlation between cardinality and runtime. The correlation

manifests more clearly for queries with a larger number of joins

because of the higher runtime, which makes ties more unlikely.

Moreover, the correlation is stronger for PgSQL than for DBMS

A since the number of winning queries is higher in DBMS A for

all systems except COMPASS. A careful reader observes that the

runtime results are higher than the cardinality results for all the

systems—and larger than 113 when summed up. This is because it

is more common to have close-enough runtimes than it is to have

the same cardinality—multiple counting is more frequent. Based on

these results, we conclude that COMPASS is the optimizer with the

most consistent and resilient plans on the JOB benchmark.

Database
Runtime (minutes) Ratio to COMPASS

PgSQL DBMS A PgSQL DBMS A

MapD >300 >300 >23 >13

MonetDB 27.52 35.71 2.19 1.65

PgSQL 103.00 244.31 8.20 11.28

DBMS A 70.72 29.22 5.63 1.35

COMPASS 12.56 21.66 1.00 1.00

Table 2: JOB benchmark runtime in PgSQL and DBMS A.

Total workload runtime. The runtimes for the complete JOB

workload execution in PostgreSQL and DBMS A using the plans

generated by each database are included in Table 2. Given the high

variance among queries, these numbers have to be taken with a

grain of salt since they may be dominated by a few complex queries

with a large number of joins. Nonetheless, we follow prior art [3, 39]

and include them together with the aggregated workload statistics.

As expected, COMPASS has the overall fastest runtime. Somewhat

unexpectedly, MonetDB comes in second for the PgSQL execution

with a runtime that is almost twice as large as that of COMPASS.

The reason is because MonetDB does not fail dramatically for any

of the JOB queries. While it performs consistently slower, it never

derails on heavily sub-optimal plans. The runtime for PgSQL and

DBMS A in PgSQL is dominated by the long-running queries with

20 or more joins, which pull the total time to more than 8X and 5X

that of COMPASS. These outliers are sufficient to skew the overall

runtime. In the case of MapD, there are 30 queries that do not finish

execution even after a timeout of 20 minutes per query. Thus, the

very large runtime. When the workload is executed in DBMS A, all

systems except DBMS A incur an increase in runtime. The increase

is most significant for COMPASS as it stands at 50% more than

in PgSQL. On the other hand, DBMS A has a reduction of more

than 50% of its PgSQL runtime. Nonetheless, COMPASS still has

the overall fastest runtime, which is 35% faster than DBMS A.

COMPASS overhead.We measure the optimization overhead

of building Fast-AGMS sketches, as well as that of sketch-based

plan enumeration, for the COMPASSMapD implementation. Sketch

building can be performed either on GPU or CPU, while merging

and plan enumeration are performed on CPU. The results are de-

picted in Figure 8a. As expected, sketch building is more efficient on

GPU than on CPU due to the higher degree of parallelism. In both

cases, the optimization overhead increases with the number of joins

in the query. For GPU, the overhead is in the order of hundreds of

milliseconds (ms), with a maximum of around 500 ms for certain

complex queries. For CPU, the overhead is always below 5 seconds,

which is relatively small for queries that take minutes to run. Given

that this is only a prototype, we believe that the sketch overhead

can be further reduced with more optimized code.

Database Queries won Runtime (minutes) Ratio to COMPASS

MapD 42 47.64 7.67

COMPASS 74 6.21 1.00

Table 3: JOB benchmark execution in MapD.

Runtime in MapD. We evaluate the impact COMPASS has on

the MapD database. For this, we replace the default MapD query

optimizer with COMPASS and execute the JOB benchmark in both

scenarios. We measure the end-to-end query runtime, as well as

only the query execution time without optimization—these are the

same in MapD. Figure 8b depicts the results for every query. We

observe that MapD outperforms COMPASS for the simple and some

moderate queries. This may be surprising given the primitive MapD

query optimizer. However, its execution engine is quite different

from PostgreSQL. It is highly-optimized for parallel in-memory

processing. This alleviates the need for careful optimization on sim-

ple queries. For more complicated queries, though, sketch-based

optimization pays off as COMPASS finds considerably better plans.

In fact, MapD fails for 8 queries and times out after 30 minutes

for 8 other queries. COMPASS finishes all the queries and is faster

than MapD for 74 of them, which represents 65% of the workload.

The total runtime for the 97 queries MapD successfully runs is

included in Table 3. COMPASS has a runtime of 6.21 minutes to

MapD’s 47.64—which is a net speedup of 7.67X. This proves both

that sketches can be effectively computed at runtime, as well as

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

814

their benefit to generate better query plans, which result in faster

execution. The last point is clear when we compare only the execu-

tion time, without optimization overhead. There are less than ten

COMPASS plans that have execution time larger than MapD.

6.3 Summary

Based on the presented results, we can answer the questions raised

at the beginning of the experimental section:

• COMPASS generates query plans with the lowest cardinality

among all the considered systems for 56% of the queries in

the workload. This percentage increases to 65% for complicated

queries with 10 or more joins.

• The better plans identified by COMPASS translate into faster

query runtimes in PostgreSQL, DBMS A, and MapD. Out of the

113 JOB queries, COMPASS achieves the fastest runtime for more

than 80 in PostgreSQL and DBMS A, and 74 in MapD. This con-

firms the correlation between cardinality and runtime. DBMS A

is the only database that does not satisfy this correlation, which

can be problematic for a user.

• COMPASS and MonetDB are the only databases that perform

all the JOB queries without serious hiccups both in PostgreSQL

and DBMS A. The other systems have several queries for which

the runtime “explodes”. This results in significantly higher work-

load runtime. On the PostgreSQL engine, COMPASS outperforms

MonetDB by a factor of 2.19X, while on DBMS A by 1.65X. DBMS

A optimizes queries specifically for its engine, resulting in a sig-

nificant reduction in runtime compared to PostgreSQL. However,

COMPASS is faster by a factor of 1.35X. Moreover, COMPASS is

at least 7.67X faster than MapD.

• The overhead incurred by the COMPASS optimizer in MapD is

less than 500 milliseconds on GPU and less than 5 seconds on

CPU. While this may be too large for simple queries, it results

in faster execution for more than 91% of the queries. We plan to

optimize our implementation in the future.

The extended version of the paper [15] contains more details and

additional experiments.

7 RELATEDWORK

Cardinality estimation.While exhaustive surveys on query op-

timization [4, 48] argue that each component is important in find-

ing the optimal plan, Leis et al. [23, 25] show experimentally that

cardinality estimation is the most dominant component in query

optimization. However, consistency in estimations is more impor-

tant than high accuracy only for a limited number of instances.

There are four mainstream cardinality estimation approaches in the

literature—histograms, sampling techniques, sketches, and, more re-

cently, machine learning models. While histograms can provide ac-

curate selectivity estimation for a single attribute in a relation [14],

it is difficult for them to capture correlations between cross-join

attributes [34], thus limiting their applicability to joins. Unlike

histograms, sampling techniques [24, 31] can detect arbitrary cor-

relations for common values. However, samples are sensitive to

skewed and sparse data when few tuples are selected by a query [42].

Estimating the cardinality of multi-way joins with AGMS sketches

is introduced in [8, 9], while a statistical analysis of two-way join

sketch-based techniques is performed by Rusu and Dobra [36, 37].

Vengerov et al. [40] present an extension to AGMS sketches that

captures selection predicates, while Cai et al. [3] introduce bound

sketches that provide theoretical upper bounds for cardinality esti-

mation. Kernel density models for cardinality estimation (KDE) are

introduced in [12, 18]. They are built on samples extracted either

from the base tables or the join. While their accuracy is shown

to be superior to any other method on JOB queries over at most

five tables – the simplest in the benchmark – it is not clear how

to generalize and fully integrate KDE models in plan enumeration.

Specifically, the KDE implementation [47] builds a separate estima-

tor for every query. No details are provided on how to apply the

estimator to query sub-plans derived from the main query, which

is the centerpiece of plan enumeration.

Query reoptimization. In order to overcome the inherent mis-

estimations in the query optimizer, Adaptive Query Processing [7]

allows the query processor to modify the optimal query plan com-

puted by the optimizer in case of large deviations from the true cardi-

nality values detected at runtime. TheMid-Query Re-Optimizer [16],

ROX [17], and SkinnerDB [39] re-run the query optimizer at run-

time in the case of large differences between estimations and the

true cardinalities. These approaches use the output of the query

executor and sampling techniques to re-estimate the cardinalities

based on already computed intermediate join outputs and change

the query plan whenever the estimated values deviate significantly.

In the self-adaptable LEO optimizer [30], the query engine mon-

itors and uses the feedback from the execution engine in order

to adjust the histogram-based synopses for better performance in

subsequent queries. Eddies [2] process batches of tuples by follow-

ing dynamic routing policies during query execution. Unlike these

systems, COMPASS performs query optimization as a single stage,

while query execution is partitioned into two phases—before and

after the optimization.

Machine learning for query optimization. Using machine

learning techniques and deep neural networks is a recent trend in

query optimization. Join order enumeration [22, 28, 29], cardinality

estimation [19, 20, 26, 27, 33, 41], selectivity estimation [10, 11, 43],

and index structures [21] have been active research directions. For

example, Kipf et al. [19] use multi-set convolutional neural net-

works in order to model join and selection predicates, and capture

join correlations in the data. Marcus et al. [29] use reinforcement

learning in order to efficiently explore the search space and find op-

timal join order plans. Different from these approaches, COMPASS

uses traditional randomized algorithms to estimate cardinality.

8 CONCLUSIONS AND FUTURE WORK

We introduce the online sketch-based COMPASS query optimizer,

which uses exclusively Fast-AGMS sketches for cardinality estima-

tion and plan enumeration. We show that COMPASS outperforms

four other databases on all the considered metrics over the JOB

benchmark. In future work, we plan to investigate alternative merg-

ing strategies for Fast-AGMS sketches in order to support multi-way

joins and SIMD-optimized sketch algorithms – for CPU and GPU –

with lower overhead.

Acknowledgments. This work is supported by NSF award number

2008815 and by a U.S. Department of Energy Early Career Award

(DOE Career).

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

815

REFERENCES
[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking Join and Self-Join

Sizes in Limited Storage. In PODS 1999, pages 10–20.
[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing.

In SIGMOD 2000, pages 261–272.
[3] W. Cai, M. Balazinska, and D. Suciu. Pessimistic Cardinality Estimation: Tighter

Upper Bounds for Intermediate Join Cardinalities. In SIGMOD 2019, pages 18–35.
[4] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In

PODS 1998, pages 34–43.
[5] G. Cormode and M. Garofalakis. Sketching Streams Through the Net: Distributed

Approximate Query Tracking. In VLDB 2005, pages 13–24.
[6] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for Mas-

sive Data: Samples, Histograms, Wavelets, Sketches. Foundation and Trends in
Databases, 4:1–294, 2012.

[7] A. Deshpande, Z. Ives, and V. Raman. Adaptive Query Processing. Foundations
and Trends in Databases, 1(1):1–140, 2007.

[8] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing Complex Aggre-
gate Queries over Data Streams. In SIGMOD 2002, pages 61–72.

[9] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-Based Multi-query
Processing over Data Streams. In EDBT 2004, pages 551–568.

[10] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri. Selectivity
Estimation for Range Predicates Using Lightweight Models. PVLDB, 12(9):1044–
1057, 2019.

[11] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. Multi-
Attribute Selectivity Estimation Using Deep Learning. CoRR, arXiv:1903.09999v2,
2019.

[12] M. Heimel, M. Kiefer, and V. Markl. Self-Tuning, GPU-Accelerated Kernel Density
Models for Multidimensional Selectivity Estimation. In SIGMOD 2015, pages
1477–1492.

[13] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, and M. Kersten. MonetDB:
Two Decades of Research in Column-oriented Database Architectures. IEEE Data
Engineering Bulletin, 35(1):40–45, 2012.

[14] Y. E. Ioannidis and S. Christodoulakis. On the Propagation of Errors in the Size
of Join Results. SIGMOD Record, 20(2):268–277, 1991.

[15] Y. Izenov, A. Datta, F. Rusu, and J. H. Shin. Online Sketch-based Query Optimiza-
tion. CoRR, arXiv:2102.02440, 2021.

[16] N. Kabra and D. J. DeWitt. Efficient Mid-query Re-optimization of Sub-optimal
Query Execution Plans. In SIGMOD 1998, pages 106–117.

[17] A. R. Kader, P. Boncz, S. Manegold, and M. van Keulen. ROX: Run-time Optimiza-
tion of XQueries. In SIGMOD 2009, pages 615–626.

[18] M. Kiefer, M. Heimel, S. Breß, and V. Markl. Estimating Join Selectivities using
Bandwidth-Optimized Kernel Density Models. PVLDB, 10(13):2085–2096, 2017.

[19] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned Cardinali-
ties:Estimating Correlated Joins with Deep Learning. In CIDR 2019.

[20] A. Kipf, D. Vorona, J. Muller, T. Kipf, B. Radke, V. Leis, P. Boncz, T. Neu-
mann, and A. Kemper. Estimating Cardinalities with Deep Sketches. CoRR,
arXiv:1904.08223v1, 2019.

[21] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case for Learned
Index Structures. In SIGMOD 2018, pages 489–504.

[22] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica. Learning to Opti-
mize Join Queries With Deep Reinforcement Learning. CoRR, arXiv:1808.03196v2,
2018.

[23] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How
Good Are Query Optimizers, Really? PVLDB, 9(3):204–215, 2015.

[24] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann. Cardinality Estima-
tion Done Right: Index-Based Join Sampling. In CIDR 2017.

[25] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann.
Query Optimization Through the Looking Glass, and What We Found Running
the Join Order Benchmark. VLDB Journal, 27:643–668, 2018.

[26] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality Estimation Using
Neural Networks. In CASCON 2015, pages 53–59.

[27] T. Malik, R. C. Burns, and N. V. Chawla. A Black-Box Approach to Query
Cardinality Estimation. In CIDR 2007.

[28] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil,
and N. Tatbul. Neo: A Learned Query Optimizer. VLDB Journal, 12(11), 2019.

[29] R. Marcus and O. Papaemmanouil. Deep Reinforcement Learning for Join Order
Enumeration. In aiDM 2018.

[30] V. Markl, G. M. Lohman, and V. Raman. LEO: An Autonomic Query Optimizer
for DB2. IBM Systems Journal, 42(1):98–106, 2003.

[31] M. Muller, G. Moerkotte, and O. Kolb. Improved Selectivity Estimation by Com-
bining Knowledge from Sampling and Synopses. PVLDB, 9(11):1016–1028, 2018.

[32] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-Case Optimal Join Algorithms.
In PODS 2012, pages 37–48.

[33] J. Ortiz, M. Balazinska, J. Gehrke, and S. Sathiya Keerthi. An Empirical Analysis
of Deep Learning for Cardinality Estimation. CoRR, arXiv:1905.06425v2, 2019.

[34] V. Poosala and Y. E. Ioannidis. Selectivity Estimation Without the Attribute Value
Independence Assumption. In VLDB 1997, pages 486–495.

[35] F. Rusu and A. Dobra. Sketching Sampled Data Streams. In ICDE 2009, pages
381–392.

[36] F. Rusu and A. Dobra. Statistical Analysis of Sketch Estimators. In SIGMOD 2007,
pages 187–198.

[37] F. Rusu and A. Dobra. Sketches for Size of Join Estimation. TODS, 33(15), 2008.
[38] J. H. Shin, F. Rusu, and A. Suhan. Exact Selectivity Computation for Modern

In-Memory Database Query Optimization. CoRR, arXiv:1901.01488v1, 2019.
[39] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonakakis. SkinnerDB:

Regret-Bounded Query Evaluation via Reinforcement Learning. In SIGMOD 2019,
pages 1153–1170.

[40] D. Vengerov, A. C. Menck, M. Zait, and S. P. Chakkappen. Join Size Estimation
Subject to Filter Condition. PVLDB, 8(12):1530–1541, 2015.

[41] L. Woltmann, C. Hartmann, M. Thiele, D. Habich, and W. Lehner. Cardinality
Estimation with Local Deep Learning Models. In aiDM 2019, pages 1–8.

[42] W. Wu. Sampling-Based Cardinality Estimation Algorithms: A Survey and An
Empirical Evaluation, 2012.

[43] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-
stein, S. Krishnan, and I. Stoica. Selectivity Estimation with Deep Likelihood
Models. CoRR, arXiv:1905.04278v2, 2019.

[44] F. Yu, W. Hou, C. Luo, D. Che, and M. Zhu. CS2: A New Database Synopsis for
Query Estimation. In SIGMOD 2013.

[45] P. Boncz. The IMDB Dataset. http://homepages.cwi.nl/~boncz/job/imdb.tgz.
[46] Y. Izenov. The COMPASSQuery Optimizer. https://github.com/yizenov/compass_

query_optimizer.
[47] M. Kiefer. join-kde. https://github.com/martinkiefer/join-kde.
[48] G. Lohman. Is Query Optimization a Solved Problem? https://wp.sigmod.org/

?p=1075, 2014.
[49] G. Rahn. Join Order Benchmark (JOB). https://github.com/gregrahn/join-order-

benchmark.
[50] F. Rusu. Sketches for Size of Join Estimation. https://faculty.ucmerced.edu/frusu/

Projects/Sketches.
[51] StackExchange. Distance Between Two Permutations? https://math.

stackexchange.com/questions/2492954/distance-between-two-permutations.
[52] Apache Calcite. https://calcite.apache.org.
[53] MapD. www.omnisci.com.
[54] MonetDB. www.monetdb.org.
[55] PostgreSQL. www.postgresql.org.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

816

