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Two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, 2D metal-organic frameworks,
layered double hydroxides, transition metal dichalcogenides, and MXenes, have garnered significant attention in
catalysis due to their exceptional properties and structures. Notably, recent studies have revealed the promising
catalytic activity of MXene-based catalysts for many reactions, including hydrogen evolution, oxygen evolution,
oxygen reduction, nitrogen reduction, carbon dioxide reduction, alcohol oxidation, hydrogenation, dehydroge-
nation, methanol conversion, dry reforming of methane, and CO oxidation. This review offers a summary of
recent advances in the field, contextualizing the progress made. Additionally, it delves into existing challenges
while presenting prospects for future developments in this domain.

1. Introduction

Two-dimensional (2D) materials, including graphene [1,2], hexag-
onal boron nitride (h-BN) [3], 2Dmetal-organic frameworks (MOFs) [4],
layered double hydroxides (LDHs) [5], transition metal dichalcogenides
(TMDs) [6], 2D transition metal carbides [7], and MXenes [8-10] have
attracted significant interest owing to their outstanding properties and
structures. Consequently, they have shown capabilities in applications
in many areas, including catalysis, sensors, nanocomposites, actuators,
antimicrobial materials, and electromagnetic interference shielding
[11-16]. It is also long known that carbides (nonnoble metals containing
carbon) can be alternatives to expensive late transition metals as cata-
lysts to accelerate various reactions [17]. For instance, Levy et al. [18]
investigated the effect of inserting carbon into tungsten (W), which led
to tungsten carbide (WC) formation. Their findings revealed that the
catalytic performance of WC was comparable to that of pure metals like
platinum in reactions, including the formation of water from hydrogen
and oxygen at room temperature, the reduction of tungsten trioxide by
hydrogen in the presence of water, and the isomerization of 2,2-dime-
thylpropane to 2-methylbutane. As for the formation of water from
hydrogen and oxygen, the chemisorption of hydrogen and oxygen, and
subsequent removal of adsorbed oxygen by hydrogen with the formation
of water have been long assessed for platinum (Pt) [19], palladium (Pd)
[20], and rhodium (Rh) [21]. However, it is unlikely for these processes
to take place on other transition metals because they establish robust
interactions with oxygen, hindering its removal. In contrast, primary

outcomes have indicated that the incorporation of carbon into tungsten
alters the electron distribution. In other words, carbon significantly
decreases the high reactivity of tungsten toward oxygen via the intro-
duction of its valence electrons to those of the metal.

In particular, few-layered transition metal carbides, nitrides, and
carbonitrides, called MXenes, are novel groups of 2D nanomaterials that
have received great interest worldwide due to their extraordinary
chemical and physical characteristics [22-25]. They were discovered in
2011 at Drexel University, and since then, research on these 2D mate-
rials has exponentially increased [26]. MXenes have the general chem-
ical formula of My, {1X, Ty (n = 1-4), where M is an early transition metal
(including Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo), X is a carbon and/or
nitrogen atom, and T, denotes surface terminations (hydroxyl, oxygen,
fluorine, etc.) [27,28]. So far, more than 50 types of MXenes have been
synthesized. TizCyTy is the most widely studied MXene.

MXenes have been synthesized using different methods. A widely-
used method is the selective etching of A element from a ternary
M;+1AX, phase called a MAX phase, where A is an element of the IIIA or
IVA group. Single- or a-few-layer MXenes are obtained by the exfoliation
and delamination of multi-layer MXenes (Fig. 1) [29-31]. It should be
noted that the interlayer bonds are much weaker than intralayer ones in
the MAX phase, so a robust etchant can detach the A layer from the MAX
structure [32]. Etching by hydrofluoric acid (HF) was the first experi-
mental way of obtaining MXenes [33]. However, HF is corrosive and
poses a severe threat to the environment, which has necessitated the
development of alternative synthesis methods and the optimization of
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the synthesis steps [9]. Alternative synthesis methods include Lewis
acidic etching [34,35], molten salt etching [36,37], electrochemical
etching [38], and alkali etching [39]. As a “non-etching” method,
chemical vapor deposition (CVD) is a direct synthesis route of MXenes,
which results in new morphologies with more easily accessible surfaces
and exposed catalytically active edges. In this method, MXenes are
fabricated at high temperatures by reacting gaseous precursors, such as
a mixture of CH4 and TiCly, on a substrate [40]. Fig. 2 presents some of
the fluoride-containing and fluoride-free synthesis routes of MXenes. As
Fig. 2(a) shows, Al atoms in the MAX phase are etched out by HF,
leading to the production of a MXene [26]. Another approach involves
etching Ti3AlC; initially with a solution of hydrochloric acid (HCI) and
lithium fluoride (LiF). Subsequently, the product, TizC2Ty, was repeat-
edly washed with water to increase the pH to 4-6. Finally, the products
were sonicated under inert gas flow, leading to the fabrication of a
delaminated Ti3CyTy suspension. To avoid using direct HF directly, a
milder LiF initially reacted with HCl to produce HF in this method (Fig. 2
(b)) [41]. Halim et al. [42] produced epitaxial MXene films. First, the
Ti3AlC, nanometer film was deposited onto a sapphire (0001) substrate
via magnetron sputtering (note that a TiC layer was initially formed as
an incubation layer). Afterward, the Al layer was removed by an
aqueous HF etchant, resulting in TigCyoT, MXene (Fig. 2(c)). Yang and
coworkers [43] conducted a study on the fabrication of exfoliated
TizCoTy utilizing an efficient fluoride-free etching method based on the
anodic corrosion of TizAlC; in a binary aqueous electrolyte comprising
NH4Cl and tetramethylammonium hydroxide (TMA-OH). In this process,
aluminum was dissolved, followed by in-situ intercalation of ammonium
hydroxide, which subsequently led to the formation of carbide flakes
(TigCyTy, T = O, OH) with high yield (over 90%) (Fig. 2(d)).

Due to hazards associated with using hydrochloric acid, fluoride-free
methods have been proposed. For instance, Xie et al. [44] investigated
surface leaching of TigAlCy (e-TAC) through a fluoride-free hydrother-
mal etching method, which leads to the formation of a potential support
for Pt nanoparticles (NPs). The novel Pt/e-TAC catalyst exhibited higher
chemical stability and oxygen reduction reaction (ORR) activity than a
Pt/C catalyst. In another research, Cl-terminated MXenes (TizCyCly)
were synthesized using a fluoride-free route. In this procedure, the
TigAlCo MAX phase initially underwent a replacement reaction with
ZnCly, producing a Zn-MAX phase (Ti3ZnCy). Next, Cl-terminated
MXenes (TizCyCly) were produced using excess ZnCly and exfoliating
the Ti3ZnC; (Fig. 2(e)) [45]. UV-induced etching is another pathway to
produce MXenes [46]. In this pathway, Ga was selectively removed
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(from MoyGayC), leading to the production of a mesoporous MosCT,
MXene, a potential anode for rechargeable batteries (Fig. 2(f)). MXenes
have demonstrated attractive features such as high conductivity, light
weight, flexibility, and transparency, making them potential candidates
for applications such as electromagnetic interference shielding, flexible
optoelectronics, sensors, thermal heaters, and nanocomposites [47].

Etching with HF limits termination groups to -F, -0, and —~OH [48].
Alternatively, etching in molten inorganic salts leads to the fabrication
of MXenes with other surface terminations, including -NH, -S, —Cl, —Se,
—Br, and -Te [49]. For instance, the etching of the Ti3gAlC; MAX phase in
molten ZnCly and other molten Lewis acids at a temperature above
500 °C brings about the formation of TizCoCly MXene containing pure
—Cl termination groups [50]. Likewise, etching with molten Lewis acid
CdBrj has resulted in preparing Br-terminated Ti3CyBre and TipCBra
MXenes. MXenes synthesized through this strategy have —Cl and -Br
terminations that form weaker (M-F and M-Br) bonds with transition
metals from the outer layers of MXene sheets (Ti, Mo, Nb, V), in com-
parison to M-F and M-O bonds in MXenes prepared via traditional
routes. These surface bonds allow for the occurrence of installation and
removal reactions where halide ions, i.e., Cl and Br, exchange for other
atoms and functional groups, forming MXenes with tunable termina-
tions. Therefore, these chemical transformations and modifications can
enable substantial control over the chemistry, structure, and properties
of MXene materials [51].

MXenes with n>3 can be synthesized through epitaxial growth (e.g.,
depositing alternating layers of nitrogen molecules (N3) and early
transition metal). Computational studies, including density functional
theory (DFT) methods have supported the usefulness of this method. In
this method, N3 molecules are initially adsorbed onto the surface of a
MXene precursor possessing MyX stoichiometry, followed by the for-
mation of MpXNy; MXenes. In summary, computational studies have
shown that the epitaxial growth leads to the synthesis of pristine MXenes
with alternating N-transition metal layers, rendering these nano-
materials more layers beyond seven [51].

In recent years, the catalytic activities of MXenes, as heterogeneous
catalysts, have been studied for many reactions [52,53]. This has pri-
marily been motivated by the scarcity and high cost of noble metals used
in noble-metal-based catalysts [54] and the inexpensiveness and abun-
dance of the elements comprising MXenes [31].

This review paper aims to highlight the most recent advances in
applying MXenes as catalysts. This paper describes the latest advances in
the use of MXenes as catalysts in electrocatalysis reactions, including

Fig. 1. MXene synthesis involves several steps, including MAX phase preparation, acid etching, and delamination. These steps are shown for a few different MXenes.

Reprinted with permission from [9].
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Fig. 2. Schematic illustration of MXene preparation via fluoride-containing and fluoride-free methods: (a) Exfoliation process for TizAlC; showing the replacement of
Al atoms by —OH after reaction with HF[26]. (b) MAX phase was etched in a solution of acid and fluoride salt and washed with water to adjust pH toward 4-6. The
resulting sediment behaves like clay and can be rolled to produce flexible, freestanding films or molded and dried to yield conducting objects of the desired shape.
HCI and milder LiF was used instead of aggressive HF. [41] (c) Schematic diagram of OH-terminated Ti3C,T, after selective etching of Al from the deposited TizAlC,
by bi-fluoride salts etching [42]. (d) Anodic etching of bulk Ti3AlC; in a binary aqueous electrolyte [43]. (e) The replacement reaction between the MAX phase and
late transition-metal halides generates Zn-based MAX phases and Cl-terminated MXenes [45]. (f) UV-induced selective etching route of removing the double Ga layers

from MoyGa,C precursor to generate Mo,CT, [46].

(a) Reprinted with permission from[26]. (b) Reprinted with permission from [41]. (c) Reprinted with permission from ref [42]. (d) Reprinted with permission from
ref [43]. (e) Reprinted with permission from ref [45]. (f) Reprinted with permission from ref [46].

hydrogen evolution reaction (HER) (Table 1), oxygen evolution reaction
(OER), ORR, nitrogen reduction reaction (NRR), carbon dioxide reduc-
tion reaction (CO5RR), and alcohol oxidation reactions (AORs) (Section
2). Photocatalytically-driven reactions, including HER, CO2RR, NRR,
and pollutant degradation reactions, are then considered (Section 3).
Next, the use of MXene-based catalysts for other reactions, including
hydrogenation and dehydrogenation, methanol (CH3OH) conversion,
dry reforming of methane (DRM), and carbon monoxide (CO) oxidation
are covered (Section 4). The article finally ends with a conclusion and
perspectives on MXene-based heterogeneous catalysts.

Table 1
Recent reports regarding the application of MXene-based materials for the
electrocatalytic hydrogen evolution reaction.

MXene Electrolyte Overpotential (mV) Ref.
Nb,4CsTx 1.0 M KOH 398 [55]
TizCoT,NF’s 0.5 M H,S04 169 [56]
MoS,-TizCoTy 0.5 M HyS04 98 [57]
Mo,CT,/2 H-MoS, 0.5 M H,S04 119 [58]
MDP-Ti3C,Ty/MoS, 0.5 M HySO4 196 [59]
Pd/Nb,C-HF 0.5 M H,SO4 34 [60]
CoP/TizCaTy 0.5 M H,SO4 71 [61]
TixCTy 0.5 M H,S04 609 [62]
Mo,CTx 0.5 M HySO4 283 [62]
V4CaTy 0.5 M HyS04 200 [63]
F-TixCTy 0.5 M H3S04 170 [64]
TizCy0y 0.5 M HySO4 190 [65]
P-Mo,CTy 0.5 M H2S04 186 [66]

@ NF = nanofiber
> MD = modified

2. Electrocatalysis reactions

MXene-based catalysts have been widely studied for electrocatalysis
due to their good hydrophilicity, high electrical conductivity owing to
lamellar spacing, large surface area, and tunable properties [67-69]. To
boost the catalytic activity of MXenes and MXene-based catalysts, stra-
tegies including heteroatom doping, structural engineering of defects,
interfaces, strain, lateral size, and thickness have been proposed and
studied. Also, efforts have been made to tune surface functional groups
of MXenes to increase the electrocatalytic reaction rate. For instance, the
rates of HER and NRR can be enhanced by increasing the concentrations
of O and F functional groups on the surface of MXenes, respectively [70,
71]. MXenes functional groups act as sites for the adsorption of various
reactants, thus accelerating electrocatalytic reactions [72,73].

MXenes’ electrocatalytic performance can also be boosted by incor-
porating them with transition metals, metal oxides, metal-free sub-
strates, and other 2D materials because MXenes and these materials
display synergic effects, improving the overall electrocatalytic efficiency
[67,74,75]. In this section, we aim to describe the general trend and
recent developments in electrocatalysis, including water splitting (HER
and the OER), ORR, NRR, CO-RR, and alcohol oxidization reaction
(MOR).

2.1. Water splitting

Industrialization and global population growth have compelled so-
cieties to utilize massive levels of fossil fuels to meet their energy de-
mands, which in turn have caused severe and alarming issues, most
importantly air pollution [76]. Consequently, unprecedented attention
has been paid to developing renewable and environmentally friendly
energy sources [77]. During the past few years, some alternatives have
been proposed, one of which is the water-splitting system, which
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decomposes water directly into hydrogen and oxygen [78,79]. Water
splitting progresses within two half-reactions: HER at the cathode and
OER at the anode. However, the slow rates of HER and OER result in a
slow overall water-splitting reaction, which is a roadblock in the pro-
duction of hydrogen from water via electrocatalysis [80,81]. The widely
known water-splitting electrocatalysts are Pt and Ru/Ir-based noble--
metal oxides [82-84]. However, these catalysts are scarce in nature, are
expensive, and have low stability, which has impeded their applications
on large scales. So, finding and producing better electrocatalysts for
water-splitting reactions have invariably been a challenge [85-87].

With the discovery of MXenes, the use of MXenes as electrocatalysts
or platforms for other catalysts in the water-splitting reaction has been
investigated. Due to their exceptional characteristics, MXene-based
catalysts have proven efficient in water-splitting reactions. Conducting
DFT calculations, Gouveia et al. studied water bonding and dissociation
on a set of eighteen MX MXenes. They concluded that the MXenes can
favorably adsorb water in an exothermic reaction, with adsorption en-
ergies ranging from 1.43 to —2.94 eV. Additionally, these catalysts can
greatly facilitate water splitting with energy barriers below 0.44 eV
[88]. As pointed out, water splitting consists of HER and OER, meaning
its overall efficiency depends on the respective HER and OER [86]. So, in
the following two sub-sections, we will elucidate the HER and OER
performance of MXene-based catalysts and summarize recent advances
in the use of MXenes as either electrocatalysts or supports.

2.1.1. Hydrogen evolution reaction

Renewable and sustainable energy sources are of primary impor-
tance as alternatives to fossil fuels [89]. Hydrogen is an attractive fuel,
which can be generated via multifarious reactions known as hydrogen
evolution reactions (HERs) [90-97].

In the past few years, several materials, such as noble metals, have
been experimented on as catalysts for HER since they can facilitate the
low overpotential and increase the rate of Hy-production reactions
owing to the fact that these reactions are usually slow. Nonetheless,
these metals lack high efficiency, limiting their applications in HER and
other catalytically driven reactions associated with producing renew-
able substances on industrial scales [98-101]. MXenes have shown
catalytic activity in HER, attributed to their exceptional structures and
transition metals, which are inexpensive and earth-abundance [102].
The Gibbs free energy of atomic hydrogen adsorption describes the
catalytic activity of MXenes in HER. The closer the Gibbs free energy to
zero, the higher the activity of MXene catalysts [103]. In this respect,
Gao calculated the HER catalytic performance of five oxygen-terminated
MXenes, all of which showed a Gibbs free energy of near zero (Fig. 3)
[71]. It should be noted that, according to the Sabatier principle, the
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binding strength of hydrogen absorption on MXene catalysts should be
"just right,"- meaning it should not be either too strong or too weak
[104]. The HER is:

1
i (aq) + ¢ (e ™

where H* is active hydrogen adsorbed on the catalyst surface [71]. It is
worth mentioning that an acidic medium is better than an alkaline one
for HER progression due to the fact that, in contrast to alkaline media,
acidic media require lower overpotentials to begin the catalysis, which is
imperative for HER initiation [105].

HER kinetics was found to involve two intermediate steps with three
possible pathways, the Volmer, and the Heyrovsky or Tafel (Fig. 4). The
first step of HER is called the Volmer reaction, in which a water molecule
is adsorbed onto the catalyst surface (in an alkaline media). The second
step depends on the concentration of active sites on the catalyst surface,
meaning surfaces with low and high concentrations of active sites follow
the Heyrovsky or Tafel pathway, respectively. Likewise, the same would
happen in an acidic solution [106].

Employing Pourbaix diagrams, Meng and coworkers [107] investi-
gated the effect of mixed surface terminations on the HER performance
of MXenes. They considered nearly 450 topologically various surface
terminations, encompassing TizC,T, with no terminations, full -O, -OH,
-F, and -H terminations, and their different compositions. Based on
realistic models derived from Pourbaix diagrams, they concluded that
models close to HER equilibrium line, namely O3/30H;/s3,
F1,301,30H1 /3, and F3,904,90H,/9 demand a negligible overpotential of
0.01 V, showing their potential for use on the surfaces of MXenes for
electrocatalytic HER.

Although the HER catalytic performance of MXene-based substances
is typically satisfactory, efforts have been made to further boost their
catalytic activity in HER. Some progress has been made in this regard,
among which controlling surface functional groups [71,108,109],
tailoring the structures [110-112], doping with other materials
[113-115], and hybridization [102] have proved to be effective (Fig. 5).
Recent research on MXenes and their nanocomposites for utilization in
HER are summarized in Table 1.

2.1.2. Oxygen evolution reaction

Oxygen evolution reaction (OER) is a reaction by which oxygen
molecules are generated through water electrolysis [117]. OER is con-
ducted via two commonly plausible mechanisms, i.e., adsorbate evolu-
tion reaction (AER) and lattice-oxygen mediated reaction (LOM) (Fig. 6)
[118-121]. In the former, an alkaline medium is preferable over an
acidic one since OER suffers from sluggish kinetics in acidic media [86].
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Fig. 3. Free energy diagram of HER on five MXenes (TioCO», VoCO5, Nb,COs, TizC20,, and NbyC30,) under standard conditions [pH = 0, p(H,) = 1 bar, U= 0 V] vs.
a standard hydrogen electrode. 6 denotes the hydrogen coverage in H* adsorption. Reprinted with permission from [71].
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pathways for HER: Volmer-Heyrovsky and Volmer-Tafel. In an alkaline condition, the reaction begins with the adsorption of a water molecule (Volmer step). If the
catalyst surface contains low concentrations of active sites, the Heyrovsky step occurs where another water molecule is adsorbed, followed by OH™ and H; desorption.
Otherwise, the Tafel step takes place where the desorption of H; is provoked by two active sites close to each other. The distance between the two active sites should
not exceed the van der Waals radius of two adsorbed hydrogen atoms. Reprinted with permission from [106].
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Fig. 5. Approaches for optimizing HER electrocatalytic performance of MXene-
based materials. The optimization of MXene surface terminations positively
affects the electronic structure and electron transfer (top right). The hybridi-
zation of MXenes with other active materials has been demonstrated to syner-
gistically promote HER activity, such as chalcogenides, layered hydroxides,
phosphides, metal nanoparticles/alloys, carbides, and even metal-free black
phosphorus (top left). The doping of metal atoms can establish new active sites
for the adsorption of hydrogen molecules to further drive HER (down left).
Nanostructuring is another solution for improving MXenes’ HER activity by
accelerating the electrochemical response, creating more special electronic
properties, and providing abundant active sites (down right). Reprinted with
permission from [116].

It should be noted that although LOM is a potential pathway for OER,
only a few investigations have assessed this mechanism so far [122,123].
Similar to HER, OER suffers from sluggish kinetics, so

electrocatalysts, such as Ru, Ir-based catalysts, metal oxides, metal sul-
fides, and metal phosphides, are imperative to boost the reaction rate
[122,124-127]. However, the activities or stabilities of these catalysts
usually deteriorate due to OER’s harsh operating conditions and catalyst
particles agglomerate, compelling the incorporation of support mate-
rials to immobilize catalyst particles [128]. Doing so prevents particle
agglomeration and improves catalyst activity and stability, leading to
the production of more efficient electrocatalysts for OER [129-132].
Due to their unique properties, MXenes seem to be paramount electro-
catalyst supports for OER. For instance, Liu et al. [133] synthesized
MXene-supported NiMn-LDHs through a simple hydrothermal pathway
(Fig. 7). Aberration-corrected scanning transmission electron micro-
scopy (Ac-STEM) confirmed the construction of 2D NiMn-LDHs and 2D
TigCaTy. The results demonstrated that although poor electrical con-
ductivity of LDHs hampers their applications in OERs, their deposition
on MXenes can substantially improve their overall performance in
electrolysis. The reason for boosting the electrocatalytic performance is
the coupling effect between the utilized MXene (TisCyT,) and
NiMn-LDHs, which effectively narrowed the bandgap of NiMn-LDHs and
regulated their electronic structures, thus ameliorating the OER effi-
ciency and reaction kinetics.

MXenes as catalyst supports should have several important proper-
ties. For example, they should prevent the catalysts from being
agglomerated, ensuring high specific surface areas (SSAs) of the cata-
lysts [134]. For example, Zhao et al. [75] synthesized a 2D porous
TigCaTy-supported cobalt 1,4-benzene dicarboxylate (CoBDC) catalyst
as an effective OER catalysis. The outcomes showed that Ti3CyT, could
greatly enhance SSA (from 106.6 to 199.1 m?g!) by preventing CoBDC
particles from being agglomerated, exposing more nanocatalysts. In
another research, Han and coworkers [135] investigated the effect of
CoS; introduction between TigCyT, sheets. They concluded that not only
can the MXene hinder the agglomeration of CoS; particles, but also CoSs
prevents the restacking of the MXene nanosheets, improving the overall
SSA (from 6.4 to 46.2 ng'l). Hao et al. [136] fabricated a vertical array
structure of CoFe-LDH on Ti3CyT, support and discovered that the
MXene could significantly enhance SSA.

Another pivotal characteristic that MXene supports should contain is
the ability to improve electrical conductivity. It is evident that MXenes
with the most efficient and optimal conductivity are promising options
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as supports for OER catalysts owing to the fact that they can facilitate
charge transfer across the catalysts [117]. For example, Yu and co-
workers [137] reported that the addition of Ti3CoT, to FeNi-LDH
reduced the charge transfer resistances (R¢) of FeNi-LDH from 24.7 to
5.1 Q. OER overpotentials associated with/without the harness of
MXenes as supports for layered triple hydroxides (LTH) and LDH are
summarized in Table 2. Metal-support solid interaction (SMSI) also
plays a crucial role in boosting electron transfer from the catalyst to the
MXene. The surface functionality of MXenes changes the electronic
structure of catalysts, establishing strong interfacial interactions be-
tween catalysts and MXenes. As MXenes can attract electrons quickly,
they can quickly transfer them to the supported catalyst [138].
Another attractive property of MXene-supported catalysts is their
hydrophilic behavior, which benefits OER. This property is rooted in
MXenes’ abundant functional groups (F/O/OH/Cl), which can interact
with water molecules. Recent research has concluded that MXene-
catalyst compounds possess substantial hydrophilicity [117]. To illus-
trate, Si et al [145] measured the contact angle (CA) of the

Table 2

OER performance of LDH/LTH electrocatalysts with/without TizC,T, support.
Catalyst OER overpotential [mV] at 10 mA cm™ Reference

-Without TizCoTx With TizCyTy

NiFe-LDH - 235 [139]
CosMnFe3-LTH 370 263 [140]
NiFeCe-LDH 302 260 [141]
RuCo-LDH - 330 [142]
Co-LDH 390 340 [128]
NiMn-LDH 356 294 [133]
Cr-Fe-Ni-LDH 280 232 [143]
NiCo-LDH 600 300 [144]

NiFe-LDH/Ti3CyTy/nickel foam (NF) compound. The outcomes showed
that NiFe-LDH/Ti3CoT,/NF had a contact angle ~ 0° (Fig. 8a), demon-
strating its hydrophilic behavior. On the contrary, the CA of NF and
NiFe-LDH/NF were 119.7° (Fig. 8b) and 86.2° (Fig. 8c), respectively.
Intense interactions between MXene and water molecules can result in
more oxygen adsorption, eventually augmenting OER activity [146].
Furthermore, MXene supports can make electrolysis catalysts more
chemically stable and corrosive resistant than those not deposited on
MXenes [147]. It should be noted that C-containing MXenes are more
chemically stable than those containing N atoms [147].

2.2. Oxygen reduction reaction

Oxygen reduction reaction (ORR) is one of the most vital processes in
clean energy industries, specifically in fuel cells. ORR is feasible through
two main, ie., the following four-electron and two-electron pathways
[148], both of which can be progressed and accelerated by various kinds
of catalysts [149]:

O, +4H" +4e” -2H,0 2)

0, +2H" +2e” -H,0, 3

It is worth mentioning that a direct reaction between Hy and O5 can
produce hydrogen peroxide (H203). Nevertheless, this reaction route has
a high risk of explosion and lacks an appropriate level of selectivity
owing to the dilution to reduce safety ventures [150,151].

Carbon-supported electrocatalysts utilized in ORR usually suffer
from carrier corrosion, leading to the instability of catalysts [152-154].
In the past few years, several studies have been conducted on the
corrosion resistance of MXenes as promising candidates in ORR. Having
anti-corrosive properties, MXenes have been proven to prevent their
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CA: 119.7°

CA: 86.2°

Fig. 8. The contact angle of (a) NiFe-LDH/Ti3C.T,/NF, (b) NF, and (c) NiFe-LDH/NF electrodes. Reprinted with permission from [145].

supported catalysts from being unstable [155]. Moreover, MXenes can
diminish the potential barrier for driving electrons across the catalysts
and improve charge transfer, thereby making the catalytic activity more
efficient [131]. Lastly, despite possessing favorable activity, Pt-based
catalysts are not cost-effective and accessible, calling for less costly
and more abundant catalysts like MXenes [156,157]. There have been
several articles reviewing recent trends and developments in the field of
MXene-based materials for ORR. For example, Lin and coworkers [158]
assessed the ORR catalytic performance of 2D single-layered (SL)
TizCaTy nanosheets. They found that the ORR onset potential associated
with SL Ti3CyT, was much more than the reversible hydrogen electrode
(RHE). Moreover, the charge transfer resistance of SL Ti3CyTy on the
electrode surface measured via electrochemical impedance spectroscopy
(EIS) was found to be higher than those of multilayered (ML) Ti3CyTy
and Ti3zAlCy, supporting the improved ORR catalytic activity of SL
TigCyTy. Furthermore, in the possession of their large surface area, 2D
MXenes can adsorb many oxygen molecules to accelerate ORR.
Pt-based electrocatalysts are among the most paramount candidates
in ORR. However, Pt is expensive and has low accessibility and rela-
tively low stability. As a result, fabricating inexpensive, earth-abundant,
and stable catalysts is desirable in clean energy industries [159].
Metal-nitrogen/carbon nanocomposites (M-N/C, which M stands for Fe,
Co, Ni, and Cu) are among the most promising alternatives to Pt-based

a
O

24 _‘Ti3C2TX

'g ~—— Co/N-CNTs

< —— Co/N-CNTs@TizC2Tx

E |—PtC

= 4

64
0.2 0.4 0.6 0.8

Potential (V vs. RHE)

catalysts for ORR due to their beneficial characteristics, including high
nature-abundance, high efficiency, and low cost [160,161]. Despite
these merits, the performance of M-N/C substances is unsatisfactory,
necessitating the development of novel materials that meet the re-
quirements for ORR [162].

In recent years, MXene supports for M-C/N in ORR have been
investigated [163,164]. A case in point is a report by Chen et al. [165],
who developed Ti3CyTy-supported-non-precious-metal iron-cobalt
(Fe-Co) nanoparticles. This study unraveled the role of TizO; as a hin-
drance to Co-Fe nanoparticles’ agglomeration, resulting in higher cata-
lytic performance owing to the higher exposed surface area. In another
study, Zhang et al. [166] investigated the ORR and OER catalytic effi-
cacy of nitrogen-doped multi-walled carbon nanotubes incorporated
with Co (Co/N-CNTs) with a TizCyT, support. The linear sweep vol-
tammogram (LSV) curve ( Fig. 9 a) suggests that (Co/N-CNTs) @TizCaTy
can outperform the catalyst lacking Ti3CyT, due to its improved electron
transfer characteristics. As the LSV curve demonstrates, the
(Co/N-CNTs)@Ti3Cy T, composite possesses significantly enhanced ORR
activity due to the synergetic effect between Co/N-CNTs and TizCoTyx
MXene. Chen et al. [167] prepared cobalt-tipped carbon nanotubes in-
tegrated with Ti3CyTy (Co-CNT/TizC2Ty), in which zeolitic imidazolate
framework-67 (ZIF-67) nanoparticles were in-situ grown and exposed to
a pyrolysis reaction. Their findings indicate that Co-CNT/Ti3CoTy was

—PtC
——FePc
FePc/Ti;C,T,

2

4]

-6 .
0.6

0.8 1.0

E (V vs. RHE)

Fig. 9. LSV curves of (a) pristine Ti3C,Ty, CO/N-CNTs, CO/N-CNTs@Ti3C,Ty, and the Pt/C benchmark, and (b) Pt/C, FePc, and FePc/TizCyTy.
(a) Reprinted with permission from [166]. (b) reprinted with permission from [168].
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highly active as an electrocatalyst for ORR. This enhancement was
attributed to Co-CNT/Ti3CyT, high surface area, abundant Co-C/N site
on the tips of CNTs, and virtually high graphitization of carbon. While
Co-CNT/Ti3CyTy represented relatively analogous ORR activity, it had
superior stability than Pt/C-based catalysts. In another study, Li et al.
[168] investigated the ORR activity of a pristine iron phthalocyanine
(FePc) catalyst (an early Fe—-N—C prototype with typical FeN4 moiety and
very Pt-like ORR activity) following the introduction of Ti3CyTy as a
support. This coupling caused remarkable Fe 3d electron delocalization
and spin configuration changes, which made the active FeCy4 sites more
readily adsorb reaction species involved, therefore improving the ORR
performance. Their LSV results (Fig. 9b) suggested a positive shift of
~26 mV compared to that of 0.86 V vs. RHE for pure FePc.

Several research studies have reported the utilization of MXene-
assisted catalysts to accelerate OER and ORR. However, only a few
studies have mentioned the potential instability of MXenes in oxidative
environments of OER and ORR. For instance, Kuznetsov et al. [169]
experimentally studied the substitution of Mo sites on Mo,CT, MXene by
Fe single atoms (MoyCTy:Fe) to verify increased stability and activity
following the incorporation of Fe atoms. Characterization results
unraveled the in-situ evolution of MoyCTy:Fe to Fe oxyhydroxide (fer-
rihydrite, Fh) species distributed on a graphitic carbon framework
(Fh/C), acting as the main active parts. As a result of the difference
between the stability of Mo and Fe, Mo was selectively etched out of
Mo,CTy, which led to the fabrication of graphitic carbon onto which Fh
clusters were distributed, affirming poor stability of pure MoCTy in the
oxidative situations of OER and ORR in basic conditions. Computational
calculations have also been conducted to scrutinize the stability of
MXenes under electrocatalytic reaction conditions [170]. Tsounis et al.
[171] plotted the Pourbaix diagrams of Mo2CO5 and V2CO> to assess the
(in)stability window of these MXenes in electrochemical reactions,
namely OER and ORR. They reported that these pristine MXenes (and
possibly other counterparts) are stable at “negative” potentials and high
pH. Therefore, Pourbaix diagrams highlight the effect of anodic poten-
tials on the stability of MXenes. Furthermore, the largest window in
which the oxidative decomposition of MXenes takes place is in solutions
with high pH. As a result, caution must be taken when using MXenes at
high pH and high anodic potentials, since the oxidative decomposition is
still likely. Therefore, pristine MXenes are potentially appropriate as
sole catalysts when used in reactions that occur at potentials near that of
HER or lower (e.g., those of N3, CO; and NO3 reduction); i.e., near or
below 0 V vs. RHE, and at a low pH.

2.3. Nitrogen reduction reaction

No, as one of the most paramount components of the atmosphere,
serves as a pivotal molecule for a sustainable and environmentally
friendly pathway of producing ammonia (NH3) [172]. From a common
industrial point of view, NH3 can be produced through a conventional
reaction called the Harber-Bosch (HB) process, in which Ny and Hj are
the correspondent feedstock, with metals being the reaction catalysts.
Nonetheless, this process necessitates tremendous energy (a tempera-
ture above 350 °C and a pressure above 150 atm). Furthermore, the raw
materials employed in the HB process are derived from petroleum,
leading to their accumulation in the atmosphere and contributing to the
generation of COy [173]. Consequently, a renewable pathway of NHg
generation has always been a preoccupation for researchers in the past
few decades. In the natural process of NH3 synthesis, Ny and water un-
dergo an electrocatalytic reaction under mild conditions, in which Hy
molecules and electrons are derived from Hy0 and electricity sources,
respectively [174]. However, this route results in low yield and selec-
tivity of NHs [175]. In this regard, 2D materials have gained significant
attention as alternatives to noble metal catalysts for efficient Ny fixation
and then Ny conversion to NHs. This significance is owing to their large
surface area and dispersed active sites that they potentially offer for Ny
adsorption and activation [79].
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MXenes, as the most promising 2D substances, have proven to be
efficient for clean NRR due to their previously mentioned characteris-
tics, for which some review papers have been published in the past few
years [176]. From a computational viewpoint, Azofra and coworkers
[177] investigated the NRR performance of MXenes. Utilizing DFT, they
concluded that MXenes bring about a spontaneous Gibbs free binding
energy for Ny fixation and further activation. Wet-lab research has also
been conducted along with computational ones to confirm the NRR ef-
ficacy of MXenes. For example, Zhao et al. [178] assessed 2D TizCyT, (T
= F, OH) MXene performance of NRR and attained an NHj3 yield rate of
~ 20.4 pgemgiyeh’l. MXene-assisted NRRs proceed through three
consecutive steps, namely adsorption and activation, hydrogenation,
and desorption. The electrocatalytic-driven mechanisms associated with
N2 reduction to NHgs fall into two generally accepted pathways of
dissociative and associative routes, which differ in their hydrogenation
order [179]. The dissociative pathway correlates to the cleavage of the
Ny triple bond in the adsorption stage, which requires an immense level
of energy. Subsequently, each separated N atom goes through inde-
pendent hydrogenation reactions, followed by desorption from the
catalyst surface (Fig. 10a). The requisite harsh condition (high temper-
ature and pressure) in the HB process is due to this mechanism (for
breaking the Ny triple bond). On the other hand, the associative takes
place so that the N triple bond is not dissociated during adsorption but
happens at a particular stage in hydrogenation. This pathway is divided
into three distinctive sub-pathways called alternating, distal, and
enzymatic (Fig. 10b) [180].

While there is no general rule for predicting the precise pathway by
which NRR progresses, research studies have demonstrated that
different MXenes follow different NRR mechanisms. For instance, Xia
et al. [181] studied the NRR electrocatalytic performance of V,CT,. Via
DFT calculations, they discovered that this MXene could result in the
NHj rate of 12.6 pg h™! mge; and Faradaic efficiency (FE) of 4% at -0.7 V
in the M NaSO4 media through a distal mechanism. Lastly, it is note-
worthy that various parameters, including morphology [182], surface
terminations [183], and incorporation of other materials [184-187],
affect the electrocatalytic efficacy of MXenes. MXenes-doped with
nanomaterials have also enhanced NRR electrocatalytic activity
compared to pristine MXenes. In a case DFT study, Zheng and coworkers
[188] incorporated Boron (B) sites as doping agents onto Mo2COy and
WyCO, MXene surfaces, resulting in a remarkably increased catalytic
performance and improved selectivity in NRR. The modeled B-doped
Mo,CO, and WCO, MXenes showed limiting potentials of —0.20 and
—0.24 V, respectively. Previous research results associated with the
electrocatalytic NRR application of MXenes and MXene-based materials
are summarized in Table 3.

2.4. Carbon dioxide reduction reaction

The greenhouse effect caused by industrialization has resulted in the
accumulation of contaminant gases, on top of which is CO,. Therefore,
researchers have been endeavoring to diminish the CO; level by inte-
grating various methods, like recycling, energy recovery, biomass uti-
lization, and carbon capture and utilization [194]. During the past few
decades, some research has been conducted on the plausibility of CO4
conversion into valuable substances through the electrolytic CO2RR.
Nonetheless, the effectiveness of this reaction strongly depends on
developing potential and cutting-edge catalysts to ensure the long-run
feasibility of COoRR on industrial scales [195].

In the possession of exceptional properties mentioned in the previous
paragraphs, 2D materials hold promise as potential catalysts for COoRR.
MXenes are among those 2D electrocatalysts whose CO2RR efficiency
has been investigated within the past few years. Not many studies have
been conducted on the COsRR performance of MXenes since their po-
tential as heterogeneous catalysts is still in its infancy, so preliminary
computational research on this topic was done by Li et al. [196]. In this
study, they discovered that Cr3Cy and MosCy MXenes are capable of
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Fig. 10. Schematics of NRR on catalysts via (a) the dissociative and (b) associative pathways. Reprinted with permission from [180].

Table 3

Recent research regarding the electrocatalytic ability of MXenes and MXene-
based materials towards NRR.

Catalyst NH; yield FE (%), N, reduction Ref
rate potential vs. mechanism
RHE
F-terminated 0.1 pmolecm™  7.4%at-0.55V ~ NR? [189]
TisCoTy 2Zeh?
Cu/TizCaTy 3.04 7.31% at-0.5V  Distal [184]
pmolecm”
24p°1
Au/TizCoTy 30.06 pgemg~  18.34% at Alternating [190]
!areh 0.2V
Surface- 1.71 pgecm’ 7.01% at-0.2V  Alternating [191]
engineered 2eht
TisCoTx
TisCoTy (T= F, 20.4 ygemg”  9.3%at-0.4V  Distal [178]
OH) Leareh™
Ru@ TizCyTy 2.3 pmolecm” 13.13% at Distal [192]
Zeh’! 0.4V
V2CTy 12.6 pgemg” 4% at -0.7 V Distal [181]
lcat'hrl
N-S-doped 34.23 pgemg~  6.6% at-0.55V ~ NR® [193]
TizCoTy !aroh?

? NR = Not reported

converting CO, to CH4, which is a vital energy-generating gas in in-
dustries. Other theoretical investigations have also been concentrated
on employing MXenes to produce CHy [197]. Conversely, in 2020,
Handoko et al. [198] embarked on an experimental study to explore
titanium and molybdenum carbide MXenes for CO2RR in an effort to
expand horizons in the emerging field of MXenes. Unlike preceding
computational research in which CH4 was the predominant CO3RR
product, this study discovered formic acid as the dominant product, with
an FE of 56.1% for KF-HCl-etched Ti;CTy. It is important to note that the
synthesis route of MXenes and CO2RR experimental conditions can
affect the type of reaction products. In another case, Attanayake and
coworkers [199] studied the CO2RR potential of MooCTy and TigCoTy--
based MXenes in an acetonitrile-based electrolyte mixture with 1-eth-
yl-3-methylimidazolium tetrafluoroborate. They found CO to be the
primary product of this reaction, with an FE of 90% and 65% for Mo,CTy
and TizCyTy, respectively. Meng et al. [200] reviewed the recent ad-
vances in DFT calculations on the CORR efficacy of MXenes. They
divided models into three generations. The first generation of models
(2017-2018) revealed the potential application and high activity of
clean MXenes in CO, adsorption, even in harsh operational situations,
with a maximum CO, capture capacity of 8.25 mol.kg™. These theo-
retical findings were later validated experimentally, paving the way for

the employment of MXene materials as electrocatalysts in CO2RR.
However, these models suffered from oversimplification and overlooked
the effects of surface terminations. The second generation of models
(2018-2020) studied the effects of surface terminations, such as -O,
-OH, -S, and -F, on CO, and other intermediates binding energies.
Different intermediates may react with surface groups via the H, C, or O
atoms. Nevertheless, interaction with H atoms of the -OH-containing
terminations may either simplify proton-couples electron transfers or
lead to the stability of intermediates by as-generated surface —-O group
after —-H removal from -OH. The third generation of models
(2020-present) revealed the significant role of vacancies in modifying
intermediate binding energies. They also showed that the vacancies
have more paramount influences on the reduction of H' than the
binding of CO, during the process.

Various techniques have been exploited to tune the activity and
selectivity of MXene-based catalysts in CO2RR, such as controlling sur-
face vacancies [201], doping [202], and incorporating multiple com-
ponents into MXenes [203]. Concerning metal-doped MXenes, Eid et al.
[201] investigated the CO2RR performance of Cu/Ti3CoT, MXene. They
found that the Cu/Ti3CyTy catalyst outperformed pristine TizCyT,, with
a formic acid FE of 58.1% in Cu/Ti3CyT, and ~18.7% in TizCaTy,
respectively (Fig. 11a). In another DFT study, Cheng et al. [204] assessed
the CO2RR efficiency of pristine NbyCOy; and nonmetallic and
metallic-doped Nby,CO; (N- and Cu-doped NbyCOs). Their results indi-
cated that N- and Cu-doped specimens possessed lower reaction Gibbs
free energy than pure Nby,CO5 (Fig. 11(b-d)), demonstrating higher ac-
tivity towards CO2RR. Kannan et al. [205] also investigated the effect of
iron-doped-zinc oxide (ZnO-Fe) on the TizCyT,-based electrochemical
reduction (eCR) of COs. They found the current density of ZnO, TizCoTy,
ZnO-Fe, ZnO-TizCyTy, and ZnO-Fe-TizCyTy to be 3.439, 6.64, 7.13,
10.21, and 18.745 mA/cm?, respectively, under an applied potential of
0.2V, thus indicating the high activity of ZnO-Fe-TizCyT, towards
CO2RR.

2.5. Methanol and ethanol oxidization reactions

Direct alcohol fuel cells (DAFCs) have attracted interest in generating
electricity from commonly known alcohols, i.e., CH3OH and ethanol
(C2HgO), as they have advantages such as convenient energy trans-
formation, low noise, and high efficiency [14]. In the past few years,
Pt-based catalysts supported by carbon have been widely used as po-
tential electrocatalysts in DAFC processes [206,207]. Nonetheless, there
are several bottlenecks with Pt, including its high cost, alcohol cross-
over, long-run instability, and CO poisoning [208]. Furthermore, some
carbon supports used to immobilize Pt-based catalysts usually suffer
from corrosion-induced degradation and low graphitization. Therefore,
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Fig. 11. (a) Comparison of the FE products between pristine Ti3C,T, and Cu-doped-Ti3zC,T,. (b) Reaction Gibbs free energy plots of CO.RR on (b) pure Nb,CO,, (c)
N-doped-Nb,CO,, and (d) Cu-doped-Nb,CO,, surfaces. Note that P1, P2, P3, and P4 illustrate different pathways of COoRR on Nb,CO,-based catalysts, corresponding

to different Gibbs free energies.

(a) Reprinted with permission from [201]. (b) B-d: Reprinted with permission from [204].

efforts have been made to harness carbon supports with superior char-
acteristics beneficial to DAFC or develop strategies to mitigate their
corrosion. For example, Zhao et al. [209] investigated different methods
to reduce carbon corrosion. However, they discovered that carbon
corrosion and degradation remain significant challenges despite these
corrosion diminishment strategies. Considering these challenges, re-
searchers have fabricated low-carbon or free-carbon supports, such as
metal dioxides (TiO,, IrO5, WO3, and SnO5) [210], nitrates, and carbides
(SiC, TiC, and B4C) [211]. Apart from these materials, MXenes have also
gained particular interest because of their well-defined characteristics.
DFT calculations showed that MXene supports, specifically Ti-based
ones, can establish favorable adsorption energy for depositing neces-
sary noble metals and other catalysts [212,213]. Experimental in-
vestigations revealed that Ti-based MXenes are highly efficient for MOR
and that Ti3CyT, MXene enriched Ti-O terminals exhibit a high elec-
trical conductivity and a large specific area, leading to improved elec-
trochemical performance in MOR. The prepared specimen demonstrated
an onset potential of -0.51 V, with long-term stability and durability
toward MOR [214].

To date, several review articles have represented the potential of
harnessing metal and non-metal-supported MXenes. However, as
mentioned in the previously elucidated paragraphs, the utilization of
MXenes in catalytic reactions is still at the nascent stage [79,215-218].
As a result, in this paper, we review some of the most novel updates on
MXenes MOR and EOR performance, whose valuable outcomes have
been represented in Table 4. As pointed out, Pt is among the widely used
electrocatalysts for MOR and EOR purposes. However, due to the issues
mentioned at the beginning of this section, they should be immobilized
into 2D substances to ensure their stability and durability. MXenes have
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been shown to hold promises as support for Pt and many other catalysts.
A few studies have focused on MXenes-supported Pt, the first of which
conducted by Wang et al. [219] reported a peak current density for
Pt/Ti3CyT three times higher than a conventional carbon-supported Pt
(Fig. 12a and b), indicating that Pt/Ti3CoTy is a promising candidate for
MOR. Furthermore, transmission electron microscopy (TEM) and
high-resolution transmission electron microscopy (HRTEM) analyses
illustrated that Pt nanoparticles were successfully deposited and
distributed on the TizCyT, surface, guaranteeing a high surface area for
adsorption and activation (Fig. 12c and d). In terms of stability of the
Ti3CyTy support, the calculated electrochemical surface area (ECSA)
Pt/Ti3CoT, was 30.2 mz/g, and it lost only 15% of its surface electro-
chemical stability toward Pt immobilization. In contrast, the corre-
spondent loss was 47% for Pt/C.

2.6. Nitrate reduction reaction

With the rapid discharge of industrial wastewater, a vast amount of
nitrate (NO3) enters water grounds, calling for urgent actions to remove
them to provide global populations with drinking water and prevent
individuals from getting fatal diseases such as liver cancer and gastric
cancer [230-233]. Currently, two leading technologies exist for the
removal of NO3 from water: reverse osmosis and biological denitrifica-
tion. However, the former suffers from high expenses and the latter from
creating byproducts caused by the metabolism of microorganisms,
leading to secondary pollution to the water body [234,235].

Electrocatalytic nitrate reduction has garnered substantial interest in
converting NO3 into harmless substances, including N2 and NH3, as in-
dustrial raw materials, which demands low energy consumption and
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Table 4
Recent studies on the electrochemical performance of MXene support for MOR/
EOR.

Catalyst ECSA Specific Methanol Stability Ref
(m?/, 2) activity oxidation (Retention
(mA cm’ peak current rate)
2 (mA cm®)

Ni(3%wt) 1.17° NR" 7.7 78.4%/ 500  [220]
MoS,/ cycles
TisCoTx

Pt/Ti5CyTy 30.2 NR" 1.137 85%, 1000 [219]

cycles

Pd/Ti3C,T, 97.97 25.47 NR" NR? [221]
rGO (1:1)

Pt/(RGO)s- 90.1 NR" NR" 24.4%/ [222]
TizCoTy 1000 cycles

Pd/Tis 34.5 6.56 NR" 31.4%/ 500  [223]
CoTx@NG* cycles

NiCu-LDH/ 7.625"  11.39 86.9 77.8%/ 500  [224]
TizCoTy cycles
(45%wt)

Pt NWY/ 61 NR" 17.2 NR” [225]
PDDA®-
TisCoTx

PtgoRhgFess- 46.4 NR” NR” 72.8%/ [226]
PNS'‘@ 1000 cycles
TisCoTx

Pt-on-Pd/ 157.3 0.93 NR" 62.9%/ 200  [227]
TizCoTy cycles

PtR/TizC,Ty 54.91 NR" 22.9 NR* [228]

Pd/GOs- 89.9 NR" NR" 55.4%/ 800  [229]
Ti3CoTy-PS cycles

3 — unit: cm?

Y NR = Not reported

¢ NG = nitrogen-doped grapheme

4 NW = worm-shaped nanocrystals

¢ PDDA = poly(diallyldimethyl-ammonium chloride)
f pNS = porous ternary nanosphere.

diminished environmental pollution [236]. Nonetheless, owing to the
lack of high selectivity for nitrate reduction reaction (NITRR) to NHs,
harnessing electrocatalysts is vital to ensure the long-term feasibility of
this reaction on industrial scales [237]. Moreover, one of the challenges
in NITRR is the competence with HER and the production of byproducts
like Hy, which decreases the efficiency of this reaction [238].

Given the extraordinary characteristics mentioned in the previous
sections, 2D MXenes have attracted attention in NITRR [239]. For
instance, Hu et al. [240] assessed the potential use of MXenes as elec-
trocatalysts in NITRR (converting NO3 to NH3) via DTF calculations.
They concluded that MXenes could drive NITRR through their basal
planes, where NO3 was readily deoxygenated, while the subsequent
hydrogenation was challenging. Combining MXenes and NITRR bime-
tallic catalysts, such as Fe-Mo [241], Cu-Rh [242], and Cu-Fe [243], can
improve charge transfer and exposure of active sites, thus increasing
overall catalytic performance. In another research, Zhang et al. [244]
incorporated highly dispersed BisOs electrocatalyst on Ti3CoTyx nano-
sheets, in which oxygen vacancies facilitated electron transfer and
exposed more active sites. Meanwhile, Bi;O3 inhibited HER, further
boosting the overall NITRR efficiency (NH3 yield rate of ~
7.0 mgecm 2eh™!). Nevertheless, these catalysts might lose their stability
on the surface of MXenes due to the insufficiency of MXene surface
functional groups (-F, —-OH, etc.), which necessitates the application of
negatively charged surface functional groups of MXenes to establish
robust interactions with cationic metals, or the solid interfacial polari-
zation of MXenes to catalyze the breaking of N-O bonds [245-247].
Additionally, MXenes themselves suffer from issues such as collapsing,
causing decreased electron transfers and catalytic performance. This
shortcoming can be partially addressed though adjusting the interfacial
states, functional groups, and defect states, utilizing confinement effects
to load single atoms, constructing heterogeneous structures, and
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creating interfacial polarization [245].
3. Photocatalysis reactions

Photo-induced reactions (harnessing sunlight) hold promise as
alternative routes to developing and producing clean energies [248].
More specifically, photocatalytic reactions are crucial in water splitting,
CO2RR, NRR, and pollutant degradation. MXenes are promising candi-
dates for this purpose owing to their superior properties over other
catalysts [54,249-251]. This section describes different MXenes photo-
catalytic applications in the pertinent reactions, including water split-
ting, CO2RR, NRR, and pollutant degradation.

3.1. Water splitting

There are various technologies for hydrogen and oxygen clean pro-
duction, among which the water splitting innovation offers more ben-
efits such as inexpensiveness, convenience, and being environmentally
friendly [252]. A photo-driven water splitting reaction follows these
three preliminary steps: 1) light absorption by the semiconductor pho-
tocatalyst and generation of photogenerated charge carriers, meaning
electrons (e”) and holes (h™), 2) migration of electrons and holes from
the bulk to the surface of the photocatalyst, and 3) the contribution of
electrons and holes to the redox reactions directed into Hy and O
generation [253]. Unlike computational research investigating the
“excited states,” namely excitons of traditional photocatalysts like rutile
TiO4 (110), the assessment of MXenes for their photocatalytic activity is
often based on their band gap size and alignment [254-256]. This sec-
tion describes recent investigations and advances in the area of Hj
generation using MXene photocatalytic HER.

3.1.1. Hydrogen evolution reaction

Hydrogen is the primary molecule for the production of ammonia
and a vital substance in petrochemical industries. However, there are
some challenges with its production by conventional methods like
exploiting fossil fuels. The water-splitting reaction has shown promise in
Hy generation to meet global demands. This reaction occurs in the
presence of a semiconductor photocatalyst and sunlight illumination,
proceeding a reaction independent of hazardous fossil fuels. The reac-
tion mechanism is the same as described previously, i.e., Volmer—Tafel
or Volmer—Heyrovsky pathways [257]. Nonetheless, photocatalytic
water splitting lacks high efficiency on industrial scales. Therefore, ef-
forts have been made to enhance the reaction performance using co-
catalysts [253,258]. Cocatalysts extract charge carriers from the
correspondent photocatalyst surface and hinder their recombination,
improving HER rate and yield [259].

MXenes have attracted prominent attraction as HER cocatalysts
owing to their high electrical conductivity, which is beneficial to elec-
tron transport to the surface of the photocatalysts [71]. DFT calculations
have proven MXenes’ co-catalytic performance. For instance, Ran and
coworkers [260] investigated the co-catalytic activity of Ti3CoO2 MXene
deposited on a CdS photo-absorber. They discovered that the AGy: of
this MXene was close to zero at 5 H* coverage (Fig. 13a), thus boosting
the HER performance compared to traditional catalysts, namely Pt,
MoS,, and WS, (Fig. 13b).

MXenes can also be employed as direct HER photocatalysts with
suitable valence band (VB) and conduction band (CB) potentials [85].
To illustrate, TigCoT, MXene is applicable as an HER photocatalyst since
it offers advantages like a hydrophilic surface and a Gibbs-free adsorp-
tion energy close to zero [261]. Using DFT calculations, Ontiveros et al.
studied the bandgap of a wide array of MXenes by their structure,
composition, and oxygen surface termination to determine appropriate
MXenes for photocatalytic water splitting. Their study indicated that
C-MXenes possessed more cases with bandgap favorable for water
splitting compared to N counterparts. Moreover, the effects of factors
such as stacking and specific oxygen-termination hollow sites were
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Fig. 12. (a) Cyclic voltammogram (CV) curves of Pt/Ti3C,T, MXene and commercial Pt/C in Ny-saturated 0.5 M H,SOy4 solution, (b) CV curves of MOR on Pt/Ti3CoTy
MXene and commercial Pt/C in 0.5 M H2SO4 + 0.5 M CH30H solution at a scan rate of 50 mV/s, (c) TEM, and (d) HRTEM of Pt/Ti3C,T, MXene surface. Reprinted
with permission from [219].
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Fig. 13. Calculated free energy for HER, for (a) TisC.Ty at various H* coverage (1/8, 1/4, 3/8, 1/2, 5/8 and 3/4) and (b) Pt, Moo, and WS, at !4 H* coverage.
Reprinted with permission from [260].
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found to be irregular and circumstantial. DFT calculations demonstrated
that for all possible cases with a bandgap larger than 1.23 eV, the
minimum required in order for the water-splitting reaction to occur,
ZroCO2 was a promising photocatalyst candidate in water splitting
[256].

Utilizing ab initio calculations, Guo and coworkers assessed 48
MXenes to unravel their photocatalytic properties. Their outcomes
revealed that 2D Zr,CO5 and Hf5CO», whose band gaps and band edges
positions substantially met initial requirements for photocatalytic water
splitting, possess incredibly high and directionally anisotropic carrier
mobility, meaning that they likely facilitate the migration and

Materials Today Catalysis 5 (2024) 100054

separation of photo-generated e-h™ pairs. Regarding sunlight absorp-
tion, these two MXenes were proved to be effective in optical absorption
in the wavelength ranging from 300 to 500 nm. Additionally, these 2D
MXenes were potentially stable in a liquid water medium based on ab
initio molecular dynamic simulations. Eventually, the absorption and
decomposition of a water molecule and the formation process of Hy on
concerned MXenes were investigated, which demonstrated to be ener-
getically feasible [85].

The results associated with other research are presented in Table 5,
which opens up a novel trend into developing MXene-based HER cata-
lysts or cocatalysts in water-splitting applications.

Table 5
Recent research associated with the development of MXenes as cocatalysts in photocatalytic HER.
MZXene cocatalyst Final catalyst Sacrificial agent H, production (pmol Activity improvement following MXene Ref
hlgh cocatalyst addition
Ti3C,Ty- monolayer CdLagS4/TizCoTy 0.25 M NaySO3, 0.35 M 11182.4 13.4 times [262]
nanosheets Na,S
TiOy/ 25% methanol 17.8 4 times [263]
TisCaTx
8-C3Ny4"/TisCoTy 10% triethanolamine 1620.0 2.41 times (compared to g-C3Ny4) [264]
/TiOy
8-C3N4/TizCoTy 10% triethanolamine 72.3 10.18 times [265]
CdS/TizCoTy 10% lactic acid 2407.0 6.68 times [266]
P-doped tubular g-C3Ny4 /TizCoTx 20% methanol 565.0 3.07 times [267]
heptazine-based g-C3N4/TizCoTy 10% triethanolamine 4225.0 1.84 times [268]
CuS/TizCyTy 0.25 M Na,SOs, 4.2 1.42 times [269]
0.35 M Na,S
Black phosphorus/ultrathin g-C3Ns/ 10% triethanolamine 18420.0 19.4 times [270]
TisCaTx
Protonated g-C3N4/ Ti3CoTy/ hollow 10% triethanolamine 982.8 3.5 times [271]
spheres
MXene cocatalyst Final catalyst Sacrificial agent H, production (pmol Activity improvement following MXene Ref
hlgh cocatalyst addition
TizCoTy- multilayer ZnoIn,Ss/TigCoTy 0.25 M Na,SO3, 0.35 M 2596.8 1.97 times [272]
nanosheets NayS
8-C3N4/TizCoTy 20% triethanolamine 26.7 2.13 times [273]
TiO2/Ti3CoTy Ascorbic acid 33.4 NR" [274]
/amorphous carbon/ Eosin Y
ZnInyS4/TiOo/ 0.25 M NaySOs, 1185.8 5.61 times (compared to ZnIn,S4) [275]
TisCoTy 0.35M
Na,S-9 H.0
ZnS/Ti3zC,T, microspheres 25% lactic acid 502.6 4 times [276]
MoS,/TizCoTy/ Triethanolamine 6425.3 NR” [277]
TiOy
TizCoTx(TiO2) 20% lactic acid 8470.0 3.06 times [278]
@CdS/MoS,
Black phosphorus/ 25% triethanolamine 684.5 NR® [279]
TiO2/TizCoTy
g-CsNy/TizCoTy 10% triethanolamine 88.0 NR” [280]
O-doped g-C3Ny4/ TizCoTy Triethanolamine 25124.0 1.82 times [281]
BiOBr/Ti3CoTy 0.25 M aqueous 1.3 3.88 times [282]
methanol
WS,/TiO/TisCoTy 15% acetone, 5% 3409.8 NR" [283]
triethanolamine
MXene cocatalyst Final catalyst Sacrificial agent H, production (pmol Activity improvement following MXene Ref
hlgh) cocatalyst addition
TizCoTy — few layered ZnIn,S4/TigCoTy 10% triethanolamine 3475.0 6.6 times [284]
nanosheets
SnNb,Og 20% methanol 43.8 1.95 times [285]
/TizCoTy
Ti3C,Ty quantum BiVO4/ZnInySs/ NR* 102.7 ~1.42 times [286]
dots TizCoTy
8-C3N4/TizCoTy 15% triethanolamine 5111.8 25.97 times [287]
TizC,Ty nanoparticles CdS-Ti3C,T, cauliflower-like 18% lactic acid 14342.0 136.59 times [260]
submicron spheres
g-C3N4/TizCoT,/Pt 10% triethanolamine 5100.0 5 times [288]
Ui0-66-NHy/ 0.1 M NayS, 0.1 M 204.0 7.96 times [289]
TisCoTyx NaySO3
Mo,C - nanoparticles g-C3N4/Mo,C 10% triethanolamine 507.0 2.34 times [290]
(Mo,C/C) nanorods
Mo,C/C/g-C3N4 10% triethanolamine 2269.5 333.74 times [291]
Mo,C- nanosheets Mo,C/CdS 20% lactic acid 7700.0 16.38 times [292]

@ g-C3N4 = graphitic carbon nitride
> NR = Not reported
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3.2. Carbon dioxide reduction reaction

Massive CO4 emissions resulting from burning high levels of fossil
fuels have been among the threatening problems of industrialization in
the past century. As such, there is strong interest in converting this gas,
via CO2RR, to high value-added and clean products (CO, CH4, CH30H,
etc.) [293,294]. In this regard, photocatalytic reactions have shown
promise in mimicking the natural photosynthesis of green plants,
driving CO, conversion via solar radiation [295].

Recently, photocatalysts, such as metal oxides [296], nitrides [297],
and sulfides [298], have been found to possess photocatalytic activity
toward CO2RR. However, these materials suffer from low efficiency in
practical applications due to their poor ability to hinder the recombi-
nation of electron-hole pairs during their transfer [299]. To address this
problem, noble metals (e.g., Au, Pd, Pt, Ru) have been combined with
conventional catalysts to boost CO2RR efficiency. However, the high
cost of this strategy has hindered the industrial-scale use of these cata-
lysts. Hence, affordable and efficient catalysts or cocatalysts to meet
industrial demands are needed [300].

Solar-driven MXenes have attracted substantial interest as emerging
CO2RR photocatalysts owing to their improved performance in the
separation and transformation of charge carriers. Several review articles
have comprehensively investigated the potential of MXenes in CO2RR
for producing environmentally friendly products [249,253,301-303].
As mentioned earlier, MXene-based photocatalysts promote the con-
version of CO; to substances like CO, CH3OH, and CH4. CO2RR proceeds
within two main steps: 1) the incident light collides onto the photo-
catalyst surface and separates electrons (e’) and holes (b only if the
energy of the incident light is equal to or greater than the bandgap of the
photocatalyst, thereby transferring e” to the photocatalytic surface, 2)
CO, captures e and protons (H'), and corresponding products are
generated. Simultaneously, water is oxidized into Oy (Fig. 14) [304].

The reactions by which CO; is converted into CH3OH, CO, and CHy4
are as follows [305]:

CO, +2H* +2e~ -CO +H,0 @
CO, +6H" + 6e” -CH3;0H + H,0 5)
CO, +8H" +8e~ -»CH, + 2H,0 (6)

Several studies have demonstrated the paramount influence of
MXenes on CO, reduction. As an illustration, Chen et al. [306] investi-
gated the in-situ growth of TiO on Ti3CeT,, which established a
Schottky junction between these materials. They discovered that the
optimal Ti;O/TizCaTy structure resulted in 2.8 and 4 times higher pro-
duction rates than pristine TiOy for CO and CHy, respectively. This
improvement in CO2RR performance was due to forming an intimate

cor®
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Fig. 14. Schematic illustration of the mechanism of photocatalytically-driven
CO,RR. Reprinted with permission from [304].
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interface between TiO5 and TizC,T, via Schottky heterojunctions, which
encouraged the separation of e—h" pairs. It seems Schottky hetero-
junctions have more positive effects on the e™-h™ separation and electron
mobility than when MXene and the second substance are mechanically
mixed. In a study carried out by Wang et al. [307], a heterojunction
2D/2D was constructed by combining LayTipO; and few-layered
Ti3CyTy. The outcomes indicated that the LayTisO7/TizCoTy possessed
Schottky heterojunctions and yielded more CO and CH4, whose pro-
duction rates were 4.6 and 11.4 times more than the LayTipO7/Ti3CoTy
fabricated by a facile mechanical mixing method. Zhang et al. [308]
prepared a CuyO/Ti3CyTy heterojunction composite through an in situ
hydrothermal growth procedure with 2, 5, 10, 20, and 30 percent of
Ti3CaTy. According to their results, the as-prepared composite with 10%
Ti3CyTy exhibited the highest photocatalytic CO2RR performance, with
3.1 and 4.0 times greater CO and CH, yield rates (17.55 pmol-g*-h™! and
0.96 pmol-g1-h%, respectively) than pristine Cuy0 (5.73 pmol-g-h™! for
CO and 0.24 pmol-g'1~h'1 for CH4). This CO5,RR enhancement was
attributed to the formation of a heterojunction contact surface between
Cuz0 and Ti3CyTy, which improved the separation of photogenerated
e-h™ pairs. From prior research, Table 6 represents the effect of MXene
incorporation into photocatalysts on overall CO2RR yield rate or yield.

3.3. Nitrogen reduction reaction

Ammonia (NHj3) is widely used in many applications, including
refrigeration [324], textiles [325], plastics, pesticides, and dyes [326].
As mentioned, NHj3 is usually produced industrially using the
Haber-Bosch (HB) process, which requires harsh processing conditions
[327]. These extreme conditions are due to the high dissociation energy
of the Nj triple bond, the thermodynamically forbidden addition of the
H atom to Ny, and the high chemical stability of Ny [328]. Moreover, the
HB process contributes to CO, generation [329], which has motivated
the research community to develop sustainable alternative processes.

Photocatalytic Ny reduction has been found to be an attractive way of
NHj; fabrication. Recently, various photocatalysts have been exploited as
potential NRR photocatalysts for driving solar energy and promoting N»
conversion [330]. There are fundamental differences between the HB
process and photocatalytically-based NRR regarding their hydrogen
source, processing conditions, catalysts, and energy source (Table 7)
[331]. Photocatalyst-assisted NRRs follow these three steps: (1) Solar
radiation is absorbed by the photocatalyst and excites electrons (e) to
move from the VB to the CB provided that the visible light energy (h,) is
greater than the forbidden band width (Eg) of the catalyst, leaving
positively-charged holes (h™) in the VB. (2) Some e -h™" pairs recombine,
and the rest diffuse into the catalyst surface. (3) Electrons react with H*
and N, to produce NHs, and holes combine with H,O to yield O, and H'
(Fig. 15) [332].

Like electrocatalytic NRR, the photocatalytic reaction proceeds via
four well-defined pathways: dissociative, distal associative, alternative
associative, and enzymatic (Fig. 10) [330,331]. Concerning Ny immo-
bilization and activation, some roadblocks in NRR involve the slow ki-
netics of Ny reduction due to the six-electron transfer procedure, the
combination of e-h™ pairs, the potential reduction, and the light ab-
sorption range. Consequently, using an appropriate photocatalyst with
acceptable VB-CB potentials is imperative for the suitable activation of
N3 and reduction to NH3 [333]. Potential NRR photocatalysts have been
extensively investigated, encompassing single atoms [334], transition
metal oxides [335], transition metal sulfides [336], bismuth oxide
(oxyhalides) [337], graphitic CsN4 [338,339], and bionic materials
[340].

MXenes have attracted paramount interest in Ny fixation during the
past decade. The attractiveness of MXenes in photocatalytic reaction
applications is due to their high surface area, which provides extensive
active sites for concerned reactants, and the creation of the Schottky
barrier to hamper the recombination of charge carriers [341]. In view of
the photocatalytic activity, MXenes favor photocatalytic NRR
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Table 6

A summary of the CO,RR performance of various photocatalysts after adding a

MZXene component.

Photocatalyst

Product
(s)

Light source

Yield rate or
yield

Ref

TizCaTyx

g-C3Ny/TizCoTy

TiO,

TiO2/Ti3CoTy
8-C3Ny

ZnO

g-C3N4/ZnO

-CsNo/ZnO/TizC,Ty

PCN*"

TiC-48/PCN

Photocatalyst
Ni/NbyOs
Ni/Nb,CTy
CN

BCN"

Ti3CyT,/BCN”
TiO, (P25)

TiO, (P25)/ Ti3C,OH

8-C3Ny

8-C3N4/TizC,O0H

Bi;WOs

Bi;WOg/ TizCoTx

Cu,0 NWs/Cu

Cuy0/TizCoTy
Sheets/Cu

Cuy0/TizCoTy QDs/
Cu

CHy4 and
co

CH,4

CH4 and
Cco

CH,4 and
(¢0)

Product
()
CHy4

Cco

CO and
CHy4

CO and
CHy

CH,4 and
CH50H

CH;0H

300 W high-
pressure Xe
lamp

300 W Xe
lamp

Xe lamp

35 W HID Car
lamp

Light source
300 W Xe arc
lamp

Visible light

300 W Xe
lamp

300 W Xe
lamp

300 W Xe
lamp

300 W Xe
lamp

CHy, 0.88 pmol-g
11

CO, 3.10 pmol-g°
1pt
CHy, 2.12 ymol-g°
1t
CO, 3.98 pmol-g
1l
~ 0.059 pmol-h!

0.220 pmol-h™
CHy, 0.20 pmol-g°
11

CO, 0.79 pmol-g°
1p1

CHy, 0.17 pmol-g°
11

CO, 0.52 pmol-g
1t

CHy, 0.27 pmol-g°
1pl

CO, 1.41 pmol-g°
1t

CHy, 0.26 pmol-g°
1h1

CO, 6.41 pmol-g°
11

CHy, 23.4 ymol-g°
1

CO, 63.5 pmol-g*
CHy4, 157.1
umol-g!

CO, 634.8
pmol-g!

Yield rate or
yield

12.9 mmol-g*-h°
1

72.5 mmol-g-h”
1

4.47 pmol-g™!
6.42 pmol-g”!
14.40 pmol-g!
CH4, ~ 0.06
pmol-g1-h?!
CO ~ 3.91
pmol-g1-h!
CH4, 16.61
pmol-g1-h?!
CO, 11.74
pmol-g?-h?!
CH,, NR¢

CO, 1.88 pmol-g!
CHy, NR!

CO, 11.21
pmol-g!

CHy, 0.39 pmol-g
1t

CH30H, 0.1
pmol-g-h?

CHy, 1.78 ymol-g°
1t

CH30H, 0.44
umol-g™t-h?

3.12 ppm-cm™2h
1

11.98 ppm-cm’
21
25.77 ppm-cm’
21

[309]

[310]

[311]

[312]

Ref

[313]

[314]

[315]

[316]

[317]

[318]
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Photocatalyst

Product
(s)

Light source

Yield rate or Ref
yield

NiAl-LDH
Ni-LDH/Ti3CsTy

TiO,

8-C3Ny

TiO2/g-CsNy

Ti02/g-C3N4/TisCyTy

Photocatalyst

TiO,

Ru-TizCN-TiO,

Cdo.2Zno gS

Cdo.2Zno gS@TizCoTx

Bi»0,8i03

Biy0,8i03/TisCaTx

(¢0) 300 W Xe
lamp

CH4 and 300 W Xe
co lamp

Product
)

CO and
CH4

300 W Xe
lamp

CO and
CHy4

300 W Xe
lamp

CO and
CH50H

300 W Xe
lamp

Light source

~ 247.5 pmol-g” [319]
1pl

2128.46 pmol-g
1'h-l

CHy, <0.15
pmol-g1-h?

CO, <1.46
pmol-g1-h?

CH,4, NR*

CO, <1.46
pmol-g1-h?

CHy4, NR?

CO, 3.14 pmol-g
1t

CHy, 1.20 pmol-g°
1pl

CO, 4.39 pmol-g°
1pt

Yield rate or Ref
yield

CH,, < 0.96
pmol-g1-h?!

CO, < 4.86
pmol-g1-h?!

CHy, 8.97 ymol-g°
1

[320]

[321]

CO, 99.58
pmol-g!

CHy, ~ 0.95
pmol-g-h?!

CO ~ 0.8 pmol-g°
11

CHy, 3.51 pmol-g
1l

CO, 3.31 pmol-g°
1p1

CH;30H, 1.80
pmol-g1-h?!

CO, 3.45 pmol-g!
CH;30H, 2.07
pmol-g1-h?

CO, 17.82
pmol-g*-h?!

[322]

[323]

@ PCN = porous g-C3N4
b Boron- doped g-C3Ny, © Ti;0/C = produced by TizC,T, calcination

4 NR= not reported
¢ QD: quantum dot.

Table 7

The differences between the HB process and photocatalytic nitrogen reduction.
Reprinted with permission from [331].

HB process

Photocatalytic nitrogen reduction

Hydrogen source
Catalysts
Temperature
Pressure

Energy source

Natural gas
Iron
400-500 °C
200 atm
Fossil fuel

Water
Semiconductors
Ambient temperature
1 atm

Solar energy

manufacturing NHs through an environmentally friendly process. In this
respect, several reviews have described the promising contributions of
photocatalytic MXenes and their recent developments in photocatalytic
NRR [301,342-344]. However, very few articles have been published in
this field since it is still in its infancy. To mention in a study by Li et al. in
2022 [345], an ultrasonicated TizCyTx MXene doped by tungsten (W)
atoms (W/Ti3CoTy-U) with regard to its nitrogen photo fixation. The
outcomes indicated that bare Ti3CyT,-U and W/Ti3CyoT,-U resulted in an
NH3 yield rates of 14.5 and 227.5 pmol-g-h', respectively. The better
efficiency of W/TizCyTy-U than TizCyT,-U was associated with active
sites created by W, which further promoted electron transfer and Ng
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Fig. 15. A general schematic of nitrogen reduction via photocatalysts.
Reprinted with permission from [332].

adsorption. In another study, Jiang et al [346] synthesized a 2D
MXene-derived Nb,Os5/C/NbyC/g-C3N4 heterojunction via immobiliz-
ing NbyOs on NbyC and subsequently, the in-situ formation of g-CsNy
nanosheets on NbyO5/C/NbyC. The prepared composite showed a 9.1
times greater NH3 production rate of 0.365 mmol.g.h! than that of
MXene-derived Nb2Os/g-C3N4. This enhancement was attributed to the
close contact between NbyOs and NbyC and the Schottky junction
formed at the NbyOs/NbyC interface, assisting charge transfer and
boosting the overall N» fixation efficiency. Chang et al. [347] fabricated
a reduced TizCyTy MXene embedded with Au nanoparticles (r-TigCoT-
«/Au). r-TizCyTy provided more Ti active sites, which can facilitate No
adsorption and activation. Moreover, Au nanoparticles donated plas-
monic hot electrons to promote the reduction of already activated No
molecules. The synthesized r-Ti3CyTy/Au composite demonstrated an
NHJ production rate of 12.4 pmol.g.h"! under visible light, approxi-
mately 5.9 and 10.3 times those of TigCyTx/Au and r-Ti3CyTy, respec-
tively. This effect obviously indicates the synergic influences of
increased Ti active sites and accessibility to electrons. Other research
regarding the application of MXenes in NRR is briefly represented in
Table 8.

Table 8
The efficiency of MXene-based photocatalysts in photo-induced N, reduction. A
300 W xenon lamp was used in all cases.

Photocatalysts NH; yield rate NRR activity improvement Ref
following the incorporation of
MXene
TizC,Ty/TiO» 422.0 pmoleg”  NR* [348]
o
1D/2D CdS 293.1 pmoleL’ NR* [349]
nanorod@Ti3CyTy leh'!
0D/2D AgInS,/ 38.8 pmoleg” 19.4 times [350]
TigCoTy loh!
BisOsBry/TizCoTy 277.7pmoleg 5 times [351]
1op1
Ti3CyTy/CuZnInS 45.6 pmoleg” 2 times [352]
1ol
BiOBr/Ti3CoTy 234.6 pmoleg” 48.8 times [353]
1o
TigCyTy /TiO2/Co 69.2 pmoleg 1.4 times [354]
1opl
TizCyTy /TiOo 50.0 pmol.eg” 1.8 times [354]
1ol
r-TizCoTx QDs/g- 328.9 pmoleg NR* [355]
C3N, leh?

# NR = not reported
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3.4. Water pollutant degradation

Organic matter released from facilities, chemical plants, trans-
portation systems, and refineries enter lakes, seas, oceans, and other
aquatic milieu, posing a severe threat to ecosystems and human health
[356]. Hence, it is of great importance to develop materials to remove
water pollutants through various water treatment routes, including
adsorption [357], membrane separation [358], and catalytic reactions.
However, these methods suffer from low contaminant removal efficacy,
rising premiums, and the emission of toxic by-products [359]. Motivated
by these, in the past few years, emerging advanced oxidation processes
(AOPs), which include electrolysis, ozonation, and photocatalysis, have
been introduced to purify aquatic environments [360]. Solar
light-driven pollutant degradation is among the most emerging tech-
niques to alleviate water pollution. In a typical photo-assisted degra-
dation, when light collides with the catalyst surface, the VB electrons are
excited and transferred to the CB, forming holes in the corresponding
CB. Subsequently, these electron-hole pairs bring about redox reactions
in which electrons reduce existing O, molecules, and holes function as
active sites to oxidize H2O molecules, thereby creating. O; - and OH'
reactive species. Lastly, these will interact with pollutants and convert
them to benign products. The diagrammatic illustration of a typical
photo-induced pollutant degradation is depicted in Fig. 16 [361].

Photocatalysts fall into multifarious categories, most of which were
mentioned in the prior section. Nevertheless, these catalysts represent
vital challenges, such as charge carrier recombination and low chemical
stability, diminishing the overall performance of photocatalytic
pollutant degradation. Accordingly, producing highly efficient materials
as alternatives to traditional photocatalysts is crucial [362].

MXenes with high surface area and negatively charged surface
enable the intercalation of positively charged cations (e.g., Na*, K*, and
Li") and organic molecules (e.g., dimethyl sulfoxide (DMSO) and urea)
in between MXenes layers, thereby promoting the removal of contami-
nants from water [363]. Moreover, with their surface functional groups
(e.g., F, O, and OH), MXenes can be potential hosts for other catalysts to
form potent photocatalysts for the spontaneous depletion of contami-
nants [364]. So, MXenes are usually employed with other materials in
the form of composites because MXenes alone lack proper semi-
conducting characteristics [365]. Several investigations have been
conducted on the performance of MXenes incorporating photocatalysts
toward eliminating a wide array of contaminants. For example, in a
study by Shahzad and coworkers [366], a hybrid Ti3CyT,/TiO2 photo-
catalyst was fabricated via a facile hydrothermal method. The hetero-
structure of the as-synthesized photocatalyst was attained by the
Schottky junction formed between the Ti3CyTy and TiO, interfaces. The
fabricated photocatalyst was investigated regarding its potential pho-
tocatalytic application in the degradation of antiepileptic drug carba-
mazepine (CBZ). The resulting degradation stage rate of TizCyT,/TiO2
(10.0 mg) was 0.0304 min' under ultraviolet radiation, higher than
that under solar light (Fig. 17a and b). Furthermore, the percent
decomposition of CBZ by pristine Ti3CoTy and Ti3CoT,/TiO5 was 60%
and 98.67%, respectively, clearly showcasing the effect of TiO, incor-
poration. The mechanism through which the degradation occurs is
illustrated in Fig. 17(c). As this figure shows, when light radiates onto
the TizC,Ty/TiO- surface, the VB electrons (e) are excited and leave the
VB to CB, forming respective holes (h™) in CB. The e -h™ pairs then react
with dissolved oxygen to generate reactive °OH radicals, which
decompose CBZ to produce COy and Hy0. The remarkable photo-
catalytic activity of TizCoT,/TiO, was ascribed to the extra e—h" pairs
generated by {0 0 1} facets of TiO, along with the formation of the
Schottky junction. In another research, Chen et al. [367] constructed
bismuth oxychloride (BiOCl)/Ti3CyT, MXene heterostructures through a
simple electrostatic self-assembly pathway (Fig. 18a). This MXene-based
substance resulted in up to 90% photodegradation of ciprofloxacin
(CIP), a fluoroquinolone antibiotic, in only 30 min under sunlight irra-
diation. This enhancement in degradation was correlated with the



A. Hamzehlouy and M. Soroush

&
[ B | e Ti,C,T, MXene
20 i i ®  001-T/MX
3
£ 40 . i (] (a)
=
: P
£ AL TR S
(]
- $
Adsorpti "
100 sorption . . . = =
-40 0 40 80 120 160 200 240
Time (min)
10 {F-. i i . @+ CBZ Degradation in sunglight
ty, @ . CBZ degradation in UV light
0.8 i

CBZ (C/C,)
e e
- -3

=
(8]
e ol

Ad: i ‘.!
0.0 tﬂpmn . " v — i
-40 0 40 80 120 160 200
Time (min)

Materials Today Catalysis 5 (2024) 100054

Organic

Pollutants
Drugs, Inorganic
pollutants

Degradation
Products

(011)

(001)

(Tom)

Interface
001-TiO,

Ti,C,
OH,
H,0

N

02-

. h+ h+ h+
OH 2h* h* h* h*
Schottky
junction

©

Fig. 17. (a) Comparison between pristine TisC,T, and TisCoT,/TiO2 photocatalysts for the degradation capacity of CBZ. (b) The degradation of CBZ under UV and
solar light irradiation utilizing Ti3C,T,/TiO5 photocatalyst. (c) Schematic illustration of CBZ degradation mechanism by Ti3C,T,/TiO,. Reprinted with permission

from [366].

hindrance of e-h" pairs recombination and the improved light ab-
sorption capacity. The influence of adding different amounts of TigCyT,
on the photocatalytic performance of as-prepared catalysts is depicted in
Fig. 18(b). First, a 30 min of physical blending between BiOCl and
TigCaTy occurred. Subsequently, the stimulated sunlight source was
switched on.

Grzegorska et al. [368] prepared a hybrid Zn/Ti LDH photocatalyst
integrated with Ti3CoT, MXene. They assessed its improved ability for
acetaminophen and ibuprofen, both commonly present in the aquatic
milieu. They discovered that the LDH/MXene sample containing 2.5%wt
of MXene reached the highest degradation of 100% (within 40 min) and
99.7% (within 60 min) for acetaminophen and ibuprofen, respectively
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(Fig. 19a and b). With regard to the activity of reactive species, O,  had
the main contribution to photocatalytic degradation of acetaminophen,
whereas "OH and h™ were more reactive toward ibuprofen. More
importantly, characterization analyses revealed the outstanding stabil-
ity and reusability of the LDH/Ti3C,T, photocatalyst after four subse-
quent cycles of degradation (Fig. 19c). After the fourth cycle, the
photocatalytic efficacy of the synthesized Zn/Ti LDH-Ti3CyTy in acet-
aminophen degradation remained 100% within 40 min. In another
study, tetracycline hydrochloride (TC-HCI), a common antibiotic found
in pharmaceutical wastewater, was degraded by BiOBr/Ti3C2Ty/g-C3N4.
Their outcomes indicated 99% degradation of TC-HCI within 30 min,
which was 12 times higher than the degradation efficacy of pure g-C3N4
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Fig. 19. The performance of Zn/Ti LDH coupled with Ti3C,T, in photocatalytic degradation of (a) acetaminophen and (b) ibuprofen. (c) The stability of fabricated
Zn/Ti LDH-Ti3C,Ty in acetaminophen degradation after four successive cycles. Reprinted with permission from [368].

(Fig. 20(a)). This improvement was brought about by the increased
number of exposed active sites, increased formation of adsorbed oxygen,
avoidance of recombination of electron-hole pairs, and efficient pro-
duction of reactive *Oz, h*, and 10, (singlet oxygen generated by su-
peroxide radical reactions) [369].

Due to their severe threat to aquatic environments, organic dyes
must be removed and degraded via various degradation routes [370].
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Fig. 20(b) depicts the MXene-induced photocatalytic degradation of a
detrimental organic dye called methylene blue (MB). The MXene used in
this research was TizCyT, oxidized with TiO, and decorated with Ag and

Pd NPs. The results showed the superior performance of AgNPs
(PdNPs)/TiO2/Ti3CoT, compared to pristine, which was mainly ascribed

to the significant role of TiO, and Ag(Pd) in augmenting light harvest-
ing, dye adsorption, and charge separation capability [370]. Fig. 20(c)
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[370], (c) reprinted with permission from [371], (d) reprinted with permission from [372], (e) reprinted with permission from [374], and (f) reprinted with

permission from [375].

illustrates the effect of CdS QDs/Ti3C,Ty photocatalyst on the degrada-
tion of CBZ. In this research, CdS QDs were intimately grafted onto the
surface of TizCoTy, MXene. Therefore, the interface between CdS QDs and
Ti3CyT, substantially improved the generation of charge carriers, their
separation, and their transfer from CdS. As for the reactive intermediates
involved in the removal of CBZ, *03, Hy05, 104, and *H were the main
active superoxide radicals, with *Oz possessing the primary contribution
[371]. In another similar study, Igbal et al. [372] reported the removal of
Congo Red (CR) contaminant from water utilizing a nanohybrid system
composed of bismuth ferrite nanoparticles with two-dimensional (2D)
MXene sheets, namely, the BiFeO3 (BFO)/Ti3CoT, (MXene) (Fig. 20(d)).
100% of CR was discovered to be degraded from water in 42 min,
indicating the paramount effect of the fabricated nanohybrid structure
attributed to its light-harvesting ability for photocatalysis. Moreover,
the rapid and efficient removal of CR was caused by the low recombi-
nation rate of (e”, h™) pairs and the large surface area of the nanohybrid.
Rhodamine B (RhB) is another water pollutant found to be hazardous to
aquatic milieu [373]. To tackle this issue, Liu et al. [373] conducted a
study on the degradation of RhB by TiO,/Ti3CyT, MXene. They found
that TiO2/TizC2Tyx can remove RhB from water by 44% in 150 min,
which was more effective than Ti3CyT, (30%) . This improvement
stemmed from better separation of charge carriers and increased light
adsorption compared to pristine Ti3CyTy. Cao and coworkers [374]
employed CuFey04/Ti3CoT, MXene hierarchical heterostructures as
photocatalysts for improved degradation of Sulfamethazine (SMZ),
which causes serious contamination of aquatic media (Fig. 20(e)).
Transient surface photovoltage (TPV) spectroscopy was conducted to
assess charge carrier lifetimes, indicating that the lifetime of the (e, h™)
pair was prolonged by incorporating Ti3CyTy due to the inhibition of
charge carrier recombination. Lastly, Sharma et al. [375] assessed the
photocatalytic degradation of a colorless pharmaceutical pollutant,
ciprofloxacin (CFX), using a novel 2D-2D-2D ternary photocatalyst
ZnO0-BiaWOg-TizCoTy. Their results showcased the highest degradation
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of CFX, ~77% in 160 min, for a sample containing 5 wt% of TizCoTy
(Fig. 20(f)). This performance was brought about by the efficient sepa-
ration of photogenerated charge carriers due to the ternary interface
established between individual components.

The results associated with other studies conducted in recent years
are represented in Table 9.

4. Other reactions
4.1. Hydrogenation reactions

4.1.1. CO2 hydrogenation to methanol

As previously mentioned, CO, has contributed to climate change
substantially, increasing the global temperature during the past few
decades. Therefore, CO5 conversion to non-hazardous substances has
attracted much attention in recent decades. Photocatalytically and
electrochemically-driven strategies for the conversion of CO, were
covered in the previous sections. In this regard, DFT calculations have
shown that surface termination affects the adsorption energies of reac-
tion intermediates [183]

Catalytic CO3 reduction to methanol is a clean hydrogenation pro-
cedure to reduce the concentration of this gas in the atmosphere.
However, most catalysts used for this purpose are not efficient enough to
drive CO5 reduction to methanol. For instance, Cu-ZnO-Al,03 is among
the most applicable catalysts for driving the CO2-to-methanol reaction.
Nonetheless, this catalyst is generally ineffective in accelerating this
reaction [390]. In another study, Cu/ZrO, has been proven efficient in
improving CO; reduction, although it lacks proper activity and selec-
tivity in industrial deployment [391]. As a result, support and
Cu-support interface play crucial roles in catalytic CO hydrogenation.
In this respect, Zhou and coworkers [392] developed silica-supported
and reducible nanosheets of a Mo,CT, MXene to engineer Cu/MosCT,.
Hj treatment caused the migration of Cu from Cu/SiO; to Mo,CTy and,
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Table 9
Recent studies on the photocatalytic performance of MXene-based materials in contaminant degradation.
Photocatalyst Pollutant(s) Light source Degradation Remark(s) Ref
efficiency (%)
BiOBr/TisCoT,/g- TC-HCI 300 W Xenon lamp ~ 99.00 -13 intermediates and possible degradation pathways [369]
C3Ny - the photocatalyst can produce an antibacterial effect following
radiation
CdS QDs/ TizCaTy CBZ Simulated solar Up to 95.2 - degradation efficiency reached its maximum level after nine cycles of  [371]
light CdS QD deposition.
- degradation was progressed via the pseudo-first-order model
CdS/TizCoTy/ sulfachloropyridazine 300 W Xenon lamp 100 for all - The catalyst was stable after four consecutive cycles [373]
TiO, (SCP) contaminants - SCP degradation efficiency had a direct relation with the reaction
temperature.
MB
RhB
ZnO/BiaWOe/ ciprofloxacin (CFX) 300 W Xenon lamp 77 - TisC, Ty facilitated the separation of e-h" pairs [375]
TisCoTx
TizgCoTy /TiO2/Ag -TC-HCl1 300 W Xenon lamp  79.5 - Degradation took place in 15 min under light radiation, followed by [376]
45 min under darkness since the enhanced electron storage caused more
degradation activity during darkness
Oxytetracycline (OTC) 81.4
RhB 98.9
Methyl orange (MO) 99.1
MB 99.2
Bi,WOg/NboCTy RhB Visible light (A> 99.8 - Photodegradation rate constant of BN-2 for RhB and MB was 2.8 times [377]1
420) and 2 times higher than
pristine Bi;WOg, respectively
MB 92.7
TC-HCI 83.1
Photocatalyst Pollutant(s) Light source Degradation Remark(s) Ref
efficiency (%)
AgNPs(PdNPs)/TiO,/  MB UV light 85 - Improved photocatalytic degradation efficiency was ascribed to the [370]
TizCoTy formation of anatase TiO, and the plasmonic resonance effect of noble
metals, which further enhance charge separation
BiFeOs3/TizCoTy CR Visible light 100 for both - Low e-h" recombination rate according to the photoluminescence [372]
spectra
- The hybrid photocatalyst had a larger surface area of 147 m%.g?,
conducive to the improved degradation
Acetaminophen
TiO2/TizCoTy RhB Visible light 50 Reusable after five cycles [373]
(A~554 nm)
CuFep04/TizCoTy SMZ Visible light 59.4 - Lifetime of photo-induced carriers increased after loading TizCoTy [374]
- Semi-stable after three cycles
TizCoTy/NiFey04/ RhB 150 W visible light ~ 88.7 - Hydroxyl and superoxide anion radicals played the most crucial roles  [378]
V505 (A>400 nm) in photodegradation
- Almost complete stability after four cycling runs
TizCaTy/TiO2 perfluorooctanoic acid uv 100 - Photocatalyst was synthesized through the deep eutectic solvents [379]
(PFOA) (DESs) method, which expanded the interlayer space between Ti3CyTy
nanosheets, augmenting the growth of TiO, molecules
Photocatalyst Pollutant(s) Light source Degradation Remark(s) Ref
efficiency (%)
TigCyTy/TiO2 MB uv 96.44 - [380]
BiOIO3/Ti3CoTy TC-HCl1 500 W Xenon lamp 93.4 - Excellent recyclability after the fourth cycle (72.4% of TC-HCl was [381]
degraded)
Levofloxacin 77.4
hydrochloride
4-nitrophenol 43.3
8-C3Ny/TizCoTy/ CIP visible light 99 - P-bridging effect caused by reactions between the active P atom in the ~ [382]
black phosphorus (A>420 nm) black phosphorus nanosheet and as-fabricated g-CsN4 improved
(BP) photocatalytic degradation efficiency
TizC2QDs/SiC NO* 300 W Xenon lamp  74.6 - Extraordinary stability following four successive cycles [383]
(A > 420 nm)
Ag/g-C3Ny4/TizCoTy RhB visible light (A > 99.2 - The incorporation of Ag nanoparticles resulted in the localized surface [384]
420 nm) plasmon resonance, accelerating photo-driven degradation
TC 92.1
Fep03/TizCoT, RhB 500 W Xe 98 - [385]
Lamp
g-C3N,4/BiOCl/ TC visible light (A > 97 The photocatalyst was reusable after five consecutive cycles [386]
TigCoTy 420 nm)
Ti3CoTy/BisTiz012 TC-OH 500 W Xe 100 for all High stability after four cycles [387]
Lamp contaminants
RhB
MO
TigCaTy/TiO2/BiOCL RhB 500 W Xe 78.36 - [388]
Lamp
La-doped bismuth CR 500 W Xe 93 - High stability after four cycles [389]
ferrite/TizCoTy Lamp

@ NO = nitrogen oxide
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subsequently, increased Lewis acidic Cu" sites, improving the overall
methanol formation rate. Their results demonstrated that the optimum
synthesized catalyst (Cu/MoCT,/SiO2.¢) possessed a higher intrinsic
methanol formation rate than Cu/SiOs.op (2.49 versus 0.41 gh'1 g;lu),
with a methanol selectivity of 52% (Fig. 21a). Furthermore, at the
constant COy conversion of 1.0%, the methanol selectivity of
Cu/Mo,CT,/SiO4.¢n was more than that of Cu/SiO4.op (Fig. 21b).

4.1.2. Reverse water-gas shift reaction

The reverse water-gas shift reaction (RWGS) is a pathway for con-
verting hazardous CO3 to CO (a constituent of syngas), which itself can
be further used in methanol synthesis and other procedures. To accel-
erate this reaction, MXene-based substances are valuable and have
shown promise. For example, Salvador et al. [393] conducted compu-
tational studies, including DFT calculations and kinetic phase diagrams,
to verify the capability of MXenes in catalyzing the RWGS reaction. They
discovered that CO, could be dissociated conveniently on a set of 18
carbides and nitride MXene catalysts with super-low CO, dissociation
energy (E3*) values of 0.14 eV for Ti,C and below the chemical accuracy

0f 0.04 eV for MosN. The (Eﬂis) on Mo,C MXene is 0.31, which is suitable
for CO, facile dissociation. The outcomes indicated that the RWGS
catalysis occurs in a two-step process because the hydrogenation step is
essential to regenerate the MXene catalysis. When CO, is adsorbed on
the MXene surface, it becomes O-covered, demanding an additional step
to restore the employed catalyst. Hence, surface termination type and
concentration influence the catalytic activity of MXenes in CO2 hydro-
genation. Hp-treatment of MXenes with surface terminations can
significantly change their catalytic performance for CO, hydrogenation.
For example, a T,-free, Mo-terminated 2D-MoC is catalytically more
active than Mo,CTy, - MosC, and Cu-ZnO-Al;03 [394].

4.1.3. Hydrogenation of nitro derivative compounds

Hydrogenation of nitro-substituted materials into amines is vital in
industrial applications. However, selective hydrogenation, meaning
targeting a given functional group (in the case of nitro derivatives, -NO5
group), is formidable, calling for developing novel materials to progress
the hydrogenation reaction toward desirable products [395]. Thanks to
their chemoselective properties and paramount activity due to the
presence of dispersed particles, heterogeneous metal-based catalysts
hold promise for selective catalytic hydrogenation of nitro derivatives to
fabricate favorable materials [396]. Several reports have been published
on the potential application of MXene-based catalysts in the progression
of nitro compounds’ reduction reactions. For instance, Li and coworkers
[397] synthesized functionalized core-shell MXene composites through
the layer-by-layer (LBL) self-assembly procedure by amine-containing
polyethyleneimine (PEI) and carboxyl-containing polyacrylic acid
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(PAA), with the final chemical formula of MXene-COOH@(PEI/PAA)-
n@AuNPs (“n” denotes the number of shell structures) and for the hy-
drogenation of 2- and 4-nitrophenol (2- and 4-NP). Their results
indicated that the optimum composition MXene-COOH@(PEI/-
PAA);0@AuNPs possessed the best stability and repeatability after nine
successive cycles of deployment (~90% conversion). Fan et al. [398]
carried out a study in 2018 where PANPs were uniformly dispersed onto
the surface of an alk-Ti3C,T, MXene (alk = alkaline) to fabricate a
catalyst for the reduction of 4-NP to 4-aminophenol (4-AP). The
well-dispersed PANPs endowed the catalyst with available active sites to
promote the complete conversion and selective hydrogenation of 4-NP
to 4-AP in 70 min. Moreover, the resultant catalyst demonstrated no
substantial loss in efficiency after seven cycles, showcasing its capability
to be a promising candidate for multifarious catalytic reactions. Table 10
summarizes recent research studies on the use of MXene and MAX-based
catalysts in the reduction of nitro derivatives.

4.1.4. Furfural hydrogenation

Harnessing novel non-fossil substances is a crucial step to producing
fuel in energy areas. Furural is a bio-based material derived from
lignocellulose, which can be employed to manufacture various products
through the hydrogenation reaction. In particular, ~62% of this hy-
drogenation product is furfuryl alcohol, which further converts into
tetrahydro furfuryl alcohol (THFA), 2-methylfuran (MF), and 2-methyl-
tetrahydrofuran (MTHF) [402]. Naguib et al. [403] have reported the
utilization of TizCyTy and Ti3CNT, MXenes for hydrogenation of furfural
to furfuryl alcohol. Despite their similar activities (72 mmol.g"L.h™! for
TisCNT, and 88 mmol.g‘l.h'1 for Ti3CyTy) and selectivities (49% for
Ti3CNT, and 52% for Ti3CsT,), TisCNTy was more stable than Ti3CoTy,
which was justified by the fact that TizCyTy was enriched with abundant
OH surface terminations, leading to the intercalation reactions between
the layers and faster deactivation. In contrast, the N atom in TigCNTx
outstandingly diminished OH terminations, resulting in a decrease in the
intercalation reactions.

4.1.5. Selective hydrogenation of butadiene to butene

Selective hydrogenation is crucial in industrial processes, albeit
challenging due to the potential hydrogenation of various functional
groups [395,404]. Yan et al. [405] have demonstrated the capability of
Ti3CyT, MXene to serve as a support for atomically dispersed Pt/Pd
nanoparticles, owing to its ability to provide vacancies for single atoms.
Ti3CyT,/Pt-Pd catalysts have proven effective in the selective hydroge-
nation of butadiene, a process important for generating butenes, key
monomers in the polymer industry. This study investigates the effect of
different etching methods on the catalytic hydrogenation of butadiene.
It was found that the LiF-HCl method is preferable to the HF method due
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Fig. 21. Comparison of Cu/SiO, containing Mo,CTx MXene and pristine Cu/SiO, regarding (a) performance in intrinsic methanol formation rate and (b) methanol

selectivity. Reprinted with permission from [392].
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Table 10

Catalytic performance of MXene and MAX-based catalysts in hydrogenation reactions of nitro derivatives.
Catalyst

Reactant Conversion (%) Reaction time Ref.
Pd/Ti3C,TyCgraphene hydrogels 4-Nitroaniline 91 1 min [399]
4- Chloronitrobenzene ~15 1 min
4-Bromonitrobenzene ~48 1 min
4-Nitrotoluene ~63 1 min
4-Nitrophenol ~70 1 min
0.0005 wt% Pd/Ti3SiC, DP 4-Nitrostyrene 100
Pt/Ti3C,T,-D"-AB"

[400]
4- Chloronitrobenzene 100 1h

[401]
2- Chloronitrobenzene 100 1.5h

3- Chloronitrobenzene 100 2h
4-Nitrotoluene 100 -
2-Nitrotoluene 100 -
2-Methoxi-1-nitrobenzene 100 3h
4-Nitrophenol 100 1.5h
2-Fluoronitrobenzene 100 -
Nitrobenzene 100 1h

Pt/Ti3C,T,-D"-SB® 4- Chloronitrobenzene 40.4 -

@ D=decorated on

b AB= ammonia borane (reducing agent)
¢ SB= sodium borohydride

to its safer nature and efficient delamination, resulting in enhanced
metal dispersion and facile unstacking with solid substrates. These two
factors contribute significantly to notable hydrogenation performances.

4.1.6. Fischer-Tropsch process

The Fischer-Tropsch (F-T) process has long been used to produce
chemicals and fuels through the hydrogenation of CO [406]. The F-T
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P / M '
2 . +0.54 -
> - / \
& 05 ; :
[} ‘ \
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s CoHig" ' ;
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Reaction coordinate

CgHg*+2H*

Fig. 22. Reaction pathway of EB dehydrogenation on Ti3C,T,. Light gray, dark gray, red, and white colors denote Ti, C, O, and H atoms, respectively. Reprinted with
permission from [409].
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reaction is [407]:

(211 + 1)H2 +nCO —>CnH(2n+2) +nH,0 (7)

Kountoupi et al. [408] found that MoyCTx-derived catalysts can be
employed for this reaction. Their results indicated that the selectivity of
the F-T reaction is contingent upon the coverage of surface oxygen and
carbide content. In this regard, Mo,CT, pretreated at 500 °C
(Mo2CTy.500) in undiluted Hy is more active than Mo,CT, pretreated at
400 °C (M02CTy.400), which is ascribed to the oxygen content. Moreover,
the study revealed that these two catalysts differ in selectivity at ca. 90%
CO conversion. Specifically, MoyCTy. 499 is more selective towards Cs-
alkanes and MoyCTy.500 to methane (55 and 61%, respectively). This
discrepancy is related to the differences in the structure (and the active
sites) and, in particular, the substoichiometric carbidic carbon content
in MoyCTy.400. Also, DFT calculations indicated substantial differences
between the reaction barriers and the stability of intermediates on
2D-MosC and those achieved for 3D-Mo,C, with H-assisted CO dissoci-
ation pathway (leading to HCO* and COH* intermediates) being
dominant in the latter and carbidic chain growth mechanism in the
former.

4.2. Dehydrogenation reactions

The production of alkene monomers from hydrocarbons is of great
importance, specifically in the polymer industry. However, these re-
actions require high temperatures (~600 °C) and high levels of steam,
and the lack of stability of their catalysts due to coke formation is a
major issue. MXenes have been found to serve as catalysts or supports for
direct dehydrogenation (DDH) of oxidative dehydrogenation (ODH)
reactions [55]. One of the DDH applications of MXenes is the synthesis
of styrene, a pivotal monomeric compound, from ethylbenzene (EB).
Specifically, Diao et al [409] conducted research associated with
TizCoTx MXene-catalyzed EB dehydrogenation. They prepared a Ti3CaTx
MXene terminated with O groups through an etching method, the
dehydrogenation pathway of which is depicted in Fig. 22. The
as-synthesized TigCaTx MXene led to an EB conversion rate of 92 pmol
m? hl, whereas those of graphene, nanodiamond, and TiC-derived
carbon (TiC-CDC) were 12, 7, and 0.8 pmol m? hl, respectively.
Furthermore, the styrene selectivity of the MXene-based catalyst was as
high as 97.5%, which was comparable to other mentioned carbon cat-
alysts (Fig. 23A). A long-run stability test was also conducted to confirm
the long-term activity of the Ti3CyTy catalyst. Interestingly, the out-
comes indicated that EB conversion rate (%) remained at 21% for nearly
40 h, demonstrating no deactivation and coke formation (Fig. 23B).

4.3. Oxidation of CH4 and CO

Methane (CHy) is considered one of the most critical fuel gases in a
myriad of industrial applications. Nonetheless, CH4 can be converted
into methanol in a stepped manner because it is challenging to stop the
product selectively after the first C-H activation without deactivating the
catalyst [410]. Consequently, potential catalysts are necessary for
directly converting methane to methanol. In this regard, MXenes have
proven efficient as applicable supports for SACs. For instance, Sun and
coworkers [411] modeled MoyCOs-supported Pd monomer and dimer
(Pdy) and compared their abilities in methane conversion to methanol.
The electronic and geometrical configurations results showed that
Mo,CO; can support anchor Pd dimer. Additionally, calculations illus-
trated the suitable adsorption of CH4 and O, onto the Pdy/Mo,COy
surface due to its multiple active sites.

The seemingly facile CO oxidation reaction:

co+ %oz ~CO, ®)

is of great significance in controlling pollution and the separation of
CO from Hj fuel [412]. In this regard, heterogeneous catalysts like Pd
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Fig. 23. (A) Comparison of EB conversion rate and styrene (ST) selectivity
between Ti3C,T, MXene and three carbon-based catalysts and (B) the stability
test of Ti3C,T, MXene on dehydrogenation of EB. Reprinted with permission
from [409].

and Cu can be potentially harnessed to accelerate this reaction [413].
From a theoretical standpoint, MXenes can be potentially utilized as
heterogeneous catalysts for CO oxidation, for which three possible re-
action pathways are plausible: the Langmuir—Hinshelwood (LH), the
traditional Eley-Rideal (ER), and the trimolecular Eley-Rideal (TER)
mechanisms [414]. Among these pathways, the LH mechanism is the
most feasible, although the occurrence of the appropriate pathway
generally depends on the level of the rate-determining energy barrier
[415]. Schematics of CO oxidation through LH and ER mechanisms on
Ag(111) surfaces are depicted in Fig. 24.

Computational methods such as ab initio molecular dynamics have
shown dynamic and thermal stabilities of MoyCS, monolayer [417].
Peng and coworkers [418] modeled a Ti;CNy MXene-supported Zn
catalyst and investigated its performance in CO oxidation. DFT calcu-
lations revealed that ER is the most probable mechanism for CO
oxidation with a tiny barrier (only 0.06 eV), allowing the reaction to
progress at low temperatures. In the ER mechanism, CO reacts with
already pre-adsorbed O3 and proceeds as follows: CO + Oy* — CO2 + O*
and CO + O* — CO,. Based on the density of states, Bader charge, and
other electronic structure analysis, the high catalytic activity of
Ti,CNy/Zn was attributed to the structure of single atom Zn, which in-
stigates the activation of O-O bond. In a comparative study, Cai et al.
[419] computationally assessed the catalytic activity of Sc and
Ti-anchored Zr,CO, (MXene) in CO oxidation in incomplete combustion
gas (O3, CO, Ny, and CO5). Due to its high barrier energy, the Ti/Zr,CO4
catalyst was more efficacious than Sc/Zr,CO». According to DFT studies,
they concluded that CO oxidation can progress by both LH and ER
mechanisms. In addition, after O was adsorbed, it remarkably remained
to replace other pre-adsorbed gases, showcasing that both catalysts
could resist the disturbance of the major gases so that a CO oxidation
reaction was possible. A systematic DFT investigation of the catalytic
activity of TioCO9 MXene-supported single atom catalysts M;/TioCO2 (M
= Fe, Co, Ni, Cu Ru, Rh, Pd, Ag Os, Ir, Pt, Au) by Zhu et al. [420]
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relvealed that the Fe-containing catalyst, with a distinct low-energy
barrier (0.2 eV), has the most favorable catalytic performance.

4.4. Dry reforming of methane

DRM reaction is the reaction of CH4 and CO, that generates CO and
Hy, which in turn allows to alleviate CH4 and CO5 concentrations as
greenhouse gases [421]:

CH,4 +CO, -CO + 2H, 9

Thakur et al [422] investigated the catalytic performance of
V203-VgCy. In this research, an m-V,CT,, MXene was utilized as a pre-
cursor to the 3D V203-VgCy phases since, like other multilayered thin
MXenes, m-V,CT, MXene is unstable at high temperatures [423].
Therefore, the m-V,CTy phase was initially pre-treated in N2 at 800 °C,
decomposing m-V5CT, to Vp03-VgCy, which was then utilized as a
catalyst. The study showed that the DRM activity of V,03-VgC; (con-
verting 78% CH4 and 82% COy) is comparable to that of the nickel
catalyst supported on zeolite Socony Mobil-5 (ZSM-5). Furthermore, it
was discovered that stability in high temperatures, anti-oxidation
characteristics under mild oxidative situations, and the ability to
participate in oxidation-carburization cycles are pivotal properties in
the dry reforming of methane and other hydrocarbons. Although a
MXene was not used as a direct catalyst in DRM, it was employed as a
precursor for the leading catalysts. In another research, Kurlov et al
[424] dispersed Mo,CO, MXene on silica, showing high catalytic ac-
tivity and stability in the dry reforming of CH4. DFT calculations verified
CH4 activation on oxygen sites to form *OCHs and *OH. It is worth
mentioning that the idea of depositing Mo,CO3 on the surface of silica
was to hinder the thermal transformation into bulk MoyC, augmenting
the accessibility of Mo sites and hampering catalyst deactivation. The
results indicated that the consumption rate of CH4 using MoyCO2/SiO2
was ~10-200 times higher compared to the bulk counterpart. Huang
et al. [425] also conducted research on a sintered V5C-V503
(m-V2C-V,03)-supported Ni as a potential heterogeneous catalyst for
DRM. The synthesized catalyst showed high stability and activity in a
90-hour cycle of utilization. Ni/ m-V5C-V203 led to optimal CH4 and CO,
conversion rates of 94% and 89%, respectively.
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5. Conclusion and perspectives

In conclusion, the versatile and remarkable properties exhibited by
MXenes underscore their potential across a spectrum of applications,
ranging from electromagnetic interference shielding to flexible opto-
electronics, sensors, thermal heaters, and nanocomposites. The recent
surge in exploring MXenes as heterogeneous catalysts for diverse re-
actions reflects a strategic response to the challenges posed by the
scarcity and elevated costs of noble metals inherent in traditional cat-
alysts. MXenes, with their abundance and cost-effectiveness, present a
viable alternative that has garnered significant research attention.

This review has provided a summary of recent advances in
leveraging MXenes for catalytic activities, emphasizing their efficacy in
reactions such as hydrogen evolution, oxygen evolution, oxygen
reduction, nitrogen reduction, carbon dioxide reduction, alcohol
oxidation, hydrogenation, dehydrogenation, methanol conversion, dry
reforming of methane, and Fischer-Tropsch synthesis. The exploration of
these catalytic applications has opened new avenues for MXenes,
expanding their role beyond traditional material applications.

Despite these promising developments, challenges persist, and
further research is required to address issues such as scalability, stabil-
ity, and optimization of catalytic performance. As the field continues to
evolve, this review serves as a valuable resource for researchers, offering
insights into the current state of MXene-based catalysis, highlighting
challenges, and outlining prospective directions for future in-
vestigations. The inexhaustible potential of MXenes in catalysis posi-
tions them as pivotal contributors to the ongoing evolution of advanced
materials and catalytic technologies.
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