Check for
Updates

Scaling Code Pattern Inference with Interactive What-If Analysis

Hong Jin Kang Kevin Wang Miryung Kim
University of California, Los Angeles University of California, Los Angeles University of California, Los Angeles
USA USA
hjkang@cs.ucla.edu kwang1083@g.ucla.edu miryung@cs.ucla.edu

Support Information Gain (how well a code line separates

(how frequently does positive from negative examples?)
a code line appear?)

Feature Choices: by choosing which code lines

| Codebases II s | toinclude as features, the pattern can be refined
- @ 0.00 SecretKeySpec(...)
|g = g- 0.00 GCMParaneterSpec(...)
[= = I 000 SecureRandon(...)
{

— 0.00 Cipher.getInstance(..."AES/GCM/NoPadding". . .)

I API| 1 0.00 Cipher.getInstance(..."RSA/ECB/PKCS1PADDING"...)
| m — 000 Cipher. doFinal()

b I 0.00 Cipher.init()
- - 0.00 Cipher. updateAAD ()
(

—_———— 0.43 NoSuchPaddingException
| Positive and! W 043 NoSuchAlgorithnException

negative 043 InvalidKeyException
| instances I i

0.22 IllegalArgumentException(...)

I 0.01 IllegalStateException(...)
| I 0.00 Log. getStackTraceString()

. | }
|
| A summary of API usage.

2

It overviews all available code lines as features
and collates multiple examples from the entire

corpus in a single view

Active Learning guides users on .

which code lines to consider as
features for further refinement -

ot

Impact Analysis reveals which fnstances will be
excluded by including a specific code line in the
pattern

What-If Analysis contrasts which features can match
how many instances in the remaining population

Figure 1: To guide incremental pattern construction and refinement, SURF summarizes the global distribution of how individual
features appear in the entire population in a single collated view. In SURF, users can directly provide code-line level feedback as
features in addition to labeling positive and negative instances. SURF then re-generates a refined pattern. Users can contrast the
impact of different feature choices using impact analysis and what-if-analysis. It visualizes how a specific feature choice is
consistent with already labeled positive and negative instances and can match more instances in the unlabelled population.

ABSTRACT

Programmers often have to search for similar code when detecting
and fixing similar bugs. Prior active learning approaches take only
instance-level feedback, i.e., positive and negative method instances.
This limitation leads to increased labeling burden, when users try
to control generality and specificity for a desired code pattern.
We present a novel feedback-guided pattern inference approach,
called SURF. To reduce users’ labelling effort, it actively guides users
in assessing the implication of having a particular feature choice
in the constructed pattern, and incorporates direct feature-level
feedback. The key insight behind SURF is that users can effectively
select appropriate features with the aid of impact analysis. SURF
provides hints on the global distribution of how each feature is
consistent with already labelled positive and negative instances,
and how selection of a new feature can yield additional match-
ing instances. Its what-if-analysis contrasts how different feature

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639193

choices can include (or exclude) more instances in the rest of the
population.

We performed a user study with 14 participants, designed with
two-treatment factorial crossover. Participants were able to pro-
vide 30% more correct answers about different API usages in 20%
less time. All participants found that what-if-analysis and impact
analysis are useful for pattern refinement. 79% of the participants
were able to produce the correct, expected pattern with SURF’s
feature-level guidance, as opposed to 43% of the participants when
using the baseline with instance-level feedback only. SURF is the
first approach to incorporate feature-level feedback with automated
what-if analysis to empower users to control the generality (/ speci-
ficity) of a desired code pattern.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools.

KEYWORDS

active learning, code search patterns, API misuse, human feedback

ACM Reference Format:

Hong Jin Kang, Kevin Wang, and Miryung Kim. 2024. Scaling Code Pattern
Inference with Interactive What-If Analysis. In 2024 IEEE/ACM 46th Inter-
national Conference on Software Engineering (ICSE °24), April 14-20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3597503.3639193

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639193&domain=pdf&date_stamp=2024-04-12

ICSE °24, April 14-20, 2024, Lisbon, Portugal

1 INTRODUCTION

Many software engineering tasks require searching for similar code,
e.g., code search [19], code recommendation [26], applying similar
fixes [21, 27], and detecting API misuses [17]. Completely automatic
techniques face limitations, such as assumptions about frequent
patterns [17, 24]. Therefore, the use of human feedback, such as
active learning approaches, has emerged as a promising direction.
Recent studies have shown the effectiveness of human-in-the-loop
approaches to synthesize code patterns [14, 17, 24, 36].

Active learning approaches [14, 17, 24] usually require users
to provide positive and negative function instances, e.g. the code
snippets in Figure 3. However, to accurately label an instance, hu-
man users have to disambiguate similar but different instances,
often from an unfamiliar codebase, demanding a high amount of
human inspection and analysis effort. As human cognition is the
bottleneck, scaling up active learning approaches poses several
challenges. Firstly, there are not many labelled instances apriori.
Second, the user has to iteratively assess more positive and neg-
ative instances, which can be challenging. Third, people tend to
use specific code lines as a feature, such as the string constant
StandardCharsets.UTF_8 in the positive instance shown in Fig-
ure 3a) , but cannot easily provide such granular feedback. Moreover,
they do not always know which code line is suitable for a desired
feature (for refining the pattern in Figure 3, a user may wonder “is
the method call, updateAAD present in all positive instances?”, or “if
Iinclude updateAAD instead of Base64 . decode, how many positive
instances would I no longer find?”). These limitations underscore
the need to actively guide users in providing feedback.

We propose an interactive active learning approach, SURF (Scaling
Up inteRactive Feedback), seen in Figure 1. Figure 2 shows the work-
flow of how a user interacts with SURF. Initially, the user provides
some positive and negative instances, allowing SURF to bootstrap
an initial pattern. SURF allows users to provide direct feedback on
which code-line should be considered as a feature, which is used
to iteratively re-infer another pattern. SURF guides the user in as-
sessing which code lines to use as feedback. First, SURF provides
an overview of the global distribution and overlays code lines from
different instances as a summary skeleton. Second, it provides hints
on the global distribution by computing importance metrics for
each code line. Third, it visualizes the instances that are included
or excluded for each choice of feedback on the pattern.

In this study, by “instances,” we mean method-level locations
in the population to be matched or unmatched by a given pattern.
By “features,” we mean individual code statements, i.e., nodes in
a program dependence graph. Including a feature specializes the
current pattern by adding a new requirement.

Suppose Alice uses SURF to construct a code pattern. After pro-
viding some positive and negative instances (Figure 3a, 3b, 3c), SURF
infers a pattern. The inferred pattern, shown in Figure 3d, does not
precisely match Alice’s intent—the pattern does not capture the
method call Cipher.getInstance(“AES/GCM/NoPadding”), and
would match programs such as Figure 3e that employ a differ-
ent transformation, e.g., Cipher.getInstance(“DES")). Without
SUREF, Alice provides a new negative instance, Figure 3e, that the pat-
tern should exclude. This may not be enough information to identify
the intended pattern due to ambiguity from the multiple possible

Kang et al.

B
&
i

I Label positive & negative
examples

I
Phase 1| ‘ J T |
Click “Infer pattern” H-—»{

Infer a new pattern ‘

[l Compute global distribution ‘
—— — — — — — I
I Select a feature and invoke | 4 Present a collated feature summary |
“Impact Analysis”
Phase 2| - .
] Ny Show how many positive, negative,

and unlabelled instances match

J Select a pair of features and
| invoke “What-If Analysis”
i

Click “Infer pattern”

r | \‘I Contrast impact of two features ‘

Figure 2: After a user labels positive and negative instances,
SURF infers an initial pattern, computes the global distribu-
tion, and presents a collated feature summary. By leveraging
feature-level guidance from SURF, the user chooses a specific
feature and SURF constructs a new pattern using Algorithm
1. Users can alternate Phase 1 and Phase 2 to iterate instance-
level and feature-level feedback.

code lines that can be included in the pattern (e.g., code highlighted
in green in Figure 3a). Including any one of Cipher.getInstance(
“AES/GCM/NoPadding”), Base64.decode, and updateAAD would
exclude Figure 3e.

With SUREF, Alice provides direct code line-level feedback (e.g.
selecting “AES/GCM/NoPadding”). To determine which code line
should be selected, SURF helps Alice to understand the API usage
and its distribution, summarized as a code skeleton that overlays
code lines from different repositories. The collated view allows
simultaneous inspection of multiple code examples, instead of ana-
lyzing each program one by one.

Guided by the importance metrics computed for each code line
(Figure 4 @), Alice notices code lines such as new SecureRandom()
have a low support (indicated by the small blue bars under Support).
In other words, this new SecureRandom() feature occurs infre-
quently and is unlikely to be useful. Several code lines stand out
to Alice due to their high Information gain. For example, new
SecretKeySpec(. . .) has an information gain of 1.0, indicating
improvement over the current pattern in separating positive and
negative instances.

Due to the small number of positive and negative instances,
information gain alone is not enough to identify a good code line.
SUREF provides impact analysis. For each choice, SURF immediately
demonstrates which instances will be included or excluded if a
particular code line is included in the pattern. This makes it easy
for Alice to assess if including a code line, e.g., updateAAD, would
overspecialize the pattern. Finally, SURF offers a what-if analysis,
seen in Figure 6. SURF contrasts the impact of the two choices.

We conducted a user study with 14 participants, including profes-
sional developers from industry. The participants provided feedback
to construct a code search pattern in two tasks. We built a baseline
by simulating the usage of a prior technique [17], in which users
had to inspect individual programs and provide labels. Using SURF,
participants demonstrated better understanding of the API usage

1

2

Scaling Code Pattern Inference with Interactive What-If Analysis ICSE ’24, April 14-20, 2024, Lisbon, Portugal

tryA{ . 1 Cipher cipher = 1 try {
Cipher cipher = 2 2 Cipher cipher =
3 "AES/GCM/NoPadding");
"AES/GCM/NoPadding" |; 4
5 cipher.init (2, new

"AES/
GCM/NoPadding");

cipher.init(Cipher.
DECRYPT_MODE, key,

cipher.W(
associatedData);

spec);

return new String(

cipher.doFinal(

Base64.decode |[(cipherText)

SecretKeySpec(
key.getBytes (), "AES"),
new GCMParameterSpec (128,

nonce.getBytes()));

if (StringUtils.isNotEmpty(

associatedData)) {
cipher.updateAAD(

cipher.init(Cipher.
DECRYPT_MODE, key,
params);

cipher.updateAAD (ciphertext
, 0, ciphertextOffset);

return cipher.doFinal(

12

13

14

15

16

), 11 associatedData.getBytes()); ciphertext, ...);
StandardCharsets.UTF_8); 12} o}
3 » X _ . JUBN -2 41, Il NoSuchAlgorithmException e |
(&34 { NoSuchAlgorithmException e 1 ciphertext = parseObject(n {
C 15 new String(.
16 cipher.doFinal (decode), 5}
} 17 StandardCharsets.UTF_8)); 14
(a) Positive instance 1: decryptToString (b) Negative instance 1. wxCallBack (c) Negative instance 2.decrypt
1 try {
3 ...
// Guard . cipher.init(Cipher.DECRYPT_MODE, key);
Cipher.getInstance() s
© . String(...StandardCharsets.UTF_8...) . return new String(
7 cipher.doFinal (encryptedBytes, ...),
8 StandardCharsets.UTF_8);

(d) The initial pattern inferred by SURF matches (a) but not (b)
and (c).

EEB -2 4« I{ NoSuchAlgorithmException e hIEEd

(e) A new negative instance that the inferred pattern should not
match. The initial pattern in Figure 3d can match (e), which is
undesirable due to weak encryption using "DES"

Figure 3: Figure 3d shows an initial pattern matching Figures 3a, not 3b and 3c. This pattern (d) would incorrectly match Figure
3e. Instead of requiring a user to label more instances to exclude Figure 3e, SURF actively guides which feature among three

green choices “| "AES/GCM/NoPadding"

7«
>

updateAAD

distribution. They correctly answered 30% more usage comprehen-
sion questions and, when given the hints of what a target pattern
should look like, they were able to guide the tool to infer 1.8X more
correct patterns in 21.9% less time. Participants appreciated how
SURF immediately provided feedback in contrasting their choices
of code lines. The participants indicated that they were more confi-
dent using SURF, while they were overwhelmed and struggled to
make sense of the API usages without SURF.

Without SURF, participants spent more time coming up with
adhoc criteria for classifying positive vs. negative instances, and
were unable to construct a code pattern matching the given API

”, and “| Base64.decode |’ to select for pattern refinement.

usage description. This confirms the hypothesis that instance-level
feedback for active learning is inherently inadequate, as it burdens
the user to manually classify unfamiliar code instances.

In summary, this paper makes the following contributions:

(1) SURF is an interactive active learning approach towards code
pattern synthesis. SURF enables direct code line feedback,
allowing 1.8X more participants to infer correct patterns.

(2) SUREF helps users disambiguate similar API usages through
three features: (a) a code skeleton summarizing the popu-
lation, (b) importance metrics for individual code lines as
features, and (c) impact analysis and what-if analysis.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Suggest Row # S | ,
etKeySpec(...)

) 0 1.00
1 0.84 GCMParameterSpec(...)
2 0.85 SecureRandom(...)

{
Cipher.getlnstanc@."AES/GCM/NoPadding".)

@ 1.00

3
) 4 0.85 Cipher.getInstance(..."RSA/ECB/PKCS1PADDING"...)
) 5 0.00 Log.getStackTraceString()

6 1.00 Cipher.doFinal()

7 1.00 Cipher.init()
) 8 0.84 Cipher.updateAAD()

(

9 0.73 NoSuchPaddingException

10 0.73 NoSuchAlgorithmException

n 0.73 InvalidKeyException

)

) 12 1.00 IllegalArgumentException(...)
) 13 0.82 IllegalStateException(...)

14 0.87 DecryptionException(...)

Figure 4: @ All features are overlaid with one another un-
der a single code skeleton view. A method invocation such
as Cipher.getInstance() is a feature. The features are struc-
turally grouped, with each group distinguished from another
by a different background color. B) Each code line feature f
has support (S) how many instances include f and informa-
tion gain (I) —how well f separates already labelled positive
and negative instances. These scores guide a user to grasp the
distribution of individual features in the entire population.
© A user can click on each feature’s check box to include it
in the pattern.

(3) Inauser study, participants using SURF demonstrated greater
understanding of the global API usage distribution and re-
quired less time to construct the expected patterns.

The rest of this paper is organized as follows. Section 2 describes
a usage scenario of SURF. Section 3 introduces SURF. Section 4
presents the design of our user study. Section 5 shows the evaluation
results. Section 6 discusses the threats to validity of our study.
Section 7 presents related work. Finally, we draw the conclusions
of our work in Section 8.

2 USAGE SCENARIO

Suppose Alice discovers that, in her code, the use of a cryptographic
API (the Cipher API) for performing decryption does not adhere to
her organization’s best practices. She suspects such API misuses
are potential security vulnerabilities [32]. Ideally, the usages of
Cipher have to correctly handle a range of exceptions [2], encode
a decrypted string in UTF-8 [1], and use a strong transformation,
e.g. passing “AES/GCM/NoPadding” to Cipher.getInstance [3].
As the uses of Cipher that do not adhere to best practices [4, 20]
are widespread [12], Alice decides to check whether her API usage
is consistent with her organization’s practices. This requires her
to write a rule for the static analyzer in detecting violations. Alice
searches for code snippets using Cipher within the hundreds of
repositories of her organization. Alice uses grep, but searching for
“Cipher” results in a large number of matches. The sheer volume of
required effort leads Alice to scale up her code search.

Kang et al.

Suppose Alice manually writes a rule for matching code. She
includes some code lines that she identified, including the function
calls, such as init and updateAAD, that occur in the positive in-
stances. However, Alice finds writing rules to be challenging. This
is unsurprising because even expert-written rules are imperfect. In
fact, CodeQL’s rulesets of cryptographic APIs [5] rules were fixed
several times over a period of two years, due to bugs in the rules.
Comparing the buggy version of their rules against the newest ver-
sion of the rule, the fixed rule leads to 217 more warnings on 64 open-
source repositories (code snippets that call Cipher.getInstance)
from the CodeQL databases on github.com [10]. This suggests that
the initial version of the rule caught only 80% of the expected API
usage locations.

State-of-the-art Active Learning. Alice turns to active learn-
ing approaches [17] for identifying code patterns. These approaches
would allow Alice to construct a pattern that encodes the correct
use of Cipher API, distinguishing correct use from incorrect uses.
Using a state-of-the-art active learning approach, ALP [17], Alice
provides the positive and negative instances. It infers a pattern (e.g.
Figure 3d) that is too general (i.e., it incorrectly matches Figure 3e).
Then, it requests for more positive and negative instances.

Because Alice cannot easily find positive and negative instances,
she cannot easily refine a pattern and begins to grow frustrated. On
inspecting the inferred pattern that now includes Base64.decode
when constructing a string, Alice thinks that the tool has gone off
track as Base64.decode just happens to be in the same positive
instances, where data are decrypted.

Code line-level feedback. Alice gives SURF a try. SURF or-
ganizes a summary of the API usages, displaying and soliciting
feedback on code lines from the population instead of considering
each instance independently. SURF requires Alice to understand
the code lines and to provide direct feedback on individual lines.

Distribution-level analysis. The code lines are organized by
their semantic role [46, 48] (e.g., initialization, error handling) in
the use of the API, enabling Alice to reason about the code lines
simultaneously. By overlaying code lines from different instances,
Alice can understand common usages comprising dependent code
segments, such as interaction with other API methods, at a glance.
SUREF provides distribution-level statistics regarding each code line’s
support and information gain. Support measures how frequently a
code line appears. Alice determines the most common uses of Ci-
pher at a glance (e.g., the transformation “RSA/ECB/PKCS1PADDING”
was not frequently used, indicated by the shorter blue bars). Infor-
mation gain measures the improvement from including a code line
in the pattern. Given that the current pattern matches 1 positive
and 1 negative instance, it has an entropy of 1. By including new
SecretKeySpec(. . .), with a high information gain of 1.0, indicat-
ing that it can separate the positive and negative instances, entropy
can be decreased to 0. These metrics show Alice the distribution of
the code lines among the entire population of programs. A good
feature is likely to have both high support and information gain.

Impact and What-If analysis. As Alice inspects the code lines
with high information gain and support, SURF visualizes their im-
pact on matching the instances (Figure 5). This allows her to identify
instances affected by the inclusion of the code line, e.g., instances
that do not match updateAAD, if it were included. Using the Im-
pact Analysis, Alice discovers that including updateAAD would

Scaling Code Pattern Inference with Interactive What-If Analysis

v 8 @ 029 Cipher.updateAAD()

hy?
|

Matc;hing

Including Cipher.updateAAD()
would match 5 examples

(5 + [Juniabellec + ilnegative))

(e} L)

(associatedData != null) {
cipher.updateAAD(associatedData);
F
returh String(cipher.doFinal(ciphertext),
StandardCharsets.UTF_8);

} catch (InvalidKeyException e) {

Not Matching

Including Cipher.updateAAD()
3 examples

Fjuniabelled E I cgative))

(cipher != null){

pv = [T ASERIRGIEIRRER:

Figure 5: Impact Analysis. Clicking on each feature shows
how the feature is distributed among already labelled
positive and negative instances, and would match ad-
ditional instances in the population. Including feature
Cipher.updateAAD causes over-specialization, and will no
longer match a positive instance, i.e., Example 1006.

cause a positive instance and two unlabelled instances to not be
matched. Alice inspects the instances and believes that they should
be matched. Alice suspects that calling updateAAD is optional.

Alice clicks on two code lines, Cipher.updateAAD and
Cipher.getInstance(“AES/GCM/NoPadding”).SURF immediately
provides hints indicating that updateAAD is redundant with respect
to Cipher.getInstance(“AES/GCM/NoPadding”). Alice performs
a what-if analysis. Alice opens up the What-if view (Figure 6) for a
side-by-side comparison of the matching programs if the pattern
was updated to include one code line over the other. Contrasting the
instances matched by the two possible patterns, Alice realizes that
all instances containing the method call Cipher.updateAAD also
invoke Cipher.getInstance(“AES/GCM/NoPadding”). Alice real-
izes that updateAAD should only be called if Cipher.getInstance(
“AES/GCM/NoPadding”) is used, and is indeed optional.

With this information, Alice settles on Cipher.getInstance
(“AES/GCM/NoPadding”) as a suggestion to SURF. Accounting for
the feedback on the pattern features, SURF infers a new pattern.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Cipher.getInstance(..."AES/GCM/NoPadding"...)

3 @D 100

8 @ o020 Cipher.updateAAD()

Click “Why?" for What-If Analysis

ositive & Negative o|

Cipher cipher;
{
cipher = [HPISTNGSINSTONGEN"AES/GCM/NoPadding")|
} catch (NoSuchAlgorithmException e) {
Log.d(TAG, "Exception while creating cipher instance", e);
Toast.makeText (getApplicationContext(),"Cipher error"”,
Toast.LENGTH_LONG) . show() ;

|Matchedby ipherupdateAAD LT JCipher.ge

None

Figure 6: What-If Analysis. Users can contrast the
impact of two feature choices f1 updateAAD and f2
Cipher.getInstance(“AES/GCM/NoPadding.” SURF explains
no additional match will be found by choosing f1 over f2,
while one additional match can be found with f2.

3 SURF

3.1 Inferring a code pattern

SUREF aims to infer a code pattern incorporating code line-feedback.
SURF represents programs as a graph following prior studies [7,
17], and mines subgraph patterns. SURF mines discriminative sub-
graphs [37], which can separate positive and negative instances.

3.1.1 Problem formulation. The task of inferring a pattern while
considering the user provided code line-level feedback is as follows:

Input: A set of positive instances, P = {Py, P, P3,...} , and
negative instances, N = {Nj, Np, N3, ... }, identified by the human
user, and a set of code lines, C, suggested by the user.

Output: A pattern, which is a set of subgraphs, S = {s1, 52,53, ... }.

At each iteration: SURF requests feedback from the human user,
who either labels more instances, i.e., providing more positive and
negative instances, or suggest code lines. Ideally, the output pattern
should maximize their separation of P and N (further elaborated
in Section 3.1.2), and maximize the number of provided code line
features that match a vertex from the subgraphs: |Cphatched = {¢ €
C:3s € S,c € V(s)}|, where V(s) are the vertices in the subgraph,
s.

In the prior study [17], human users only provided positive and
negative instances. Thus, there are always zero suggested code
lines, C = 0. Using SURF, the size of C increases after each iteration
if the user provides code line feedback.

3.1.2 Mining Discriminative Subgraphs. We modify the pattern
miner from a previous study [17] to support code line-level feedback.
Algorithm 1 shows the algorithm to infer a pattern. First, from a
set of positive and negative instances, SURF mines subgraphs that
can separate the positive instances from the negative instances

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Algorithm 1 A pattern is mined to separate positives £ from
negatives N. Patterns containing the user’s suggested code lines
are favored.

Require:
e P « positive instances
N « negative instances
A « all instances
C « code lines suggested by the user
S « maximum pattern size to be considered
: function INFER_PATTERN
D« {}
for s € enumerateSubgraphs(? , S) do
if match(s,) > match(s, N) then
D« DUs
end if
end for
sort(D, compareBy(containsCodeLines(C))
.thenCompareBy(discriminativeness)
.thenCompareBy(matchPopulation(A)))
11: return filterSubgraphsThatSeparatesPosAndNeg(D, S)
12: end function

R B A A T

—_
<

(lines 4-6). The CORK [37] criterion, an efficient feature selection
mechanism that compares the overlap in features of the positive
and negative instances, is applied to discard subgraphs that do not
contribute to separating the positive and negative instances.

We reduce the need for a large number of labelled instances
and use the code line-level feedback to select subgraphs. Similar to
prior work, SURF enumerates subgraphs. In prior work [17], a test
of statistical significance was performed to select subgraphs that
match more positive instances than negative instances. In SURF,
we remove the tests of statistical significance to enable subgraph
mining from just a few positive and negative instances. In practice,
a human user is unlikely to provide enough instance-level feedback
for identifying statistically significant, discriminative subgraphs.

Finally, SURF applies CORK to filter subgraphs that do not sepa-
rate positive instances from the negative instances(line 11). Filtering
is sensitive to the order of subgraphs. Of two subgraphs that sep-
arate the same positive and negative instance (say Base64.code
versus new String() in Figure 3), the subgraph first presented
to the pattern miner will be selected, and the later subgraph re-
moved (since it no longer contributes to a better positive-negative
instance separation). This choice of subgraph depends on how the
subgraphs were sorted (lines 8-10). SURF favors the code line-
level feedback (line 8) before ordering subgraphs by their dis-
criminativeness (line 9), i.e., if Alice selects only updateAAD, sub-
graphs that contain it precede other subgraphs. The subgraphs
are enumerated in decreasing order of the number of matches
in the entire population, favoring more general subgraphs over
subgraphs specific to a few instances (line 10). For example, new
SecretKeySpec(. . .) occurs frequently in the population, and is
thus favored over Log . getStackTraceString, an uncommon func-
tion.

When initially inferring a pattern, we limit the size of the in-
ferred pattern (line 11). This prevents a pattern that overfits the
few positive and negative instances.

Kang et al.

3.2 Importance metrics

Inspired by active learning techniques [35], we guide users toward
informative and representative code lines.

Support For each code line, SURF counts the support of the
pattern if the code line were included, e.g., a code line with a re-
ported support of 10 in SURF means that the code line appears
10 times in the population. Support is computed over the entire
population, ignoring their labels. While not all frequent patterns
are useful [17, 24], infrequent code lines are not useful.

Information Gain We use information gain to measure how
well a pattern separates the positive and negative instances after
including the code line. Including a code line is analogous to split-
ting the data at a decision node in a decision tree. The instances
matched by the original pattern are partitioned into two sets, one
set of instances that match the new pattern, and one set of instances
that do not. First, we compute the entropy of the three sets:

e Gp: positive and negative instances matched by the pattern,

o Gp,: positive and negative instances matched after the pat-
tern is updated,

o G,: positive and negative instances excluded after the pattern
is updated

Then, for each group G, entropy is computed using the propor-
tion of positive instances (p+) and negative instances (p-):

Entropy(G) = —p+ log, (p+) — p- log, (p-)
The information gain of including a code line is as follows:

Entropy(Gp) — [Gm| x Entropy(Gp,) + Gl
IGpl IGpl

If a pattern initially matches five positive and three negative
instances, then Entropy(Gp) is 0.95. Say the pattern is modified to
include a code line, so it excludes two negative instance, then G,
contains five positive instance and one negative instances, and
Ge contains zero positive instances and two negative instance.
Entropy(Gp,) is 0.65 and Entropy(Ge) is 0. The information gain
associated with the code line is 0.95 - (6/8 X 0.65 + 2/8 X 0) = 0.46.

x Entropy(Ge)

4 EVALUATION DESIGN

We ran a user study with a two-treatment factorial crossover design
to evaluate SURF and answer the following research questions:

(1) RQ1. Does SURF improve the participant’s ability to compre-
hend the API usage distribution?

(2) RQ2. How much effort reduction does SURF provide in in-
ferring code patterns?

(3) RQ3. What features in SURF do the participants perceive to
be useful?

To answer the RQs, we curated two case studies of programs
using cryptographic APIs [47]. We analyze cryptographic APIs as
many prior studies have demonstrated that fully automatic API
usage mining methods do not succeed in inferring the desired
patterns [13]. Most usages of the APIs are incorrect [13, 29], limiting
the effectiveness of frequency-based pattern mining techniques and
thus users must examine and refine the inferred patterns directly to
adjust their generality and specificity. Human feedback is, therefore,
essential for refining the cryptographic APIs usage patterns.

Scaling Code Pattern Inference with Interactive What-If Analysis

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 1: Each task is motivated by a known common weakness enumeration (CWE). Task A is to find code snippets with proper
Cipher usage and error handling. In CWE-311, NIST determined that Cipher transformations using ”AES/GCM/NoPadding” can
avoid CVE-2016-2183. Task B is to find bugs similar to CWE-330, where the Spring framework had a vulnerability due to
incorrect initialization of random values (CVE-2019-3795). For each task, a few positive and negative instances are provided to
bootstrap an initial pattern. A user is not shown the target pattern and their task is to refine the initial pattern to fit the given

natural language description (Table 2).

Description CWE

Initial labelled instances

Target pattern

A. Cipher usage with a
strong transformation
and appropriate error-handling

CWE-311

4 positive, 4 negative instances
that enable inference of

e.g., CVE-2016-2183 | Cipher.getInstance(
“AES/GCM/NoPadding”)

Cipher.getInstance(
“AES/GCM/NoPadding”) with
catch(NoSuchPaddingException)

B. Seeding SecureRandom

with the current time and

using it as a source of
randomness for generating keys

CWE-330

2 positive, 7 negative instances
that enable inference of

e.g., CVE-2019-3795 | SecureRandom.setSeed(
System.currentTimeMillis())

SecureRandom. setSeed(
System.currentTimeMillis())

used with
KeyPairGenerator.generateKeyPair ()

In the case studies, we pre-defined a target code pattern that
distinguishes correct from incorrect usage. When preparing code
snippets for a user study, we inlined all relevant fields of classes and
static variables into a single method, so that participants could read
each instance at the granularity of a single method. We ensured that
pattern mining technique used in a prior study [17] could infer the
target API usage pattern, if given enough correctly labelled positive
and negative instances. For each case study, we also asked code
comprehension questions about the global distribution of individual
API method invocation. We used counterbalancing to control the
order effect. Each participant carried out two different tasks, Task
A and Task B, once using SURF and once the baseline.

Baseline. We constructed a baseline tool that mimics an ac-
tive learning approach for inferring API usage patterns based on
instance-level feedback, described in a prior study [17]. This base-
line was constructed by downgrading SURF to allow for only label-
ing positive and negative instances without enabling feature-level
feedback, importance metrics, impact analysis, and what-if analy-
sis. As the tool was accessed through a web browser, participants
were able to perform text search using Ctrl-F to look for instances
containing specific keywords.

After an initial pattern was inferred from positive and nega-
tive instances, the tool presented a list of additional matched and
unmatched instances to the user. Users could provide additional
instance-level feedback by labeling each instance as either positive
or negative, or skip the instance if they were unable to decide on a
label.

4.1 Participants

As the study has a crossover design, we require fewer subjects as
the variability among subjects is controlled for [39]. We recruited
14 participants by reaching out to students in the Computer Sci-
ence department as well as our contacts working in industry. In
total, we recruited 8 Ph.D. students and 6 professional developers.
1 participant had 3 years of programming experience, 5 had 3-8
years of experience, and 8 had more than 8 years of experience.
The participants self-reported their familiarity with cryptographic
APIs, which is the focus of our case studies, on a 7-point Likert
scale. The mean familiarity was 1.5, where 1 is “Most unfamiliar”

and 7 is “Most familiar”, simulating a scenario where a developer
works with an unfamiliar API.

4.2 Study Protocol

We conducted a 1 hour long user study with each participant. The
study involved using SURF and the baseline tool described above
and two pattern refinement tasks, described in Table 1. The order
of the assigned tool (either SURF or the baseline) and the assigned
tasks (Task A Cipher or Task B SecureRandom) were counterbal-
anced across the participants through random assignment. Each
participant was required to complete both case studies, with each
case study requiring 12 minutes.

Pre-study survey (2 mins). We asked for the participants’ ex-
perience and background through a short survey.

Tutorial and warm-up questions (15 mins). We walked the
participants through several warm-up questions designed for the
participants to discover each user interface feature in SURF. The
warm-up questions involved inspecting a small number of usages
of the MessageDigest API from GitHub.

Each task required 12 minutes to complete (2 minutes for each of
the 5 comprehension questions. 2 minutes for providing feedback).

Usage comprehension question. For each task, the partici-
pants had to answer five questions related to the API usage and its
distribution in the entire population of about 30 instances. We de-
signed the questions with varying difficulties; the simplest questions
required a simple lookup of a code line (e.g., what is an example
input argument to method setSeed?), while the later questions
required contrasting positive and negative instances (e.g., what is
one exception caught by the positive instances but not negative
instances?), and different code lines (e.g., which instances invoke
getInstance but not generateKeyPair?). These questions, given
in Table 2, assess the participants’ comprehension of the API usages,
and guide them to develop insights about individual code features
that they can consider incorporating to refine the current pattern.

Providing feedback for improving the pattern. After an-
swering the questions and building up their understanding of the
population of API usages, we instructed the participants to provide
feedback. For the baseline tool, the participants provide feedback
by labelling instances as either positive or negative. We instructed

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Kang et al.

Table 2: The code comprehension questions are designed to test the participant’s ability to understand the global distribution
of individual features and the resulting matched and unmatched instances in the rest of population. They test, in order of
increasing difficulty, the participants ability to (a) understand a single instance, (b) understand the impact of including a
specific line as a feature, (c) understand the distribution of API uses, (d) contrast positive and negative instances, or matched
and unmatched instance, and (e) assess which unlabelled instances could match (or unmatch) by including a specific feature.

Task A (Cipher)

[Task B (SecureRandom and KeyPairGenerator)

Questions

Q1. What is one exception constructed in a catch block
(after catching another exception)? (a)

Q1. What is one argument of SecureRandom.setSeed? (a)

Q2. Which negative instances invoke Cipher.init()
but not Cipher.updateAAD()? (b)

Q2. Which instances invoke KeyPairGenerator.getInstance()
but not KeyPairGenerator.generateKeyPair()? (b)

Q3. How many positive instances
constructed a new SecretKeySpec()? (c)

Q3. How many instances construct a new SecureRandom
through its constructor, i.e., new SecureRandom(..)? (c)

Q4. What is one class of exception caught by the positive instances
but not a negative instance? (d)

Q4. Which instances do not call KeyPairGenerator.getInstance()?
()

Q5. Which unlabelled instances catch NoSuchPaddingException? (e)

Q5. How many unlabelled instances call
KeyPairGenerator.getInstance()? (e)

Pattern Refinement Task

Detect more instances with exception handling
similar to the positive instances but not the negative instances

Detect more instances that generate a key using the
same function as the positive instances but not the negative instances.

the participants to skip an instance if they were unsure of its label.
For SUREF, the participants provide feedback by suggesting code
lines. For both tools, we instructed the participants to skip to the
last question in the last 2 minutes if they were still answering the
usage comprehension questions. This gives each participant at least
2 minutes to provide feedback to the tool for improving the pattern.
This task mimics a single iteration of an active learning algorithm
requesting feedback. The tasks are shown in Table 2.

Post-study survey (12 mins) At the end of the session, par-
ticipants answered questions about their experience using each
tool, described how they tried to answer the usage comprehension
questions and provided feedback on each user interface feature.

Tool setup. For each task, we started with a set of positive and
negative instances provided to the participant. For these tasks, we
disabled the instance-level feedback on SURF to encourage the
participants to provide only code line-level feedback.

Data. For both case studies, we curated about 30 code instances
from different repositories on GitHub. We selected about only 30
instances to prevent the human users from getting too overwhelmed
from inspecting the instances. The instances were picked to display
a range of different uses of the API, including the target pattern.

We make SURF and our data available [6].

5 EVALUATION RESULTS

In this section, we report and analyze the results of our user study.
We denote each participant as P#.

5.1 Improving usage comprehension

To evaluate user performance using SURF on usage comprehension,
we assessed the participants’ answers. The detailed results are
shown in Table 3. Every participant provided an answer to all five
questions in both tasks, regardless of the tool. Participants using

Table 3: Answering usage-comprehension questions. SURF
leads to 30% more correct answers, while requiring 22% less
time. On average, participants spent about 8 mins using SURF
as opposed to 10 mins using the baseline.

Task A Task B
SURF Baseline | SURF Baseline
01 5 6 7 7
Q2 4 5 6 3
03 6 2 5 0
Q4 5 2 4 1
Q5 3 2 5 2
correct answers 3.3 24 3.9 2.0
Time taken (mins) | 9.6 10.2 8.2 11.5

SUREF provided 1.5 more correct answers (30%). Using a linear mixed-
effect model, where the number of correct answers depends on the
order, tool, and task. We found that SURF significantly improved
over the baseline (p-value < 0.005).

The use of SURF led to greater improvements on Task B, which
may be more complex as the pattern includes the use of two APIs
(SecureRandom, KeyPairGenerator). On average, participants us-
ing SURF on Task B provided 3.8 correct answers while using the
baseline provided just 2 correct answers. Four participants pro-
vided correct answers to every question in Task B when using
SURF, while no participant got every question correct when using
the baseline. Using the baseline, participants would get stuck on a
question, giving themselves less time for the subsequent questions.

In the post-study questionnaire, 11 participants (79%) indicated
that SURF made understanding the instances easier. To understand
the distribution of code lines, P1 indicated that having a tool that
“automatically did the comparisons for me was very helpful”.

Scaling Code Pattern Inference with Interactive What-If Analysis

Table 4: 79% of participants using SURF managed to construct
the correct pattern, whereas only 43% of those using the base-
line achieved the same result. Each participant’s pattern was
compared against a ground-truth pattern after each study.

Task A Task B
SURF Baseline | SURF Baseline

participants
with correct 6/7 4/7 5/7 2/7
patterns (86%) (57%) (71%) (29%)

Comparison of Mean Confidence and Ease Scores

7- Baseline
mmm SURF

Ease of Use

Confidence

Figure 7: The participants reported a higher confidence score
when using SURF (with a median of 5.6) than the baseline
(with a median of 2.9). The participants rated SURF (median
of 6) to be easier to use than the baseline (median of 4).

Overall, SURF helped the participants better understand
the API usage distribution. Participants using SURF cor-
rectly answered 30% more usage distribution questions.

5.2 Reducing human effort

Participants using SURF completed their tasks in an average of
8 mins and 40 seconds. Using the baseline, participants required
10 mins 48s on average, which is 22% slower than SURF. Every
participant was able to utilize the Impact and What-if Analysis in
SUREF. Overall, SURF helped the participants provide useful feedback
for code pattern inference in less time.

We evaluated the patterns inferred. As shown in Table 4, par-
ticipants were 1.8X more likely to construct the expected pattern
when using SURF. Using the baseline, participants only succeeded
in producing the expected pattern 43% of the time. Participants
using SURF produced the expected pattern 79% of the time.

Using the baseline, we observed that the participants were over-
whelmed. They spent more time coming up with ad-hoc crtieria for
distinguishing positive instances from negative instances. However,
these criteria did not always lead to correct labels.

The post-study questionnaire’s responses showed that the partic-
ipants were more confident in their answers and ability to provide
feedback to the tools using SURF. On a 7-point Likert scale shown

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

in Figure 7, participants rated SURF an average of 5.6 of out 7, while
rating the baseline an average of 2.9 out of 7. Their feedback sug-
gests that the participants perceived the summary and analysis of
SUREF to be helpful in finding facts about the API usage distribution.

Participants using SURF required 22% less time for com-
pleting each task, but were 1.8X more likely to construct
the expected pattern.

5.3 Users’ perception of SURF

Our post-study survey solicited the participants’ feedback. Partici-
pants found SURF to be easier to use (5.6 vs 3.7 on a 7-point Likert
scale) compared to the baseline. The distribution of responses is
given in Figure 7.

Summary code skeleton. 13 of the 14 participants found the
summary code skeleton to be useful, with a median rating of 7 out
of 7. P3 mentioned that SURF made it easier to understand the code
distribution as it “gives a clear pattern template and functionalities
to list concrete instances related to a specific pattern”.

Importance Metrics. 13 of the 14 participants found the im-
portance metrics to be useful, with a median rating of 6 out of 7.
P6 found them “convenient to determine the line of code to select”.

Impact and What-if Analysis. 13 of the 14 participants found
the impact and What-if analysis to be useful, with a median rating
of 6.5 and 7, respectively. P10 mentioned that he “found myself
using the Impact Analysis often to answer the questions”. P2 was
confident in his answers as SURF “gave me immediate feedback
and flagged suggestions ” as he used the tool, indicating that dy-
namically providing feedback was helpful for building confidence.

Limitations and Suggestions. The participants pointed out
features that they wished SURF had. Their responses suggested that
developers may need support in understanding the code beyond
their use of the APIs. P10 wrote that she wanted “tooltips that
automatically show the docs for a method when hovering over it”.
5 participants indicated that they wished to have more concrete
information, such as their purpose, about the code using the APL

We found that participants cared about double-checking their
answers, requiring closer inspection of the instances. P9 wrote “I
wished I could see some concrete examples to confirm my under-
standing of what I was doing”. Double-checking their work slowed
the participants down. However, if the participants were given
more time, they may trust SURF more and double-check their work
less. P1 wrote that he “manually confirmed that the patterns were
matching (probably a beginner’s thing as I build trust in the tool)”.

The participants found SURF easier to use. Participants
found every user interface feature useful, with the code
skeleton and What-if Analysis perceived as the most useful.

6 DISCUSSION
6.1 Qualitative Analysis

Usage Comprehension. Using the baseline tool, participants found
understanding the instances difficult. Participants may get stuck on
the earlier usage comprehension questions, lacking enough time

ICSE °24, April 14-20, 2024, Lisbon, Portugal

for the later questions. On providing feedback to the baseline, P13
wrote “I can’t begin to do”. Participants tried to develop a crite-
ria for matching positive and negative instances. P9 wrote that he
“tried to remember the patterns which had appeared”.

Participants wanted to contrast the positive and negative in-
stances when using the baseline. P10’s strategy was to “search for a
method name or exception to see if it was used in the positive/nega-
tive examples. If it was in all of the positive examples and not in the
negative examples, I would use that to check against the unlabelled
examples.” P5 wrote “I will see the pattern in positive example, and
then see what it share with the negative examples”. Identifying code
lines with high information gain is directly supported by SURF and
appears to be a good match for the participants’ mental model of
how to perform the task.

Text search. Prior work [22] has shown that grep returns many
irrelevant matches. We observed the same limitation of simple text
search. Though participants could locate instances with specific
method calls or constants, they were confused by irrelevant results.

Active Learning. Prior studies [17] on active learning assumed
that human users can effectively provide instance-level feedback.
However, our user study suggests that human feedback would be
a bottleneck. Without the interactive support from our tool, the
participants in our study were not confident in using the baseline,
with a self-reported rating of 2.9 out of 7. The participants devel-
oped ad-hoc critiria for classifying positive and negative instances,
which led to inaccurate instance-level labels. The participants’ poor
performance confirms our hypothesis that the challenge lies in
soliciting instance-level feedback from users.

Using SURF allowed more participants to successfully guide
SUREF to infer the expected pattern in 21.9% less time. This suggests
that the participants benefited from both providing feedback at the
granularity of code lines guided by the distribution of their usages
and in the remaining population.

6.2 Threats to Validity

A threat to validity is the lack of familiarity of the study’s partici-
pants with cryptographic APIs. However, this reflects the reality
of developers’ understanding of these APIs [29]. The participants’
performance may be a lower bound since they may have better
results from reduced cognitive overhead analyzing a familiar APL

While our study included only 14 participants, studies designed
with a crossover minimize variability, thus requiring fewer partic-
ipants [39]. As few as 10 participants are often sufficient to gain
valuable insights [9]. Our study also showed statistically significant
improvements.

7 RELATED WORK

API Learning. Programmers often inspect code examples to under-
stand how to use an API [33, 34]. In particular, they often desire mul-
tiple instances of an API use to understand how it is used [15, 33, 44].

Inspired by Examplore [15], SURF overlays code lines from
the population of API usages into a code skeleton to simultane-
ously visualize multiple code instances when soliciting human feed-
back [11]. Unlike SURF, Examplore only visualizes the API usages,
does not infer patterns or offer Impact and What-if Analysis.

Kang et al.

API usage patterns. To detect API misuses, researchers have
proposed using API specifications, e.g., JavaMOP [16], to detect
violations. These specifications produce many false positive [23],
showing how human-written rules are error-prone and may benefit
from automated techniques.

Dynamic analysis-based API misuse detectors [18, 42] are limited
to misuses that throw exceptions. They are less effective for APIs
whose failures may not result in exception, e.g., cryptographic APIs.

Many approaches for mining API usage patterns have been pro-
posed [7, 25, 28, 30, 31, 38, 40, 41, 46, 49]. The majority of these
approaches do not use any human feedback. Fully automatic ap-
proaches may be ineffective on frequently misused APIs [13, 17, 24].

Comparing choices The What-if analysis in SURF supports
users in understanding the impact of possible feature choices. SURF
provides side-by-side comparison of the instances, with the high-
lighting of salient differences, to allow users to understand their
detailed differences. Similarly, Yan et al. [43] contrast usages of
different choices of similar libraries. While their work contrasts
code that use different libraries with same usage, SURF contrasts in-
stances with different usages of the same APIL The Impact Analyses
resembles speculative analysis [8], which anticipates and executes
developers’ actions in the background to inform them and avoid
possible merge conflicts. SURF has a different goal of empowering
users to comprehend the matching capability of individual features.

Active Learning using instance-level feedback. Approaches
using active learning include ALP [17], ALICE [36], RhoSynth [14]
and Arbitrar [24]. Both SURF and ALP shares the same graph repre-
sentation [7] of programs and mines subgraphs patterns to detect
API misuses. ALICE express programs as logic programs. RhoSynth
synthesizes code quality rules from user-provided positive and neg-
ative instances. Arbitrar detects API misuses by having human
users analyze and provide feedback on program traces. These tools
do not have interactive intuitive interface to provide fine-grained
feedback nor reason about differences among similar API usages.

Manual pattern refinement. CRITICS [45] allows for manual
refinement of code patterns, but does not have a pattern inference
algorithm. In contrast, users of SURF benefit from both inference
and human feedback while considering the guidance provided.

8 CONCLUSION

SURF is an approach for active learning for code pattern infer-
ence. Users interactively provide direct code line-feedback to SURF,
which guides them through a code skeleton summarizing a popula-
tion of API usages, importance metrics, impact and what-if analysis.
Participants in our user study inspected case studies of crypto-
graphic API usages. Using SURF, participants correctly answered
30% more comprehension questions and 1.8X more likely to con-
struct the expected pattern. Our study has ramifications for active
learning; studies should consider the challenge of human users
understanding unfamiliar code when providing feedback, and that
a different granularity of feedback may reduce human effort.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation under
grant numbers 2106838, 1764077, 1956322, and 2106404. It is also
supported in part by funding from Amazon and Samsung. We want

Scaling Code Pattern Inference with Interactive What-If Analysis

to thank the anonymous reviewers for their constructive feedback
that helped improve the work.

REFERENCES

(1]

(2]

(3]

(4]

(5]

[10

(1]

[12]

[13]

[14]

[15

[16]

(17

[18]

[19]

[20]

[21]

[22]

[23]

2018. MUBench’s misuse in Adempiere related to string encoding. https://github.
com/stg-tud/MUBench/blob/4f22263ac364e8861d4e368ab33180607ec4f14e/
data/adempiere/misuses/1/misuse.yml#L9.

2018. MUBench’s misuse in IText related to exception handling. https://github.
com/stg-tud/MUBench/blob/4f22263ac364e8861d4e368ab33180607ec4f14e/
data/itext/misuses/1/misuse.yml#L7.

2018. MUBench’s misuse in YApps related to string encoding. https://github.
com/stg-tud/MUBench/blob/4f22263ac364e8861d4e368ab33180607ec4f14e/
data/yapps/misuses/1/misuse.yml#L6.

2018. Rules of using Cipher according to CogniCrypt. https:
//github.com/CROSSINGTUD/Crypto- API-Rules/blob/master/BouncyCastle-
JCA/src/Cipher.crysl.

2023. CodeQL rule for “Use of a broken or risky cryptographic
algorithm”. https://codeql.github.com/codeql-query-help/java/java-weak-
cryptographic-algorithm/.

2023. SURF’s tool and data. https://github.com/UCLA-SEAL/SURF.

Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2019. Investigating next steps in static API-misuse detection. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). IEEE, 265—
275.

Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2011. Proactive
detection of collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software engineering.
168-178.

Sarah E Chasins, Elena L Glassman, and Joshua Sunshine. 2021. PL and HCI:
Better together. Commun. ACM 64, 8 (2021), 98-106.

Github Docs. 2023. Preparing your code for CodeQL analysis (Downloading
databases from GitHub.com). https://docs.github.com/en/code-security/codegl-
cli/getting- started-with-the-codeql-cli/preparing-your- code-for-codeql-
analysis#downloading- databases-from- githubcom.

Ekwa Duala-Ekoko and Martin P Robillard. 2012. Asking and answering questions
about unfamiliar APIs: An exploratory study. In 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 266-276.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An empirical study of cryptographic misuse in android applications. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 73-84.

Jun Gao, Pingfan Kong, Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019.
Negative results on mining crypto-api usage rules in android apps. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
IEEE, 388-398.

Pranav Garg and Srinivasan H Sengamedu. 2022. Synthesizing code quality rules
from examples. Proceedings of the ACM on Programming Languages 6, OOPSLA2
(2022), 1757-1787.

Elena L Glassman, Tianyi Zhang, Bjérn Hartmann, and Miryung Kim. 2018.
Visualizing API usage examples at scale. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1-12.

Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu.
2012. JavaMOP: Efficient parametric runtime monitoring framework. In 2012
34th International Conference on Software Engineering (ICSE). IEEE, 1427-1430.
Hong Jin Kang and David Lo. 2021. Active learning of discriminative subgraph
patterns for api misuse detection. IEEE Transactions on Software Engineering 48,
8 (2021), 2761-2783.

Maria Kechagia, Xavier Devroey, Annibale Panichella, Georgios Gousios, and
Arie van Deursen. 2019. Effective and efficient API misuse detection via exception
propagation and search-based testing. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 192-203.

Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. FaCoY: a code-to-code search engine. In Proceed-
ings of the 40th International Conference on Software Engineering. 946-957.
Stefan Kriiger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden,
Florian Gépfert, Felix Gunther, Christian Weinert, Daniel Demmler, et al. 2017.
Cognicrypt: Supporting developers in using cryptography. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 931-936.
Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 years of automated evolution
in the Linux kernel. In 2018 USENIX Annual Technical Conference (USENIX ATC
18). 601-614.

Julia Lawall and Gilles Muller. 2022. Automating Program Transformation with
Coccinelle. In NASA Formal Methods Symposium. Springer, 71-87.

Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Rosu, and Darko
Marinov. 2016. How good are the specs? A study of the bug-finding effectiveness
of existing Java API specifications. In 2016 31st IEEE/ACM International Conference

[24

[25

[26

[28

[29

[30

o
=

‘%
S

%
3

[38

[39

[40

[41

[42]

[43

(44

[45

=
&

[47

(48]

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

on Automated Software Engineering (ASE). IEEE, 602-613.

Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik, Ke Wang, and Le
Song. 2021. Arbitrar: User-guided api misuse detection. In 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 1400-1415.

Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. ACM
SIGSOFT Software Engineering Notes 30, 5 (2005), 306-315.

Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019.
Aroma: Code recommendation via structural code search. Proceedings of the ACM
on Programming Languages 3, OOPSLA (2019), 1-28.

Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Systematic editing:
generating program transformations from an example. ACM SIGPLAN Notices
46, 6 (2011), 329-342.

Martin Monperrus, Marcel Bruch, and Mira Mezini. 2010. Detecting missing
method calls in object-oriented software. In European Conference on Object-
Oriented Programming. Springer, 2-25.

Sarah Nadi, Stefan Kriiger, Mira Mezini, and Eric Bodden. 2016. Jumping through
hoops: Why do Java developers struggle with cryptography APIs?. In Proceedings
of the 38th International Conference on Software Engineering. 935-946.

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-Kofahi, and
Tien N Nguyen. 2009. Graph-based mining of multiple object usage patterns.
In Proceedings of the 7th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT symposium on the Foundations of Software
Engineering (ESEC/FSE). 383-392.

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R Gross. 2012. Stati-
cally checking API protocol conformance with mined multi-object specifications.
In 2012 34th International Conference on Software Engineering (ICSE). IEEE, 925—
935.

Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng Yao. 2019. Cryptoguard: High precision detec-
tion of cryptographic vulnerabilities in massive-sized java projects. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
2455-2472.

Martin P Robillard. 2009. What makes APIs hard to learn? Answers from devel-
opers. IEEE software 26, 6 (2009), 27-34.

Martin P Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16 (2011), 703-732.

Burr Settles. 2009. Active learning literature survey. (2009).

Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung Kim.
2019. Active inductive logic programming for code search. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 292-303.
Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel,
Alex Smola, Le Song, Philip S Yu, Xifeng Yan, and Karsten M Borgwardt. 2010.
Discriminative frequent subgraph mining with optimality guarantees. Statistical
Analysis and Data Mining: The ASA Data Science Journal 3, 5 (2010), 302-318.
Suresh Thummalapenta and Tao Xie. 2011. Alattin: mining alternative patterns
for defect detection. Automated Software Engineering 18, 3-4 (2011), 293-323.
Sira Vegas, Cecilia Apa, and Natalia Juristo. 2015. Crossover designs in software
engineering experiments: Benefits and perils. IEEE Transactions on Software
Engineering 42, 2 (2015), 120-135.

Andrzej Wasylkowski and Andreas Zeller. 2011. Mining temporal specifications
from object usage. Automated Software Engineering 18, 3-4 (2011), 263-292.
Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
object usage anomalies. In Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering (ESEC/FSE. 35-44.

Ming Wen, Yepang Liu, Rongxin Wu, Xuan Xie, Shing-Chi Cheung, and Zhendong
Su. 2019. Exposing library API misuses via mutation analysis. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 866—-877.
Litao Yan, Miryung Kim, Bjérn Hartmann, Tianyi Zhang, and Elena L Glassman.
2022. Concept-annotated examples for library comparison. In Proceedings of the
35th Annual ACM Symposium on User Interface Software and Technology. 1-16.
Tianyi Zhang, Bjorn Hartmann, Miryung Kim, and Elena L Glassman. 2020.
Enabling data-driven api design with community usage data: A need-finding
study. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1-13.

Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. 2015. Interac-
tive code review for systematic changes. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 111-122.

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are code examples on an online Q&A forum reliable?: a
study of API misuse on stack overflow. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 886-896.

Ying Zhang, Md Mahir Asef Kabir, Ya Xiao, Danfeng Yao, and Na Meng. 2022.
Automatic Detection of Java Cryptographic API Misuses: Are We There Yet?
IEEE Transactions on Software Engineering 49, 1 (2022), 288-303.

Hao Zhong and Hong Mei. 2017. An empirical study on API usages. IEEE
Transactions on Software Engineering 45, 4 (2017), 319-334.

ICSE °24, April 14-20, 2024, Lisbon, Portugal Kang et al.

[49] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and Programming. Springer, 318-343.
recommending API usage patterns. In European Conference on Object-Oriented

