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Abstract

Individuals differ greatly in their ability to remember the details of past events, yet little is known
about the brain processes that explain such individual differences in a healthy young population.
Previous research suggests that episodic memory relies on functional communication among
ventral regions of the default mode network (“DMN-C”) that are strongly interconnected with
the medial temporal lobes. In this study, we investigated whether the intrinsic functional
connectivity of the DMN-C subnetwork is related to individual differences in memory ability,
examining this relationship across 243 individuals (ages 18-50 years) from the openly available
Cambridge Center for Aging and Neuroscience (Cam-CAN) dataset. We first estimated each
participant’s whole-brain intrinsic functional brain connectivity by combining data from
resting-state, movie-watching, and sensorimotor task scans to increase statistical power. We then
examined whether intrinsic functional connectivity predicted performance on a narrative recall
task. We found no evidence that functional connectivity of the DMN-C, with itself, with other
related DMN subnetworks, or with the rest of the brain, was related to narrative recall.
Exploratory connectome-based predictive modeling (CBPM) analyses of the entire connectome
revealed a whole-brain multivariate pattern that predicted performance, although these changes
were largely outside of known memory networks. These results add to emerging evidence
suggesting that individual differences in memory cannot be easily explained by brain differences
in areas typically associated with episodic memory function.
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1 Introduction

Have you ever spoken with a family member about an event that happened long ago and

admired the level of detail with which they could recall the event? While important differences

exist at the extreme ends of the spectrum of memory ability, such as in patients with

hippocampal damage (e.g., Patient H.M. Corkin, 2002) or in individuals with superior

autobiographical memory (LePort et al., 2012; Parker et al., 2006), experiences like these

reinforce that there is substantial variation within the general population in the ability to recall

the details of past events. Yet relatively little is known about the brain processes that explain

such individual differences among healthy adults. In this study, we investigated the relationship

between individual differences in memory performance and functional communication among

regions known to be involved in episodic memory.

Prior studies examining the relationship between functional connectivity and individual

differences in memory have largely focused on the functional connectivity of the hippocampus

due to its important role in memory function (Bird & Burgess, 2008; Corkin, 2002; Squire,

1992). These studies have generally found that increased hippocampal functional connectivity is

associated with better memory ability, including its bilateral functional connectivity (L. Wang,

Negreira, et al., 2010) and its functional connectivity with cortical areas such as the lateral

occipital cortex (Tambini et al., 2010) and the posterior medial cortex (Touroutoglou et al., 2015;

L. Wang, LaViolette, et al., 2010). This positive relationship between hippocampal connectivity

and memory ability can be interpreted as reflecting greater responsiveness of the hippocampus to

time-varying signals across the brain in individuals with better memory, or conversely, disruption

in hippocampal communication in individuals with worse memory. However, these studies have

often been underpowered, both in terms of the number of participants collected (Marek et al.,
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2022) and in terms of the amount of data collected per participant (Anderson et al., 2011;

Gordon, Laumann, Gilmore, et al., 2017; Laumann et al., 2015). Brain-wide association studies,

for example, require thousands of participants to achieve acceptable levels of statistical power

(Marek et al., 2022), though this problem is mitigated by using a region of interest-based

approach to reduce the number of comparisons or by focusing on multivariate patterns within the

connectome. Functional connectivity studies may additionally benefit from more data being

collected per participant, as it has been recently shown that at least 30 minutes of high quality

MRI data is required to achieve good levels of reliability of the functional connectome (i.e., r >

0.85; Gordon, Laumann, Gilmore, et al., 2017). This is important because the reliability of a

measurement places a key constraint on the measurable effect size of the correlation between two

constructs of interest (e.g., functional connectivity and behavior). Most existing studies relating

functional connectivity to memory ability have typically used data from one MRI scan, often

comprising 6-8 minutes of data.

Because prior research has largely focused on the functional connectivity of the

hippocampus, relatively less is known about how functional connectivity among cortical

networks relates to episodic memory. Episodic memory has been linked to the functions of the

default mode network (DMN), a set of brain regions that tend to be co-activated during rest and

during tasks involving episodic construction (Buckner et al., 2008; Buckner & DiNicola, 2019;

Ritchey & Cooper, 2020). In particular, task based MRI studies have shown that memory tasks

recruit a ventral subnetwork of the DMN that is strongly interconnected with the medial temporal

lobes (Andrews-Hanna et al., 2010; Barnett et al., 2021; Buckner & DiNicola, 2019). This DMN

subnetwork, labeled DMN-C in recent brain parcellations (Schaefer et al., 2018; Yeo et al.,

2011), consists of the retrosplenial cortex, parahippocampal cortex, and the posterior angular
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gyrus. The DMN-C subnetwork is commonly co-activated with an adjacent, more dorsal DMN

subnetwork, labeled DMN-A, which consists of medial frontal and parietal regions. Recent work

has shown that these two subnetworks are dissociable in terms of their functional connectivity

during event perception (Cooper et al., 2021) as well as their contributions to memory retrieval

(Kurkela et al., 2022). In the latter study, when activity estimates from both ventral and dorsal

DMN regions were included in a model predicting retrieval success, only the ventral regions

significantly predicted success in retrieving event-specific associations. Based on these findings,

we hypothesize that the function of the DMN-C subnetwork may be central in determining

individual differences in episodic memory ability, and in particular, the ability to recall specific

details associated with past events.

More recent experiments have looked at the relationship between memory and intrinsic

functional connectivity using larger samples (Przeździk et al., 2019) or incorporating a broader

set of brain regions (Sneve et al., 2017; van Buuren et al., 2019). These studies suggest that there

is a complex, distributed pattern of whole brain functional connectivity beyond the hippocampus

that is related to individual differences in episodic memory ability, but the exact nature of this

relationship has varied from study to study. Some studies suggests that superior rememberers

have default mode networks that are decoupled from perceptual regions of the brain (Sneve et

al., 2017), whereas others suggest that superior rememberers are characterized by decreased

connectivity within the ventral default mode network and strong connectivity between the dorsal

default mode network and the frontal-parietal control network (van Buuren et al., 2019). Other

work suggests that memory ability is associated with hippocampal-cortical connectivity patterns

that gradually change along the hippocampal long axis (Przeździk et al., 2019). Taken together,

these studies suggest that there is likely some whole brain functional connectivity pattern that is
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related to episodic memory ability, but the exact nature of this whole brain pattern remains

unclear.

In the present study, we investigated the relationship between intrinsic functional

connectivity and episodic memory ability, focusing on narrative recall as a hallmark of intact

episodic memory that has been linked specifically to the function of the DMN (Lee et al., 2020;

Ritchey & Cooper, 2020). This study improved on previous work by incorporating a relatively

large sample size and by incorporating measures of “generalized functional connectivity” that

increase the amount of functional data included per participant, which improves the reliability of

functional connectivity estimates and may enhance prediction of cognitive abilities (Elliott et al.,

2019). We took two complementary approaches to examining this brain-behavior relationship.

First, we took a hypothesis-driven approach to test whether functional connectivity of the

DMN-C subnetwork was specifically related to individual differences in narrative recall. We

complemented these analyses with a data-driven approach using connectome-based predictive

modeling (Shen et al., 2017) to determine if there were any patterns of whole-brain connectivity

that were predictive of narrative recall ability.

2 Methods

To answer our research questions, we analyzed data from the Cambridge Center for

Aging and Neuroscience (Cam-CAN) repository (Shafto et al. 2014; Taylor et al. 2017). The

Cam-CAN repository is a large-scale, cross-sectional, openly available cognitive neuroscience

dataset collected by the University of Cambridge. Below we summarize the key characteristics of

the Cam-CAN dataset, focusing specifically on the subsets of the dataset that were utilized in the

present report. Our analysis plan was preregistered on the Open Science Framework:

https://osf.io/9xcu3/?view_only=1ac6856b773249cfa0767dd3d005a9ae.
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2.1 Participants

Participants included 243 participants between the ages of 18 and 50 sampled from the

original set of 653 Cam-CAN participants who had data available at the time of our access.

Participants in the original set were equally sampled from each decile of age from 18-87 years of

age with approximately equal numbers of men and women in each decile. They were required to

be cognitively healthy, to not have a serious psychiatric condition, to have met hearing and

English language requirements for experiment participation, and to be eligible for MRI scanning

(Shafto et al., 2014). Informed consent was obtained from all participants included in the study,

as described in Shafto et al. (2014). Of the 653 available subjects, 7 were missing at least one of

the five MRI scans (see MRI Data), 1 was missing data from logical memory subtest of the

Wechsler Memory Scale, 19 were missing Cattell Fluid Intelligence scores, and 1 subject was

missing ACE-R data (see Behavioral Data). To deal with missing data, we took a listwise

deletion approach such that if a participant was missing any of the variables of interest, they

were removed from further analysis. Participants were excluded from the current set of analyses

if they met the following exclusion criteria. First, participants were excluded from the analysis if

they had 2 or more functional runs that had a mean framewise displacement greater than 0.3mm,

to mitigate the effects of motion on functional connectivity estimates (n = 217). Second,

participants were excluded from the analysis if they were older than 50 years of age to mitigate

the influence of advanced aging on our results (n = 185). After applying these additional

exclusion criteria, we were left with 243 subjects to analyze. These 243 subjects were on average

36.28 years old (median = 36.33 years, SD = 8.42) and 122 self-reported as female and 121 as

male.
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2.2 MRI Data

The subset of the Cam-CAN dataset analyzed in the present report contained a single

high resolution T1-weighted anatomical scan, three functional scans, and a single field map to

correct for magnetic field inhomogeneities. The three functional scans included a

movie-watching scan, a resting-state scan, and a sensorimotor scan (detailed below). The

anatomical and field map images were used during the preprocessing of the functional scans. The

three functional scans were used to estimate each subject’s intrinsic functional connectome (see

Functional Connectivity). The anatomical scan was acquired using a Magnetization Prepared

RApid Gradient Echo (MPRAGE) sequence with the following parameters: Repetition Time

(TR) = 2250 ms; Echo Time (TE) = 2.99 ms; Inversion Time (TI) = 900 ms; flip angle = 9

degrees; field of view (FOV) = 256mm x 240mm x 192mm; voxel size =1mm isotropic;

GRAPPA acceleration factor = 2; acquisition time of 4 min and 32 sec. The movie watching scan

involved participants watching an edited version of Alfred Hitchcock’s movie “Bang, You’re

Dead”. A total of 193 volumes were acquired using a multi-echo, T2*-weighted EPI sequence

(TR = 2470 milliseconds, five echoes [TE = 9.4 milliseconds, 21.2 milliseconds, 33

milliseconds, 45 milliseconds, 57 milliseconds], flip angle = 78 degrees, 32 axial slices of

thickness of 3.7 mm with an interslice gap of 20%, FOV = 192mm × 192 mm, voxel-size = 3

mm × 3mm × 4.44 mm) with an acquisition time of 8 minutes and 13 seconds. The resting-state

scan involved participants resting in the scanner with their eyes closed. During the sensorimotor

scan, participants were presented with visual checkerboards and auditory tones, either in

isolation or simultaneously. They were instructed to respond with a button press when they were

presented with any stimuli (either visual, auditory, or both visual and auditory). The resting state

and sensorimotor scans had the same scanning parameters: a total of 261 volumes were acquired,
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each containing 32 axial slices acquired in descending order, slice thickness of 3.7 mm with an

interslice gap of 20%; TR = 1970 ms; TE = 30 ms; flip angle = 78 degrees; FOV = 192 mm ×

192 mm; voxel-size = 3 mm × 3 mm × 4.44 mm) and an acquisition time of 8 min and 40 sec.

The fieldmap consisted of an SPGR gradient-echo sequence with the same parameters as the

resting state and sensorimotor tasks, but with two TEs (5.19 ms and 7.65 ms).

2.3 Regions of Interest

Regions of interest (ROIs) were taken from the Schaefer cortical parcellation (Schaefer et

al., 2018). Specifically, we used the 400-area resolution, 17-network parcellation. We focused

our analyses a-priori on three sets of parcels from this atlas: DMN-C regions (number of parcels:

left hemisphere = 7, right hemisphere = 6), DMN-A regions (number of parcels: left hemisphere

= 18, right hemisphere = 16), and all other regions (number of parcels: left hemisphere = 176,

right hemisphere = 178). DMN-C regions consisted of the bilateral parahippocampal gyrus,

bilateral retrosplenial cortex, and the bilateral posterior angular gyrus (Figure 1a, blue regions).

DMN-A regions included the bilateral posterior cingulate cortex, the bilateral precuneus, the

bilateral medial prefrontal cortex, the bilateral anterior angular gyrus, and a bilateral section of

the dorsal prefrontal cortex (Figure 1a, yellow regions). We focused on regions in the DMN-C

and DMN-A networks due to their roles in episodic memory and simulation (Buckner &

DiNicola, 2019; Ritchey & Cooper, 2020) and their correspondence with ventral and dorsal

subnetworks we have previously identified (Cooper et al., 2021; Kurkela et al., 2022). We note

that these were inadvertently mislabeled in our pre-registration. To supplement this cortical atlas,

we included hippocampal ROIs created using the anatomical delineations from Ritchey and

colleagues (2015). Specifically, we used hippocampal ROIs comprising the hippocampal head,

the hippocampal body, and the hippocampal tail from the right and left hemispheres. These six
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hippocampal ROIs were added to the 400 cortical ROIs to form the functional connectome (i.e.,

406x406 ROI-to-ROI connectivity matrix).

2.4 Behavioral Data

Summary statistics for the behavioral and neural variables of interest are presented in

Table 1. Behavioral data included performance on the following cognitive assessments: the

logical memory subtest from the Wechsler Memory Scale Third UK edition (Weschler, 1999),

the Cam-CAN emotional memory task (Taylor et al., 2017), the Addenbrook Cognitive

Examination-Revised (variable name: ACER), and the Cattell Test of Fluid Intelligence (variable

name: Cattell). The logical memory subtest from Wechsler Memory Scale involved having

participants read two short passages and subsequently verbally recall as many story details as

possible at two different time points: first immediately after reading the short passages and then

again after a ~20 min delay. Verbal recalls were scored for the number of story details correctly

recalled at each point in time. The number of story details recalled at both points in time were

averaged together to form a narrative recall score, which serves as our primary measure of

memory ability and primary dependent variable. The emotional memory task included recall of

object-scene associations (see (Taylor et al., 2017) for a description of this task), and the total

number of detailed scene recalls was incorporated here as an additional measure of memory

ability. Narrative recall and emotional memory scores were standardized across the sample and

averaged to create a composite measure of memory ability. Analyses additionally incorporated

two general measures of cognitive function. The ACER is a standardized cognitive battery

originally designed for dementia screening. The battery is designed to test participants’ ability in

5 different cognitive domains, including attention, memory, fluency, language, and visual-spatial.

The total score on this battery was used as an index of general cognitive function. The Cattell
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Test of Fluid Intelligence is a timed pen and paper task where participants are required to solve a

series of non-verbal puzzles. Here we use the total score on this task as a general index of fluid

intelligence.
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Correlations

Variable mean min max sd n mem-narr mem-emo Age Sex Cattell ACER fd within between extra

mem-narr 15.28 2.50 23 3.50 243

mem-emo 52.98 4 105 23.98 120b 0.44

Age 36.28 18.50 49.83 8.42 243 -0.13 -0.32

Sexa 0.50 0 1 243 0.14 0.10 -0.07

Cattell 36.35 22 44 4.23 235c 0.35 0.30 -0.25 -0.19

ACER 96.54 74 100 3.63 243 0.40 0.31 0.12 0.03 0.39

fd 0.14 0.05 0.25 0.04 243 -0.10 -0.11 0.23 0.02 -0.22 -0.14

within 0.31 0.17 0.50 0.06 243 0.02 0.09 -0.21 0.02 0.09 0.04 -0.23

between 0.15 0.03 0.26 0.05 243 0.04 -0.08 -0.01 0.09 -0.06 0.03 -0.10 0.53

extra -0.02 -0.06 0.02 0.01 243 -0.09 -0.16 0.14 0.02 -0.06 -0.07 0.14 -0.55 -0.63

hipp 0.00 -0.03 0.04 0.01 243 -0.10 -0.22 -0.02 -0.18 0.01 -0.03 -0.07 0.02 -0.19 0.28

Table 1: Data Summary. Statistical summary of data analyzed for the current report. mem-narr = number of story details recalled in the logical memory subtest
of the Wechsler Memory Scale – average of immediate and delayed, mem-emo = total number of detailed scene recalls in the Cam-CAN emotional memory task,
Cattell = total score on the Cattell Test of Fluid Intelligence, ACER = total score on Addenbrook’s Cognitive Evaluation Revised (ACE-R), fd = mean framewise
displacement, within = average functional connectivity estimate (Pearson’s correlation r) of DMN-C—DMN-C connections, between = average functional
connectivity estimate (Pearson’s correlation r) of DMN-C–DMN-A connections, extra = average functional connectivity estimate (Pearson’s correlation r) for
DMN-C–rest of the brain connections, n = number of complete observations. Correlations were calculated using all available complete pairs of data. All values
are rounded to two decimal places where appropriate. a Sex was coded such that Female = 1, Male = 0. b Half of subjects completed Cam-CAN’s emotional
memory task (see Shafto et al. 2014). c 8 Subjects Missing Cattell Scores.

11



2.5 Analysis

2.5.1 MRI Quality Control

The quality of the functional MRI data was assessed using the MRIQC software package

(Esteban et al., 2017). Quality reports generated from this software package were visually

inspected for scanner artifacts and motion-related corruption. All scans that had a mean

framewise displacement greater than 0.3mm were excluded from further analysis. If subjects had

2 or more scans with a mean framewise displacement greater than 0.3mm, then the subject was

excluded from further analysis (see Participants). This conservative approach was adopted in

order to limit the effects of head motion on functional connectivity measures (see Cooper et al.,

2021 for a similar exclusion criterion; Power et al., 2012, 2014).

2.5.2 MRI Preprocessing

MRI data were preprocessed using fMRIPrep 20.2.0 (Esteban et al., 2018, 2019).

Processing steps for the T1w images included correction for intensity non-uniformity, skull

stripping, brain tissue segmentation, and volume-based spatial normalization to the ICBM 152

Nonlinear Asymmetrical template version 2009c. Processing steps for the 3 BOLD runs included

slice-timing correction, realignment, using the fieldmap to optimize co-registration of the

functional images to the anatomical reference image, normalization of the BOLD images to the

ICBM 152 Nonlinear Asymmetrical template version 2009c, and the calculation of confounding

time-series including basic 6 head-motion parameters (x,y,z translation; pitch, roll, yaw rotation),

temporal derivatives and the quadratic terms of the head-motion parameters, noise components

from a principal components analysis based denoising routine (CompCorr), framewise

displacement, and DVARS. For a much more detailed description of the processing pipeline
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please refer to the Supplemental Materials which contains the recommended fMRIPrep

boilerplate.

2.5.3 Functional Connectivity

Functional connectivity analyses were performed using the CONN toolbox

(Whitfield-Gabrieli & Nieto-Castanon, 2012). Confounds removed from each voxel’s time series

included six head motion parameters and their temporal derivatives, up to the first six aCompCor

components from a combined WM and CSF mask, framewise displacement, and the global

signal1 as calculated by fMRIPrep. Additional spike regressors were included for any time points

that exceeded a FD of 0.6 mm and/or a standardized DVARS of 2. After regression of motion

confounds, BOLD data was band-pass filtered with a high-pass filter of 0.008 Hz and a low-pass

filter of 0.1 Hz. No additional modeling was performed for the movie-watching and the resting

state data. For the sensorimotor task, task-related activations were regressed out of the time

series prior to calculation of functional connectivity. Specifically, task related activation was

modeled in the sensorimotor task by convolving stick functions placed at stimulus onsets with

SPM12’s hemodynamic response function. ROI-to-ROI functional connectivity was calculated

using the Pearson's correlation coefficient after denoising and task modeling. The ROI-to-ROI

intrinsic functional connectivity estimates were created by averaging functional connectomes

calculated from all available functional scans, resulting in a measure of “generalized” functional

connectivity intrinsic to each individual (Elliott et al., 2019). The resulting ROI-to-ROI intrinsic

functional connectomes were then summarized to three terms to test our research hypotheses.

1 Global signal regression (GSR) was not included in the pre-registered analysis plan. However, since
pre-registration, we have been persuaded by recent publications suggesting that GSR optimizes predicting individual
differences in behavior from functional connectivity estimates (Finn & Bandettini, 2021; Li et al., 2019). We report
the results without global signal regression in the Supplemental Materials. The conclusions regarding the DMN
remain the same across methods, with some differences in the hippocampal and CBPM analyses noted in the Results
and Supplemental Materials.
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Within subnetwork connectivity was operationalized as the average of all functional connections

among DMN-C nodes in the Schaefer et al. (2018) atlas, between subnetwork connectivity as the

average connectivity between all DMN-C and DMN-A nodes, and extra network connectivity as

the average of all connections between the DMN-C nodes and all other nodes not contained in

DMN-C or DMN-A. See Figure 1b for an illustration. Although averaging across the three scan

types has the advantage of increasing the amount of fMRI data used to estimate functional

connectivity and increasing the reliability of the resulting functional connectivity estimates

(Elliott et al., 2019), it may obscure task-specific relationships between functional connectivity

and behavior, particularly in the context of tasks that vary considerably in their content and

demands. Thus, we additionally conducted exploratory analyses in which functional connectivity

relationships were analyzed separately for each of the three scan types (resting-state,

movie-watching, and sensorimotor task).

2.5.4 Statistical Modeling

All statistical models, tables, and figures were created using R (R Core Team, 2022).

Linear regression models were used to estimate the relationship between summary measures of

functional connectivity and memory ability, on their own and then including covariates for age,

sex, average framewise displacement, fluid intelligence, and cognitive function as defined under

Behavioral Data. Standardized beta coefficients are reported. Summary tables for the linear

regressions were created using a combination of the R packages gtsummary (Sjoberg et al.,

2021) and flextable (Gohel & Skintzos, 2023). All figures were created using the R package

ggplot2 (Wickham, 2016).
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2.5.5 Connectome Based Predictive Modeling

To complement the hypothesis driven approach described above, the current report used

connectomic based predictive modeling (CBPM; Shen et al., 2017). CBPM involves calculating

a functional connectome for each individual and determining which connections are statistically

related to a behavioral variable of interest. All connections that are related to behavior above

some arbitrarily defined threshold (e.g., at p < .01) are then summarized by separating out

connections with a significant positive correlation with behavior from those that have a

significant negative correlation with behavior. The connections in the connectome with

significant positive and negative correlations with behavior are then summed into separate

positive and negative terms for use in a linear regression predicting behavior. The analysis

method then estimates a linear regression using these summed positive and negative connection

terms to predict the behavior of a left-out participant in a leave-one-out cross validation

procedure. Successful prediction of a behavioral variable using the functional connectome is then

determined by correlating the predicted behavioral scores for each participant with the observed

behavioral scores with statistical significance determined using a null permutation procedure that

reruns the entire analysis a given number of times, each time randomly pairing connectomes with

behavioral scores. All CBPM analyses were performed using a connection selection threshold of

p < .01 and the null distribution was formed from 100 null simulations. The results from

alternative connection selection thresholds are reported in the Supplemental Materials. Statistical

significance of the CBPM analysis was determined by estimating the proportion of null

simulations that resulted in better predictive performance than the actual analysis. All CBPM

analyses were performed using modified analysis code published by Shen and colleagues (2017).

To control for nuisance variables, the CBPM analysis code published by Shen and colleagues

was modified to use the MATLAB function partialcorr when selecting connections used for
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prediction. To determine which connections in the connectome the models were relying on to

make their predictions, we also performed computational lesion analyses. In a computational

lesion analysis, a predictive model is iteratively fit while excluding a set of features. If model

performance is hindered by the removal of a set of features, then it is inferred that the model is

relying on these features to make successful out-of-sample predictions.

Figure 1. Regions and connections of interest. A.) Regions of interest were based on the 400 parcel 17-network
parcellation from the Schaefter atlas (Schaefer et al., 2018). Here we highlight the DMN-C (blue) and DMN-A
(yellow) networks from this atlas. This visualization was created in freeview using the fsaverage inflated surface
template provided in the Schaefer et al. (2018) atlas. B.) The lower triangle of the functional connectome.
Connections of interest are highlighted, including “within” connections (blue), “between” connections (orange), and
“extra” network connections (yellow) of the DMN-C. Connections of no interest are shown in gray.

3 Results

Functional connectivity within the Default-C subnetwork. Average intrinsic functional

connectivity among DMN-C regions was not related to narrative recall (β = 0.06, SE = 0.23,

t(241) = 0.28, p = 0.78; Figure 2a). This pattern did not change after controlling for age, sex, and

average framewise displacement (β = -0.10, SE = 0.23, t(238) = -0.42, p = 0.68) or after also
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controlling for fluid intelligence and cognitive function (β = -0.06, SE = 0.21, t(228) = -0.28, p =

0.78).

Functional connectivity between the Default C and Default A subnetworks. Average

between subnetwork connectivity did not predict narrative recall on its own (β = 0.15, SE = 0.23,

t(241) = 0.66, p = 0.51; Figure 2b), nor did it predict narrative recall when controlling for age,

sex, and average framewise displacement (β = 0.07, SE = 0.22, t(238) = 0.33, p = 0.74), nor

when additionally controlling for fluid intelligence and cognitive function (β = 0.19, SE = 0.20,

t(228) = 0.96, p = 0.34).

Functional connectivity between the Default C subnetwork and all other brain regions.

The average strength of functional connections from DMN-C regions to regions in networks

other than the DMN-A and DMN-C did not predict narrative recall on its own (β = -0.31, SE =

0.22, t(241) = -1.39, p = 0.17; Figure 2c), when controlling for age, sex, and average framewise

displacement (β = -0.24, SE = 0.23, t(238) = -1.05, p = 0.29), nor when additionally controlling

for fluid intelligence and cognitive function (β = -0.25, SE = 0.20, t(228) = -1.23, p = 0.22).

Functional connectivity of the hippocampus. Although not part of our preregistered set of

analyses, we decided to look at the relationship between narrative recall and intrinsic functional

connectivity of the hippocampus given prior research linking this region to individual differences

in memory (Touroutoglou et al., 2015; L. Wang, LaViolette, et al., 2010; L. Wang, Negreira, et

al., 2010). We set about testing this in a similar manner to our preregistered set of analyses. We

found that the average strength of all hippocampal connections was not a significant predictor of

narrative recall on its own (β = -0.34, SE = 0.22, t(241) = -1.5, p = 0.13; Figure 2d). This result

held when we statistically controlled for age, sex, and average framewise displacement (β =

-0.29, SE = 0.23, t(238) = -1.28, p = 0.2), and when we further controlled for fluid intelligence
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and cognitive function (β = -0.26, SE = 0.20, t(228) = -1.3, p = 0.2). We note here that the

inclusion of global signal regression in our analysis pipeline influenced this result in that

exclusion of this step resulted in a significant negative association between hippocampal

connectivity and narrative recall (see Supplemental Materials for further discussion).

Figure 2: Relationships between memory ability and intrinsic functional connectivity among memory networks.
Scatter plots and best fit linear regression line of narrative recall performance on average intrinsic connection
strength A) among DMN-C regions, B) between DMN-C and DMN-A regions, C) DMN-C and all other regions,
and D) the Hippocampus and all regions. There was little evidence to suggest that the strength of these connections
was predictive of individual differences in memory ability.
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Task-specific relationships between functional connectivity and memory ability. To

explore whether there might be task-specific relationships between functional connectivity and

memory, we re-ran the above analyses separately for each scan type (resting-state,

movie-watching, and sensorimotor task). There were no significant relationships between any of

the task-specific functional connectivity measures and narrative recall, all ps > .05.

We additionally sought to determine whether this pattern of null results was specific to

the relationship between functional connectivity and narrative recall performance. To do so, we

calculated a composite memory ability score incorporating the narrative recall measure as well as

performance on an emotional memory task collected in a subset of our sample (N=120). This

composite measure was included as the dependent variable in the regression models analogous to

those reported above. The results were largely similar to those reported for the narrative recall

analyses above, with no significant relationships between composite memory ability and

functional connectivity among DMN regions. One exception was that in these analyses, there

was a significant negative relationship between hippocampal functional connectivity and

composite memory ability, β = -0.21, SE = 0.08, t(118) = -2.73, p = 0.007, which held up after

controlling for age, sex, framewise displacement, fluid intelligence, and cognitive function, β =

-0.17, SE = 0.07, t(110) = -2.53, p = 0.013. We note that a similar numerical pattern was

observed in the narrative recall analyses, suggesting that these results reflect a quantitative but

not a qualitative shift in the brain-behavior relationship.

Connectome based predictive modeling. In a planned exploratory analysis, we ran a

CBPM analysis to see if we could predict narrative recall using the entire intrinsic functional

connectome. The grand mean functional connectome for our sample is reported in the

Supplemental Materials. The first analysis—where we used the entire 406 x 406 intrinsic
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functional connectome to predict narrative recall—resulted in a significant correlation between

observed and predicted narrative recall scores (r{observed, predicted} = 0.164, p = 0.027) – suggesting

that there is a multivariate pattern within the broader functional connectome that is predictive of

individual differences in narrative recall.

To ensure the robustness of this result, we first reran the CBPM analysis while

controlling for nuisance variables when selecting connections to be used for predicting left out

subjects (using the MATLAB function partialcorr, see Shen et al. (2017)). Specifically, we saw

that the predictive performance of the intrinsic connectome held when controlling for age,

self-reported sex, and average framewise displacement (r{observed, predicted} = 0.1498, p < 0.01). All

subsequent CBPM analyses were performed controlling for age, self-reported sex, and average

framewise displacement. We next tested whether this result held when selecting different

connection selection thresholds. In line with previous reports that the CBPM method is robust to

connection selection threshold (Finn et al., 2015; Jangraw et al., 2018; Shen et al., 2017),

rerunning the CBPM analysis using connection selection thresholds of p = [0.001, 0.005, 0.01,

0.5, 0.1] had similar outcomes (Supplemental Materials). Finally, we examined whether these

results were affected by the inclusion of global signal regression in our processing pipeline (see

Supplemental Materials). Removing the global signal regression resulted in non-significant

prediction performance, r{observed, predicted} = 0.081, p = 0.099. Together, these findings gave us

confidence that our CBPM results were robust to most analytic decisions, while it appears that

including global signal regression improved predictive performance.

We then examined how combining functional connectomes from different tasks

influenced our model. Previous research suggests that functional connectivity calculated by

collapsing across resting-state and task scans increases the reliability and thus the predictive
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utility of individuals’ functional connectomes (Elliott et al., 2019). To confirm that this was the

case in our data, we reran the CBPM analysis on functional connectomes calculated using the

movie watching, resting-state, and sensorimotor task scans separately. Models built using

functional connectomes from each task individually underperformed compared to the model built

using the combined intrinsic functional connectome. Among the three tasks, the model built

using functional connectomes from the movie-watching scan was the only one able to predict

narrative recall better than chance. Interestingly, models built using resting-state data performed

particularly poorly, with almost no relationship between observed and predicted narrative recall

scores in out-of-sample data (Supplemental Materials). These results support previous reports

that suggested that functional connectivity estimates calculated across task and resting-state

scans outperform those from short resting-state scans alone (Elliott et al., 2019).

To identify which networks were driving model performance, we ran a computational

lesion analysis. In the computational lesion analysis, we reran our CBPM analysis excluding

each network from the analysis in turn. Network importance in this computational lesion analysis

was determined via a significant drop in model performance with the exclusion of a network and

its connections. The results of our computational lesion analyses are reported in Table 2.

Exclusion of typical memory-related brain regions (i.e., DMN-C regions and the hippocampus)

had little impact on model performance. Among non-memory related networks, the

Somatomotor Network B was the only network whose exclusion led to a significant drop in

model performance. To visualize the specific connections related to narrative recall, Figure 3

depicts the partial correlation between intrinsic functional connectivity and narrative recall

scores for every connection in the functional connectome, averaged within each network. We

also calculated the number and proportion of connections between each of our networks of
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interest that exceeded our connection selection threshold of p < 0.01 (see Supplemental

Materials), as these constitute the connections that actually went into the CBPM analysis. These

visualizations reveal a pattern of increases and decreases throughout the connectome associated

with individual differences in narrative recall. Taken all together, these results suggest that

memory ability related information was largely contained within connections of non-memory

related brain regions.

r p(null_sim)

Non Memory Networks

VisCent 0.156 0.000

VisPeri 0.152 0.010

SomMotA 0.169 0.000

SomMotB -0.012 0.386

DorsAttnA 0.175 0.000

DorsAttnB 0.143 0.000

SalVentAttnA 0.168 0.000

SalVentAttnB 0.165 0.000

LimbicB 0.130 0.010

LimbicA 0.143 0.000

ContA 0.139 0.010

ContB 0.155 0.000

ContC 0.148 0.000

DefaultA 0.169 0.000

DefaultB 0.094 0.040

TempPar 0.133 0.010

Memory Networks

DefaultC 0.166 0.000
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Hipp 0.154 0.000

Table 2: Computational Lesion Analysis. Excluding networks of regions traditionally related to episodic memory
ability – i.e., the Default Mode Network C and the Hippocampus – have very little impact on model performance.
Among non memory networks, only excluding Somatomotor Network B regions from the analysis resulted in a
significant drop in model performance. r = Pearson’s correlation between observed and predicted narrative recall
scores, p = proportion of null simulations that were more extreme than observed. See Yeo et al. (2011) and Schaefer
et al. (2018) for descriptions of each network.
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Figure 3: Evaluating Feature Importance. The partial correlation of connection strength with narrative recall scores after controlling for age, sex, and average
in-scanner motion. DMN-C and hippocampal connections are offset to highlight these memory-related regions. See Yeo et al. (2011) and Schaefer et al. (2018)
for descriptions of each network.
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4 Discussion

The current report examined how individual differences in episodic memory ability are

related to intrinsic functional connectivity, focusing specifically on regions in the default mode

network (DMN-C) and the hippocampus that have been strongly implicated in episodic memory

(Ritchey & Cooper, 2020). Across a sample of 243 individuals, we found little evidence that the

strength of DMN-C and hippocampal functional connections was related to narrative recall

performance. We did find evidence, however, that connectome-wide patterns of functional

connectivity could predict individual differences in narrative recall. These predictive models

were robust to analytic decisions and remained significant after controlling for age, self-reported

sex, and average in-scanner movement. Probing these predictive models further revealed that

superior narrative recall performance was related to functional connectivity of brain regions not

typically related to memory ability – specifically, to somatomotor regions. Together, these results

suggest that there is limited evidence connecting individual differences in memory to measures

of intrinsic functional connectivity among regions typically associated with memory function.

The null results reported here were contrary to our a priori hypotheses, and they contrast

with previous reports linking changes in intrinsic functional connectivity of default mode

network (Sneve et al., 2017; van Buuren et al., 2019) and hippocampal regions (Setton,

Mwilambwe-Tshilobo, et al., 2022; Touroutoglou et al., 2015; L. Wang, LaViolette, et al., 2010;

L. Wang, Negreira, et al., 2010) to episodic memory ability. One possible explanation for this set

of results is that the strength of intrinsic functional connections might not be reliably related to

episodic memory ability, despite its relationship to other measures of cognitive performance.

Measures of intrinsic functional connectivity, often obtained from resting-state scans that do not

include an explicit cognitive task, have been widely used to study individual differences in
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cognition. Strong evidence has accumulated over the years to suggest that these measures are

related to behavioral phenotypes. Studies of the resting-state have found that there is a normative

pattern of functional connections in the brain, such that brain regions form stable networks

(between 7-17, Yeo et al., 2011). Recent work suggests that the majority of variability in the

strength of these connections is attributable to stable individual differences away from this

group-level pattern (as opposed to variation attributable to cognitive task or day-to-day variation;

(Gratton et al., 2018). Furthermore, the strength of intrinsic connections has been shown to be

predictive of a number of different behavioral phenotypes including neuroticism and extraversion

(Hsu et al., 2018), trait-level anxiety (Z. Wang et al., 2021), fluid intelligence (Finn et al., 2015),

creativity (Beaty et al., 2018), sustained attention (Rosenberg et al., 2016), and working memory

ability (Avery et al., 2020). Patterns within the intrinsic functional connectome are so identifiable

that they can be used to identify an individual from a group, acting as a sort of “brain

fingerprint” (Finn et al., 2015). Thus, it seemed reasonable to hypothesize that individual

differences in intrinsic functional connectivity would be related to memory ability.

Other work critiques this line of research, however, suggesting that “intrinsic” functional

connectivity calculated in the resting-state is less useful for predicting individual differences

compared with “active” functional connectivity calculated while participants complete cognitive

tasks (Greene et al., 2018, 2020; Lin et al., 2021), especially tasks that are relevant to the

predicted cognitive ability (Zhao et al., 2023). An analogy would be examining two cars and

trying to determine which one is the better race car — you may not be able to tell the difference

between an expensive race car and a Toyota Civic by looking under the hood when they are

sitting in a garage, but you may be able to tell the difference when you examine how their

mechanical parts perform when engaged in a race. The results of one of our supplemental
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analyses support this idea, with out-of-sample performance being significantly worse using the

resting-state scan compared with the movie-watching or sensorimotor task data (Supplemental

Materials). A closely related critique also questions the use of resting state networks for

understanding how the brain supports cognition. This critique specifically puts forth the idea that

the most important unit of analysis when relating brain measures to cognition is not networks

identified via low-frequency coactivation during rest, but networks identified via high frequency,

transient coupling while participants complete highly controlled cognitive tasks (Cabeza &

Moscovitch, 2013; Davis et al., 2017; Moscovitch et al., 2016). These “process specific

alliances” often straddle resting-state network definitions, and in contrast to resting-state

networks, they are thought to be able to flexibly assemble and disassemble depending on task

demands. For example, interactions between the hippocampus and the left ventrolateral

prefrontal cortex are thought to support successful episodic encoding (e.g., Wing et al., 2013),

despite the fact that hippocampus is typically a member of the default mode network and left

ventrolateral prefrontal cortex is not (Davis et al., 2017). Thus, it could be the case that

individual differences in behavior manifest themselves in individual differences in the strength of

these high frequency and cognition specific alliances and not in strength of low-frequency

resting state networks. Here, we combined data from resting-state and task scans in order to

estimate a “generalized” measure of functional connectivity (Elliott et al., 2019), which is

thought to be a more reliable measure than those derived from short resting-state scans alone, but

will necessarily obscure task-specific variation. When considering the scans separately, we found

largely similar results across the different types of scans. However, there was evidence for

significant connectome-based prediction only for the movie-watching scan, which is notable

because processing event narratives in the context of movie-watching may be more relevant to
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the kinds of processes that support performance on narrative recall tasks (Jääskeläinen et al.,

2021). Thus, although we did not find a reliable relationship between memory ability and

intrinsic measures of functional connectivity in memory related brain regions, we hypothesize

that this relationship may be apparent when measuring brain activity while participants complete

a memory-related task, or when incorporating brain measures that isolate a particular pattern of

activity related to memory function (e.g., (Richter et al., 2023).

In our data-driven analyses, we found that a multivariate brain-wide pattern of functional

connectivity could predict individual differences in narrative recall reliably out-of-sample. Our

predictive analyses suggest that the brains of superior rememberers are characterized, in part, by

decoupling of somatomotor regions and DMN-A regions and increased communication between

somatomotor regions and visual processing regions. We speculate that the involvement of

somatomotor regions in predicting memory ability might be explained by variation in

goal-directed attention in the sensorimotor task, as successful attention in this task might be

related to attentional factors contributing to individual differences in memory (Unsworth, 2019).

The decoupling of default and sensory regions is in line with previous results that likewise

showed evidence the superior rememberers were characterized by decoupling between default

mode and sensory networks (Sneve et al., 2017). Other studies, however, have shown that

general increases in task-related DMN connectivity are related to episodic memory ability (King

et al., 2015) and that lower MTL-DMN and higher DMN-frontoparietal control network

connections are related to memory ability (van Buuren et al., 2019). A recent, well-powered

study identified multivariate patterns of associations between individual differences in

autobiographical memory and functional connectivity among DMN regions, including the

temporal pole and hippocampus, although these relationships were largely outside of the
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neocortical regions most commonly associated with episodic memory (Setton,

Mwilambwe-Tshilobo, et al., 2022). What is clear from the results presented here and the

literature to date is that information about memory ability in healthy young adults is likely

contained within the functional connectome beyond brain networks classically linked to episodic

remembering (Lin et al., 2021). The exact pattern of whole brain connectivity that predicts

memory ability, however, remains inconsistent from study to study. As such, we refrain from

drawing strong conclusions about the specific connections related to memory in our connectome

based predictive modeling analyses.

An important factor that may have influenced our results is our choice of memory

measure. Here, we used a standard neuropsychological measure of memory that assessed an

individual’s ability to recall the details of a short narrative – the logical memory subtest of the

Wechsler Memory Scale (Weschler, 1999). The logical memory subtest of the Wechsler Memory

Scale was chosen because it was available for the largest number of subjects in the Cam-CAN

dataset, compared to other included memory measures, and this measure has been previously

shown to correlate with individual differences in brain activity in response to event boundaries

during the Cam-CAN movie watching scan (Reagh et al., 2020). Narrative recall has also been

linked specifically to the function of the DMN, such that there is increased activity and

functional integration among DMN regions during recall of event narratives (Lee et al., 2020;

Ritchey & Cooper, 2020). Reliance on a single memory measure to capture an individual's

memory ability, however, may be problematic given previous research suggesting that

individuals have aptitudes for different types of memory tasks (Unsworth, 2019). We speculate

that differences in how memory ability is operationalized could explain the mixed state of the

literature – all of the previous research relating individual differences in memory ability and
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functional connectivity have taken a unique approach to operationalizing memory ability (King

et al., 2015; Lin et al., 2021; Sneve et al., 2017; van Buuren et al., 2019). King and colleagues

(2015) and Sneve and Colleagues (2017) relied on performance in source memory recognition

tasks; Lin and colleagues (2021) relied on performance on a remember/know/new recognition

memory paradigm; van Burren and colleagues (2019) relied on performance on an

object-location memory task; Setton and colleagues (2022) used the number of internal details

generated during an autobiographical memory interview. The brain areas supporting retrieval

depend in part on the content, modality, and format of memory tasks (Diana et al., 2007),

consistent with the idea that memory performance is supported by a combination of task-specific

and task-general processes (Rugg & Vilberg, 2013). Such differences in the content and format

of memory tasks may explain why there has not been one consistent neural signature associated

with performance. Here, we attempted to test the generalizability of our results by creating a

composite measure of memory ability in a subset of our sample, again finding little evidence for

a relationship between DMN functional connectivity and memory ability. In this set of analyses,

hippocampal functional connectivity was significantly associated with individual differences in

composite memory ability, though surprisingly, this relationship was in the negative direction.

That is, individuals with higher composite memory scores had lower intrinsic functional

connectivity between the hippocampus and all other regions, contrasting with prior work (Setton,

Mwilambwe-Tshilobo, et al., 2022; Touroutoglou et al., 2015; L. Wang, LaViolette, et al., 2010;

L. Wang, Negreira, et al., 2010) but see (Matijevic et al., 2022). Due to the unexpectedness of

this result and its sensitivity to analysis decisions, we remain cautious in interpreting this finding

but consider it a target for further investigation. Future research on individual differences in

memory ability should also incorporate multiple memory measures to get an unbiased measure
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of individuals’ overall memory ability, or alternatively, systematically select and compare

memory measures that are likely to correspond with dissociable neural processes (e.g., Ngo et

al., 2021).

While the studies reviewed above have considered individual differences in objective

evaluations of participants’ memory, other studies have looked at measures of individuals’

subjective evaluations of their own memory when relating individual differences to brain

function (Petrican et al., 2020; Sheldon et al., 2016). Sheldon and colleagues (2016), for

example, examined the relationship between the strength of functional connectivity of the

parahippocampal cortex and subjective reports of episodic memory tendencies measured by the

Survey of Autobiographical Memory (SAM) survey (Palombo et al., 2013). The SAM measures

participants’ self-reported mnemonic traits, measuring their tendency, for example, to remember

specific event and contextual details when recalling events (episodic subscale) versus their

tendency to remember facts about oneself, events, or the world that lack contextual detail

(semantic subscale). There is some evidence that individual differences in self-reported

mnemonic traits measured by the episodic subscale of the SAM are associated with a similar

resting-state functional connectivity profile as individual differences measured using a visual,

laboratory based episodic memory task (Petrican et al., 2020). Future work should consider the

relationship between subjective and objective measures of memory function (Clark & Maguire,

2020; e.g., Cooper & Ritchey, 2022; Setton, Lockrow, et al., 2022) in the context of how these

measures relate to individual differences in brain function.

An intriguing future direction is to look at other facets of brain connectivity and how they

may be related to episodic memory ability. There are at least three facets of brain connectivity

that could theoretically support individual differences in cognition: variability in connectional
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strength, variability in the spatial localization of brain regions, and variability in large-scale

network topology (i.e., large scale networks have different sets of constituent nodes across

subjects (Gordon & Nelson, 2021)). The current study, like many of the studies that have come

before, focused on how variability of the strength of functional connections related to individual

differences in memory ability. Recent work, however, suggests that there are substantial

individual differences in the size and topological organization of functional brain areas (Gordon,

Laumann, Adeyemo, et al., 2017; Gordon & Nelson, 2021; Kong et al., 2019; Laumann et al.,

2015). Gordon and Nelson (2021) display a striking example of this type of idiosyncrasy, where

the posterior medial precuneus node of the default mode network for one subject is translated

along the cortical surface such that the node wraps around to the lateral side of the brain. Recent

work has also identified individual differences in large-scale network topology, such that nodes

that are the same across individuals are a part of different large scale networks (Gordon &

Nelson, 2021; Laumann et al., 2015; Seitzman et al., 2019). Such “network variants” appear to

occur in specific regions of the brain, particularly in default mode regions, and are observed in

some datasets in approximately 33% of individuals (Seitzman et al., 2019). These differences in

the spatial topography of functional nodes on the cortical surface also appear to have behavioral

relevance. Individuals that have similar spatial network topographies also perform similarly on

cognitive tasks, so much so that individual behavior can be predicted out of sample using

similarity in brain wide network topography and network size (Kong et al. 2019). An intriguing

possibility is that individual differences in memory ability could be related to the presence or

absence of network variants in default mode regions.

In conclusion, we found little evidence in support of a relationship between individual

differences in narrative recall and intrinsic functional connectivity among cortical and
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hippocampal networks commonly associated with episodic memory. We did find a multivariate

brain wide pattern of functional connectivity that was predictive of narrative recall, characterized

by decoupling of somatomotor regions from default mode regions. Our findings agree with

previous research that suggests that information about memory ability is contained in functional

connections among regions outside of those classically linked to episodic memory. The exact

nature of this brain connectivity pattern that predicts memory ability remains unclear. We believe

this is due to variability in how memory ability is operationalized and the low power of previous

studies both in terms of number of subjects collected and in the amount of data collected per

subject. Future research on the relationship between individual differences in memory and

functional brain networks should incorporate multiple measures to operationalize memory ability

unbiased toward a particular task (Unsworth, 2019), collect a large amount of data (Gordon,

Laumann, Adeyemo, et al., 2017; Marek et al., 2022), especially task-related data (Greene et al.,

2018), and examine additional facets of brain organization that may better capture variability

across individuals (Gordon & Nelson, 2021).
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