
  &         Full Terms Conditions of access and use can be found at
:// . . / / ? = 20https www tandfonline com action journalInformation journalCode uasa

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uasa20

Nearly Dimension-Independent Sparse Linear
Bandit over Small Action Spaces via Best Subset
Selection

Yi Chen, Yining Wang, Ethan X. Fang, Zhaoran Wang & Runze Li

To cite this article:  ,  ,  . ,   &   (2024)Yi Chen Yining Wang Ethan X Fang Zhaoran Wang Runze Li
 -          Nearly Dimension Independent Sparse Linear Bandit over Small Action Spaces via Best
 ,      , 119:545, 246-258, :Subset Selection Journal of the American Statistical Association DOI

10.1080/01621459.2022.2108816

To link to this article:  :// . /10.1080/01621459.2022.2108816https doi org

   View supplementary material

 : 27  2022.Published online Sep

      Submit your article to this journal

 : 828Article views

   View related articles

  View Crossmark data

 : 3    Citing articles View citing articles



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2024, VOL. 119, NO. 545, 246–258: Theory and Methods
https://doi.org/10.1080/01621459.2022.2108816

Nearly Dimension-Independent Sparse Linear Bandit over Small Action Spaces via
Best Subset Selection

Yi Chen∗ a, Yining Wang∗ b, Ethan X. Fangc, Zhaoran Wangd, and Runze Lie

aDepartment of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology, Hong Kong, China; b Naveen Jindal
school of Management, University of Texas at Dallas, Richardson, TX; cDepartment of Biostatistics & Bioinformatics, Duke University, Durham, NC;
dDepartment of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL; eDepartment of Statistics, Pennsylvania State
University, University Park, PA

ABSTRACT
We consider the stochastic contextual bandit problem under the high dimensional linear model. We focus on
the case where the action space is finite and random, with each action associated with a randomly generated
contextual covariate. This setting finds essential applications such as personalized recommendations, online
advertisements,and personalized medicine.However,it is very challenging to balance the exploration
and exploitation tradeoff.We modify the LinUCB algorithm in doubly growing epochs and estimate the
parameter using the best subset selection method, which is easy to implement in practice. This approach
achieves O(s

√
T) regret with high probability, which is nearly independent of the “ambient” regression

model dimension d.We further attain a sharper O(
√

sT) regret by using the SupLinUCB framework and
match the minimax lower bound of the low-dimensional linear stochastic bandit problem. Finally,we
conduct extensive numericalexperiments to empirically demonstrate our algorithms’applicability and
robustness. Supplementary materials for this article are available online.
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1. Introduction
Contextualbandit problems receive significant attention over
the past years in different communities, such as statistics, opera-
tions research, and computer science (Bubeck and Cesa-Bianchi
2012;Lattimore and Szepesvári 2020).This class of problems
studies how to make optimalsequentialdecisions with new
information in different settings,where we aim to maximize
our accumulative reward, and we iteratively improve our policy
given newly observed results. It finds many important modern
applications such as personalized recommendation (Liet al.
2010,2011),online advertising (Krause and Ong 2011),cost-
sensitive classification (Agarwal et al.2014),and personalized
medicine (Goldenshluger and Zeevi 2013;Bastani and Bayati
2015; Tewari and Murphy 2017; Keyvanshokooh et al. 2019). In
most contextual bandit problems, at each time period, we first
obtain some new information. Then, we take action based on a
certain policy and observe a new reward. Our goal is to maxi-
mize the total reward, where we iteratively improve our policy.
This article is concerned with the linear stochastic bandit model,
one of the most fundamental models in contextual bandit prob-
lems.We model the expected reward at each time period as a
linear function of some random information depending on our
action. This model receives considerable attention (Auer 2002;
Abe, Biermann, and Long 2003; Dani, Hayes, and Kakade 2008;
Rusmevichientong and Tsitsiklis 2010; Chu et al. 2011), and as
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we will discuss it in more detail, it naturally finds applications in
optimal sequential treatment regimes.

In a linear stochastic bandit model, at each time period
t ∈ {1, 2, . . . , T},we are given some action space At . Here
each feasible action i∈ A t is associated with a d-dimensional
contextual covariate Xt,i ∈ R d that is known before any action
is taken.Next, we take an action it ∈ A t and then observe a
reward Yt ∈ R. Assume that the reward follows a linear model

Yt = X t,it , θ∗  + ε t , (1)

where θ∗ ∈ R d is an unknown d-dimensional parameter, and
{εt}T

t=1 are noises. Without loss of generality, we assume that we
aim to maximize the total reward. We measure the performance
of the sequence of selected actions {it}T

t=1 by the accumulated
regret

RT {i t}T
t=1 ; θ∗ :=

T

t=1
max
i∈A t

X t,i , θ∗  − X t,it , θ∗ . (2)

Essentially, the regret measures the difference between the “best”
we can achieve if we know the true parameter θ∗ and the
“noiseless” reward we get.It is clear that the regret is always
nonnegative, and our goal is to minimize it.

Meanwhile,due to the advance in technology, there are
many modern applications where we encounter the high-
dimensionality issue,that is, the dimension d of the covariate
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is large. Note that here the total number of iterations T is
somewhat equivalent to the sample size, which is the number of
pieces of information we are able to “learn” the true parameter
θ∗ . Such a high-dimensionality issue presents in practice.For
example,given the genomic information of some patients,
we aim to find a policy that assigns each patient to the best
treatment for him/her.It is usually the case that the number
of patients is much smaller than the covariate dimension.In
this article, we consider the linear stochastic contextual bandit
problem under such a high-dimensional setting, where the
parameter θ∗ is of high dimension that d  T. We also assume
that θ∗ is sparse that only at most s d components of θ ∗

are nonzero.This assumption is commonly imposed in high-
dimensional statistics and signal processing literature (Donoho
2006; Bühlmann and Van De Geer 2011).

In addition, for the action spaces {At}T
t=1 , it is known in liter-

ature (Dani, Hayes, and Kakade 2008; Shamir 2015; Szepesvari
2016) that if there are infinitely many feasible actions at each
time period, the minimax lower bound is of order O(

√
sdT),

which does not solve the curse of dimensionality.To simplify
notations, throughout the article, we use O(·) to denote the big-
O notation that ignores all logarithmic factors.In this work,
we assume that the action spaces {At}T

t=1 are finite, small, and
random. In particular, we assume that for all t, |At | = k  d,
and each action in At is associated with a randomly generated
contextual covariate.In most practical applications,this finite
action space setting is naturally satisfied.For example,in the
treatment example,there are usually only a smallnumber of
feasible treatments available. We refer the readers to Section 3.1
for a complete description and discussion of the assumptions.
Literature review.In the next, we first briefly review existing
works on linear stochastic bandit problems under both low-
dimensionaland high-dimensionalsettings.Under the classi-
cal low-dimensionalsetting,Auer (2002) pioneers the use of
upper-confidence-bound (UCB) type algorithms for the lin-
ear stochastic bandit,which is one of the most powerfuland
fundamental algorithms for this class of problems,and is also
considered in Chu et al. (2011) and Li et al. (2010).Dani,
Hayes, and Kakade (2008) and Rusmevichientong and Tsitsiklis
(2010) study linear stochastic banditproblems with large or
infinite action spaces, and derive corresponding lower bounds.
Under the high-dimensional setting, where we assume that θ∗

is sparse,when the action spaces At ’s are hyper-cube spaces
[−1, 1]d, Lattimore,Crammer,and Szepesvári (2015) develop
the SETC algorithm that attains nearly dimension-independent
regret bounds.We point out that this algorithm exploits the
unique structure of hyper-cubes and is unlikely to be applicable
for general action spaces including the ones of our interest where
the action spaces are finite. Abbasi-Yadkori, Pál, and Szepesvári
(2011) and Abbasi-Yadkori, Pal, and Szepesvari (2012) consider
a UCB-type algorithm for general action sets and obtain a regret
upper bound of O(

√
sdT), which depends polynomially on the

ambient dimension d.Carpentier and Munos (2012) consider
a different reward modeland obtain an O( θ∗ 2s

√
T) regret

upper bound, where ·  denotes the 2 norm of vector. Golden-
shluger and Zeevi (2013) and Bastani and Bayati (2015) study a
variant of the linear stochastic bandit problem in which only one
contextual covariate Xt is observed at each time period t, while
each action i corresponds to a different unknown model θ∗

i . We

point out that this model is a special case of our model (1), as
discussed in Foster et al.(2018).In addition to above works,
there are also some interesting progresses in the linear bandit
problem recently. For example, Chen, Lu, and Song (2021) study
the inference problem of the linear contextual bandit. Shao et al.
(2018) and Medina and Yang (2016) consider models when the
payoff is heavy-tailed.

The major challenge of the bandit problem is balancing the
tradeoff between exploration and exploitation. One commonly
used principle is the optimism-in-the-face-of-uncertainty (Lat-
timore and Szepesvári2020),which is also the motivation of
UCB-type algorithms (Auer 2002; Chu et al. 2011). Beyond that,
severalother ideas exist.For example,the -greedy method
(Yang and Zhu 2002;Chambaz et al.2017;Sutton and Barto
2018) takes the random action with probability  for the purpose
of exploration and takes the greedy action otherwise. The action
elimination method (Goldenshluger and Zeevi 2013; Qian and
Yang 2016) rules out the suboptimal actions sequentially until
the optimal one is found. Stemming from the Bayesian formula,
the Thompson sampling method (Agrawaland Goyal 2013;
Russo and Van Roy 2016) updates the posterior distribution of
potential rewards sequentially and samples action based on the
posterior distribution.

Another closely related problem is the online sparse pre-
diction problem (Gerchinovitz 2013;Foster,Kale,and Karloff
2016), in which sequential predictionsYt ’s of Yt = X t , θ∗  +
εt are of the interest, and the regret is measured in mean-
squared error t |Yt − Y t |2. It can be further generalized to
online empirical-risk minimization (Langford,Li, and Zhang
2009) or even the more generalderivative-free/bandit convex
optimization (Nemirovsky and Yudin 1983; Flaxman, Kalai, and
McMahan 2005; Agarwal, Dekel, and Xiao 2010; Shamir 2013;
Besbes,Gur, and Zeevi 2015;Bubeck,Lee,and Eldan 2017;
Wang et al.2017). Most existing works along this direction
have continuous (infinite) action spaces {At}. They allow small-
perturbation type methods like estimating gradient descent.

From the application perspective of finding the optimal
treatment regime, existing literatures focus on achieving
the optimality through batch settings. Generalapproaches
include model-based methods such as Q-learning (Watkins and
Dayan 1992; Murphy 2003; Moodie, Richardson, and Stephens
2007; Chakraborty, Murphy, and Strecher 2010; Goldberg
and Kosorok 2012;Song et al.2015) and A-learning (Robins,
Hernan, and Brumback 2000; Murphy 2005) and model-
free policy search methods (Robins,Orellana,and Rotnitzky
2008;Orellana,Rotnitzky, and Robins 2010a,2010b;Zhang
et al. 2012;Zhao et al. 2012,2015).These methods are all
developed based on batch settings where we use the whole
datasetto estimate the optimal treatment regime.They are
applicable after the clinical trial is completed,or when the
observationaldatasetis fully available. However,the batch
setting approaches are not applicable when it is emerging to
identify the optimal treatment regime. For a contemporary
example,during the recent outbreak of coronavirus disease
(COVID-19), it is extremely important to quickly identify the
optimal or nearly optimal treatment regime to assign each
patient the best treatment among a few choices. However, since
the disease is novel,there is no or very little historical data.
Thus, the batch setting approaches mentioned above are not
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applicable. On the other hand, our model naturally provides a
“learn while optimizing” alternative approach to sequentially
improve the policy/treatment regime.
Major Contributions.We summarize our major contributions
as follows.In this article, we propose new algorithms,which
iteratively learn the parameter θ∗ while optimizing the regret.
Our algorithms use the “doubling trick” and modern optimiza-
tion techniques, which carefully balance the randomization for
exploration to fully learn the parameter and maximizing the
reward to achieve the near-optimalregret.In particular, our
algorithms fall under the general UCB-type algorithms (Lai and
Robbins 1985;Auer,Cesa-Bianchi,and Fischer 2002).Briefly
speaking, we take the action at each period by optimizing some
upper confidence bands using the previous estimator. At the end
of each period, we renew the estimator using new information.
We then enter the next period using the new estimator and
renew the estimator at the end of the next period. We repeat this
until the Tth time period.

The high-dimensional regime (i.e., d  T) poses significant
challenges in our setting,which cannot be solved by existing
works. First, unlike in the low-dimensional regime where ordi-
nary least squares (OLS) always admits closed-form solutions
and error bounds, in the high-dimensional regime, most exist-
ing methods like the Lasso (Tibshirani1996) or the Dantzig
selector (Candes and Tao 2007)require the sample covari-
ance matrix to satisfy certain “restricted eigenvalue”conditions
(Bickel,Ritov,and Tsybakov 2009),which do not hold under
our setting for sequentially selected covariates.Additionally,
our action spaces {At} are finite. This rules out severalexist-
ing algorithms, including the SETC method (Lattimore, Cram-
mer, and Szepesvári2015) that exploits the specific structure
of hyper-cube actions sets and finite-difference type algorithms
in stochastic sparse convex optimization (Wang etal. 2017;
Balasubramanian and Ghadimi 2018). We adopt the best subset
selection estimator (Miller 2002)to derive valid confidence
bands only using ill-conditioned sample covariance matrices.
Note that while the optimization for best subset selection is NP-
hard in theory (Natarajan 1995),by the tremendous progress
of modern optimization,solving such problems is practically
efficient,as discussed in Pilanci,Wainwright,and El Ghaoui
(2015) and Bertsimas,King, and Mazumder (2016).In addi-
tion, the renewed estimator may correlate with the previous
one. This decreases the efficiency. We let the epoch sizes grow
exponentially,which is known as the “doubling trick” (Auer
et al. 1995). This “removes” the correlation between recovered
support sets by bestsubsetregression.Our theoretical anal-
ysis is also motivated by some known analyticalframeworks
such as the elliptical potential lemma (Abbasi-Yadkori, Pál, and
Szepesvári 2011) and the SupLinUCB framework (Auer 2002)
in order to obtain sharp regret bounds.

We summarize our main theoretical contribution in the fol-
lowing corollary, which is essentially a simplified version of
Theorem 2.

Corollary 1. Under assumptions in Theorem 2,Algorithm 2
achieves a regret

RT({i t}; θ∗ ) = O(
√

sT).

Note that this result holds even if T  d. Meanwhile,
a simpler and more implementable algorithm (Algorithm 1)

achieves a weaker regret guarantee of order O(s
√

T) as shown
in Theorem 1.
Notations. Throughout this article, for an integer n, we use [n] to
denote the set {1, 2, . . . , n}. We use ·1, · , ·∞ to denote the

1, 2 and ∞ norms of vector, respectively. Given a matrix A, we
use  · A to denote the 2 norm weighted by A. Specifically, we
have XA :=

√
X AX. We also use ·, · to denote the inner

product of two vectors. Given a set S ⊆ [d], Sc is it complement
and |S| denotes the cardinality. Given a d-dimensional vector X,
we use [X]i to denote its ith coordinate.We also use supp(X)
to represent the support of X, which is the collection of indices
corresponding to nonzero coordinates.Furthermore,we use
[X] S = ([X] i)i∈S to denote the restriction of X on S,which
is a |S|-dimensional vector.Similarly,for a d × d matrix A =
([A] ij )i,j∈[d] ∈ R d×d , we denote by [A]SS = ([A] jk)j∈S,k∈S the
restriction of A on S × S, which is a |S| × |S| matrix. When
S = S , we further abbreviate [A]S = [A] SS. For real numbers a
and b, let a ∨ b = max{a, b} and a ∧ b = min{a, b}. In addition,
given two sequences of nonnegative real numbers {an}n≥1 and
{bn}n≥1 , an  b n and an  b n mean that there exists an absolute
constant 0 < C < ∞ such that an ≤ Cbn and an ≥ Cbn for all n,
respectively. We also abbreviate an  b n, if an  b n and an  b n

hold simultaneously. We say that a random event E holds with
probability at least 1 − δ, if there exists some absolute constant
C such that the probability of E is larger than 1 − Cδ. Finally,
we remark that arm, action, and treatment all refer to actions in
different applications. We also denote by it the action taken in
period t and Xt = X t,it the associated covariate.

2. Methodologies
In this section,we present the proposed methods to solve the
linear stochastic banditproblem where we aim to minimize
the regret defined in (2).In Section 2.1,we first introduce an
algorithm called “Sparse-LinUCB” (SLUCB), as summarized in
Algorithm 1, which can be efficiently implemented and demon-
strate the core idea of our algorithmic design. The SLUCB
algorithm is a variant of the celebrated LinUCB algorithm (Chu
et al. 2011) for classical linear contextual bandit problems. The
SLUCB algorithm is intuitive and easy to implement. However,
we cannot derive the optimal upper bound for the regret due to
technical reasons. To close this gap, we further propose a more
sophisticated algorithm called “Sparse-SupLinUCB” (SSUCB)
(Algorithm 2) in Section 3.2.In comparison with the SLUCB
algorithm, the SSUCB algorithm constructs the upper confi-
dence bands through sequentially selected historical data and
achieves the optimal regret (up to logarithmic factors).

2.1. Sparse-LinUCBAlgorithm

As we mentioned above, our algorithm is inspired by the classic
LinUCB algorithm, which balances the tradeoff between explo-
ration and exploitation following the principle of “optimism in
the face of uncertainty.” In particular,the LinUCB algorithm
repeatedly constructs upper confidence bands for the potential
rewards of the actions.The upper confidence bands are opti-
mistic estimators. We then pick the action associated with the
largest upper confidence band. This leads to the optimal regret
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under the low-dimensional setting.However,under the high-
dimensionalsetting,directly applying the LinUCB algorithm
incurs some suboptimalregret since we only get loose confi-
dence bands under the high-dimensionalregime.Thus, it is
desirable to construct tight confidence bands under the high-
dimensional and sparse setting to achieve the optimal regret.

Inspired by the remarkable success of the best subset selec-
tion (BSS) in high-dimensionalregression problems,we pro-
pose incorporating this powerfultool into the LinUCB algo-
rithm. Meanwhile, since the BSS procedure is computationally
expensive, it is impractical and unnecessary to execute the BSS
method during every time period. In contrast, we first partition
the whole decision periods into several consecutive epochs and
only execute the BSS method at the end of each epoch.Then
within each epoch,restricting on the selected dimensions,we
calculate the upper confidence bands of each potential reward
and pick the arm with the largest upper confidence band.

Before we present the details of our algorithm,we briefly
discuss the support of parameter. Given a d-dimensional vector
θ ,we denote by supp(θ ) the supportset of θ ,which is the
collection of dimensions of θ with nonzero coordinates that

supp(θ ) = j ∈ [d] : [θ ]j = 0 .

This definition agrees with that of most literature. However, for
the BSS procedure,it is desirable to generalize this definition.
We propose the concept of “generalized support” as follows.

Definition 1 (Generalized Support).Given a d-dimensional vec-
tor θ , we call a subset S ⊆ [d] the generalized support of θ and
denote it by supp+ (θ ), if

[θ ]j = 0, ∀j ∈ S.

The generalized supportsupp+ (θ ) is a relaxation of the
normal support, since any support is a generalized support (but
not vice versa). Moreover, the generalized support is not unique.
Any subset including the support is a valid generalized support.

We distinguish the difference between support and general-
ized support in order to define the best subset selection without
causing confusion.For example,we consider a linear model
θ∗ ∈ R d, Xt ∈ R d, and Yt = X t , θ∗  + ε t . Calculating the
ordinary leastsquare estimator restricted on the generalized
support S ∈ [d], which is denoted by

θ = argminsupp+ (θ )=S t Yt − X t , θ 2 ,

means that we consider a low-dimensional model only using the
information in S and set the coordinates of estimator except in
S as zeros. Formally, let [θ ]S ∈ R |S| be

[θ ]S = argminφ∈R |S|
t

Yt − [X t ]S, φ 2 .

Then we have

θ
j = [θ ]S j , j ∈ S; θ

j = 0, j ∈ S.

Since we do not guarantee [θ
j = 0, ∀j ∈ S, we call S the

generalized support instead of support.

We are ready to present the details of the SLUCB algorithm
now. Our algorithm works as follows. We first apply the “dou-
bling trick,” which partitions the whole T decision periods into
several consecutive epochs such that the lengths of the epochs
increase doubly.We only implement the BSS procedure at the
end of each epoch to recover the support of the parameter θ∗ .
Within each epoch, we fix the support of size s recovered from
the previous epoch, and treat the problem as an s-dimensional
regression problem.Specifically,at each time period,we use
the ridge estimator with penalty weight λ to estimate θ∗ in the
selected dimensions and construct corresponding confidence
bands to help us make decisions in the next time period.

In summary, we partition the time horizon [T] into consec-
utive epochs {Eτ }ττ =1 such that

[T] =
τ

τ =1

Eτ , |Eτ | = 2 τ .

Without loss of generality,we assume that the last epoch is of
length 2τ exactly.By definition, the number of epochs τ
log(T). Hence,in the SLUCB algorithm,we run the BSS pro-
cedure at most O(log(T)) times. In our later simulation studies,
we find that this is practical for moderately large dimensions.

Next,we introduce the details of constructing upper confi-
dence bands in the SLUCB algorithm. We assume that at period
t ∈ E τ , we pick action it ∈ A t and observe the associated
covariate Xt,it and reward Yt . We also abbreviate Xt,it as Xt , if
there is no confusion. We denote byθτ −1,λ the BSS estimator for
the true parameter θ∗ at the end of previous epoch Eτ −1, and let

Sτ −1 = supp+ (θτ −1,λ)

be its generalized support, that is, the generalized support recov-
ered by epoch Eτ −1. For period t ∈ Eτ , we estimate θ∗ by a ridge
estimator. Letθt−1

τ ,λ be the most recently updated ridge estimator
of θ∗ by t ∈ Eτ , which is estimated by restricting its support on
Sτ −1 using data {Xt , Yt }t ∈Et−1

τ
, where Et−1

τ = {t ∈ Eτ : t ≤
t − 1}. In particular, all components ofθt−1

τ ,λ outside Sτ −1 are set
as zeros and

θt−1
τ ,λ = argminsupp+ (θ )=Sτ −1

t ∈Et−1
τ

Yt − X t , θ 2 + λ θ2 .

Givenθt−1
τ ,λ , we calculate the upper confidence band of potential

reward X t,i , θ∗  for each possible action i∈ A t . In particular,
we introduce two tuning parameters α and β that correspond
to the confidence level and an upper estimate of the potential
reward, respectively. The recommended choices of α and β will
be discussed in Section 3.Then for each i∈ A t , we calculate
the upper confidence band associated with action i as

min β, Xt,i ,θt−1
τ ,λ + α · σ log(kTd/δ) |Eτ −1|

+ [Xt,i ]Sτ −1
t−1
τ −1,λ

−1 [Xt,i ]Sτ −1 ,

where
t−1
τ −1,λ = λI |Sτ −1 | +

t ∈Et−1
τ

[Xt ]Sτ −1 [Xt ]Sτ −1 ,
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Figure 1. An illustration of SLUCB Algorithm.

and δ ∈ (0, 1) is a tuning parameter of confidence level. After
that, we pick the arm i t corresponding to the largestupper
confidence band to play and observe the corresponding reward
Yt = X t,it , θ∗  + ε t . We repeat this process until the end of
epoch Eτ .

Then we run the BSS procedure using all data collected in Eτ

to recover the support of θ∗ . We also enlarge the size of general-
ized support by s. To be specific, let Sτ be the generalized support
recovered in this step. We require that Sτ satisfies constraints

Sτ ⊇ Sτ −1, |Sτ | ≤ τ s.

and obtain the BSS estimatorθτ ,λ as

θτ ,λ = argminSτ −1⊆supp+ (θ ),|supp+ (θ )|≤τ s, θ ≤r

t ∈Eτ

Yt − X t , θ 2 + λ θ2 . (3)

Note that in comparison with the standard BSS estimator,we
further restrict the 2 norm to be bounded.The boundedness
also simplifies our later theoreticalanalysis.We also add the
inclusion restriction Sτ ⊇ S τ −1 for technical convenience,
which does not lead to any fundamental difference. As a result,
we need to consider the sparsity τ s instead of s.It boosts the
probability of recovering the true support. See Figure 1 for an
illustration of the SLUCB algorithm. A pseudo-code description
of the SLUCB algorithm is also presented in Algorithm 1.In
addition, we briefly discuss how to compute the BSS estimator
in Section S.3 in the supplementary materials.

2.2. Sparse-SupLinUCBAlgorithm

Although the SLUCB algorithm is intuitive and easy to imple-
ment,we are unable to prove the optimal upper bound for its
regret due to some technical reasons. Specifically, as discussed in
the next section, we can only establish an O(s

√
T) upper bound

for the regret of the SLUCB algorithm, while the optimal regret
should be O(

√
sT). Here we omit all the constants and logarith-

mic factors and only consider the dependency on horizon length
and dimension parameters. The obstacle leading to suboptimal-
ity is the dependency of covariates on random noises.Recall
that in each period t ∈ E τ , the SLUCB algorithm constructs
the ridge estimatorθt−1

τ ,λ using all historical data,where the
designs {Xt }t ∈Et−1

τ
are correlated with noises {εt }t ∈Et−1

τ
due to

the UCB-type policy. Such a complicated correlation impedes us
from establishing tight confidence bands for predicted rewards,
which results in a suboptimal regret.

To close the aforementioned gap and achieve the optimal-
ity, we modify the seminal SupLinUCB algorithm (Auer 2002;
Chu et al. 2011),which is originally proposed to attain the
optimal regret for classic stochastic linear bandit problem,as

a subroutine in our framework. Then we propose the Sparse-
SupLinUCB (SSUCB) algorithm.Specifically,we replace the
ridge estimator and UCB-type policy in the SLUCB algorithm
with a modified SupLinUCB algorithm.The basic idea of the
SupLinUCB algorithm is to separate the dependent designs into
severalgroups such that within each group,the designs and
noises are independent of each other. Then the ridge estimators
of the true parameters are calculated based on group individ-
ually. Thanks to the desired independency, now we can derive
tighter confidence bands by applying sharper concentration
inequality, which gives rise to the optimal regret in the final.

In the next, we present the details of SupLinUCB algorithm
and show how to embed it in our framework. For each period  t ∈
Eτ , the SupLinUCB algorithm partitions the historical periods
Et−1

τ into ζ disjoint groups

Et−1
τ = { t−1,1

τ , . . . , t−1, ζ
τ },

whereζ = log(βT) and same as before, beta is an upper
estimate of the potential reward.We initialize these groups as
empty sets,and we update them sequentially as follows.For
each period t, we screen the groups {t−1,ζ

τ } one by one (in an
ascending order of index ζ ) to determine which action to take
or eliminate some obvious suboptimal actions.

Input: sequentially arriving covariates {Xt,i }t∈[T],i∈A t , confidence level
α, estimated upper bound of reward β, sparsity level s, ridge
regression penalty λ.

Output: action sequence {it }t∈[T] .
1 partition [T] into consecutive epochs E1, E2, . . . , Eτ such that |Eτ | = 2 τ ;
2 initialization:θ0,λ = 0, S = ∅;
3 for τ = 1, 2, . . . , τ do
4 for time periods t ∈ Eτ do
5 end
6 calculate matrix

t−1
τ −1,λ = λI |S| +

t ∈Et−1
τ

[Xt ]S[Xt ]S ;

7 calculate the upper confidence band of reward for each arm

r(X t,i ) = min β, Xt,i ,θt−1
τ ,λ + α · σ log(kTd/δ) |Eτ −1 |

+ [Xt,i ]S [ t−1
τ −1,λ ]−1 ;

8 select arm with the largest upper confidence band

it = argmin i∈A t
r(X t,i ) ;

9 observe reward
Yt = X t,it , θ∗  + ε t ;

10 update the ridge estimator:

θt
τ ,λ = argminsupp+ (θ )=S

t ∈Et
τ

Yt − X t , θ 2 + λ θ2 ;

} update the best subset selection estimator

θτ ,λ = argminS⊆supp+ (θ ),|supp+ (θ )|≤τ s, θ ≤r

t ∈Eτ

Yt − X t , θ 2 + λ θ2 ;

11 update S = supp+ (θτ ,λ);
12 end

Algorithm 1: Sparse-LinUCB Algorithm.
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Input: epoch index τ , sequential arriving covariates {Xt,i }t∈Eτ ,i∈A t ,
confidence level γ , estimated upper bound of reward β, support
recovered in previous epoch Sτ −1 , sparsity level s, ridge
regression penalty λ.

Output: action sequence {it }t∈Eτ .

1 setζ = log(βT), S = S τ −1 , and initialize sets {t,1
τ , . . . , t,ζ

τ } as
empty;

2 for time periods t in Eτ do
3 initialize ζ = 1, N t−1,ζ

τ = A t ;
4 repeat
5 compute restricted ridge estimator

θt−1,ζ
τ ,λ = argminsupp+ (θ )=S

t ∈ t−1,ζ
τ

Yt −X t , θ 2+λ θ2 ;

6 compute matrix

t−1,ζ
τ −1,λ = λI |S| +

t ∈ t−1,ζ
τ

[Xt ]S[Xt ]S ;

7 compute confidence band for each i ∈ Nt−1,ζ
τ ,

ωt−1,ζ
τ ,λ (i) = γ · s/|Eτ −1 | + [Xt,i ]S [ t−1,ζ

τ −1,λ ]−1 ;

8 if ωt−1,ζ
τ ,λ (i) ≤ 1/

√
T, ∀i ∈ N t−1,ζ

τ then
9 select

it = argmin
i∈N t−1,ζ

τ
β, Xt,i ,θ

t−1,ζ
τ + ωt−1,ζ

τ ,λ (i) ;

as the arm to play and update t,ζτ ← t−1,ζ
τ for all ζ ∈ [ζ ];

10 end
11 else if ωt−1,ζ

τ ,λ (i) ≤ 2 −ζ β, ∀i ∈ N t−1,ζ
τ then

12 eliminate suboptimal arms as

N t−1,ζ +1
τ = i ∈ N t−1,ζ

τ : Xt,i ,θ
t−1,ζ
τ ,λ

≥ max
j∈N t−1,ζ

τ

Xt,j ,θ
t−1,ζ
τ ,λ − 21−ζ β ;

move to the next group and update ζ ← ζ + 1;
13 end
14 else
15 select it ∈ N t−1,ζ

τ such that ωt−1,ζ
τ ,λ (i) > 2 −ζ β as the arm to

play;

16 update t,ζ
τ ← t−1,ζ

τ ∪ {t} and t,ζ
τ ← t−1,ζ

τ for all
ζ = ζ ;

17 end
18 until an arm it ∈ A t is selected;
19 end

Algorithm 2: Sparse-SupLinUCB Subroutine.

Suppose that we are at the ζ th group now.Let N t−1,ζ
τ be

the set of candidate actions that are still kept by the ζ th step,
which is initialized as the whole action space At when ζ = 1.
We first calculate the ridge estimatorθt−1,ζ

τ ,λ restricted on the
generalized support Sτ −1, using data from group t−1,ζ

τ . Then
for each action i ∈ N t−1,ζ

τ , we calculate ωt−1,ζ
τ ,λ (i), the width

of confidence band ofthe potential reward. Specifically,we
have

θt−1,ζ
τ ,λ = argminsupp+ (θ )=Sτ −1

t ∈ t−1,ζ
τ

Yt − X t ,it , θ 2 + λ θ2 ,

ωt−1,ζ
τ ,λ (i) = γ ·

√
s/|Eτ −1| + [Xt,i ]Sτ −1

[ t−1,ζ
τ −1,λ ]−1 [Xt,i ]Sτ −1 ,

where γ is a tuning parameter of confidence level.A recom-
mended choice of γ will be discussed in Section 3 as well. Our
next step depends on the values of ωt−1,ζ

τ ,λ (i). If

ωt−1,ζ
τ ,λ (i) ≤ 1/

√
T, ∀i ∈ N t−1,ζ

τ ,

which means that the widths of confidence bands are uniformly
small, we pick the action associated with the largestupper
confidence band

min β, X t,i ,θt−1,ζ
τ ,λ  + ω t−1,ζ

τ ,λ (i) .

In this case, we discard the newly observed data point (Xt , Yt)

and do not update any group, that is, setting t,ζ
τ = t−1,ζ

τ , for
all ζ ∈ [ ζ ].

Otherwise, if there exists some i ∈ N t−1,ζ
τ such that

ωt−1,ζ
τ ,λ (i) ≥ 2 −ζ β, which means that the width of confidence

band is not sufficiently small, then we pick such an action i to
play for exploration.In this case,we add the period t into the
ζ th group while keeping all other groups unchanged, that is,

t,ζ
τ = t−1,ζ

τ ∪ {t}, t,η
τ = t−1,η

τ , if η = ζ .

Finally, if neither one of the above scenarios happens, which
implies that for all i ∈ N t−1,ζ

τ ωt−1,ζ
τ ,λ (i) ≤ 2 −ζ β, then we do

not take any action for now.Instead,we eliminate some obvi-
ous suboptimal actions and move to the next group t−1,ζ +1

τ .
Particularly, we update the set of candidate arms as

N t−1,ζ +1
τ = i ∈ N t−1,ζ

τ : Xt,i ,θt−1,ζ
τ ,λ

≥ max
j∈N t−1,ζ

τ

Xt,j ,θt−1,ζ
τ ,λ − 21−ζ β .

We repeat the above procedure until an arm is selected. Since the
number of groups isζ = log(βT) and 2 − ζ β = 1/T ≤ 1/

√
T,

the SupLinUCB algorithm stops eventually.
By replacing the direct ridge regression and UCB-type policy

with the SupLinUCB algorithm above,we obtain the SSUCB
algorithm. The pseudo-code is presented in Algorithm 2.

3. Theoretical Results
In this section, we present the theoretical results of the
SLUCB and SSUCB algorithms.We use the regret to evaluate
the performance of our algorithms, which is a standard
performance measure in literature.We denote by {it}t∈[T] the
actions sequence generated by an algorithm.Then given the
true parameter θ∗ and covariates {Xt,i }t∈[T],i∈A t , recall that
the regret of the sequence {it}t∈[T] is defined in (2), where
i∗t = argmax i∈A t X t,i , θ∗  denotes the optimal action under
the true parameter.The regret measures the discrepancy in
accumulated reward between real actions and oracles where the
true parameter is known to a decision-maker. In what follows,
in Section 3.1,we first introduce some technicalassumptions
to facilitate our discussions.Then we study the regrets of
the SLUCB and SSUCB algorithms in Sections 3.2 and 3.3,
respectively.
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3.1. Assumptions

We present the assumptions in our theoretical analysis and dis-
cuss their relevance and implications. To simplify, we consider
finite action spaces {At}T

t=1 and assume that there exists some
constant k such that

|A t | = k, ∀t ∈ [T].

We also assume that for each period t, the covariates {Xt,i }i∈A t

are sampled independently from an unknown distribution P0.
We further impose the following assumptions on distribution
P0.

Assumption 1.Let random vector X ∈ Rd follow the distribu-
tion P0. Then X satisfies:

(A1) (Sub-Gaussianity): Random vector X ∈ Rd is centered and
sub-Gaussian with variance proxy σ2 that E[X] = 0 and

E exp{σ a X} ≤ exp σ2 a2/2 , ∀a ∈ Rd;

(A2) (Non-degeneracy): There exists a constant ρ ∈ (0, σ ] such
that

E [X] 2
j ≥ ρ, ∀j ∈ [d];

(A3) (Independentcoordinates):The d coordinates of X are
independent of each other.

We briefly discuss Assumption 1. First of all, (A1) is a stan-
dard assumption in literature, with sub-Gaussianity covering a
broad family of distributions like Gaussian,Rademacher,and
bounded distributions.Assumption (A2) is a non-degeneracy
assumption which,together with (A3),implies that the small-
est eigenvalue of the population covariance matrix E[XX] is
lower bounded by some constantρ > 0. Similar assump-
tions are also adopted in high-dimensional statistics literature in
order to prove the “restricted eigenvalue” conditions of sample
covariance matrices (Raskutti, Wainwright, and Yu 2010), which
are essential in the analysis of penalized least square methods
(Wainwright 2009; Bickel, Ritov, and Tsybakov 2009). However,
we emphasize that in our setting, the covariates indexed by the
selected actions {it} do not guarantee the restricted eigenvalue
condition in general,and therefore,we need noveland non-
standard analysis ofthe high-dimensionalM-estimators.For
Assumption (A3), at a higher level, independence among coor-
dinates enables relatively independent explorations in different
dimensions, which is similar to the key idea of the SETC method
(Lattimore,Crammer,and Szepesvári 2015).Technically,(A3)
is used to establish the key independence of sample covariance
matrices restricted within and outside the recovered support.
Due to such independence, the rewards in the unexplored direc-
tions at each period are independentas well, which can be
estimated efficiently. In addition, we discuss more details of the
technical reason why we need (A3) and some relaxations in the
supplementary materials.

We next impose the following assumptions on the unknown
d-dimensional true parameter θ∗ .

Assumption 2.

(B1) (Sparsity): The true parameter θ∗ is sparse. In other words,
there exists an s  d such that |supp(θ∗ )| = s.

(B2) (Boundedness):There exists a constant r> 0 such that
θ∗  ≤ r.

Note that in Assumption 2, (B1) is the key sparsity assump-
tion, which assumes thatonly s  d components of the
true parameter θ∗ are nonzero. Assumption (B2) is a bounded-
ness condition on the 2-norm of θ∗ . This assumption is often
imposed,either explicitly or implicitly, in contextual bandit
problems for deriving an upper bound for rewards (Dani, Hayes,
and Kakade 2008; Chu et al. 2011).

Finally,we impose the sub-Gaussian assumption on noises
sequence {εt}T

t=1 , which is a standard assumption adopted in
most statistics and bandit literature.

Assumption 3.

(C1) (Sub-Gaussian noise):The random noises {εt}T
t=1 are

independent,centered,and sub-Gaussian with variance
proxy ν2.

3.2. Regret Analysis of Sparse-LinUCB

In this section, we analyze the performance ofthe SLUCB
algorithm. As discussed earlier,we measure the performance
via the regret defined in (2). We show that with a tailored
choice of tuning parameters α,and β, the accumulated regret
of the SLUCB algorithm is upper bounded by O(s

√
T) (up to

logarithmic factors) with high probability. Formally, we have the
following theorem.

Theorem 1.For any δ ∈ (0, 1), let

α = (σ r + ν) ∨ 1 ·
√

s log kTd/(δλ) +
√

λr ,
β = rσ log(kTd/δ).

Under Assumptions 1–3,the regret of the actions sequence
{i t}T

t=1 generated by the Sparse-LinUCB algorithm is upper
bounded by
RT {i t}, θ∗

(σ r + ν) ∨ 1 · σρ−1/2 log(T) log2(kTd/δ)

·
√

sT + log(kTd/δ) log(T) log 1 + σ
√

d log(kTd/δ)/λ

·s
√

T

with probability at least 1 − δ.

Note that in Theorem 1, if we omit all the constants and
logarithmic factors,the dominating part in the accumulated
regret is of order O(s

√
T). Moreover,the regret upper bound

contains two terms.The first term, O(
√

sT), is incurred by
selection bias of best subset regression.The dominating term
O(s

√
T) is the regret incurred by the UCB-type selection policy.

In the SSUCB algorithm,we improve this part through the
SupLinUCB algorithm and finally achieves the O(

√
sT) regret.

We point out that since the our regret upper bounds depend on
the action space size k through a polylogarithmic function, we
can ignore the regret’s dependence on k when k  exp(s).The
analysis of Theorem 1 builds upon a nontrivial combination of
the UCB-type algorithm and the best subset selection method.
The proof of Theorem 1 is provided in Section S.1 of the
supplementary materials.
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3.3. Regret Analysis of Sparse-SupLinUCB

In comparison with the SLUCB algorithm, the SSUCB algorithm
splits the historical data into severalgroups dynamically.In
each period,we sequentially update the ridge estimator and
corresponding confidence bands using data from a single group
instead of the whole data. The motivation of only using a single
group of data is to achieve the independence between the design
matrix and random noises within each group,which leads to
tighter confidence bands by applying a sharper concentration
inequality. The tighter upper confidence bands of the predicted
rewards lead to an improved regret. In particular, we have the
following theorem.

Theorem 2.For any δ ∈ (0, 1), let

β = rσ log(kTd/δ),

γ = r · (σ ∨ 1)(ρ ∧ 1) −1/2

(
√

λ ∨ 1 + ν + σ ) log2 kTd/((λ ∧ 1)δ) .

Then under Assumptions 1–3,the regret of actions sequence
{i t}T

t=1 generated by the Sparse-SupLinUCB algorithm is upper
bounded by

RT {i t}, θ∗  r · (σ ∨ 1)(ρ ∧ 1) −1/2 (
√

λ ∨ 1 + ν + σ )

· log3 kTd/((λ ∧ 1)δ) ·
√

sT,

with probability at least 1 − δ.

Note that in Theorem 2,if we omit all constants and loga-
rithmic factors, the dominating part in the regret upper bound
is of order O(

√
sT). This improves the rate in Theorem 1 by an

order of O(
√

s) and achieves the optimal rate (up to logarithmic
factors). Theorem 2 builds on a tailored analysis of the SupLin-
UCB algorithm. The proof of Theorem 2 is given in Section S.2
of the supplementary materials.

4. Numerical Experiments
In this section, we use extensive numerical experiments to inves-
tigate our algorithm’s empirical performances. Here we focus on
the SLUCB algorithm since it is easy to implement.Theoreti-
cally, we are only to prove a suboptimal regret upper bound for
the SLUCB algorithm due to technical reasons. However, exten-
sive numerical experiments imply that it already performs very
well in practice.We further implement the SSUCB algorithm
as well and compare its empirical performance with the SLUCB
algorithm.

4.1. Simulation Studies

We first show the O(
√

T) growth rate of regret empirically. Then
we fix time horizon length T and dimension d and study the
dependency of accumulated regret on sparsity s. To demonstrate
the power of best subset selection,we also compare our algo-
rithm’s performance with the oracle, where the decision-maker
knows the true support of underlying parameters.Since the
bottleneck of computing time in our algorithm is the best subset
selection, which requires solving a mixed-integer programming

problem, it is appealing to replace this step with other variable
selection methods, such as Lasso and iterative hard thresholding
(IHT) (Blumensath and Davies 2009). We test the performance
of those variants. Throughout the simulation, all the covariates
Xt,i ’s are drawn from a d-dimensionalmultivariate Gaussian
distribution with identity covariance matrix independently.

4.1.1. Experiment 1: Growth of Regret

In this experiment, we study the growth rate of regret. We run
two sets of experiments, where in the first case d = 100, T =
310, s = 5, 10, 15, and in the second case, d = 300, T = 620, s =
5, 10, 15. For each setup, we replicate 20 times and then calculate
corresponding mean and 90%-confidence interval. We present
the results in Figure 2. For each fixed d and s, the growth rate
of regret is about O(

√
T), which validates our theory.Note that

in Figure 2,when T is comparable to d,we observe the
√

T-
shaped growth. When T is larger, the growth of regret further
slows down.

We also consider a scenario where the horizon length T is
much smaller than the dimension d.Specifically,we set d =
500, s= 5, T = 200 and d = 500, s = 15, T = 300. Fur-
thermore, to demonstrate the necessity of best subset selection,
we implement the vanilla LinUCB algorithm as a benchmark
and compare the corresponding regret with our algorithm’s. The
results are presented in Figure 3.In this case,our algorithm
also achieves superior performance that is much better than the
vanilla LinUCB algorithm.

4.1.2. Experiment 2: Dependency on Sparsity

In this experiment, we fix the dimension d and horizon length T,
and let sparsity s change. We calculate the accumulated regret at
the end of horizon. We also run two sets of experiments, where
in the first case d = 100, T = 310, s = 4, 6, 8, . . . , 20 and
in the second case d = 620, T = 1970, s = 4, 6, 8, . . . , 20.
We present the results in Figure 4.Although Theorem 1 only
provides an O(s

√
T) regret guarantee for the SLUCB algorithm.

The linear dependency of accumulated regret on
√

s suggests
that it actually attains the optimal O(

√
sT) rate in practice.

4.1.3. Experiment 3: Performance of SSUCB Algorithm

In this experiment, we implement the SSUCB algorithm, which
achievesthe nearly optimal regret in theory, and compare
its performance with the SLUCB algorithm.We consider an
instance where s= 5, d = 100, T = 300 and an instance
where s = 15, d = 300, T = 500. The results are presented in
Figure 5.As we can see,the regret curves of both algorithms
admit approximate O(

√
T)-growth rates. Moreover, in the

beginning, the SLUCB algorithm performs slightly better than
the SSUCB algorithm.This is not surprising since the SSUCB
algorithm uses a more sophisticated mechanism to guarantee
the independence of the design matrix with the random noises.
As a result, certain efficiency is sacrificed when the sample size
is small.The constant in regret upper bound may also not be
tight. However, as decision periods length increases, the SSUCB
algorithm eventually achieves a smaller finalregret than the
SLUCB algorithm, which demonstrates its optimality in theory.
Note that in both scenarios,the discrepancy between the two
algorithms is quite small.
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Figure 2. Plot of regret versus time periods. In (a), we set the dimension d = 100, the horizon length T = 310, and the sparsity s = 5, 10, 15. In (b), we set the dimension
d = 300, the horizon length T = 620, and the sparsity s = 5, 10, 15. For each setting, we replicate 20 times. Solid lines are the means of regret. Shadow areas denote
corresponding empirical confidence intervals.

Figure 3. Plot of regret versus time periods for vanilla LinUCB algorithm and SLUCB algorithm when T d. In (a), we set the dimension d = 500, the horizon length
T = 200, and the sparsity s = 5. In (b), we set the dimension d = 750, the horizon length T = 450, and the sparsity s = 15. For each setting, we replicate 20 times. Solid
lines are the means of regret. Shadow areas denote corresponding empirical confidence intervals.

Figure 4. Plot of accumulated regret versus
√

s . In (a), we set the dimension d = 100, the horizon length T = 1300, and the sparsity s = 4, 6, 8,. . ., 20. In (b), we set the
dimension d = 300, the horizon length T = 1970, and the sparsity s = 4, 6, 8,. . ., 20.

4.1.4. Experiment 4: Comparison with Variants of Main
Algorithm and Oracle

In this experiment, we compare the performance and comput-
ing time of the SLUCB algorithm with severalvariants that
substitute the best subset selection procedure with Lasso and
IHT. We also compare with the oracle regret where the decision-
maker knows the true support ofparameter.In more detail,
for the first variant, we use Lasso to recover the support at the
end of each epoch.We tune the 1-penalty parameter λ such
that the size of the support of the estimator is approximately s,
and then use it in the next epoch.For the second variant,we

apply IHT to estimate the parameter and set the sparsity level
as s.

We run two settings of experiments, corresponding to d =
100, s= 15, T = 300, and d = 300, s = 15, T = 300. We
also replicate 20 times in each setting. For the computing time,
in the first setting, the average computing times are 32 sec for
Lasso,34 sec for IHT, and 4.3 min for best subset selection.
For the second case, the average computing times are 35 sec for
Lasso,32 sec for IHT,and 10.9 min for best subset selection.
We display the associated regret curves in Figure 6. We observe
that the performance of IHT is significantly weaker than the
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Figure 5. Plot of regret versus time periods for SLUCB algorithm and SSUCB algorithm. In (a), we set the dimension d = 100, s = 5 and the horizon length T = 300. In
(b), we set the dimension d = 300, s = 15, the horizon length T = 500. For each setting, we replicate 20 times. Solid lines are the means of regret. Shadow areas denote
corresponding empirical confidence intervals.

Figure 6. Plot of regret curves of different algorithms. In (a), we set d = 100, s = 15, and T = 300. In (b), we set d = 300, s = 15, and T = 300. We test four variants:
Lasso, IHT, BSS, and oracle. We also replicate 20 times in each setting. Solid lines are means of regret. Shadow areas denote corresponding confidence intervals.

other methods.Meanwhile,the computing time of Lasso is
much shorter than bestsubsetselection,but it achieves the
similar performance, which suggests that Lasso might be a good
alternative in practice when the computing resource is limited.
Finally, although the computing time of the best subset selection
is the longest, it achieves the best performance.

4.2. Real Data Application: Warfarin Dosing Problem

In this section, we use a real data application to demonstrate the
usefulness of our model and methodology. Nowadays, the prac-
titioners can use specific individual-level information, combing
with advanced data analytics tools,to sequentially determine
the optimal clinical treatment for each patient. One example is
optimal warfarin dosing. As the most widely used oral anticoag-
ulant agent worldwide, more than 30 million prescriptions were
written for warfarin in the United States in 2004. An appropriate
dosage is critical but difficult for practitioners to establish, since
it can vary by up to 10% among individuals,depending on
various factors. The consequences of an incorrect dosage can be
catastrophic,which may lead to severe adverse effects such as
stroke or internal bleeding.In recent years,abundant medical
research has been devoted to determining the optimalusing
information like demographic,clinical, and genomic factors.
However, most of these researches are offline, given that all the
data are ready-to-use.In this application,we consider such a
problem in an online manner where the data points are collected

sequentially through clinicaltrials. A similar formulation is
studied in Bastaniand Bayati(2015).We refer the interested
readers to Bastani and Bayati (2015) for more details about the
setup as well. However, we remark that the algorithm in Bastani
and Bayati (2015) relies on a prescribed forced-sampling mech-
anism.It means that a specific treatment is forced to apply at
some fixed periods regardless of the information by then, even if
we have enough evidence that such a treatment is inappropriate.
Such an enforced sampling scheme may raise ethical concerns in
medical applications. In contrast, our algorithm always applies
the UCB-type selection,which balances the exploration and
ethics in a more delicate way.

In terms of the dataset, we use a publicly available dataset col-
lected by staff at the Pharmacogenetics and Pharmacogenomics
Knowledge Base (PharmGKB).It records the true patient-
specific optimalwarfarin doses,as wellas the corresponding
patient-level covariateslike demographicvariables,clinical
factors,and genetic information,for 5528 patients who were
treated with warfarin from 21 research groups spanning nine
countries and four continents. The dimension of the covariates
is d = 93. Details and a list of names of all the covariates can be
found in the supplementary materials of International Warfarin
Pharmacogenetics Consortium (2009).

Note that in a natural formulation of the optimal treatment
selection problem, we observe a patient-specificcovariate
Xt ∈ R d, and each treatmenti ∈ [N] is associated with
a parameter θi ∈ Rd. The goal is to find the optimal
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Figure 7. Performance of SLUCB algorithm in optimal warfarin dosing problem.

treatment i∗t that maximizes the expected treatment effect
X t , θi . However, it is straightforward to translate such a
formulation to the model considered of this article.We only
need to consider the augmented covariatesand parameter,
Xt,i = (0, . . . , 0, Xt , 0 . . . , 0) ∈ RN×d (the ith component is Xt
and all others are 0) and θ∗ = (θ 1, θ2, . . . , θN) ∈ R N×d . Then
we have Xt,i , θ∗  = X t , θi  for any i ∈ [N]. For performance
measure,since the outcome ofour dataset is categorical,we
modify the accumulated regretas the fraction of incorrect
decisions, that is, the misclassification rate so far, which is more
relevant to the practice.

We use the SLUCB algorithm to solve the optimal warfarin
dosing problem.In this application,since the response is cat-
egoricaland some covariates are binary,some distributional
assumptions imposed in our theoretical analysis may not hold.
However, our algorithm still achieves reasonable empirical per-
formance. For comparison, we consider the two offline oracles,
where the parameter of each treatment is first estimated using
the whole datasetthrough linear or logistic regression,and
then the treatment is selected as the optimalone.Moreover,
we simulate 20 random permutations of allthe patients.We
plot the mean misclassification rate curve and corresponding
95% confidence bands (for the offline oracles, we only present
the mean curves for clarity).The results are summarized in
Figure 7. As we see, the misclassification rate drops rapidly at the
beginning, even if there is only a small batch of data available.
When the number of patients increases,the performance of
our algorithms continues to improve and approaches the offline
oracles very well eventually.

5. Conclusion and Discussion
In this article, we first propose a method for the high-
dimensionalstochastic linear banditproblem by combining
the best subset selection method and the LinUCB algorithm.
It achievesthe O(s

√
T) regret upper bound and is nearly

independent ofthe ambient dimension d (up to logarithmic
factors). In order to attain the optimal regret O(

√
sT), we

further improve our method by modifying the SupLinUCB
algorithm. Extensive numerical experiments validate the
performanceand robustnessof our algorithms. Moreover,
although we cannot prove the O(s

√
T) regret upper bound for

the SLUCB algorithm due to some technical reasons, simulation
studies show that the regret of the SLUCB algorithm is actually
O(

√
sT) rather than our provable upper bound O(s

√
T). A

similar phenomenon is also observed in the seminalworks
(Auer 2002; Chu et al. 2011), where low-dimensional stochastic
linear bandit problems are investigated.

There are severalfuture directions worth exploring.First,
it remains an open problem whether the SLUCB algorithm
achieves the optimal O(

√
sT) upper bound. Note that even in

the low-dimensional setting where d  T, it is unclear how to
show the optimal O(

√
dT) upper bound for LinUCB algorithm.

Second,it is interesting to study the high-dimensionalsparse
linear bandit problem under weaker distributional assumptions,
especially when the independent coordinates assumption does
not hold. Moreover,in this work, we assume that the random
noises in feedbacks are sub-Gaussian.It is also worth con-
sidering the heavy-tailed cases,which bring new challenges
to balance the exploration-exploitation tradeoff.In this work,
we study a linear model with sparsity constraint here. It is
appealing to extend to the generalized linear model.It is also
important in theory and application to consider other types
of constraints,such as convex or shape constraints.How to
combine statistical tools with bandit algorithms in these settings
remains nontrivial and interesting. More importantly, it is inter-
esting to further investigate the tradeoff between computational
cost and optimality of regret in future research.Although the
SLUCB algorithm achieves superior performance than the Lin-
UCB algorithm, it needs much longer computational time due
to the best subset selection, which is NP-hard. However, many
practicalapplications of bandits,especially ads recommenda-
tion and A/B testing, emphasize the quick response time. Hence,
it is worthwhile considering a combinatorial search method to
tackle NP-hard problems in banditproblems (Streeter 2007;
Kotthoff 2016).

Finally, it is worth mentioning that although this work
focuses on the bandit modelonly, there are recently popular
reinforcement learning applications in the precision medicine
field (Coronato et al. 2020). In a contextual bandit model,
the system’s status is fixed while in a generalreinforcement
learning setting, the status may change along the time, which is
more challenging (Sutton and Barto 2018). It is also important
and interesting to extend our algorithms to the reinforcement
learning setting when the data is high-dimensional.

Supplementary Materials
Supplementary Materials contain technical lemmas, some detailed proofs,
and some additional numerical results.
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