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ABSTRACT ARTICLE HISTORY

We consider the stochastic contextual bandit problem under the high dimensional linear model. We focuRecsived August 2020

the case where the action space is finite and random, with each action associated with a randomly genefeatested July 2022

contextual covariate. This setting finds essential applications such as personalized recommendations, online

advertisements,and personalized medicine However,it is very challenging to balance the exploration =~ KEYWORDS

and exploitation tradeoff. We modify the LinUCB algorithm in doubly growing epochs and estimate the ~Bestsubset selection;
. ; S k . . 5 igh-dimensional models;

parameter usjng the best subset selection method, which is easy to implement in practice. This approacEegret analysis; Stochastic

achieves O(s T) regret with high probability, which is nearly independent of the “ambient” regression  pandit ’

model dimension d. We further attain a sharper O( sT) regret by using the SupLinUCB framework and

match the minimax lower bound of the low-dimensional linear stochastic bandit problem. Finally,we

conduct extensive numericalexperiments to empirically demonstrate our algorithms’applicability and

robustness. Supplementary materials for this article are available online.

1. Introduction we will discuss it in more detail, it naturally finds applications in

. . - . optimal sequential treatment regimes.
Contextualbandit problems receive significant attention over In a linear stochastic bandit model, at each time period

the past years in different communities, such as statistics, opera
tions research, and computer science (Bubeck and Cesa- B'an&ﬂeiable aZ:_t}lc\;\:leejet ?;,V::szzgfegcxﬁg :p;(;?nil:;reenal
2012;Lattimore and Szepesvari 2020his class of problems

- ) ; . . contextual covariate X € R that is known before any action
studies how to make optimal sequentialdecisions with new ’

information in different settings,where we aim to maximize is taken.Next, we take an actiond < A ¢ and then observe a
reward ¥ € R. Assume that the reward follows a linear model

our accumulative reward, and we iteratively improve our policy

given newly observed results. It finds many important modern Yi=X i, 0 +et, (1)

applications such as personalized recommendation (i al.

2010,2011),0nline advertising (Krause and Ong 201 1ost- where 8 <R %is an unknown d-dimensional parameter, and

sensitive classification (Agarwal et 2014),and personalized {€t} -1 are noises. Without loss of generality, we assume that we

medicine (Goldenshluger and Zeevi 201Bastani and Bayati aim to maximize the total reward. We measure the performance

2015; Tewari and Murphy 2017; Keyvanshokooh et al. 20199f|the sequence of selected actiongZi; by the accumulated

most contextual bandit problems, at each time period, we fir§egret

obtain some new information. Then, we take action based on a - T
certain policy and observe a new reward. Our goal is to maxi- Rr{it}=1; 6 = rQAaXX ti @ =X tir, 6. (2)
mize the total reward, where we iteratively improve our policy. t=1 '

This article is concerned with the linear stochastic bandit moggbentia|ly, the regret measures the difference between the “best”
one of the most fundamental models in contextual bandit proPg can achieve if we know the true parameter 8 and the

lems.We model the expected reward at each time period as piseless” reward we gelt is clear that the regret is always
linear function of some random information depending on OUfonnegative, and our goal is to minimize it.

action. This model receives considerable attention (Auer 2002;Meanwhile, due to the advance in technology, there are
Abe, Biermann, and Long 2003; Dani, Hayes, and Kakade 28@#y modern applications where we encounterthe high-
Rusmevichientong and Tsitsiklis 2010; Chu et al. 2011), anddisiensionality issuethat is, the dimension d of the covariate
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is large. Note that here the total number of iterations Tis  point out that this model is a special case of our model (1), as
somewhat equivalent to the sample size, which is the numbefiefussed in Foster et a(2018).In addition to above works,

pieces of information we are able to “learn” the true parametgitere are also some interesting progresses in the linear bandit
6", Such a high-dimensionality issue presents in practier problem recently. For example, Chen, Lu, and Song (2021) study
example,given the genomic information of some patients, the inference problem of the linear contextual bandit. Shao et al.
we aim to find a policy that assigns each patient to the best (2018) and Medina and Yang (2016) consider models when the
treatment for him/her. It is usually the case that the number payoff is heavy-tailed.

of patients is much smaller than the covariate dimensioin The major challenge of the bandit problem is balancing the

this article, we consider the linear stochastic contextual ba”q'ftadeoff between exploration and exploitation. One commonly

problem under such a high-dimensionalsetting, where the used principle is the optimism-in-the-face-of-uncertainty (Lat-

paran:e-_ter Bis of high dimension that d 7. We also assu*me timore and Szepesva@020),which is also the motivation of
that 8" is sparse that only at most sd components of 6

are nonzeroThis assumption is commonly imposed in high- UCB-type algorithms (Auer 2002; Chu et al. 2011). Beyond that,

. . e . Y veralother ideas exist.For example,the -greedy method
g%gngazﬁl;f:sat:]%s\?gg glgralagrrozcois%mg literature (Donoféang and Zhu 2002Chambaz et al2017;Sutton and Barto

In addition, for the action spaces}@ZM it is known in liter- 2018) takes the random action with probability for the purpose

ature (Dani, Hayes, and Kakade 2008; Shamir 2015; Szepeg\?_aq{ploration and takes the greedy action otherwise. The action

2016) that if there are infinitely many feasible action ateactf imination method (Goldenshluger and Zeevi 2013, Qian anq
time period, the minimax lower bound is of order O( 5dT) Yang 2016) rules out the suboptimal actions sequentially until

which does not solve the curse of dimensionalifio simplif the optimal one is found. Stemming from the Bayesian formula,
. ) PIY * the Thompson sampling method (Agrawabnd Goyal 2013;
notations, throughout the article, we use O(’) to denote the 1sso and Van Roy 2016) updates the posterior distribution of
O notation that ignores alllogarithmic factors.In this work, . y ) up P .
we assume that the action spaces}{é\ are finite. small. and potential rewards sequentially and samples action based on the
- ’ ’ posterior distribution.

random. In particular, we assume that for all ;|14 k d, Another closely related problem is the online sparse pre-
and each action in Ais associated with a randomly generated y P P P

. ; L S diction problem (Gerchinovitz 2013 oster Kale,and Karloff
contextual covariatdn most practical applicationsthis finite ; ) . NV ”
) o - : 2016), in which sequential prediction8’s of ¥ = X ¢, 6 +
action space setting is naturally satisfiellor examplejn the : . .
&t are of the interest, and the regret is measured in mean-
treatment examplethere are usually only a smalhumber of squared error ¢ |Y: — Y[2. It can be further generalized to
feasible treatments available. We refer the readers to Sectioan? t : 9

L . . . _—online empirical-risk minimization (LangfordLi, and Zhang
for a complete description and discussion of the assumption 009) or even the more generalerivative-free/bandit convex
Literature reviewln the next, we first briefly review existing 9

. . . optimization (Nemirovsky and Yudin 1983; Flaxman, Kalai, and

works on linear stochastic bandit problems under both low- i . ) i ]

: . . . } . . McMahan 2005; Agarwal, Dekel, and Xiao 2010; Shamir 2013;
dimensionaland high-dimensionakettings.Under the classi-

cal low-dimensionalsetting, Auer (2002) pioneers the use of Besbes(Gur, and Zeevi 2015;Bubeck,Lee, and Eldan 2017

upper-confidence-bound (UCB) type algorithms for the lin- Wang et al.2017). Most existing works along this direction

ear stochastic banditwhich is one of the most powerfuland have con.tlnuous (infinite) ac?tlon space_s}.{Ahey.allow small-
. ; . perturbation type methods like estimating gradient descent.
fundamental algorithms for this class of problen@d is also

considered in Chu et al. (2011)and Li et al. (2010).Dani, , oM the application perspective of finding the optimal

Hayes, and Kakade (2008) and Rusmevichientong and Tsitﬁu{lﬁfastment regime, existing literatures focus on achieving

(2010) study linear stochastic bandiproblems with large or . € optimality through batch settings. Generalapproaches

infinite action spaces, and derive corresponding lower boun folude model-based methods such as Q-learning (Watkins and
N spaces, a : ponding ayan 1992: Murphy 2003; Moodie, Richardson, and Stephens
Under the high-dimensional setting, where we assume that

007; Chakraborty, Murphy, and Strecher 2010; Goldberg
and Kosorok 2012Song et al.2015) and A-learning (Robins,
przrnan, and Brumback 2000; Murphy 2005) and model-
Fee policy search methods (Robin€rellana,and Rotnitzky

is sparsewhen the action spaces As are hyper-cube spaces
[-1, 1]d, Lattimore, Crammer,and Szepesvari (2015) develo
the SETC algorithm that attains nearly dimension-independ

ot i e pot et ot 1 ot x5 Ry n s 210620105 thar
9 yp y PP al. 2012:Zhao et al. 2012,2015). These methods are all

for gen_eral action spaces |nclud|ng_ the ones of’our interest Wﬁ%%@loped based on batch settings where we use the whole
the action spaces are finite. Abbasi-Yadkori, Pal, and Szepegvari . . .
. . . asetto estimate the optimal treatmentregime. They are

(2011) and Abbasi-Yadkori, Pal, and Szepesvari (2012) consider. - o
gtlcable after the clinicaltrial is completed, or when the

’ . , 3

a UCB-type algon\%hm‘or ge.neral action sets and .obtaln a reggservationaldatasetis fully available. However,the batch

upper bound of O('sdT), which depends polynomially on thegetting approaches are not applicable when it is emerging to
ambient dimension dCarpentier and Munos (2012) consider gentify the optimal treatment regime. For a contemporary

a different reward modeknd obtain an O( * 25 ) regret example,during the recent outbreak of coronavirus disease
upper bound, where - demtesofhesctor. Golden- (COVID-19), it is extremely important to quickly identify the
shluger and Zeevi (2013) and Bastani and Bayati (2015) stugpténal or nearly optimal treatmentregime to assign each
variant of the linear stochastic bandit problem in which only @agient the best treatment among a few choices. However, since
contextual covariatetXs observed at each time period t, whilahe disease is novelthere is no or very little historical data.

each action i corresponds to a different unknown mgdelV@ Thus, the batch setting approaches mentioned above are not
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. , N

applicable. On the other hand, our model naturally provides achieves a weaker regret guarantee of order @fsas shown
“learn while optimizing” alternative approach to sequentially in Theorem 1.
improve the policy/treatment regime. Notations. Throughout this article, for an integer n, we use [n] to
Major Contributions\We summarize our major contributions denote the set {1, 2,...,n}. Weuge - » to denpte the -
as follows.In this article, we propose new algorithmsywhich 4, ,and ., norms of vector, respectively. Given a matrix A, we
iteratively learn the parameter” @vhile optimizing the regret. use ato degote the 2 norm weighted by A. Specifically, we
Our algorithms use the “doubling trick” and modern optimizanave X := X AX. We also use -, - to denote the inner
tion techniques, which carefully balance the randomization f‘?froduct of two vectors. Given a set S € [(s® complement
exploration to fully learn the parameter and maximizing the and || denotes the cardinality. Given a d-dimensional vector X,
reward to achieve the near-optimategret.In partlc_ular, our  we use [X] to denote its ith coordinateWe also use supp(X)
algorithms fall under the general UCB-type algorithms (Lai apgdrepresent the support of X, which is the collection of indices
Robbins 1985Auer, Cesa-Bianchiand Fischer 2002)Briefly  corresponding to nonzero coordinatesFurthermore,we use
speaking, we take the actlop at each pgrlod by loptlmlzmg S = ([X] i)ies to denote the restriction of X on S,which
upper confidence bands using the previous estimator. At thejgad s|-dimensional vectoBimilarly,for a d x d matrix A =
of each period, we renew the estimator using new informatio(rEA]ij)ijE[d] e R4 we denote by [Als = ([A] jjes kes the
We then enter the next period using the new estimator and restriction of A on S x S, which is a |S] x |S] matrix. When
renew the estimator at the end of the next period. We repeatghiss e further abbreviate [AF [A] ss For real numbers a
until the Tth time period. ~ andb, letavb=max{a, b} and a A b = min{a, b}. In addition,

The high-dimensional regime (i.e., d T) poses significant yiyen two sequences of nonnegative real numberk:4a and
challenges in our settingwhich cannot be solved by existing {br}n=1,@ b nand @ b nmean that there exists an absolute
works. First, unlike in the low-dimensional regime where ordisgstant 0 < C < » such that a< Cbnand @ = Cbn for all n
nary least squares_(OLS) glways adrr_1its close.d-form SOIUti??éspectively. We also abbreviatéan, ifa b nanda b n
_and errt(r)]r ZOL;T(dS{h'n tLhe hlgrijt;rr';gn5|"ogggreglﬁe, Irjnostt .ex'sﬁold simultaneously. We say that a random event E holds with
ing methods like the Lasso (Tibshiran ) or the Dantzig probability at least 1 — 9, if there exists some absolute constant

selector (C_)andes gnd Tao _2097yeq_U|re th_e sample ::ovar.l-_ C such that the probability of E is larger than 1 — C&. Finally,
ance matrix to satisfy certain “restricted eigenvalue”conditions

(Bickel,Ritov,and Tsybakov 2009)hich do not hold under /¢ "emark that arm, action, and treatment all refer to actions in
our setting for sequentially selected covariateé\dditionally, dlﬁgrent applications. We also Flenote byh_e action taken in
our action spaces {#} are finite. This rules out severakxist- period t and X'= X the associated covariate.
ing algorithms, including the SETC method (Lattimore, Cram-
mer, and Szepesvai2015) that exploits the specific structure
of hyper-cube actions sets and finite-difference type algorith
in stochastic sparse convex optimization (Wang edl. 2017; |n this section,we present the proposed methods to solve the
Balasubramanian and Ghadimi 2018). We adopt the best sui§@4r stochastic banditproblem where we aim to minimize
selection estimator (Miller 2002)to derive valid confidence  the regret defined in (2)In Section 2.1 we first introduce an
bands only using ill-conditioned sample covariance matricesg|gorithm called “Sparse-LinUCB” (SLUCB), as summarized in
Note that while the optimization for best subset selection is Wigg'orithm 1, which can be efficiently implemented and demon-
hard in theory (Natarajan 1995)oy the tremendous progress gyate the core idea of our algorithmic design. The SLUCB
of _m.odern ophmzahoq,sol_vmg suc_h pr_oblems 1S pract|callly algorithm is a variant of the celebrated LinUCB algorithm (Chu
efficient,as dlscu§sed n PilanciWainwright, and El Ghao_u| et al. 2011) for classical linear contextual bandit problems. The
Ei%?: ?L:?:niivtsénézﬁ%g%o?rﬁay25?&2,{9; \(,a?r: ?rzgnp?g\?ilc;us SLUCB algorithm is intuitive and easy to implement. However,
one, This decreases the efficiency. We let the epoch sizes gV\(/)e cannot derive the optimal upper bound for the regret due to
j . o o . . Sthnical reasons. To close this gap, we further propose a more
exponentially which is known as the “doubling trick” (Auer histicated algorithm called “Sparse-SupLinUCB” (SSUCB)
et al. 1995). This “removes” the correlation between recover%ﬁlp orithm 2) ingSection 321 coFr)n arisonpwith the SLUCB
support Isets by bestzutk))setregrekssionOur tlheo:tical anakl- alg?)rithm the SSUCB alg.or-ithm coastructs the upper confi-
sis is also motivate some known analytichlameworks ’
:uch as the elliptical po¥entia| lemma (Abbgsi-Yadkori, Pal, 4ifnce bands through sequentially selected historical data and
Szepesvari 2011) and the SupLinUCB framework (Auer 2003§Nieves the optimal regret (up to logarithmic factors).
in order to obtain sharp regret bounds.
We summarize our main theoretical contribution in the fol- i .
lowing corollary, which is essentially a simplified version of 2.1. sparse-Linu@gorithm
Theorem 2. As we mentioned above, our algorithm is inspired by the classic
) . ) LinUCB algorithm, which balances the tradeoff between explo-
Corgl/ary 1. Under assumptions in Theorem 2Algorithm 2 ration and exploitation following the principle of “optimism in
achieves a regret N the face of uncertainty.” In particularthe LinUCB algorithm
Rr{it}; ) = O( ﬁ)_ repeatedly constructs upper confidence bands for the potential
rewards of the actionsThe upper confidence bands are opti-
Note that this result holds evenif T d. Meanwhile, mistic estimators. We then pick the action associated with the
a simpler and more implementable algorithm (Algorithm 1) largest upper confidence band. This leads to the optimal regret

as Methodologies
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under the low-dimensional settinglowever,under the high- We are ready to present the details of the SLUCB algorithm
dimensionalsetting,directly applying the LinUCB algorithm now. Our algorithm works as follows. We first apply the “dou-
incurs some suboptimategret since we only get loose confi- bling trick,” which partitions the whole T decision periods into
dence bands under the high-dimensionakgime.Thus, it is several consecutive epochs such that the lengths of the epochs
desirable to construct tight confidence bands under the highincrease doublyWe only implement the BSS procedure at the
dimensional and sparse setting to achieve the optimal regretend of each epoch to recover the support of the parameter 6
Inspired by the remarkable success of the best subset seMfithin each epoch, we fix the support of size s recovered from
tion (BSS) in high-dimensionategression problemsye pro- the previous epoch, and treat the problem as an s-dimensional
pose incorporating this powerfutool into the LinUCB algo- regression problemSpecificallyat each time period,we use
rithm. Meanwhile, since the BSS procedure is computationalllye ridge estimator with penalty weight A to estimatei®the
expensive, it is impractical and unnecessary to execute the B&88cted dimensions and construct corresponding confidence
method during every time period. In contrast, we first partitiobands to help us make decisions in the next time period.
the whole decision periods into several consecutive epochs andh summary, we partition the time horizon [T] into consec-
only execute the BSS method at the end of each epddien  utive epochs {7 _; such that
within each epochrestricting on the selected dimensionsge
calculate the upper confidence bands of each potential reward
and pick the arm with the largest upper confidence band.
Before we present the details of our algorithmye briefly
discuss the support of parameter. Given a d-dimensional ve@iithout loss of generalitywe assume that the last epoch is of
6 ,we denote by supp(8 ) the supporset of 8 ,which is the length Z exactly.By definition, the number of epochs 1
collection of dimensions of 8 with nonzero coordinates that log(T). Hence,in the SLUCB algorithmwe run the BSS pro-
cedure at most O(log(T)) times. In our later simulation studies,
supp(@) = je[d]:[6] =0 . we find that this is practical for moderately large dimensions.

Next, we introduce the details of constructing upper confi-

This definition agrees with that of most literature. However, fa[ance bands in the SLUCB algorithm. We assume that at period
the BSS procedurdt, is desirable to generalize this definition. ; e E r, we pick action i €A t and dbserve the associated

We propose the concept of “generalized support” as follows

T
M= &, |&|=2".

=1

‘covariate Xj; and reward Y. We also abbreviate;X as X, if

. . . g : _there is no confusion. We denotéby x the BSS estimator for
Definition 1 (Generalized Suppof@jiven a d-dimensional vec tHS true parameter @it the end of previous epoch-£ and let

tor 6, we call a subset S € [d] the generalized support of 6 a
denote it by supp(@ ), if S _1 = supp* (6,1,

[6]1=0, VjeS. be its generalized support, that is, the generalized support recov-
. . ) ) ered by epoch;E1. For period t € E, we estimate” @y a ridge
The generalized supportsupp (6 ) is a relaxation of the  gstimator. Le*! be the most recently updated ridge estimator

. . . T,
normal support, since any support is a generalized support (Bt by ¢ < £, which is estimated by restricting its support on

not vice versa). Moreover, the generalized support is not unig[u_1. using data {X, ¥ }; g1, where E'={t eEr:t <

Any subset including the support is a valid generalized supp?r_t.1} In particular, all c;n;ponents @{1,1 outside S_1 are set
We distinguish the difference between support and general- _** ’ A !

ized support in order to define the best subset selection with8aeeos and

causing confusionFor example,we consider a linear model 95’}1\ = argmingupy (g )=5 -4

6 cRY% % eR%and ¥ =X ¢, 6 +¢ . Calculating the ' 2 )

ordinary leastsquare estimator restricted on the generalized tegf™ Yi-X1,0"+A 6.

support S € [d], which is denoted by _
Given9§ ; , we calculate the upper confidence band of potential

reward X, € for each possible action £ A t. In particular,
we introduce two tuning parameters a and 3 that correspond

means that we consider a low-dimensional model only usingtﬂw@e confidence level and an upper estimate of the potential

information in S and set the coordinates of estimator except gﬁwgrd, respe_ctively..The recommendeq choices of a and S will
S as zeros. Formally, 18t RIS be be discussed in Section I hen for each ie A ¢, we calculate

the upper confidence band associated with action i as

6 =argming o5 @)=s t 1= X1, 8 2,

6 k= argmin Yi - [X t]s, 2 _
[OF=argmingegisr - Tt=Xdls @ min B, X,;,07 +a- O log(kTd/d) |E;-1]

Then we have + Xiils ;'JM _1[Xt,i]5r-1 ,

Since we do not guaranted[; =0, Vj €S, we callS the :-11,/\ =Als 4 + Xtls4[Xtls _,,
generalized support instead of support. t eEF?
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————) 3 SUDroutine in our framework. Then we propose the Sparse-

: . ! ; T SupLinUCB (SSUCB) algorithmSpecificallywe replace the
ridge estimator and UCB-type policy in the SLUCB algorithm
B cousi Best subset selection with a modified SupLinUCB algorithmThe basic idea of the
(on selected dimensions) SupLinUCB algorithm is to separate the dependent designs into
Figure 1. An llustration of SLUCB Algorithm. severalgroups such that within each groupthe designs and

noises are independent of each other. Then the ridge estimators

of the true parameters are calculated based on group individ-
and d € (0, 1) is a tuning parameter of confidence level. Afteqally. Thanks to the desired independency, now we can derive
that, we pick the arm it corresponding to the largestupper tighter confidence bands by applying sharper concentration
confidence band to play and observe the corresponding rewgigquality, which gives rise to the optimal regret in the final.

Yt =X i, 6 +& t. We repeat this process until the end of  |n the next, we present the details of SupLinUCB algorithm
epoch k. and show how to embed it in our framework. For each period t €
Then we run the BSS procedure using all data collected if5E the SupLinUCB algorithm partitions the historical periods
to recover the support of &We also enlarge the size of generd&" into ¢ disjoint groups

ized support by s. To be specific; b $ie generalized support

recovered in this step. We require thasa&isfies constraints =B O Y
S2S-4,|S|<Ts. where{ =log(BT) and same as before, beta is an upper
estimate of the potential rewardVe initialize these groups as

and obtain the BSS estimatbr) as empty sets,and we update them sequentially as follow§.or

0 - ) each period t, we screen the groupé_{1 ’Z} one by one (in an

T, A= argMINg _icsupp' (6).Isupp (6)Ists, 6 st ascending order of index ¢ ) to determine which action to take
Y, -X:. 0°%+2 2g (3) ©r eliminate some obvious suboptimal actions.
teEr

Note that in Comparison with the standard BSS estimatog Input: sequentially arriving covariateg,-{)gm,,'EA ¢, confidence level

. a, estimated upper bound of reward 3, sparsity level s, ridge
further restrict the 2 norm to be boundedThe boundedness regression penalty A.

also simplifies our later theoreticadnalysisWe also add the Output: action sequenaddir -
inclusion restriction § 2 S ;-1 for technical convenience, | 1 partition [T] into consecutive epochsi B, . . ., £such that |E| =2
which does not lead to any fundamental difference. As a resuf,nitialization:8,, =0, S = &;
. . . 3forr=1,2,..., rdo
we need to consider the sparsity 7 s instead oftdoosts the | 4 | for time periods t ei=do
probability of recovering the true support. See Figure 1 for ans | end
illustration of the SLUCB algorithm. A pseudo-code descriptioa | calculate matrix
of the SLUCB algorithm is also presented in Algorithm 1n 1 g s Xe 19X s
addition, we briefly discuss how to compute the BSS estimator r=1A = Al e tRAs

in Section S.3 in the supplementary materials.
7 calculate the upper confidence band of reward for each arm

2.2. SParse.SUPLinwaorithm T(X[,,-)=min B, Xt’,‘,el{_’;\ +a- O log(kTd/d) |Er-1|

Although the SLUCB algorithm is intuitive and easy to imple + Xeils [ 1
ment, we are unable to prove the optimal upper bound for its 1A
regret due to some technical reasons. Specifically, as discugsed ifelect arm with the largest upper confidence band
the next section, we can only establish an OYsipper bound it = argminj_y , TX¢)) ;

for the regrey of the SLUCB algorithm, while the optimal regret
should be O( sT). Here we omit all the constants and logarith?
mic factors and only consider the dependency on horizon Iengtr
and dimension parameters. The obstacle leading to suboptimal
ity is the dependency of covariates on random noisdgecall 6 = argming, ot (8 )=s Ye-x¢,02%+2 2.0
that in each period t € E r, the SLUCB algorithm constructs t eg}

the ridge estimatoreﬂ using all historical data, where the
designs {X}; gt are correlated with noisest{§ -1 due to

observe reward
Yi=X i, 6 +et;
update the ridge estimator:

} update the best subset selection estimator

6 4= -
the UCB-type policy. Such a complicated correlation impedes us TA = A0MINscsupd (8).IsupB (0)ists, 6 =1
from establishing tight confidence bands for predicted rewards, Y, -X1.02+2 2.9
which results in a suboptimal regret. t eEr

To close the aforementioned gap and achieve the optima
ity, we modify the seminal SupLinUCB algorithm (Auer 2002
Chu et al. 2011),which is originally proposed to attain the
optimal regret for classic stochastic linear bandit problems

11 | update S = supp (6 y);
12 end

Algorithm 1: Sparse-LinUCB Algorithm.




Input: epoch index 7, sequential arriving covariatg$tdX; jea ¢,
confidence level y , estimated upper bound of reward 3, support
recovered in previous epoch-§, sparsity level s, ridge
regression penalty A.

Output: action sequenadiic; -

1 set{ =log(BT), S=S -1, and initialize sets {%‘1 .....
empty;

2 for time periods t inrkdo

3 | initialize =1, NE = A

4 repeat

%’Z} as

5 compute restricted ridge estimator
QTI_’;’Z = argming, o+ (9 )=s Yi-X ¢,0%  2:4
te 12
€T
6 compute matrix
-1,
T_f,\ =AM s+ [Xt 16Xt 1s;
te £UC
) T
7 compute confidence band for each i & ,
1,0 1y _ .
Sy TEal+ Kils | 10,
: Y
- v -
8 ifof 1<@)s1/ T, VieNi{ " then
9 select

i . t-1, t-1,{ rjy .
It = argmin._ 12 B, X;,6 ¢ +‘*’r,)\z(’) :
as the arm to play and updaté‘Z « %_1’5 forall{e[(];
end
else ifi () <27CB, vie N{ " then
eliminate suboptimal arms as

10

11
12

NEE 2 0l

Cet-1.d _ 51- .
> e bt 2 e
move to the next group and update { « { + 1;
13 end
14 else
15 selecti e N rH’Z such that 4)_1\5 (i)>2 =< B as the arm to
play;
16 update ¥« ' uand ¥ <« F' foral
¢ =
17 end
18 | until an arnrie At is selected;

19 end

Algorithm 2: Sparse-SupLinUCB Subroutine.

Suppose that we are at the { th group nowet N pe

the set of candidate actions that are still kept by the  th ste

which is initialized as the whole action space when { =1
We first calculate the ridge estimatd?rt__;’( restricted on the
generalized support;Sq, using data from group ¢ Then

for each actionie N rH’(, we calculate 45}\( (), the width

of confidence band ofthe potential reward. Specificallywe
have

t—1,0 _ .
6 ¢ = argmingyo )=,

2
(o Ye=X1;,0%+0 2

_ . N =
S =y TTEAT+ Keils_ [ ol XS,
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where y is a tuning parameter of confidence leveA recom-
mended choice of y will be discussed in Section 3 as well. Our
next step depends on the values féf\gu(/) If

§ J_
W@ <1/ T, vieNEs,

which means that the widths of confidence bands are uniformly
small, we pick the action associated with the largestupper
confidence band

min B, X 1,63 +w L350 .

In this case, we discard the newly observed data point YX
and do not update any group, that is, settié’é = §_1’Z, for
all¢e[].

Otherwise, if there existssomei e N{ "¢ such that
wg‘}f (i) =22 ~¢B, which means that the width of confidence
band is not sufficiently small, then we pick such an action i to
play for explorationln this casewe add the period t into the
{ th group while keeping all other groups unchanged, that is,

4
T

= o 1= Y in=¢.

Finally, if neither one of the above scenarios happens, which
implies that for all ie N £ "¢ w4 () <2 =, then we do
not take any action for nowinstead,we eliminate some obvi-

ous suboptimal actions and move to the next groub_mﬂ.
Particularly, we update the set of candidate arms as

NTt—1,Z+1 = I-ENT{—1,Z . Xt' ot-1.<

NE] T,A
2max X000 -21B
iy 1.4 ’
jeN t

We repeat the above procedure until an arm is select%d. Since the
number of groups &= log(8T) and2 ~‘B=1/T<1/ T,
the SupLinUCB algorithm stops eventually.

By replacing the direct ridge regression and UCB-type policy
with the SupLinUCB algorithm abovewe obtain the SSUCB
algorithm. The pseudo-code is presented in Algorithm 2.

3. Theoretical Results

In this section, we presentthe theoretical results of the
SLUCB and SSUCB algorithmiél/e use the regret to evaluate

Rhe performance of our algorithms, whichis a standard

performance measure in literatur§Ve denote by {i}«[m the
actions sequence generated by an algorithifhen given the
true parameter 8 and covariates {X;}t[r,ica :, recall that
the regret of the sequence {i}«[1; is defined in (2), where
i =argmax ica X ti, 8 denotes the optimal action under
the true parameter.The regret measures the discrepancy in
accumulated reward between real actions and oracles where the
true parameter is known to a decision-maker. In what follows,
in Section 3.1,we first introduce some technicassumptions

to facilitate our discussionsThen we study the regrets of

the SLUCB and SSUCB algorithms in Sections 3.2 and 3.3,
respectively.
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3.1. Assumptions (B2) (BoundednessThere exists a constant & 0 such that

<r.
We present the assumptions in our theoretical analysis and dis- 0 d

cuss their relevance ar}d implications. To simplify, we consider Nte that in Assumption 2, (B1) is the key sparsity assump-
finite action spaces {4- and assume that there exists somgjoy \which assumes thatonly s d components of  the
constant k such that true parameter Bare nonzero. Assumption (B2) is a bounded-
|At| =k, Vtel[T]. ness condition on thez-norm of 6°. This assumption is often
imposed, either explicitly or implicitly, in contextual bandit

We also assume that for each period ¢, the covarialehdX:  problems for deriving an upper bound for rewards (Dani, Hayes,
are sampled independently from an unknown distribution. P 54 Kakade 2008: Chu et al. 2011)

We further impose the following assumptions on distribution

Finally,we impose the sub-Gaussian assumption on noises

Ro. sequence {ze}[T=1 , Which is a standard assumption adopted in
Assumption 1| et random vector X e K follow the distribu- most statistics and bandit literature.
tion Ry. Then X satisfies: Assumption 3.
L d.
(A1) (Sub-Gaus_SIan/ty). Ra_ndom vector Xddkcentered and (C1) (Sub-Gaussian noiseJfhe random noises {Sf}tT=1 are
sub-Gaussian with variance proxjtat E[X] = 0 and independent,centered.and sub-Gaussian with variance
E exploaX} <exp 02 22 aaeRY% proxy 2.
(A2) (Non-degeneracy): There exists a constant p € (0, g ] such . .
that 3.2. Regret Analysis of Sparse-LinUCB
E [x]j2 >p, Vjeld]; In this section, we analyze the performance ofthe SLUCB

algorithm. As discussed earliewve measure the performance
via the regret defined in (2). We show that with a tailored
choice of tuning parameters @nd f3, the accumylated regret

R—f the SLUCB algorithm is upper bounded by O(F) (up to
Iggarithmic factors) with high probability. Formally, we have the
ollowing theorem.

(A3) (Independentoordinates)The d coordinates of X are
independent of each other.

We briefly discuss Assumption 1. First of all, (A1) is a sta
dard assumption in literature, with sub-Gaussianity covering
broad family of distributions like GaussiarRademachemand
bounded.distrib_utionsAssum_ption (A_2) is-a non-degeneracy Theorem 1For any 3 e (0, 1), let
assumption whichtogether with (A3),implies that the small-
est eigenvalue of the population covariance matrix E[XXs a= (or+v)v1 - slogkTd/(6) + Ar
lower bounded by some constanP >0. Similar assump- B = ro log(kTd/s).

tions are also adopted in high-dimensional statistics literaturgjifjer Assumptions 1-3the regret of the actions sequence

order to prove the “restricted eigenvalue” conditions of samp{ﬁ}T_1 generated by the Sparse-LinUCB algorithm is upper
covariance matrices (Raskutti, Wainwright, and Yu 2010), wBisihded by

are essential in the analysis of penalized least square methog\,s g

(Wainwright 2009; Bickel, Ritov, and Tsybakov 2009). Howevér,!/th Y

we emphasize that in our setting, the covariates indexed by the 50 r+v)v1 - 0p~7 log(T) |092(de/5)

selected actions#ido not guarantee the restricted eigenvalue — v

condition in general,and therefore we need noveland non- \/ST +log(kTa/) log(T) log 1+ 0 dlog(kTa/o)/A
standard analysis ofhe high-dimensionalM-estimators.For s T

Assumption (A3), at a higher level, independence among coor- o _
dinates enables relatively independent explorations in differe‘r’mvtlth probability at least 1 - o.

dimensions, which is similar to the key idea of the SETC methodote that in Theorem 1.if we omit all the constants and
(Lattimore,Crammer,and Szepesvari 2015)echnically(A3) |ogarithmic factors,the dominating part in the accumulated
is used to establish the key independence of sample covarigRiget is of order O(s 7). Moreover the regret upper bound
matrices restricted within and outside the recovered support.yntains two terms. The first term. O( ST), is incurred by
Due to such independence, the rewards in the unexplored d@@Fé(y:tlon bias of best subset regressi®he dominating term
tions at each period are independents well, which canbe  O(s” T) is the regret incurred by the UCB-type selection policy.
estimated efficiently. In addition, we discuss more details of {hgne SSUCB algorithm, we improve this part through the
technical reason why.we need (A3) and some relaxations in §U‘bLinUCB algorithm and finally achieves the G{T) regret.
supplementary materials. _ We point out that since the our regret upper bounds depend on
We next impose the following assumptions on the UnknowRe action space size k through a polylogarithmic function, we
d-dimensional true parameter 6 can ignore the regret's dependence on k when k exp{Eie
analysis of Theorem 1 builds upon a nontrivial combination of
the UCB-type algorithm and the best subset selection method.
arsity): The true parametéiigsparse. In other words,The proof of Theorem 1 is provided in Section S.1 of the
(B1) (Sparsity): Th &g In oth ds,Th f of Th 1i ided in Section S.1 of th
there exists an s d such that |supp{9] = s. supplementary materials.

Assumption 2.
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3.3. Regret Analysis of Sparse-SupLinUCB problem, it is appealing to replace this step with other variable

election methods, such as Lasso and iterative hard thresholding
In comparison with the SLUCB algorithm, the SSUCB algom?] ) (Blumensath and Davies 2009). We test the performance
splits the historical data into severalgroups dynamicallyln

each period,we sequentially update the ridge estimator and § of those variants. Throughout the simulation, all the covariates

’s are drawn from a d-dimensionalmultivariate Gaussian
corresponding confidence bands using data from a single gr sifrlbuhon with identity covariance matrix independently

instead of the whole data. The motivation of only using a smgl '

group of data is to achieve the independence between the de3|gn

matrix and random noises within each groupyhich leads to 1. Experiment 1. Growth of Regret

tighter confidence bands by applying a sharper concentratioi this experiment, we study the growth rate of regret. We run
inequality. The tighter upper confidence bands of the predictB¥o sets of experiments, where in the first case d = 100, T =
rewards lead to an improved regret. In particular, we have th&10, s =5, 10, 15, and in the second case, d = 300, T = 620, s =

following theorem. 5, 10, 15. For each setup, we replicate 20 times and then calculate
corresponding mean and 90%-confidence interval. We present
Theorem 2For any & € (0, 1), let the results in Figurg 2. For each fixed d and s, the growth rate
of regret is about O(T), which validates our theorlote that
B = ra log(kTd/3), in Figure 2,when T is comparable to dye observe the T-
y=r-(@v1)n1) -1/2 shaped growth. When T is larger, the growth of regret further
slows down.

(Avi+v+o) I°92 kTd/((A A 1)0) We also consider a scenario where the horizon length T is

much smaller than the dimension dSpecificallywe set d =

Then under Assumptions 1 e regret of actions sequence
puons 1-3he reg N 00,s=5,T=200and d=500,s =15, T=300. Fur-

{lr}H generated by the Sparse-SupLinUCB algorithm is upp

bounded by thermore, to demonstrate the necessity of best subset selection,
N we implement the vanilla LinUCB algorithm as a benchmark
Rr{i},@ r-(ovi)pal) 2( Avi+v+o) and compare the corresponding regret with our algorithm’s. The
— results are presented in Figure 3n this case,our algorithm
‘log® kTd/(AN1)3) - ST, also achieves superior performance that is much better than the

with probability at least 1 - o. vanilla LinUCB algorithm.

Note that in Theorem 2ijf we omit all constants and loga- 4.1.2. Experiment 2: Dependency on Sparsity
rithmic factorg, the dominating part in the regret upper boundn this experiment, we fix the dimension d and horizon length T,

is of order O( sT). This improves the rate in Theorem 1 by aand let sparsity s change. We calculate the accumulated regret at
order of O( s) and achieves the optimal rate (up to logarithntige end of horizon. We also run two sets of experiments, where

factors). Theorem 2 builds on a tailored analysis of the SupLim+he first case d =100, T=310,s =4,6,8,...,20and
UCB algorithm. The proof of Theorem 2 is given in Section Sn2he second case d = 620, T=1970,s =4,6,8, ..., 20.
of the supplementary materials. We present theg results in Figure Although Theorem 1 only

provides an O(s T) regret guarantee for the SLQCB algorithm.
The linear dependency of accumulated regret ors suggests
that it actually attains the optimal O§T) rate in practice.

In this section, we use extensive numerical experiments to inves-

tigate our algorithm’s empirical performances. Here we focugldn3. Experiment 3: Performance of SSUCB Algorithm

the SLUCB algorithm since it is easy to implemefftheoreti- |n this experiment, we implement the SSUCB algorithm, which
cally, we are only to prove a suboptimal regret upper bound fthievesthe nearly optimal regret in theory, and compare

the SLUCB algorithm due to technical reasons. However, exfi@performance with the SLUCB algorithmWe consider an
sive numerical experiments imply that it already performs vejiystance where s= 5, d = 100, T = 300 and an instance

well in practice. We further implement the SSUCB algorithm where s = 15, d = 300, T = 500. The results are presented in
as well and compare its empirical performance with the SLUSBure 5.As we can segthe regret curves of both algorithms

4. Numerical Experiments

algorithm. admit approximate O( T)-growth rates. Moreover, in the
beginning, the SLUCB algorithm performs slightly better than
4.1. Simulation Studies the SSUCB algorithmThis is not surprising since the SSUCB

v _ algorithm uses a more sophisticated mechanism to guarantee
We first show the O(T) growth rate of regret empirically. Thethe independence of the design matrix with the random noises.
we fix time horizon length T and dimension d and study the As a result, certain efficiency is sacrificed when the sample size
dependency of accumulated regret on sparsity s. To demonsdrateall. The constant in regret upper bound may also not be

the power of best subset selectiome also compare our algo- tight. However, as decision periods length increases, the SSUCB
rithm’s performance with the oracle, where the decision-makaigorithm eventually achieves a smaller finakgretthan the

knows the true support of underlying parametersSince the SLUCB algorithm, which demonstrates its optimality in theory.
bottleneck of computing time in our algorithm is the best subblette that in both scenariosthe discrepancy between the two
selection, which requires solving a mixed-integer programmiatgorithms is quite small.
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Figure 2. Plot of regret versus time periods. In (a), we set the dimensiond = 100, the horizon length T = 310, and the sparsity s = 5, 10, 15. In (b), we set the dimension
d = 300, the horizon length T

= 620, and the sparsity s = 5, 10, 15. For each setting, we replicate 20 times. Solid lines are the means of regret. Shadow areas denote
corresponding empirical confidence intervals.
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Figure 3. Plot of regret versus time periods for vanilla LinUCB algorithm and SLUCB algorithm when T d.In (a), we set the dimensiond = 500, the horizon length

T = 200, and the sparsity s = 5. In (b), we set the dimension d = 750, the horizon length T = 450, and the sparsity s = 15. For each setting, we replicate 20 times. Solid
lines are the means of regret. Shadow areas denote corresponding empirical confidence intervals.
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Figure 4. Plot of accumulated regret versus s In (a), we set the dimension d = 100, the horizon length T = 1300, and the sparsity s = 4,6, 8,- - -, 20. In (b), we set the
dimension d = 300, the horizon length T = 1970, and the sparsity s = 4,6, 8,- - -, 20.

4.1.4. Experiment 4: Comparison with Variants of Main apply IHT to estimate the parameter and set the sparsity level
Algorithm and Oracle as s.

In this experiment, we compare the performance and comput- We run two settings of experiments, corresponding to d =

ing time of the SLUCB algorithm with severalvariants that 100, s= 15, T=300, and d=300,s =15, T=300. We

substitute the best subset selection procedure with Lasso aralso replicate 20 times in each setting. For the computing time,

IHT. We also compare with the oracle regret where the decisiothe first setting, the average computing times are 32 sec for

maker knows the true support ofparameterln more detail, Lass0,34 sec for IHT, and 4.3 min for best subset selection.

for the first variant, we use Lasso to recover the support at ther the second case, the average computing times are 35 sec for

end of each epochWe tune the ¢-penalty parameter A such Lasso032 sec for IHT,and 10.9 min for best subset selection.

that the size of the support of the estimator is approximately We display the associated regret curves in Figure 6. We observe

and then use it in the next epochf-or the second varianiwe that the performance of IHT is significantly weaker than the
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Figure 5. Plot of regret versus time periods for SLUCB algorithm and SSUCB algorithm. In (a), we set the dimension d = 100, s = 5and the horizon length T = 300. In

(b), we set the dimensiond = 300, s= 15, the horizon length T = 500. For each setting, we replicate 20 times. Solid lines are the means of regret. Shadow areas denote
corresponding empirical confidence intervals.
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Figure 6. Plot of regret curves of different algorithms. In (a), we setd = 100, s = 15,and T = 300. In (b), we setd = 300, s = 15,and T = 300. We test four variants:

Lasso, IHT, BSS, and oracle. We also replicate 20 times in each setting. Solid lines are means of regret. Shadow areas denote corresponding confidence intervals.

other methods. Meanwhile,the computing time of Lassois sequentially through clinicaltrials. A similar formulation is

much shorter than bestsubsetselection,but it achieves the studied in Bastaniand Bayati(2015).We refer the interested

similar performance, which suggests that Lasso might be a geaders to Bastani and Bayati (2015) for more details about the

alternative in practice when the computing resource is limitedetup as well. However, we remark that the algorithm in Bastani

Finally, although the computing time of the best subset selediuth Bayati (2015) relies on a prescribed forced-sampling mech-

is the longest, it achieves the best performance. anism. It means that a specific treatment is forced to apply at
some fixed periods regardless of the information by then, even if

4.2. Real Data Application: Warfarin Dosing Problem we have enough evidenge that such a treatment is. inappropriate..
Such an enforced sampling scheme may raise ethical concerns in

In this section, we use a real data application to demonstratdmfidical applications. In contrast, our algorithm always applies

usefulness of our model and methodology. Nowadays, the ptag-UCB-type selectionwhich balances the exploration and

titioners can use specific individual-level information, combirgfhics in a more delicate way.

with advanced data analytics tool$o sequentially determine In terms of the dataset, we use a publicly available dataset col-

the optimal clinical treatment for each patient. One example igcted by staff at the Pharmacogenetics and Pharmacogenomics

optimal warfarin dosing. As the most widely used oral anticogowledge Base (PharmGKB)It records the true patient-

ulant agent worldwide, more than 30 million prescriptions weggecific optimalwarfarin dosesas wellas the corresponding

written for warfarin in the United States in 2004. An appropriggient-level covariateslike demographicvariables,clinical

dosage is critical but difficult for practitioners to establish, sirfagtors,and genetic information for 5528 patients who were

it can vary by up to 10% among individuals,depending on treated with warfarin from 21 research groups spanning nine

various factors. The consequences of an incorrect dosage caawdries and four continents. The dimension of the covariates

catastrophicwhich may lead to severe adverse effects such &#sd = 93. Details and a list of names of all the covariates can be

stroke or internal bleedingln recent yearsabundant medical found in the supplementary materials of International Warfarin

research has been devoted to determining the optimasing Pharmacogenetics Consortium (2009).

information like demographic,clinical, and genomic factors. ~ Note that in a natural formulation of the optimal treatment

However, most of these researches are offline, given that alls@igction problem, we observea patient-specificcovariate

data are ready-to-usdn this application,we consider sucha Xt €R d, and each treatment’ < [N] is associated with

problem in an online manner where the data points are collestpdrameter 6 < RY The goal is to find the optimal
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@ = the SLUCB algorithm due to some technical reasons, simulation
_a 0.60 - Tincar-Brade stugdies show that the regret of the SLUCB algorithm is actually
B s Logistic Oracle O( sT) rather than our provable upper bound O(s T). A
g 055 similar phenomenon is also observed in the seminalworks
*%’ 0.50 (Auer 2002; Chu et al. 2011), where low-dimensional stochastic
B linear bandit problems are investigated.
§ 0.45 There are severaluture directions worth exploring.First,
= it remains an open prqoblem whether the SLUCB algorithm
2 = achieves the optimal O(sT) upper bound. Note that even in
&2 0.35 the low-dimensiong] setting where d T, it is unclear how to
§ —————ee show the optimal O(dT) upper bound for LinUCB algorithm.
« 0.30 Secondjt is interesting to study the high-dimensionasparse
0 1000 2000 3000 4000 5000

linear bandit problem under weaker distributional assumptions,
especially when the independent coordinates assumption does
Figure 7. Performance of SLUCB algorithm in optimal warfarin dosing problem. not hold. Moreover,in this work, we assume that the random
noises in feedbacks are sub-Gaussialt. is also worth con-
sidering the heavy-tailed casesyhich bring new challenges
to balance the exploration-exploitation tradeoff this work,
we study a linear model with sparsity constraint here. It is
appealing to extend to the generalized linear modklis also
important in theory and application to consider other types
of constraints,such as convex or shape constraint$low to
combine statistical tools with bandit algorithms in these settings
t . . remains nontrivial and interesting. More importantly, it is inter-
measuresince the outcome ofour dataset is categoncakve esting to further investigate the tradeoff between computational
modify the accumulated regretas the fraction of incorrect . o -4 optimality of regret in future researcAlthough the
decisions, that is, the misclassification rate so far, which is M'eCB algorithm achieves superior performance than the Lin-
relevant to the practice. . . _UCB algorithm, it needs much longer computational time due
We use the SLUC_B algquth-m tO_S°|Ve the optimal \{varfarl@o the best subset selection, which is NP-hard. However, many
dosing problemIn this application,since the response is cat- .o ttical applications of banditsgspecially ads recommenda-
egoncale_md spme covgnates are b|r)arysome d!strlbut|onal tion and A/B testing, emphasize the quick response time. Hence,
assumptions imposed in our theoretical analysis may not holdig o rthwhile considering a combinatorial search method to

However, our algorithm still achieves reasonable empirical pgfy|e NP-hard problems in banditproblems (Streeter 2007;
formance. For comparison, we consider the two offline OraC|R%tthoff 2016)

where the parameter of each treatment is first estimated using Finally

the whole datasetthrough linear or logistic regression,and focuses on the bandit modebnly, there are recently popular

then _the treatment is selected as ,the optimaine. Moreover, reinforcement learning applications in the precision medicine
we simulate 20 random permutations of afthe patients.We field (Coronato et al. 2020).In a contextual bandit model,

plot the mean misclassification rate curve and correspondinqhe system’s status is fixed while in a generaleinforcement
o : ;
95% confidence bands (for the offline oracles, we only presqgt ing setting, the status may change along the time, which is

the mean curves for clarity). The results are summarized in more challenging (Sutton and Barto 2018). It is also important

Figu_re _7' As we see, the. misclassification rate drops rapi_dly Qhwﬁ]teresting to extend our algorithms to the reinforcement
beginning, even if there is only a small batch of data ava'labllgarning setting when the data is high-dimensional
When the number of patients increaseghe performance of ’

our algorithms continues to improve and approaches the offline
oracles very well eventually. Supplementary Materials

patient number

treatment /; that maximizesthe expected treatment effect
X t, 8. However,it is straightforward to translate such a
formulation to the model considered of this article We only
need to consider the augmented covariatesand parameter,
Xii=(0,...,0,%0...,0) e R (the ith component is X
and all others are 0) and'6= (81, &, . .. ,¥) € R N*¢_Then
we haveX;j, @ = X t, 8foranyi e[N]. For performance

it is worth mentioning that although this work

Supplementary Materials contain technical lemmas, some detailed proofs,
5. Conclusion and Discussion and some additional numerical results.

In this article, we first propose a method for the high-
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