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AbstractAs systems grow in size, scale, and intricacy, the challenges of misspecification
become even more pronounced. In this paper, we focus on parametric misspecification in
regimes complicated by risk and nonconvexity. When this misspecification may be resolved

via a parallel learning process, we develop data-driven schemes for resolving a broad class of
misspecified stochastic compositional optimization problems. Notably, this rather broad class

of compositional problems can contend with challenges posed by diverse forms of risk, dynam-
ics, and nonconvexity, significantly extending the reach of such avenues. Specifically, we con-
sider the minimization of a stochastic compositional function over a closed and convex set X

in a regime, where certain parameters are unknown or misspecified. Existing algorithms can
accommodate settings where the parameters are correctly specified, but efficient first-order
schemes are hitherto unavailable for the imperfect information compositional counterparts. Via

a data-driven compositional optimization approach, we develop asymptotic and rate guaran-
tees for unaccelerated and accelerated schemes for convex, strongly convex, and nonconvex
problems in a two-level regime. Additionally, we extend the accelerated schemes to the general
T-level setting. Notably, the nonasymptotic rate guarantees in all instances show no degrada-
tion from the rate statements obtained in a correctly specified regime. Further, under mild
assumptions, our schemes achieve optimal (or near-optimal) sample complexities for general
T-level strongly convex and nonconvex compositional problems, providing a marked improve-
ment over prior work. Our numerical experiments support the theoretical findings based on

the resolution of a misspecified three-level compositional risk-averse optimization problem.
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1. Introduction

SGD methods iteratively update estimators by employing

Since the seminal paper by Robbins and Monro (1951), sampled gradients. Yet, first-order methods for deter-
stochastic gradient descent (SGD) methods have proven Ministic optimization models are often predicated on
to be extraordinarily powerful in minimizing the expected the belief that the computation of functions and gradients
value or the sum of a large number of loss functions. This is possible. Often this assumption fails to hold as seen
avenue has been widely adopted in addressing a broad by considering a prototypical constrained optimization
collection of problems arising in engineering, applied problem

sciences, statistics, and machine learning, among many ;

others (Kushner and Yin 2003, Borkar 2008, Shapiro et al. Te')? fx, 8, (Opt(8))
2009). The deterministic counterpart of SGD, referred to in which f: X x K » R is a real-valued function, X
as gradient descent (GD) methods (Beck 2017), requires is a suitably defined set, and 6denotes a vector of
computing gradients, a challenging proposition when the parameters.

objective is complicated by the presence of an expectation (i) Stochastic optimization. Consider a setting where
over a general probability space. To this end, classicdhe parameter Bis a random variable, defined as 6¢ ¢,
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where ¢:Q - RY. Let p[+] denote a suitable risk Naturally, we may consider an “estimate-then-
measure. In such an instance, (Opt(6)) is modified tooptimize” approach where in the estimation stage, we
allow for minimizing p [f(x, w))], which reduces to learn an estimatorffor 8 * In the subsequent optimiza-
E[f(x, €w))] in the risk-neutral regime. One avenue for  tion stage, we minimize the resulting function(+£8),
resolving this problem in the absence of gradients of rather than a simultaneous approach, where we gener-
olf(x, §w))] leverages the availability of an additional ate a sequence of estimators {6k} and an adapted
stochastic first-order oracle that provides sampled gra-  sequence of solution estimator§Xx] where the sequence
dients with suitable bias properties (Shapiro et al. 2009). {(Xk, &)} converges to a minimizer of (%, 8%) and 67
Such models assume relevance when contending with ~ respectively. Several distinctions exist between the two
randomness in future demand, volatility in prices, and approaches.
stochasticity in available capacities. (iy Asymptotic convergence guarantees. Unlike simulta-
(i) Robust optimization. Robust optimization pro- neous approaches, estimate-then-optimize approaches
blems emerge in settings where the parameter Bis not are generally not equipped with asymptotic conver-
known but instead, the user employs a belief that Blies  gence guarantees because learning of & conducted in
in an uncertainty set T (Bertsimas and Sim 2003, 2004). finite time, leading to at best an approximate solution
This leads to an uncertain collection of problems, cap- given by 6. Consequently, the optimization phase
tured by the set/minxef(X.8)}¢<r, Whereas a robust requires the minimization of f(+,0), rather than f(«, 6%,
solution (Ben-Tal et al. 2009) requires solving the fol- leading to a solution X. Prior efforts adopting this

lowing worst-case problem: estimate-then-optimize approach have demonstrated
the gap betweenx and ¥ (Jiang and Shanbhag 20186,
r)pel)lg max f(x, 0): (ROpt)  Ahmadi and Shanbhag 2020).

(i) Complexity of learning 8*: When the learning

(i) Resolving misspecification via data-driven optimiza-Problem is a high-dimensional stochastic optimization
tion (DDO). A third approach inspired by classical liter- ~ problem, the “learning” phase in the estimate-then-
ature on misspecification in economics (Kirman 1975, optimize approach can be onerous, requiring signifi-
Okuguchi 1976, Okuguchi and Szidarovszky 1990) con- cant effort. During this period, improved solution
siders an avenue where 6has a true or nominal value,  estimators for X* are unavailable. However, in the
denoted by 6 *, that may be learned through data; for simultaneous approach, one generates a sequence of
example, 8* may represent idiosyncratic machine para-  estimators {Xk| throughout the scheme.
meters (SUCh as efficiencies, Start_up time, shutdown (lll) Serial versus parallel imp/ementations. The estimate-
times, etc.), the parameters of an inverse-demand func-  then-optimize approach is natively serial, requiring the
tion, or the parameters of a polynomial cost function, ‘learning” phase to precede the optimization phase,
all of which may be learned by access to observational ~ Whereas the simultaneous approach allows for leverag-
data. This is distinct from setting (i) because 6is by no  ing the inherent parallelism and running both schemes
means a random variable. Similarly, if one employs an  largely in parallel, allowing for significant improve-
uncertainty set T instead of leveraging data, then one ~ ments in run-time behavior.

expects a poorer (conservative) solution assuming that Accordingly, the simultaneous approach generates a
0*eT ; however, the DDO framework is predicated on ~ sequence((Xk, &)} that converges to a minimizer of
the availability of data. f(«, 8" and 8% respectively. We draw inspiration from

There has been a recent emergence of interest in con- the DDO framework for resolving misspecification pre-
sidering optimization problems where key parameters ~ sented by Jiang and Shanbhag (2013, 2016) in the context
are either unknown or misspecified. For instance, inven- 0f misspecified stochastic convex optimization and vari-
tory control problems may often be afflicted by such ational inequality problems. In particular, this frame-
challenges in that the demand distribution is unknown ~ Work considers the problem of computing
a priori (Qi et al. 2021) or the back-ordering cost may not

always be known or easily estimated (Wu et al. 2013). X*e€arg min Ew[fw(x; 8] and
Similarly, in the context of Markov decision processes xex
(MDPs), as evidenced by applications in communica- 8" @arg min Eg[(p§ (9],

FES)

tion networks (Dai et al. 2014) and disease progression

(Zhu et al. 2019), among others, rewards and transition

matrices may be either misspecified (Jiang and Shanbhagwhere Ew[+] and E¢[+] are the expectations with respect
2015, Mankowitz et al. 2020, Miyaguchi 2021) or unavailaltte w and ¢, respectively, and*&erves as the unique
(Sato et al. 1982; Mannor et al. 2012, 2016; Ho et ahlinimizer of a strongly convex function Eg[<p§(°)].
2018). Yet, this framework cannot contend with three key
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challenges that emerge in practical design and opera-F(x; 81, 62)¢ f(x; 61, 6;) @(9(x; 62); 8;), the composi-

tional questions:

tion of fand g. Further, in practice, there may be multiple

(i) Risk aversion. Recent weather events in Texas adevels of composition, necessitating the consideration of

well as the impact of COVID-19 on worldwide supply
chains have reinforced the need for incorporating risk
and reliability in decision making. When one overlays
the need for knowing problem parameters (lead times,
failure rates, etc.), the resulting problem becomes chal-
lenging. However, existing schemes cannot contend
with a risk-averse regime when the risk-neutral mea-
sure Ew|[*] is replaced by a suitably defined risk mea-
surep,[*] .

(i) Nonconvexity. Convex formulations, although
allowing for tractability, often fail to accommodate
high-fidelity formulations and bring forth the need for
nonconvex formulations. For instance, in some settings,
cost functions may be concave whereas revenue func-
tions might be contingent on complicated price func-
tions, leading to a nonconvex metric. Unfortunately,
prior work cannot contend with such nonconvexity.

(iiiy Multiperiod decision making. In many settings,
static optimization models alone do not suffice, particu-
larly in the face of accommodating dynamic decision-
making models. One avenue for modeling such pro-
blems is through MDPs. The cost functions and the
transition matrix in an MDP are often assumed to be
known, but both may require learning while resolving
such a problem.

To this end, we consider extending the DDO frame-
work to convex/nonconvex compositional regimes
(Wang et al. 2017a, b; Yang et al. 2019), a framework
that accommodates (i)—(iii) and considers the following
problem.

The two-level data-driven compositional optimization
(DDCO) problem requires afX*, 8;, 8;) such that

X* € arg min Ev[fv(Ew[9w(x; 6)]; 6;)],
XexX

where 6; @arg min Eg1[(Péﬂ(91)] and
91c0, !

0; @arg min E¢,[¢(62)): (1.1)
926@2

In this paper, we consider the setting wheré”qand

9?2, defined as ¢'(6) @ EE[(pg)(eﬂ] and ¢?(8,) @
E§1[(p222)(62)], are both strongly convex over the sets @
and Oy, respectively. We focus on the scenario where
the random variables v and w are independent of each
other. Let f-, 8) and d-, 6) be defined as fy; 8)¢
Evifu(y; 8)] and 9(x; 8)¢E w[9w(x; 8)], respectively,
where 6, €04 and 6, €0,. Here ¢°;6,) is a general
vector-valued function, whereas ¢, 6, are exogenous
parameters that have no impact on the distribution of v
and w. Moreover, the objective £+ ; 8;, 6,) is defined as

the general T-level misspecified compositional problem,
defined as

min F(x; 65, -, ©F)
¢E o, [F (Ew [T (- (Bl fS) (x: 67))); -+ 85)]; ),

where 6, @arg min Egj[(pg/)(ej)], forj 1,2, ;T
0;€0;

Next, we discuss some motivating applications.

1.1. Motivating Applications
We present two applications of particular relevance.

(A) Misspecified risk-averse newsvendor problems. We

begin by considering the relatively simplified misspeci-
fied variant of the newsvendor problem that deter-
mines the optimal order of a perishable item to
maximize expected revenue in a single period (Arrow

et al. 1951, Hadley and Whitin 1963, Porteus 1990,
Arrow 2002). Suppose the unit cost of the item is given
by c*and the demand is a random variable denoted by
d: Q- R*.Furthermore, if the order quantity, denoted
by X, is less than demand, then the cost of back-
ordering is given by b*(d(w) €¥)* whereas the holding
cost is given by h{(X €d(w))". If the order quantity has

to be specified before observing the demand realiza-
tion, the risk-neutral newsvendor problem is given by
the following:

min E[CX + b(d(w) €)" + " (x @d(w))*]: (1.2)

X=0

Under the caveat that the probability distribution is
known and defined as D(U)¢P( w : dw) <U), itis well
known that under suitable distributional assumptions
(Shapiro et al. 2009), the optimal order size Xcan be
expressed as

(b*&c)

x*@D¥ ((b*, ¢ H)), where k(b*, &, H)¢ Boe B

(1.3)

Yet such an avenue is inherently fraught with chal-
lenges from the standpoint of data:

(a) First, the distribution of d is assumed to be
known as a priori, a claim that may be often violated to
varying degrees; for example, whereas demand may be
known to be normally distributed, its precise mean and
standard deviation, denoted by #*and g*, respectively,
may be unknown to the decision maker (DM). The
parametersy/*and o*may be estimated via the sample-
mean estimator and the sample standard deviation
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estimator, whose convergence guarantees to their true
counterparts can be ensured under mild assumptions.

(b) Second, the parameters*t, and H, although
essential for solving for the optimal order quantity,
may require learning through observations, where the
costs can be uncertain (Wu et al. 2013).

If 6*€ (4 d, b, ¢, i) denotes the information not
known a priori, then a mean-risk variant of the misspeci-
fied newsvendor problem is given by the following:

min E[F(x, w; B ¢, H)] +Bp,. -l Flx, w; B, ¢, )],
. (N V2(8%)

where Flx, w; b ¢, f)e X+ b1(d(w) €)" + hx@dw))*, B
denotes a risk-aversion parameter, and /90*[-] denotes
a risk measure parameterized by/* and o*. Akin to ear-
lier, 8" is a consequence of resolving the probleh@8
arg ming o E¢[@; (8)]: Although p[+] can be chosen in a
multitude of ways, we consider the mean upper semide-
viation (MUS) measure, defined as follows.

concerned with the downside risk, and one avenue for
capturing this is through the mean upper semideviation
measure (Shapiro et al. 2009). Assuming that pis the p-th
order mean upper semideviation measure with 300,
and letting F(=, w; B, ¢, i) be the loss function, we have
that the parameterized measure"$® is defined as

s [Flx, w; b, ¢, H)E[E o[ F(X w; B¢ M%)
QE[FX w; B.csh) 7"
(1.4)

This problem falls into the class of misspecified three-
level compositional optimization by setting f (1(2) €
1% f2(x, y; B, ¢, i) @FAX w; b.cxh) @17, and 3 (x;
b+ ¢ i) @x]FAx, w; B ¢ )] € B

(B) MisspecifiedMarkov decision processesMarkov
decision problems represent an enormously powerful
framework for addressing dynamic decision-making

Further, Q*(s, a is defined by the Bellman equation, as
observed next.

X @ o

Qfs,.a &(s,a+y  PlSis,a max Q*(s, a)
S h )
YR(s, 3 +yEs max Q*s, a) $,<’!l

where the expectation is taken over all random transi-
tions s with respect to the state-action pair (s, a). In
more generic scenarios, at each stateSs the DM is
required to take an action & A based on an estimator
for w*in the environment, where the parameter™is
unknown. Such a parameter §may represent some spe-
cific characteristics of the process environment and may
be estimated by the DM based on noisy observations. In
most cases, these parameters serve as a (unique) solution
to a stochastic optimization problem, defined as

" @arg min E¢[®(y, )], (1.5)
yey

Mean upper semideviation (MUS) measure: Often one id/ here ®(y, ¢ represents the (random) estimation

residual and Wdenotes the feasible region of y. Yet, in
many settings, neither the reward R nor the transition
matrix P may be available and we denote their mis-
specified variants by R (s, a; Yand P(S |s, a, Y respec-
tively, where w* needs to be learned and a nominal
estimate of y'is denoted by y. Let (s, a; {) represent
the optimal discounted state-action function under
the correctly specified model parameter y* defined
in (1.5). Then the corresponding Bellman equation is
given by

h .
Q%s, a; ) (s, a; P +YEs max Q(s, a; ¢ §, :Lz:

Again, the conditional expectation is taken over all ran-
dom transition states sunder state-action pair (s, a) and
correct model parameter y. Solving the optimal policy
for the MDP is equivalent to finding a fixed point of the
above Bellman equation under §@ To obtain such a
fixed point, one can solve the Bellman residual minimi-

problems and have been useful in a breadth of areas,ation problem:

including manufacturing systems, healthcare systems,
and economics, among others (Ross 1983, Puterman
1994). Particularly noteworthy are efforts that apply
MDP models to inventory control (Cheevaprawatdom-

rong and Smith 2004, Satheesh Kumar and Elango 2012,

Chao 2013, Li 2013, Puranam and Katehakis 2014).
Consider an MDP with continuous actions a <A and
discrete states £S. Suppose the DM takes action a
in state s, resulting in a transition to a random state s’
with probability P (S'|s, a, yielding a simultaneous re-
wagd R(s, a). Given a discount factor vy, let({Q a €
E[ teoV'(S, a) $ 9s, a 94 be the discounted state-
action function with initial state S, @S and & ®a.

X @
min Qfs,a; ) (s, a; 4

QeRls| xAl (5, 8)eSxA .
i,

QVEs max Q(s,a;y) $,a , (1.6)

where y*€@arg min ey Ee[®D(y, ¢)]. This problem fits
into the family of misspecified two-level compositional
optimization problems by choosing

f(y) @Yy|Fand theh(s, gthentry of g(Q; W)sa
i
9Q(s,a @ £ER(s,a; ¢ +y max Q(s,a) $,a:-
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1.2. Related Work

We briefly review related decision-making paradigms
in optimization and control theory and summarize prior
work on misspecified data-driven optimization and
compositional gradient methods.

1.2.1 Related Decision-Making Paradigms.

(i) Multiarmed bandit (MAB) problems. Recall that in
MAB problems, a gambler decides the selection, order,
and frequency of machines to be played, given a collec-
tion of slot machines, where each machine provides a
random reward from a machine-specific distribution.
The goal lies in maximizing the expected sum of
rewards earned through a sequence of lever pulls
where the reward function needs to be learned through
the process. Such a framework is particularly compel-
ling in operations and revenue management (Besbes
and Zeevi 2009, 2012). Distinct from our setting, the
learning of the reward function is affected by the
sequence of decisions.

(i) Adaptive and iterative learning control. Adaptive
control (AC) (Hovakimyan and Cao 2010) problems
arise in controlling systems where the parameters are
either uncertain or varying slowly in time. A prototypi-
cal example arises in flight control, where the mass of
an aircraft reduces in time through the burning of fuel,
requiring the controller to reflect this change. Parame-
ter estimation to facilitate this process is carried out
via least mean-squares (LMS), or its recursive variant
referred to as recursive least mean-squares (RLMS), or
the Kalman filter. In contrast, iterative learning control
(ILC) represents a form of tracking control (Uchiyama
1978, Arimoto et al. 1984) employed for repetitive con-
trol problems in batch processes, robot arm manipula-
tors, and reliability testing rigs. Contrary to our
framework, both AC and ILC often impose stringent
requirements on the model but allow for more general
dynamics. In contrast, the DDCO framework is more
general in terms of problem primitives, requiring
fewer assumptions on noise and allowing more general
constrained and nonlinear formulations, but preclud-
ing complex nonlinear dynamics, at least in current
regimes.

1.2.2Related Work on Misspecificatiodiang and

2022), and block-coordinate schemes for stochastic
nonconvex programs (Lei and Shanbhag 2020). Under
the moniker of “joint estimation-optimization” (JEO),
online counterparts of such schemes have been devel-
oped by Ho-Nguyen and Kilinc,-Karzan (2019) and such
avenues have been employed by the same authors in
examining nonparametric choice models (Ho-Nguyen
and Kilinc,-Karzan 2021). Yet, the consideration of com-
positional regimes remains both open and compelling.

1.2.3Stochastic Compositional Gradient Metimds.
of the earliest efforts on two-level compositional pro-
blems can be traced to the work of Ermoliev (1976),
where the almost sure convergence of a two-timescale
scheme was provided. Wang et al. (2017a) provided the
first known rate statements whereas accelerated coun-
terparts were examined subsequently in Wang et al.
(2017b). Meanwhile, variance reduction has been stud-
ied in finite-sum regimes (Lian et al. 2017) whereas the
very first generalization to the multistage regime was
developed by Yang et al. (2019). More recently, a single-
timescale scheme was presented byGhadimi et al.
(2020) where the optimal sample complexity was
proven for computing stationary points of two-level sto-
chastic nonconvex optimization problems. In multilevel
settings, algorithms achieving an O (k%'2) rate of con-
vergence were developed by Zhang and Lan (2020) for
convex objectives. Further, extensions to nonconvex set-
tings were presented by Chen et al. (2021b), Ruszc-
zynski (2021), and Balasubramanian et al. (2022) with
level-independent optimal sample complexities. More
recently, two-level compositional optimization was
studied by Yang et al. (2022) under the decentralized
setting. Yet, we believe that extensions to the misspeci-
fied regime are far from immediate and remain the core
focus of this research.

1.2.4Noveltyln this paper, we propose the study of
stochastic compositional optimization problems afflicted

by misspecification. Despite the relevance of such con-
cerns in risk-averse and dynamic decision-making pro-
blems, there are no existing schemes for resolving such
problems. Following recent advances in stochastic com-
positional optimization (Chen et al. 2021b, Balasubrama-
nian et al. 2022), we propose new algorithms to resolve

Shanbhag (2016), it was shown that in many settingsthis class of problems under a range of convexity and

the presence of misspecification does not adversely
impact the rate statements when employing stochastic

smoothness requirements. In particular, the proposed
framework allows for deriving convergence rates in con-

gradient descent schemes. Similar statements have been vex and nonconvex regimes via unaccelerated and accel-

developed for gradient and extragradient schemes for
misspecified deterministic convex optimization pro-
blems (Ahmadi and Shanbhag 2020), gradient-response
schemes for misspecified Nash equilibrium problems
(Jiang et al. 2018, Lei and Shanbhag 2020), augmented
Lagrangian schemes for convex optimization with mis-

erated schemes, where the key step lies in quantifying
and controlling the bias induced by misspecification, a
challenging proposition in compositional settings. To
solve this issue, we decompose this problem as a coupled
set of stochastic recursions whose collective convergence
claims are not immediate. Distinct from the correctly

specified constraints (Ahmadi et al. 2016, Aybat et alspecified regimes, the bias terms in the recursions are
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required to be analyzed carefully and the algorithm para-

1.3.1.0rganization and Notatibme remainder of this

meters have to be selected for achieving the best possiblepaper is organized into five sections. We consider the

rate. Notably, our schemes achieve the optimal level-
independent rate in strongly convex regimes whereas
our oracle complexity is near-optimal in nonconvex
regimes. Surprisingly, it is seen that the convergence
rates match their counterparts in the correctly speci-
fied regime, showing no degradation induced by
misspecification.

1.3. Gaps, Contributions, and Outline

This paper is motivated by a crucial gap in addressing
risk-averse, nonconvex, and dynamic decision-making
problems afflicted by misspecification. Current techni-
ques cannot contend with such considerations. We con-
sider a compositional and nonconvex generalization
where direct extensions of prior work are by no means
immediate. Consequently, there is a need for a compre-
hensive study of how existing compositional stochastic
gradient schemes can contend with misspecification
and the degradation, if any, that such misspecification
leads to from a rate standpoint. We summarize our
major contributions next and note that numerics have
been provided for on a misspecified risk-averse prob-
lem (Section 5) and a misspecified MDP (e-companion
Section D.1) whereas the impact of conservatism arising

application of unaccelerated and accelerated schemes on
two-level compositional problems in Sections 2 and 3,
respectively. Extensions to the T-level regime are consid-
ered in Section 4 whereas preliminary numerical investi-
gations are conducted in Section 5. The paper concludes
with a brief set of remarks in Section 6.

1.3.1.1. Notation. For x € K, we denote its transpose
and Eyglideannperm as xand ||, respectively (i.e.,
|X|| € XX). For a function f, we denote its gradient at x
by VF(X) and denote a sampled gradient byVy(X) if f, is
differentiable, where v represents the realization of the
associated random variable; the Clarke subdifferential
of fat x is denoted by (X) and is equivalent to the sub-
differential of f at x when fis convex. We denote an ele-
ment of & (X) by Vf(X), whereas its stochastic sample is
denoted by VIv(X). We denote the expectation of § at x
by Ev[f/(X)] where v denotes the associated random var-
iable; in the absence of a subscript of E, the associated
random variable will be clear. We denote “converges
to” as “= 7, and denote “with probability 1" as
“‘w.p.1.” We denote the Euclidean projection of a vector
ye RonasetXc Kby MNy[Y] €arg min,, |V &X|F.

from employing robust approaches has also been ex- 2. A Basic Algorithm

plored (e-companion Section D.2).

In this section, we first discuss how we sample first-order

(i) Unaccelerated schemes for two-level problems. In Ségformation for the functions §g, ¢'", and ¢? at solution

tion 2, we consider two-level compositional problems
complicated by misspecification, when the outer func-
tion is differentiable whereas the inner function is
merely continuous. Here, we derive almost sure con-
vergence guarantees in the convex and nonconvex
regime. From a rate standpoint, the sequence is charac-
terized by a rate ofO (k#%) in the nonconvex regime in
terms of an appropriate residual function, matching the
correctly specified statements developed by Yang et al.
(2019), whereO () suppressedogarithmic terms.

X with possibly incorrect estimates of model parameters
911( and Gg. Next, we propose a scheme to resolve the mis-
specified compositional problem (1.1). Lastly, we derive
the almost sure convergence of the sequence produced
by our algorithm and derive a rate guarantee.

We first define the sampling oracle (SO). In particular,
we focus on the scenario where the random variables w, v
are independent of each other and assume access to the
following black box SO, which independently generates
stochastic first-order information upon each query. Note

(i) Accelerated schemes for two-level problems. When that here we use ViJ(x; 8,) to handle the possible non-

further impose a smoothness requirement on the inner
function g in Section 3, the rates for the nonconvex and
strongly convex regimes are seen to improve @(W 2)
and O (k?"), respectively. Again, we observe that these
findings do not display any degradation from their cor-
rectly specified counterparts and represent the best
available rates for such problem classes.

smoothness of function g, whereas we directly write the
stochastic gradients a‘?fv,V(pg), andV(pg).

Sampling oracle (SO). (i) Given &X c R, 6, €0,
the SO returns an unbiased sampled function value
Ow(x; &) € B and an unbiased sampled Jacobian

Vidu(x; 6;) € B™ such that E[dw(x; 6,)] €¥(x; 6;) and

(iii) Extensions to multilevel problems. Finally, when (ii) E[Vx w(x; €2)] €Vxd(x; 6;) € Fix, 62).

is extended to T-level compositional problems in Section
4, we obtain rate statemen@ (k#2) and O(k®") for non-

(i) Given ye H, 8, €04, the SO returns an unbiased
sampled gradientVif,(y; 8;) € Bsuch thatE[V,/v(y; /)]

convex and strongly convex problems, respectively, again Vif(y; &).

showing no degradation of the correctly specified rates
obtained by Chen et al. (2021b) and Balasubramanian et alnbiased sampled gradient V(ng)(ej) €

(2022) in the nonconvex regime.

(i) Given 6;€0; for j €1, 2, the SO returns an
5 B such that
E[Vo, (6))] © &(6)).
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_ For notational convenience, we write Vau(x; 6,)¢
Vi9w(x; 8) and Viv(y; 81)¢V yfv(y; 8). The main chal-
lenge in solving the misspecified compositional optimi-
zation problem (1.1) is that we lack accessto an
unbiased estimator of the true gradient of gg; this issue
is exacerbated by the presence of misspecification in that
the true parameters € and 6, are not known explicitly.
To be specific, the lack of an accurate estimator of
Ew[9w(Xk; 85)] leads to a bias induced in evaluating
Wi (Ew[9w(Xk; 85)]; 6;). Moreover, the lack of knowledge
of 85 and 6; in a misspecified regime further impacts the
bias of our estimator. To address the two aforementioned
issues, we develop a class of efficient algorithms to
resolve the misspecified compositional problem.

Next, we propose the misspecified stochastic compo-
sitional gradient descent (m-SCGD) algorithm. The algo-
rithm iteratively updates the solution ofxxusing past
queried first-order information. After the first k iterations,
we let yx denote an estimator ofEw[9w(Xk; 85)], which is
the expected value ofwgunder the correctly specified
model, and we let é and 6'2( denote the estimators of the

Query the SO for the sample value of g at  (Xk, 1,
eg), obtain gu; 1(X;<+1; d;) Update

Y 0 /(OBk)yk"' BkgW]M (Xk+1; d;)

Query the SO for the sample gradients
V.., (89). Vol (6). Update

07! 9o, [0 @y, Vo, (67)],
05" @0, 65Oy, Vo, (65)]:
end for

The details are summarized in Algorithm 1. Having
presented Algorithm 1, we then conduct a theoretical
analysis to investigate its performance. The key ques-
tion is whether and how fast the generated solution
sequence converges to a solution. Intuitively, with a suf-
ficiently large number of observations, the estimatorsﬁ%
and 9'2( would induce minuscule errors. Nevertheless, it
remains unclear how the random errors induced under

model parameters. Based on the chain rule, we upda{g_gisspeciﬁcation interact with those incurred from the

the current solution xusing a quasistochastic gradien
step defined as follows, for any=1:

Xice1 QN x [ Xk %Ngwi(xk; d;)vak(}’k; d;)]

Notably, here we employ the subgradient ngf(xk; &)
in view of the possible nonsmoothness in the inner layer
function g(+; 6). Because wserves as an estimator of
Ew[9w(Xk; 65)], we then query the SO at current solution
Xk,4 with an incorrect estimate of the model parameter
Gf and update y by constructing a weighted average
between prior values and the new sample 02+1(Xk+1; &)
returned by the SO using g, as defined by the following

update for k> 1:
Yie1 @ 1 OBV + Bwy (X 1; &):

Finally, we update our estimators 6’1‘ and 9'; using pro-
jected stochastic gradient steps with steplengths ;y
and v, x, respectively, as specified next fork1:

0} @o, [0 Dy, Vo', (6})], and
egﬂ Orl ez[eg OYZ,kv(p(ﬁzz),kn (eg)]
Algorithm {m-SCGD)

Input: ;€ By, e H,0le B, 0} e B2, SO, K,

step-sizes| o], (Bel, [V 4l Yol
Output: The sequende] ke -
for k91,2, :, K do
Query the SO for the sample generalized gradient
~ngzk(xk; d;) and sample gradien, (v; ). Update

Xy 1 @ﬂx[xk%kvgwg(xk; &)V, (Vi; )]

t estimation of Ew[9w(Xk; 85)] in evaluating the sampled

gradient Vv, (Ew[9w(Xk; 8)]; ), especially in the case
that Ew[9w(Xk; 65)] is corrupted by misspecification aris-
ing from the parameter sequenc{aeg}. Moreover, for
any solution trajectory generated by our algorithm, as

the parameters are misspecified in each update, it is
unclear how these errors accumulate and interact with
each other. To further address these questions, we first
impose some smoothness and moment assumptions on
the stochastic component functions.

Assumption 2.1t G, Vi, G, , lr, K, and kg be posi-
tive scalars.

(i) The outer function(f; 84) is continuousl){ differgntia-
ble for every §< @4, the inner function @ ; 8,) IS continu-

ous for every § € ©,, and the feasible set X is closed and
convex. There exists at least one optimal solution to problem

(1.1).

(i) Forevery & €0,, the function d=; 8,) Is Lipschitz
continuous with parameter,Cand the random variables
9w(x; 8,) and \gw(x; 8,) have bounded second moments
such that

E[|ViOw(x;02)|?] <Cq, andE[||gw(x;02)|F] <Vg, WKeX -

(iii) For every @ € @4, the function f; ) iS L;-smooth
such that for all v, B

IMfly; &) @ N, 04)l| <L¢|y @¥|:

In addition, the random variabley, f,(y; ;) and f,(y; &)
have bounded second moments such that

E[|W uly:04)IF] <CrandE[|If(y;04)] <Vi, We f:
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(iv) For every X, the value mappingxgs) 1S G
Lipschitz continuous in ,8 and\,d(x;+) is kgLipschitz
continuous in 8, For every ye | the gradient mapping
Vif(y;*) is k-Lipschitz continuous in®

We also impose the following smoothness and
moment assumptions on the model parameter functions.

Assumption 2.2, G, G, u , andy, be positive
scalars.
(i) The model parameter functio(®;) is g, St ongly
convex and the feasible 5é$ @osed and convex 1@y, 2.
(i) Forj®1,2, and for every;& ©;, the random vari-

Theorem 2.1 (Almost Sure Convergence). Suppose

Assumptions 2.1 and 2.2 hold. Suppose X is a convex feasi-

bleregion. Let (x,.yy,0".6%)] fin be the sequence computed

via Algorithm 1. L'gt the step-%éaa},{ﬁk},{vpyk}, and

[vou be such that (o ok @ % (e B® ® enVjx
@ oJorje 4,2, By, , decreasingto zero monotoni-
cally, and '
!
2 2 42
a af a
OF+ B+ V2 Vo —+ 4+ K <o
ke ' " Yok Yk Bx

(@) IfRe; 65, 65)is convex and let"e the set of optimal

N(q.
able V<Pg,)(9/) has a bounded second moment such th%tolution to problem (1.1). Thek converges almost surely

EL| Vo (8))IF] < C.

Apart from the various assumptions on functions f, g
and model parameter functions <p(1), dz), as well as the
associated moment requirements on the associated ran-
dom gradients and Jacobians, in some part of our analy-
sis,we focus on the scenario where the overall objective
function F(x; 6}, 6;) @(x; 6], 6) is Lr-smooth, as cap-
tured by the next assumption.

Assumption 2.3he function R.; @;, 65) is L-smooth,
that is, there existsd.> Q such that

Fix; 6;, 8;) €(x; 8, &)
< Vix; 685)" (@) +5 [ OXF, W xeX:

Here we provide an illustrative example where the non-
smoothnessof g under Assumption 1 would not impact
the smoothness of F. Consider a case where the inner
function g is nonsmooth and defined as(¢f) €@max|0, X
whereasthe outer level function f is defined as Y) €@
and is clearly smooth. One may see that the overall func-
tion fgg defined as gg(X) @max( 0.X})?is also smooth.

Note that such an example is by no means artificial
and the max{-, 0 operator has been adopted in many
risk management applications for capturing downside
risk. For instance, letting U-, w) denote a random utility
function, its associated semivariance (Rigamonti and
Lucivjanska 2022) is defined as

Eu[max(Eu[U(X.w)] &(X.w).0/%],

which captures the dispersion of the random utility
U(:, w falling below the mean. Another example is risk-
averse semideviation optimization (Ruszczyiski and
Shapiro 2006, Ahmed et al. 2007), which also employs
the max -, 0 operator to quantify the downside risk (see
the detailed formulation in Section 5).

2.1. Almost Sure Convergence

We prove the almost sure convergence of the m-SCGD
algorithm in the following theorem and provide a
detailed proof in e-companion Section A.2.

to a random point in X
(b) Suppose Assumption 2.3 holds anBX . Then any
limit point of the sequenc¢e,| is a stationary point of prob-

lem (1.1) almost surely.

2.2.Convergence Rates

Theorem 2.1 in Section 2.1 establishes the almost sure

convergence guarantees for the m-SCGD algorithm for

both convex and nonconvex objectives. We now investi-
gatethe rate of convergence when we have diminishing

step-size sequences of the form

ak @CK®, B, 5K, v,  @2=(14 k) forj &1, 2,

where a, b, € 0, 1 are positive real numbers and €> 0
is a constant. Optimizing the rate over a, b, and c,
we obtain the following result for nonconvex objectives.
Notably, we distinguish the impact of misspecification
on the rate.

Theorem 2.Zonvergence Rate for Nonconvex Objec-
tives). Suppose Assumptions 2.1, 2.2, and 2.3 hold, and
X @ B Let the step-sizes hdp®=>, g @5Kk%2> and
Vk @2=(14 k) for j @1, 2. Let((Xk.Yx. 8%, 85)] key DE the
sequence generated by Algorithm 1.

(a) For any k>0, we have

® @ Pk !
Mq_Oﬂ

K25 K25

P
f@ GkELU VF(Xi;0 Teé‘) ||2]
P
faak

<0

(b) Supposez2-5. Then for any K0, we have

P
kex OKE[|| VF(Xk; 6;.63) ) i’m K?
K K25

ken Ak

<0

The detailed proof is provided in e-companion Section
A.3.

Remark2.1. The previous result shows that our
scheme achieves a rate ofO(K®%) for nonconvex
objectives, matching the O (K#%) convergence rate for
two-level basic-SCGD derived in Yang et al. (2019),
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despite the misspecification of the parameters 6 | and
65. In conclusion, the corruption via misspecification
in 6 4 and 6, does not adversely affect the rate of con-
vergence under the caveat that the steplength sequence
Yik (wWhere i€, 2) employed for learning Pand 6,

model that
Xice 1 @ x [ Xk @KV (Xi; &)V, (Vi; )]

To achieve acceleration, we query the SO twice at x

diminishes suitably fast. However, the constant in the rate with misspecified parameter 92 to obtain two indepen-

is indeed affected by the presence of misspecification.

3. Accelerated Schemes
In Section 2, we establish @ (K) rate of convergence
for the misspecified stochastic composition optimiza-
tion problem with a nonsmooth inner function g («; 6;).
In this section, by assuming g(+; 8,) to be smooth, we
propose an accelerated gradient descent method when
updating the estimator y. We prove the almost sure
convergence of the sequence produced by the algorithm
and show that the algorithm achieves a faster rate for
nonconvex and strongly convex objectives.

Recall that in Section 2, at each iteration, we update
our estimator y« by the weighted average of the previ-
ous estimator and the new sample 9y 1(Xk+1, d;)

returned by SO. To accelerate the sequence a funda-

mental question is how to obtain a better estimator.
When the information parameter 6; is perfectly known,

dent samples of Vdy (Xk; &) and s (Xk; &). This facili-
tates building an update y k.1 as a weighted average of
the prior value, namely, }, and the independently sam-
pled value 9w (Xk; d;) added to a conditionally indepen-
dent stochastic linearization term given byVQWz (Xk; d;)T
(Xk.1 @Xx), leading to the following update rule that

Vierr @ 1OB)Yic+ Bidus (X 6) + W (Xe; )" (Xiw1 9%):
(3.1)

Finally, similar to the m-SCGD algorithm, we update
the parameters éf e by the projected stochastic gradi-
entmethod, defined as follows for k= 1:

07! 9o, 65 Dy, Vo, (6))], and
k+1®n®2[ezévzkvq)§2“( )]

Chen et al. (2021b) and Balasubramanian et al. (2022)re details of this misspecified accelerated stochastic

proposed accelerated schemes that achieve faster rates
under some mild assumptions by employing an addi-
tional linearization term. We adopt this idea in develop-
ing an accelerated method when 6; is unavailable as a
priori and establish convergence results. Before pro-
ceeding, in addition to Assumptions 2.1 and 2.2, we
impose the following assumptions.

Assumption 3.16t L, G, and ¢be positive scalars.

We assume the following.

(i) The function (¢; 8;) IS Ly-smooth for any,& O,
that is, there exists a positive scg/érdt

MI(x;02)@Vid(x:0,)|| <Lqg|X@X]||, WX EX, B,€0,:

(i) The random variabl&gw(x; 8,) andVf,(y; &) have
bounded fourth moments such that

E[[|Vw(x; &)|1'] < CFand E[[[Vi(y; 6] <C7,
WX eX ,Ye ﬁ], 91 691, 92 EOQ.‘

We point out that a vast class of distributions including
Gaussian, uniform, and logistic, among others, are char-
acterized by bounded fourth moments. Furthermore,
this assumption is commonly employed to achieve
acceleration in stochastic compositional optimization

compositional gradient descent (m-aSCGD) algorithm
are summarized in Algorithm 2.

Algorithm Zm-aSCGD)

Input: ;€ By, e H,0le B, 0] ¢

step-sizes{ax], (B, [V 1kl {vzk :

Output: The sequendék}ka

for k&®1,2, :, K do
Query the SO to obtain a sample gradient of g at
X and 05, given by VO (Xk, &); query the SO to
obtain a sample gradlent of fat x and 61, denoted
by Vv, (Vk, &). Update X1 by

Xice 1 O x [ Xk @V (X &)V, (Vi; )

Query the SO to obtain a sample gradie8if, (X d;)
anda sample function value,gxk, G% at xand
Update yk.1 by

Vi1 @ 1B+ Biup (X &) + T (Xig 6) (X %)

K-, SO, K,

end for

3.1. Almost Sure Convergence

We first prove the almost sure convergence of the iter-
ates generated by the accelerated algorithm. First, we
note that when both layers f and g have Lipschitz contin-

(Wang et al. 2017a, b; Yang et al. 2019). In the remainderuous gradients with Lipschitz constants Ly, Ly >0,
of this section, we propose an accelerated algorithm that respectively, the objective function F also has Lipschitz

achieves a faster convergence rate. At the k-th iteration,
we first update x«.¢ by employing a projected gradient
step and invoking the chain rule under the misspecified

continuous gradients. Thus, Assumption 2.3 holds if
both Assumptions 2.1 (iii) and 3.1 (i) hold. We denote
the Lipschitz constant as k£ > 0. Theorem 3.1 shows the
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almost sure convergence of the m-aSCGD algorithm, Then, letting the step-sizes i1, and y«be defined as
where we provide the detailed proof in e-companion

2 2

Section B.1. akém, B @5k¥', and yj_,(@ﬂ forj &1, 2,
o

Theorem 3.¢AImost Sure Convergence of m-aSCGD). '

Supposethat Assumptions?2 1, 2.2, and 3.1 hold. Let  our next theorem shows that Algorithm 2 achieves a fas-

(X, yk,eﬁ,eg)}fa be the sequence generated by Algorithmter rate under strong convexity.

2, and lgt the step-sgéak},{ﬁk} , {¥1,k}' and (Y} bé  theorem3.3 (Convergence Rate of m-aSCGD for

suchthat (o ak @ o (B ® % gV x® % Y@ Strongly Convex Objectives). Suppose Assumptions 2.1,
1,2, @ <MB, for all k>0 for someM > 0, B.,, 2.2, and 3.1 hold, the objective function F is a-strongly

decreasing to zero monotonically, and convex satisfying (3.2), and X is convex. | L@tyx, 07,
) , 2! eg)}m be the sequence generated by Algorithm 2, where
R VIRV, P A S G o @2=(K+ 1)), B @B, andy, , G2 =y oI ] 1, 2.
ke : T Yik Yok B (a) For any K50, we have
Suppose that(sF gF, @) i denotes 2 X
(a) Supp (67, 65) is convex, andX E[xx @XF] < O(K¥) + oK),

the set of optimal solutions to problem (1.1). Tikehcon-
verges almost surely to a point i X
(b) Suppose ¥R ". Then any limit point of the sequence (b) Suppose®1. Then for any k0, we have
X o0 . . .
[ Xi] kep is @ stationary point of (1.1) almost surely. E[[Xk ©XF] < O(K®).

KK+ 1) o0

3.2.Convergence Rates
We now derive the rates of convergence of the
m-aSCGD algorithm under nonconvex and strongly =~ Remark 3.1Cheorem 3.2 shows that our accelerated
convex settings in the following theorem, with dimin- scheme achieves a faster rate of convergence with an
ishing step-size sequences taking the form additional smoothness as@s4umption. Meanwhile, our

. result improves the O (K®%) convergence rate ob-
o @CK®, B, @5k, and Vi @2=(y k) forj @1, 2, tained for nonconvex th)-Ieve? a-SCGD developed by
where a, b, € 0, 1 are positive real numbers and > 0 Yang .et al. (2019) by incorporating the !inearization
is a constant. term in the update- for Yk,1. In fact,_ this _sphe_me
achieves a near-optimal rate and misspecification
Theorem 3.2 (Convergence Rate of m-aSCGD for  |eads to no degradation from the optimal rate com-
Nonconvex Objectives). Suppose that Assumptions 2.1,pared with that obtained with perfect knowledge of
2.2, and 3.1 hold, and X @ R Let the step-sizesbe  g* a0y g: Moreover, the rate statement in Theorem
ax @k 2, &%km% and Ykéz:(/é/kc) for j @1, 2. 3.3 shows that the accelerated scheme achieves the

k) K :
Let((X.Yx.87.85)] kgs b€ the sequence generated by Algo- ntima| rate, improving on the rate provided in Yang

We defer the detailed proof to e-companion Section B.3.

rithm 2. et al. (2019) and displaying a corresponding lack of
(a) Forany k>0, we have degradation from the rate obtained in perfectly speci-
P P ! fied strongly convex regimes.
o GKELFUY:(XK; 6.6,)IF] < Oé%ﬁ,ﬁf@ fg {Wﬂiﬂ__’zalfﬁfﬁ . Further?n)é)re, it is wo?th pointing out that our mis-
kén Ok K K specified optimization framework is able to accom-
modate other real-world applications where the
(b) Supposer 1-2. Then for any K0, we have misspecified sequence{(eﬁ, d;)} is generated through
P o @ other approaches instead of SGD. In fact, based on
f« akE[]| VF(X; 8], 8)|P] I S Lemma A.11in e-companion Section A.3, we realize
PR <0 l@”'ff'ff' that the overall convergence rate exhibits no degrada-
hon tion if the misspecification error ||9,'-< 09,*”2 diminishes

to zero at a rate no slower than at which |V« @
d(X«; 8;)|* decays to zero for both nonconvex and
strongly convex problems when the environmental
parameters (0], 8;)] are explicitly known. A slower
rate will result in a build-up of error, and beyond a
certain point, convergence cannot be guaranteed. The
utilization of SGD in learning {(8], 6)] is to show
Fix; 8], 85) €(x* 6, 6) =0[x@X*|?:  (3.2) thatsuch arate is indeed obtainable.

The detailed proof is provided in e-companion Section
B.2.

We conclude this section by considering the case
where A« ; 6], 65) is o-strongly convex. In particular, we
say that a function ; 6], 8;) is o-strongly convex if
there exists a constant & 0 such that for all X,
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4. Multilevel Misspecified Compositiondlnecan see that this unbiased sample gradlent requires

Optimization
In Sections 2 and 3, we have considered the two-level
compositional problem afflicted by misspecification.
As discussed in Section 1, the general T-level misspe-
cified compositional problem assumes immense rele-
vance. Recall that the T-level problem is of the form
given by

r)r(16|)r(1 F(x; 65, .,.67)
CE [T (Ew [P (- (BrlfL)(x; 67)]); -5 85)]; €7)],

where 6 [ @arg min Eg,.[(pgj)(ej)], forj 1,2, :,T:
0,0,

4.1)

Akin to the two-level case, throughout this section, we
assume the model parameter function ’ipls strongly
convex over a convex feasible region;, @dmitting a
unique optimal solution 8 }, for j &1,2, :,T. We focus
on the scenario where the random variables wy, . -,.wr
are mdependent of each other, and denote by f/)(Y;) &
Ewlfe, fJ) y (Y] forj €1, 2, :,:T. We assume access to the
foIIowmg zeroth and first-order stochastic oracle
(S0):

(Sampling Oracle (SO) for T-level problem.)

« Given xeX c K, or €Or, the SO returns an unbi-
ased sampled function valuef\))(x; 6r) € &* and an un-
biased stochastic gradientxf()(x; 6r) € B such that

E[f(D(x; or)] &) (x; 6r) and E[Vif)(x; 6r)] @ ¥'7)(x; r).

* Givenyj e R, § €0j, the SO returns an unbiased
sampled function value(% Y,, §) € f and an unbi-
ased stochastic gradlentVy, o " v -) e B9 for each
layer /«}1 T€>1 such thatE[ o v 6)] €0 8)
and E[Vy, w, )] @ Y 8

+ Given QGG), for jo, 2, T the SO returns an
unb|ased stochastlcgradlent V(pg (6/) € B such that

[V(Pg (6))) @ &(8)).
For notational S|mpI|city, we write VI{T)(x; 6r)¢
Vif!D(x; 6r) and Vfw, V5 8)eV y, w,( : §). Akin to the

two- IeveI scenario, the main challenge of solving the

general T-level misspecified compositional optimization
problem lies in contending with the unavailability of
an unbiased sample gradient. To illustrate this, under
the T-stage setting with misspecified parameter®1,
8o, 1, 8r), using the chain rule, an unbiased sampled
gradient is given by

VIS (x; 8r) VIS &0 (F T (x; 6r); Oren)
o V(g T or); 61):

access to the correct parameter(591, 8, -, 67) and the
values f7)(x; 67), . -, £2g---d7)( .,.9?). Unfortu-
nately, the misspecification in model parameters and
errors induced when estimating the functions’ values
result in a bias when we adopt a plugin estimator. Let-
ting yY) be an estimator for fj)g---gf(T)(x; 8, -, 87),
when the model parameters are perfectly known, Yang
et al. (2019) developed a multitimescale approach that
recursively updates )V In this case, we compute a sam-
pled gradient by

VU (x: g;)vfgg)(yﬂw; 9%1)

wTt

R ),

whose bias diminishes to zero as% «.

Nevertheless, without prior knowledge of the model
parameters, the estimators (’5’/3 are also corrupted by
misspecification, which makes it particularly challeng-
ing to apply gradient descent approaches. Recall that in
Sections 2 and 3, for the two-level misspecified composi-
tional problem (1.1), in iteration k, we update our esti-
mator of the inner function value gXk; 65) by combining
an inertial update with an accelerated linearization
scheme, under a misspecified parameteg @ind establish
the almost sure convergence and rates of convergence.
Under the general T-level scenario, the misspecification
in model parameters and maccurately estimated values
of f1(x; 67), . -, f2g--fV(x; 6, -, 6F) further exacer-
batesthe bias of the computed sample gradient, because of
the more complicated multilevel nested structure. There-
fore, it remains an open problem whether and how efficient
algorithms can be developed to tackle the general multile-
velmisspecified compositional optimization problem (4.1).

To address this issue, throughout this section, we assume
the satisfaction of the following smoothness requirements
and boundedness conditions on fourth moments.

;
Assumption 4.1.6t({C;] J,a,l ,,a,{Le,},Q,, and K7 | je

be positive scalars. '

(i) Forj€1,: :, T, the functionf (s ; §) is continuously
differentiable for every 8= ©;. The feasible set X is closed
and convex, and there exists at least one optimal solution to

problem (4.1).

(ii) For every @, :, T, the random variablé,% ¥ 6
dvf ( g) have bounded fourth moments such that

E[IFYv;; §)If < VEand E[|V0(y; §)I] <C?,
W e M, Vo €0;:

(iii) Forevery 1, ;. T and for every; & Qj, the func-
tionfU)(  g)is L -smooth such that

VU 6) @ 87 8)l <Loly; @)l Wiy e H:
(iv) For all xeX, the value mapping f7)(x;e) is

Cr-Lipschitz continuous in 18 and the gradient mapping
VI (x;#) is kr-Lipschitz continuous in § For j@2,
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T, for all yc ®, the value mappind (¥j;+) is
Cf L/pschltzcont/nuousm g, and the grad/entmapp/ng

Vf( (Vjse) is K L/psch/tz continuous jnfr all ye & the
gradient mappiRg!" J(V4;¢) is k,-Lipschitz continuous ip 6

Note that the Ig-Lipschitz continuous gradient for
every layer function f /) in Assumption 4.1 (iii) implies
Assumption 2.3, that is, F has Lipschitz continuous gra-
dient with parameter Lr > 0.

function value fgﬁli 7ARE g.,) with misspecified
parameter 6,+1 at y(’ +1) , and update )},f” by

k+1 o ’(oﬁk)yk + Bk IH ( H”, dj<+1)
+ v(l+1)(yg+1 ’ q< ) (yli++11 le+1)

-, 1. Finally, we update the model para-

forj @T @2,
et; by basic SGD, as prescribed by the

meters Gﬁ , d;

Contrary to the two-level scenario where only bounded following update rule:

second moments are required to ensure the efficiency of
algorithms, as we have mentioned earlier, the misspecifi-

0" @106 @y, Vo7, (0] for 1 @1, 2, - T

nested structure, especially under the accelerated schemegteps within each iteration, which simultaneously com-

For the purpose of acceleration, we also impose the fol-
lowing mild assumptions on the smoothness and fourth-
order moments for the model parameter functions.

putes the maln solution x and update model para-
meters L6}@‘ We provide the details of this
misspecified T-level stochastic compositional gradient

Assumption 4. 2_eth /in and{//e jen D€ positive scalarsdescent (m-TSCGD) algorithm in Algorithm 3.

(i) For j@1,: :,T, the model parameter funcﬁbrtscp

He,-strongly convex, and the feasiblgseloged and convex.

(||) For 101 ,.T and all p€0©j, the random vari-

ableV, <Pg (9,) has a bounded fourth moment such that {

ELlIV 0 (8))]] =<

By the smoothness and the boundedness of the fourth
moment of each layer f, we adopt the accelerated line-

arization scheme in Sectlon 3 to develop a new algo-

rithm. Our algorithm iteratively updates the solution xx
and the unknown model parameters dfs In particular,
at iteration k, we first update the solutionkxs by a gradi-
ent step using the chain rule with misspecified model
parameters (—f, : d} and estimators )}k”, : :,:}}krw via
the foIIowingor k=>1.

Xk Oy Xk @Gkvfij
AR

1
whk

7 (6 GV AT
VL

After updating x k.1, we employ the accelerated lineari-
zation scheme to derive an estimator for f (7 (X, 1; 8%).
Similar to the two-level scenarlo discussed earlier, using
the misspecified parameter ek for this layer, we query
the SO at xto obtain independent samples of the gradi-

entVf(T) (Xk; d}) and the function value I‘T) (Xk; d;) and

update yfm ) by a welghted average off (Xk 6@) and

previous estlmatory ), plus an add|t|onal lineariza-
tion term Vf' w2 (Xk, d?) (Xk+ 1 €Xk) such that

V! @ 108V + 1 (X 6)
+ Vg (o 6T o 9%

For the remainder of the layers, we recursively apply

a similar inertial update rule based on obtalnlng inde-
pendent samples of the grad|entVfM) (y(k’*”, ,+1) and

Algorithm 3m TSCGD)
Input- xe B,y e H for j@T&1,: o ge ﬁef
or 101 2, :,T, SO, K step- S|zes{cka kép» lﬁk}k@,
Y; k} kep for J 01
Output: The sequendé(kr K-
for k®1,2, :, K do
Query the SO to obtain sample gradients

Vfiﬂ) (% 6F) and VI (v/'; ) for QT @1,: ;1.

Update o ’

Xeor D X DauVIL] (i VI (170 e )
T,k Q

Wren, k
L i 8 -

Query the SO for 14 ( - 65) and Vfipk(xk; e).

Update y§<+1 )by
Ve @ 108 % + BL (X &)

+ Vi,;)k(xk: o) (Xk+1 OX):

for j@T92,: : 1do
Query the SO for st” I7ARE ¥.1) and

/+t k+1

vfl+1 (ylg+1 ) d]f+1) Update k+1 by

yk+1 72 (OBK + By uﬁsﬂ (y,f” ; 6.1)
+ V(/:ﬂ (yl(<]+1 : d;” yk]:11 @y(/+1
end for
for j©1,2, :, Tdo

Query the SO for the sample gradlel’Wepg] . 1( k).
Update model parameters by

of*" @o (6] @, Vo, (6])]:

endfor
end for
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4.1. Convergence Rates (a) For any k0, we have

Recall that in Section 3.2, we establish the convergence <

rates of the m-aSCGD algorithm for two-level misspeci- E[|IXk @x*||2] < o(K“) +L o(k“?c)_-
fied stochastic compositional problems with nonconvex K(K+1) ke

and strongly convex objectives. Despite the misspecifi-
cation, our rates match those provided by Chen et al.
(2021b) and Balasubramanian et al. (2022) with explicit E[|Xx €X|2] <O(K®):
knowledge of model parameters. Under the T-level set-
ting, with misspecification, it remains unclear if indeed We defer the proofs for Theorems 4.1 and 4.2 to
Algorithm 3 produces a convergent sequence and if so, e-companion Sections C.3 and C.4, respectively.
howl fastdthls zequer_\cehconverges. Furthermore, .the Remark 4.1Akin to the results in the two-level regime,
resulting egra ation in the convergence rates remains e again find that the rate statements are shown to be
an open question. To addresg these issues, we derive thethe optimal (or near-optimal) and show no degradation
convergence rateg Of, Algorithm 3 for nonconvex aqd from those obtained in the correctly specified regimes.
stron.g.ly convex objectives and assess the '_mF_’a_Ct 9f mis- Notably, these rate statements display a concrete im-
spemﬂ_catlon. We employ the following diminishing provement in terms of their invariance with respectto T
step-size sequences: and display an improvement over the findings in Yang

19a _ (K . o et al. (2019) in terms of the actual rate as well as their
ok QCH, Bk%ka)’ va"éz (/é, Jforj @1,2, T, dependence on T. We emphasize that the dependence
on T in the rate statement appears in terms of a larger

where a, b, € 0, 1 are positive real numbers and €>0  constant hidden in the @-) notation.

(b) Suppose®. Then for any k& 0, we have

is a constant. Further, following the intuition that misspecification
Now, we present the convergence guarantees of  does not degrade the overall rate of convergence, it is
Algorithm 3 for nonconvex objectives. also natural to conjecture that the optimal ©7 ') con-

vergence rate should be achievable for unaccelerated
Theorem4.1 (Convergence Rate of m-TSCGD for g

S ) m-SCGD, by employing a more refined analysis based
Nonconvex Objectives). Suppose Assumptions 4.1£and on recent advances (Chen et al. 2021a). We leave this

4.2 hold, and X@ . Let the step-sizes be€k® 2, :
B, ©5k¥12 and Vj,k02k¢:/é, for j@1,2. -.T. Let extension for future work.

T k k\y K
{(xk’yl(( o) . .:Y(k”vew ;.07 vy be the sequence gener-g Numerical Experiments

ated by Algorithm 3. In this section, we investigate the empirical performance
(a) For any K> 0, we have of our proposed algorithms. We consider the misspeci-
X fied risk-averse mean-deviation problem, which can be
ke GkE[HY:(Xk; e - 83)IF cast as a three-level compositional optimization prob-

i Z@‘ Ok lem. Next, we provide the detailed experimental setup

® © P« ! and extensive numerics, whereas in e-companion Sec-
<0 D—gﬁifﬁfﬁ) ken [kglﬁff@mﬁ . tion D, we provide further numerics on a misspecified
- ’ MDP and consider an uncertain portfolio optimization

problem where the cost of conservatism is empirically

(b) Supposez%. Then for any K> 0, we have studied.
P« . \ © O
ren WEL[| VF(Xk; 6. 2.87)|F] -0 |!!§fﬁfﬁfﬁ 5.1.Risk-Averse Mean-Deviation Optimization
" Ein Ok - Let U(s, w; 8) be a random utility function and let 8*be

the true model parameter. We focus on the following
misspecified mean-deviation risk-averse optimization

Then, the following theorem presents the convergence problem, defined as
h

rate for strongly convex objectives.

Theorem4.2 (Convergence Rate of m-TSCGD for max; Ey[U(C, w; 6)] @ ﬂ(Ew[iU(C,wi 6]
Strongly Convex Objectives). Suppose Assumptions 4.1 o P11 @ 17|12
and 4.2 hold, and X is convex. Let the objective function 9U(Cw; 6)),] @2”(” ’ (51)

Fix; 8}, -, 87) be a-strongly convex satisfying (3.2). Lefynere p> 1 is a positive scalar, and the true model
(@ oy e ~29’§)}/’§a be the sequence generated narameter & is the unique optimum to @/g-strongly
by Algorithm 3, by setting the step-sizesas ax 2= convex problem. The goal of this problem is to maxi-
(a(k+1)), B V5K, and ¥k 02,(@0:/6] forj@T,: : 1. mize the expected utility with mean-deviation risk and
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¢ -penalties under the misspecified regime. Given the let ce R° and sample each of its components indepen-
true model parameter &, this problem reduces to the dently from a uniform distribution provided in Table 1;
classical mean-deviation risk-averse optimization prob-  we generate x and & as per xi ~N (Ody1, Q.g‘ldxd) and
lem examined by Ruszczynski and Shapiro (2006) and & ~N(0, 02), respectively, whereby y@X/ { + &.
Ahmed et al. (2007). Meanwhile, this problem displays a We set p€2, and problem (5.1) falls in the regime of

three-level compositional structure in that it is equiva- convex optimization. We provide a benchmark compari-
lent to son by generating 1B samples, solving the batch version
h of the problem, and taking the solution £ as the optimal

i
i &l 2) 3(2:9 %] 9|2 ; . ) e .
ming F(g) @Y (Ew,[12) (Ewr[15) (0 )]; 67) + €I, where  go1ution. In our simulations, at the k-iteration, we first gen-
erate one sample ofS, v} to update our estimator of the

FO((v4, 16))¢ Vi +y;*’, model parameter @ by single-level SGD. Then, to update
fgz)(z’ g 6)¢( z,(Z+U(Cwz8")), the solution s, we draw a random sample from {X;, y|

£3)( 7. * U o and apply the accelerated scheme using the misspecified
w3 (2:6 )e(@ U(Cwa:07), §- B« We demonstrate the performance of the three-level

As pointed out by Yang et al. (2019), this problem isM-TSCGD on both convex and strongly convex objectives.

challenging because of the biased stochastic gradients.
In this setting, only the inner functions f 2 and f® are ~ 5-2.Convex Objectives
complicated by uncertainty, but a bias is induced when ~ We first investigate the performance of the m-TSCGD in
calculating the gradientVf“), regardless of whether ) the convex regime. We consider problem (5.1) without
is deterministic or not. Therefore, solving this problem ~ any ¢ 2-penalty, that is, o €0. We set the step-sizes as
is as challenging as solving a three-level compositional Ok @min|0.0002, @2k¥'2] and B, , OB, Hmin(0.0005,
problem. We tackle this misspecified compositional 0.05k%'2] for m-TSCGD. In addition, to update the
optimization problem by the three-level m-TSCGD  model parameters @ we set the corresponding step-
algorithm (Algorithm 3), and compare its performance  Sizes in m-TSCGD as y @min | 10%, 10k} Here we let
with the three-level a-TSCGD in Yang et al. (2019) with @ @100, 200. We run both algorithms for 10 iterations,
the true model parameter ® In our experiments, we compare the performance of m-TSCGD over the four
consider the scenario where 6" is the unique optimum  different misspecification setups, and plot the trajectory
to the following problem of the empirical log-error log (E[||VF(¢r,)|f]) averaged
h i over 10 independent simulations, where this metric
8" @arg min E (Vi05,76)2+%||6||2 : (5.2) matches that considered in Theorem 4.1, a detailed
R explanation for which is provided in Appendix D.1.
Here we assume a linear model wherei @S'6 + ¢/, We provide the results in Figure 1. We observe that the
5,6 € R, and & is a zero-mean noise term. We gener-  Slopes of logk against Io@E[[|VF(Zr,)|F]) are close to
ateBas per & ~Unif[0,1]%. In each simulation iteration, €12, matching the theoretical claim in Theorem 4.1
S and ¢ are generated as per S Nunif[oy1]50 and that the produced sequence converges at a rate of
g ~N (0, 9, respectively. It follows that v@S 6 +¢.  O(K¥'2)for the three-level convex problem.
Note that 1, €01 to ensure the objective ig/q-strongly
convex. Also, in our simulation, we first generate®10 5.3. StronglyConvex Objectives
samples and solve the batch version of the problem and Next, we test our algorithm on g-strongly convex pro-
take the solution as 8. Consider a utility function of a blems with o©0.5. We run m-TSCGD and a-TSCGD

least-squares form given by with step-sizes as ?{%in{o'oooz 2-p(k+ 2)@)4}, B 05( o
_ - - "2 Bzyki)min{o.0004,4: +2)}, and y ©min{10%, 10k} .
UG, w;6) @ @@/ ¢+C (6907 We conduct 10 independent simulations, each of them

Here we let wi € X, ¥}, and we assume a linear model  consisting of 5 x 10° iterations, and plot the average of
that yi €X' + & where x;,{ € K and & is zero-mean.  the log-error log(|[(x €¢*F). We conduct the experi-
We generatel ~Unif[0, 1]d and employ it in all experi- ments for €100, 200.

ments. In each simulation iteration, we consider four  In Figure 2, we observe that the slopes of the averaged
settings to test the performance of our algorithm under  log-error log(||C« @C*HZ) generated by misspecified algo-
different levels of misspecification. In each setting, we rithm approximately equal €4 over all misspecification

Table 1.Distribution of ¢ for Different Levels of Misspecification in Risk-Averse Mean-Deviation Optimization

Setup Significant Moderate Slight Correct

Distribution of ¢ ¢ ~Unif [0,100]%° ¢ ~Unif[0,60]%° ¢ ~Unif[0,30]%° cQ0
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Figure 1. (Color online) Empirical Log-Convergence Rate of the m-TSCGD Algorithm for General Convex Objective Under Dis-
tinct Levels of Misspecification When a®100, 200

Empirical Log-Convergence for d = 100 Empirical Log-Convergence for d = 200

T T
—=m-TSCGD Correct L —=m-TSCGD Correct
~—m-TSCGD Slight '\~,‘._ ~—m-TSCGD Slight

b m-TSCGD Moderate B N m-TSCGD Moderate
Seml — m-TSCGD Significant . - o ~xo — m-TSCGD Significant
At _\‘l&_ - log(y) = —3 log(k) + C At - ~ . :~\,‘\ ~x-log(y) = —3 log(k) + C ||
- ~ ~ . "~ -~ ~*~

~ ~

setups, matching Theorem 4.2 where arate of §®')is @, Concluding Remarks
derived for three-level g-strongly convex problems. This  As systems grow in size and complexity, problem para-
also supports our theoretical analysis that the choice of meters are often not known a priori. One avenue for
step-sizes defined in Theorem 4.2 improves the rate from addressing the unavailability of problem parameters is
O (k®5) to O(k¥!) for a-strongly convex objectives. to employ user-specified uncertainty sets, which have
been adopted in conjunction with a robust optimization
5.4. Insights from E-Companion Sections D.1 approach. An alternative approach rooted in classical
and D.2 research in economics emerges when there is a true or
In Section D.1, we consider the nonconvex misspecified nominal value of this parameter and requires learning
compositional problem and observe that the empirical this parameter through available data while resolving
rates support theoretical claims, whereas in Section D.2, the misspecified optimization problem. We consider
we observe that the impact of conservativism in robust  the class of misspecified problems complicated by risk,
approaches on uncertain portfolio selection problems can nonconvexity, and, in a limited sense, dynamics. A uni-
be significant in comparison with the proposed avenue. fied framework for contending with such problems is

Figure 2. (Color online) Empirical Log-Convergence Rate of the m-TSCGD for g-Strong Convex Objective Under Distinct Levels
of Misspecification When d@100, 200

Empirical Log-Convergence for d = 100 Empirical Log-Convergence for d = 200

log(I[Gk — ¢*[?)

T
==m-TSCGD Correct

~——m-TSCGD Slight
m-TSCGD Moderate

= m-TSCGD Significant ||

~-log(y) = —log(k) + C

log([[¢Gk — ¢*|1%)

~e
it S

T

==m-TSCGD Correct

=—=m-TSCGD Slight
m-TSCGD Moderate

— m-TSCGD Significant
~-log(y) = —log(k) + C' ||
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available through compositional stochastic optimiza-
tion problems. We consider the misspecified variant of

such a class of problems and develop the data-drivery,

compositional optimization schemes that can resolve
misspecification while solving the original problem. Our
key findings include that two-level compositional sto-
chastic gradient schemes and their accelerated counter-
parts display no degradation of rate in strongly convex
and nonconvex settings from their correctly specified
counterparts. In fact, such statements continue to hold
for accelerated schemes for the T-level multistage coun-
terpartsin strongly convex and nonconvex regimes.

Yet much remains to be investigated for this avenue
of decision-making. In particular, can this framework
accommodate more stylized and sophisticated learning
models where smoothness and convexity concerns are
weakened? To what extent can the statements be
extended to misspecification in the presence of risk-
afflicted constraints? Our future work will consider pre-
ciselysuch avenues.
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