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Abstract. As  systems  grow  in  size,  scale,  and  intricacy,  the  challenges  of  misspecification 
become  even  more  pronounced.  In  this  paper,  we  focus  on  parametric  misspecification  in 
regimes complicated by risk and nonconvexity. When this misspecification may be resolved 
via a parallel learning process, we develop data-driven schemes for resolving a broad class of 
misspecified stochastic compositional optimization problems. Notably, this rather broad class 
of compositional problems can contend with challenges posed by diverse forms of risk, dynam-
ics, and nonconvexity, significantly extending the reach of such avenues. Specifically, we con-
sider the minimization of a stochastic compositional function over a closed and convex set X 
in a regime, where certain parameters are unknown or misspecified. Existing algorithms can 
accommodate  settings  where  the  parameters  are  correctly  specified,  but  efficient  first-order 
schemes are hitherto unavailable for the imperfect information compositional counterparts. Via 
a data-driven compositional optimization approach, we develop asymptotic and rate guaran-
tees for unaccelerated and accelerated schemes for convex, strongly convex, and nonconvex 
problems in a two-level regime. Additionally, we extend the accelerated schemes to the general 
T-level setting. Notably, the nonasymptotic rate guarantees in all instances show no degrada-
tion  from  the  rate statements  obtained  in  a  correctly  specified  regime.  Further,  under  mild 
assumptions, our schemes achieve optimal (or near-optimal) sample complexities for general 
T-level strongly convex and nonconvex compositional problems, providing a marked improve-
ment over prior work. Our numerical experiments support the theoretical findings based on 
the resolution of a misspecified three-level compositional risk-averse optimization problem.

Funding: E.  X.  Fang  is  partially  supported  by  the  National  Science  Foundation  [Grants  DMS-2230795  and 
DMS-2230797]. U. V. Shanbhag is partially supported by the Office of Naval Research [Grant N00014-22- 
1-2589] and the Department of Energy [Grant DE-SC0023303]. 

Supplemental Material:The e-companion is available at https://doi.org/10.1287/opre.2021.0295. 

Keywords: stochastic optimization • compositional optimization • misspecification • risk-averse optimization

1. Introduction
Since the seminal paper by Robbins and Monro (1951), 
stochastic gradient descent (SGD) methods have proven 
to be extraordinarily powerful in minimizing the expected 
value or the sum of a large number of loss functions. This 
avenue has been widely adopted in addressing a broad 
collection  of  problems  arising  in  engineering,  applied 
sciences,  statistics,  and  machine  learning,  among  many 
others (Kushner and Yin 2003, Borkar 2008, Shapiro et al. 
2009). The deterministic counterpart of SGD, referred to 
as gradient descent (GD) methods (Beck 2017), requires 
computing gradients, a challenging proposition when the 
objective is complicated by the presence of an expectation 
over  a  general  probability  space.  To  this  end,  classical 

SGD methods iteratively update estimators by employing 
sampled  gradients.  Yet,  first-order  methods  for  deter-
ministic  optimization  models  are  often  predicated  on 
the belief that the computation of functions and gradients 
is  possible.  Often  this  assumption  fails  to  hold  as  seen 
by  considering  a  prototypical  constrained  optimization 
problem

min
x∈X

f (x, θ), (Opt(θ))

in  which  f : X × Rm →  R is  a  real-valued  function,  X 
is  a  suitably  defined  set,  and  θdenotes  a  vector  of 
parameters. 

(i)  Stochastic  optimization.  Consider  a  setting  where 
the parameter θis a random variable, defined as θ¢ ξ, 
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where ξ : Ω → Rd. Let ρ[•] denote a suitable risk 
measure.  In  such  an  instance,  (Opt(θ))  is  modified  to 
allow  for  minimizing  ρ [f (x, ξ(ω))],  which  reduces  to 
E[f (x, ξ(ω))] in the risk-neutral regime. One avenue for 
resolving  this  problem  in  the  absence  of  gradients  of 
ρ[f (x, ξ(ω))] leverages the availability of an additional 
stochastic first-order oracle that provides sampled gra-
dients with suitable bias properties (Shapiro et al. 2009). 
Such models assume relevance when contending with 
randomness in future demand, volatility in prices, and 
stochasticity in available capacities.

(ii)  Robust optimization. Robust optimization pro-
blems emerge in settings where the parameter θis not 
known but instead, the user employs a belief that θlies 
in an uncertainty set T  (Bertsimas and Sim 2003, 2004). 
This leads to an uncertain collection of problems, cap-
tured by  the  set {min x∈X f (x,θ)}θ∈T ,  whereas  a  robust 
solution  (Ben-Tal et  al.  2009) requires solving  the  fol-
lowing worst-case problem:

min
x∈X

max
θ∈T

f (x, θ): (ROpt)

(iii)  Resolving misspecification via data-driven optimiza-
tion (DDO). A third approach inspired by classical liter-
ature on misspecification  in  economics (Kirman 1975, 
Okuguchi 1976, Okuguchi and Szidarovszky 1990) con-
siders an avenue where θhas a true or nominal value, 
denoted by θ ∗, that may be learned through data; for 
example, θ∗may represent idiosyncratic machine para-
meters  (such  as  efficiencies,  start-up  time,  shutdown 
times, etc.), the parameters of an inverse-demand func-
tion, or the parameters of a polynomial cost function, 
all of which may be learned by access to observational 
data. This is distinct from setting (i) because θis by no 
means a random variable. Similarly, if one employs an 
uncertainty set T  instead of leveraging data, then one 
expects a poorer (conservative) solution assuming that 
θ∗∈T ; however, the DDO framework is predicated on 
the availability of data.

There has been a recent emergence of interest in con-
sidering optimization problems where key parameters 
are either unknown or misspecified. For instance, inven-
tory  control  problems  may  often  be  afflicted  by  such 
challenges in that the demand distribution is unknown 
a priori (Qi et al. 2021) or the back-ordering cost may not 
always be known or easily estimated (Wu et al. 2013). 
Similarly, in the context of Markov decision processes 
(MDPs),  as  evidenced  by  applications  in  communica-
tion networks  (Dai  et  al.  2014)  and  disease  progression 
(Zhu  et  al.  2019),  among  others,  rewards  and  transition 
matrices may be either misspecified (Jiang and Shanbhag 
2015, Mankowitz et al. 2020, Miyaguchi 2021) or unavailable 
(Sato  et  al.  1982;  Mannor  et  al.  2012,  2016;  Ho  et  al. 
2018).

Naturally, we may consider an “estimate-then- 
optimize” approach where in the estimation stage, we 
learn an estimator θ̂for θ ∗. In the subsequent optimiza-
tion  stage,  we  minimize  the  resulting  function  f(• , θ̂ ), 
rather than a simultaneous approach, where we gener-
ate a sequence of estimators {θk} and an adapted 
sequence of solution estimators {xk} where the sequence 
{(xk, θk)} converges  to  a  minimizer  of  f(x, θ∗) and  θ∗, 
respectively. Several distinctions exist between the two 
approaches. 

(i)  Asymptotic convergence guarantees. Unlike simulta-
neous approaches, estimate-then-optimize approaches 
are  generally  not  equipped  with  asymptotic  conver-
gence guarantees because learning of θ∗is conducted in 
finite time, leading to at best an approximate solution 
given by θ̂. Consequently, the optimization phase 
requires the minimization of f (• , θ̂ ), rather than f(• , θ∗), 
leading  to  a  solution x̂.  Prior  efforts  adopting  this 
estimate-then-optimize  approach  have  demonstrated 
the  gap  between ̂x  and  x∗ (Jiang  and  Shanbhag  2016, 
Ahmadi and Shanbhag 2020).

(ii)  Complexity of learning θ∗: When the learning 
problem is a high-dimensional stochastic optimization 
problem,  the  “learning”  phase  in  the  estimate-then- 
optimize  approach  can  be  onerous,  requiring  signifi-
cant effort. During this period, improved solution 
estimators for x∗ are unavailable. However, in the 
simultaneous  approach,  one  generates  a  sequence  of 
estimators {xk} throughout the scheme.

(iii)  Serial versus parallel implementations. The estimate- 
then-optimize approach is natively serial, requiring the 
“learning”  phase  to  precede  the  optimization  phase, 
whereas the simultaneous approach allows for leverag-
ing the inherent parallelism and running both schemes 
largely  in  parallel,  allowing  for  significant  improve-
ments in run-time behavior.

Accordingly,  the  simultaneous  approach  generates  a 
sequence {(xk, θk)} that  converges  to  a  minimizer  of 
f (• , θ∗) and θ∗, respectively. We draw inspiration from 
the DDO framework for resolving misspecification pre-
sented by Jiang and Shanbhag (2013, 2016) in the context 
of misspecified stochastic convex optimization and vari-
ational  inequality  problems.  In  particular,  this  frame-
work considers the problem of computing

x∗∈arg min
x∈X

Ew[fw(x; θ∗)] and

θ∗�arg min
θ∈Θ

Eξ [φξ (θ)], 

where Ew[•] and Eξ [•] are the expectations with respect 
to  w  and  ξ,  respectively,  and  θ∗ serves  as  the  unique 
minimizer of a strongly convex function Eξ [φξ (•)] . 
Yet,  this  framework  cannot  contend  with  three  key 
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challenges  that  emerge  in  practical  design  and  opera-
tional questions: 

(i)  Risk  aversion. Recent  weather  events in  Texas  as 
well as the impact of COVID-19 on worldwide supply 
chains have reinforced the need for incorporating risk 
and reliability in decision making. When one overlays 
the need for knowing problem parameters (lead times, 
failure rates, etc.), the resulting problem becomes chal-
lenging.  However,  existing  schemes  cannot  contend 
with a risk-averse regime when the risk-neutral mea-
sure Ew[•] is replaced by a suitably defined risk mea-
sure ρw[•] .

(ii)  Nonconvexity. Convex formulations, although 
allowing  for  tractability,  often  fail  to  accommodate 
high-fidelity formulations and bring forth the need for 
nonconvex formulations. For instance, in some settings, 
cost functions may be concave whereas revenue func-
tions might  be  contingent  on  complicated  price  func-
tions,  leading  to  a  nonconvex  metric.  Unfortunately, 
prior work cannot contend with such nonconvexity.

(iii)  Multiperiod  decision  making.  In  many  settings, 
static optimization models alone do not suffice, particu-
larly in the face of accommodating dynamic decision- 
making  models.  One  avenue  for  modeling  such  pro-
blems is  through  MDPs.  The  cost  functions  and  the 
transition matrix in an MDP are often assumed to be 
known, but both may require learning while resolving 
such a problem.

To this end, we consider extending the DDO frame-
work to convex/nonconvex compositional regimes 
(Wang et al. 2017a, b; Yang et al. 2019), a framework 
that accommodates (i)–(iii) and considers the following 
problem.

The two-level data-driven compositional optimization 
(DDCO) problem requires an (x∗, θ∗1, θ∗2) such that

x∗∈ arg min
x∈X

Ev[fv(Ew[gw(x; θ∗2)]; θ
∗
1)],

where θ∗
1 �arg min

θ1∈Θ1

Eξ1[φ
(1)
ξ 1
(θ1)] and

θ∗
2 �arg min

θ2∈Θ2

Eξ2[φ
(2)
ξ 2
(θ2)]: (1.1) 

In  this  paper,  we  consider  the  setting  where  φ(1) and 
φ(2),  defined  as  φ(1)(θ1) � Eξ 1[φ

(1)
ξ1
(θ1)] and  φ(2)(θ2) �

Eξ1[φ
(2)
ξ 2
(θ2)], are both strongly convex over the sets Θ1 

and Θ2, respectively. We focus on the scenario where 
the random variables v and w are independent of each 
other.  Let  f(• , θ1) and  g(• , θ2) be  defined  as f(y; θ1)¢ 
Ev[fv(y; θ1)] and g(x; θ2)¢E w[gw(x; θ2)], respectively, 
where  θ1 ∈Θ1 and  θ2 ∈Θ2.  Here  g(• ; θ2) is  a  general 
vector-valued  function,  whereas  θ1, θ2 are  exogenous 
parameters that have no impact on the distribution of v 
and w. Moreover, the objective F(• ; θ1, θ2) is defined as 

F(x; θ1, θ2)¢ f8g(x; θ1, θ2) �f (g(x; θ2); θ1),  the  composi-
tion of f and g. Further, in practice, there may be multiple 
levels of composition, necessitating the consideration of 
the general T-level misspecified compositional problem, 
defined as

min
x∈X

F(x; θ∗1, : : :, θ∗T)

¢E ω1[f
(1)
ω1

(Eω2[f
(2)
ω2

(⋯ (EωT [f (
T)

ωT
(x; θ∗T)]) ;⋯; θ∗2)]; θ

∗
1)],

where θ∗
j �arg min

θ j∈Θj

Eξ j [φ
(j)
ξ j
(θ j)], for j �1, 2,: : :, T:

Next, we discuss some motivating applications.

1.1. Motivating Applications
We present two applications of particular relevance. 

(A)  Misspecified  risk-averse  newsvendor  problems.  We 
begin by considering the relatively simplified misspeci-
fied  variant  of  the  newsvendor  problem  that  deter-
mines the optimal order of a perishable item to 
maximize expected revenue in a single period (Arrow 
et  al.  1951,  Hadley  and  Whitin  1963,  Porteus  1990, 
Arrow 2002). Suppose the unit cost of the item is given 
by c∗and the demand is a random variable denoted by 
d : Ω→ R+ . Furthermore, if the order quantity, denoted 
by x,  is  less than demand, then  the cost of back- 
ordering is given by b∗(d(ω) �x)+ whereas the holding 
cost is given by h∗(x�d(ω))+ . If the order quantity has 
to  be  specified  before  observing  the  demand  realiza-
tion, the risk-neutral newsvendor problem is given by 
the following:

min
x≥0

E[c∗x + b∗(d(ω) �x)+ + h∗(x�d(ω))+ ]: (1.2) 

Under  the  caveat  that  the  probability  distribution  is 
known and defined as D(u)¢P( ω : d(ω) ≤u), it is well 
known that under suitable distributional assumptions 
(Shapiro  et al.  2009), the  optimal order size x∗ can  be 
expressed as

x∗�D�1(κ(b∗, c∗, h∗)), where κ(b∗, c∗, h∗)¢
(b∗�c∗)
(b∗+ h∗)

:

(1.3) 

Yet  such  an  avenue  is  inherently  fraught  with  chal-
lenges from the standpoint of data: 

(a)  First, the distribution of d is assumed to be 
known as a priori, a claim that may be often violated to 
varying degrees; for example, whereas demand may be 
known to be normally distributed, its precise mean and 
standard deviation, denoted by µ∗and σ∗, respectively, 
may  be  unknown  to  the  decision  maker  (DM).  The 
parameters µ∗and σ∗may be estimated via the sample- 
mean  estimator  and  the  sample  standard  deviation 
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estimator, whose convergence guarantees to their true 
counterparts can be ensured under mild assumptions.

(b)  Second,  the  parameters  b∗, c∗,  and  h∗,  although 
essential  for  solving  for  the  optimal  order  quantity, 
may require learning through observations, where the 
costs can be uncertain (Wu et al. 2013).

If  θ∗  � (µ∗, σ∗, b∗, c∗, h∗) denotes  the  information  not 
known a priori, then a mean-risk variant of the misspeci-
fied newsvendor problem is given by the following:

min
x≥0

E[F(x, ω; b∗, c∗, h∗)] +βρµ∗,σ∗[F(x, ω; b∗, c∗, h∗)], 

(N V2(θ∗))

where F(x, ω; b∗, c∗, h∗)¢ c∗x+ b∗(d(ω) �x)+ + h∗(x�d(ω))+ ,  β
denotes a risk-aversion parameter, and ρµ∗,σ∗[•] denotes 
a risk measure parameterized by µ∗and σ∗. Akin to ear-
lier,  θ∗ is  a  consequence  of  resolving  the  problem  θ∗�
arg minθ∈Θ Eξ [φξ (θ)]: Although ρ [•] can be chosen in a 
multitude of ways, we consider the mean upper semide-
viation (MUS) measure, defined as follows.

Mean upper semideviation (MUS) measure: Often one is 
concerned with the downside risk, and one avenue for 
capturing this is through the mean upper semideviation 
measure (Shapiro et al. 2009). Assuming that ρis the p-th 
order  mean  upper  semideviation  measure  with  p > 0, 
and letting F(• , ω; b∗, c∗, h∗) be the loss function, we have 
that the parameterized measure ρmus is defined as

ρmus
µ∗,σ∗[F(x, ω; b∗, c∗, h∗)]¢[E ω[F(x,ω; b∗,c∗,h∗)

�Eω[F(x,ω; b∗,c∗,h∗)]] p
+ ]

1=p:
(1.4) 

This problem falls into the class of misspecified three- 
level  compositional  optimization  by  setting  f (1)(z) �
z1=p, f (2)ω (x, y; b∗, c∗, h∗)  [�F(x,ω; b∗,c∗,h∗) �y]p+ , and f (3)ω (x;
b∗, c∗, h∗)  [�x, F(x, ω; b∗, c∗, h∗)] ∈ Rdx+1.

(B)  Misspecified Markov decision processes. Markov 
decision problems represent an enormously powerful 
framework  for  addressing  dynamic  decision-making 
problems  and  have  been  useful  in  a  breadth  of  areas 
including manufacturing systems, healthcare systems, 
and  economics,  among  others  (Ross  1983,  Puterman 
1994).  Particularly  noteworthy  are  efforts  that  apply 
MDP models to inventory control (Cheevaprawatdom-
rong and Smith 2004, Satheesh Kumar and Elango 2012, 
Chao  2013,  Li  2013,  Puranam  and  Katehakis  2014). 
Consider an MDP with continuous actions a ⊂A and 
discrete  states  s∈S.  Suppose  the  DM  takes  action  a 
in state s, resulting in a transition to a random state s ′

with probability P (s′ |s, a), yielding a simultaneous re-
ward  R(s,  a).  Given  a  discount  factor  γ,  let  Q∗(s, a) �
E[
P ∞

t�0 γ tr(st , at) |s0 �s, a0 �a] be the discounted state- 
action function with initial state s0 �s and a0 �a. 

Further, Q∗(s, a) is defined by the Bellman equation, as 
observed next.

Q∗(s, a) �R(s, a) +γ
X

s′

P(s′ |s, a)
�

max
a′∈A

Q∗(s′, a′)
�

�R(s, a) +γEs′

h
max
a′∈A

Q∗(s′, a′) |s, a
i

where the expectation is taken over all random transi-
tions  s′ with  respect  to  the  state-action  pair  (s,  a).  In 
more  generic  scenarios,  at  each  state  s∈S,  the  DM  is 
required to take an action a∈A based on an estimator ψ
for  ψ∗ in  the  environment,  where  the  parameter  ψ∗ is 
unknown. Such a parameter ψ∗may represent some spe-
cific characteristics of the process environment and may 
be estimated by the DM based on noisy observations. In 
most cases, these parameters serve as a (unique) solution 
to a stochastic optimization problem, defined as

ψ∗�arg min
ψ∈Ψ

Eξ [Φ(ψ, ξ)], (1.5) 

where Φ(ψ, ξ) represents the (random) estimation 
residual and Ψdenotes the feasible region of ψ. Yet, in 
many settings, neither the reward R nor the transition 
matrix P may be available and we denote their mis-
specified variants by R (s, a; ψ) and P(s′ |s, a, ψ), respec-
tively,  where  ψ∗ needs  to  be  learned  and  a  nominal 
estimate of ψ∗is denoted by ψ. Let Q∗(s, a; ψ∗) represent 
the  optimal  discounted  state-action  function  under 
the  correctly  specified  model  parameter  ψ∗ defined 
in (1.5). Then the corresponding Bellman equation is 
given by

Q∗(s, a; ψ∗) �R(s, a; ψ∗) +γEs′

h
max
a′∈A

Q(s′, a′; ψ∗) |s, a
i
:

Again, the conditional expectation is taken over all ran-
dom transition states s′ under state-action pair (s, a) and 
correct model parameter ψ∗. Solving the optimal policy 
for the MDP is equivalent to finding a fixed point of the 
above  Bellman  equation  under  ψ∗.  To  obtain  such  a 
fixed point, one can solve the Bellman residual minimi-
zation problem:

min
Q∈R|S | × |A |

X

(s,a)∈S×A

�
Q(s, a; ψ∗) �R(s, a; ψ∗)

�γEs′

h
max
a′∈A

Q(s′, a′; ψ∗) |s, a
i�2

, (1.6) 

where  ψ∗�arg minψ∈ΨEξ [Φ(ψ, ξ)].  This  problem  fits 
into the family of misspecified two-level compositional 
optimization problems by choosing

f (y)  ‖�y‖2 and the (s, a)-th entry of g(Q; ψ∗)(s,a)

�Q(s, a) � Es′
h
R(s, a; ψ∗) +γ max

a′∈A
Q(s′, a′) |s, a

i
:
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1.2. Related Work
We  briefly  review  related  decision-making  paradigms 
in optimization and control theory and summarize prior 
work on misspecified data-driven optimization and 
compositional gradient methods.

1.2.1.Related Decision-Making Paradigms. 
(i)  Multiarmed  bandit (MAB)  problems.  Recall that  in 

MAB problems, a gambler decides the selection, order, 
and frequency of machines to be played, given a collec-
tion of slot machines, where each machine provides a 
random  reward  from  a  machine-specific  distribution. 
The goal lies in maximizing the expected sum of 
rewards earned through a sequence of lever pulls 
where the reward function needs to be learned through 
the process. Such a framework is particularly compel-
ling  in  operations  and  revenue  management  (Besbes 
and  Zeevi  2009,  2012).  Distinct  from  our  setting,  the 
learning of the reward function is affected by the 
sequence of decisions.

(ii)  Adaptive  and  iterative  learning  control.  Adaptive 
control  (AC)  (Hovakimyan  and  Cao  2010)  problems 
arise in controlling systems where the parameters are 
either uncertain or varying slowly in time. A prototypi-
cal example arises in flight control, where the mass of 
an aircraft reduces in time through the burning of fuel, 
requiring the controller to reflect this change. Parame-
ter  estimation  to  facilitate  this  process  is  carried  out 
via least mean-squares (LMS), or its recursive variant 
referred to as recursive least mean-squares (RLMS), or 
the Kalman filter. In contrast, iterative learning control 
(ILC) represents a form of tracking control (Uchiyama 
1978, Arimoto et al. 1984) employed for repetitive con-
trol problems in batch processes, robot arm manipula-
tors, and reliability testing rigs. Contrary to our 
framework,  both  AC  and  ILC  often  impose  stringent 
requirements on the model but allow for more general 
dynamics. In  contrast,  the DDCO  framework  is more 
general in terms of problem primitives, requiring 
fewer assumptions on noise and allowing more general 
constrained  and  nonlinear  formulations,  but  preclud-
ing  complex  nonlinear  dynamics,  at  least  in  current 
regimes.

1.2.2.Related Work on Misspecification. In Jiang and 
Shanbhag  (2016),  it  was  shown  that  in  many  settings, 
the  presence  of  misspecification  does  not  adversely 
impact the rate statements when employing stochastic 
gradient descent schemes. Similar statements have been 
developed for gradient and extragradient schemes for 
misspecified deterministic convex optimization pro-
blems (Ahmadi and Shanbhag 2020), gradient-response 
schemes  for  misspecified  Nash  equilibrium  problems 
(Jiang et al. 2018, Lei and Shanbhag 2020), augmented 
Lagrangian schemes for convex optimization with mis-
specified  constraints  (Ahmadi  et  al.  2016,  Aybat  et  al. 

2022), and block-coordinate schemes for stochastic 
nonconvex programs (Lei and Shanbhag 2020). Under 
the  moniker  of  “joint  estimation-optimization”  (JEO), 
online counterparts of such schemes have been devel-
oped by Ho-Nguyen and Kilinc¸-Karzan (2019) and such 
avenues  have  been  employed  by  the  same  authors  in 
examining  nonparametric  choice  models  (Ho-Nguyen 
and Kilinc¸-Karzan 2021). Yet, the consideration of com-
positional regimes remains both open and compelling.

1.2.3.Stochastic Compositional Gradient Methods. Some 
of  the  earliest  efforts  on  two-level  compositional  pro-
blems  can  be  traced  to  the  work  of  Ermoliev  (1976), 
where the almost sure convergence of a two-timescale 
scheme was provided. Wang et al. (2017a) provided the 
first known rate statements whereas accelerated coun-
terparts  were  examined  subsequently  in  Wang  et  al. 
(2017b). Meanwhile, variance reduction has been stud-
ied in finite-sum regimes (Lian et al. 2017) whereas the 
very  first  generalization  to  the  multistage  regime  was 
developed by Yang et al. (2019). More recently, a single- 
timescale scheme  was  presented  by Ghadimi  et  al. 
(2020) where the optimal sample complexity was 
proven for computing stationary points of two-level sto-
chastic nonconvex optimization problems. In multilevel 
settings, algorithms achieving an O(k�1=2) rate of con-
vergence were developed by Zhang and Lan (2020) for 
convex objectives. Further, extensions to nonconvex set-
tings  were  presented  by  Chen  et  al.  (2021b),  Ruszc-
zynski  (2021),  and  Balasubramanian  et  al.  (2022)  with 
level-independent  optimal  sample  complexities.  More 
recently, two-level compositional optimization was 
studied  by  Yang  et  al.  (2022)  under  the  decentralized 
setting. Yet, we believe that extensions to the misspeci-
fied regime are far from immediate and remain the core 
focus of this research.

1.2.4.Novelty. In  this  paper,  we  propose  the  study  of 
stochastic compositional optimization problems afflicted 
by  misspecification.  Despite  the  relevance  of  such  con-
cerns in  risk-averse and dynamic decision-making pro-
blems, there are no existing schemes for resolving such 
problems. Following recent advances in stochastic com-
positional optimization (Chen et al. 2021b, Balasubrama-
nian et al. 2022), we propose new algorithms to resolve 
this  class  of  problems  under  a  range  of  convexity  and 
smoothness  requirements.  In  particular,  the  proposed 
framework allows for deriving convergence rates in con-
vex and nonconvex regimes via unaccelerated and accel-
erated  schemes,  where  the  key  step  lies  in  quantifying 
and  controlling  the  bias  induced  by  misspecification,  a 
challenging  proposition  in  compositional  settings.  To 
solve this issue, we decompose this problem as a coupled 
set of stochastic recursions whose collective convergence 
claims  are  not  immediate.  Distinct  from  the  correctly 
specified  regimes,  the  bias  terms  in  the  recursions  are 
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required to be analyzed carefully and the algorithm para-
meters have to be selected for achieving the best possible 
rate. Notably, our schemes achieve the optimal level- 
independent rate in strongly convex regimes whereas 
our  oracle  complexity  is  near-optimal  in  nonconvex 
regimes. Surprisingly, it is seen that the convergence 
rates  match their counterparts  in  the correctly speci-
fied regime, showing no degradation induced by 
misspecification.

1.3. Gaps, Contributions, and Outline
This paper is motivated by a crucial gap in addressing 
risk-averse, nonconvex, and dynamic decision-making 
problems afflicted by misspecification. Current techni-
ques cannot contend with such considerations. We con-
sider  a  compositional  and  nonconvex  generalization 
where direct extensions of prior work are by no means 
immediate. Consequently, there is a need for a compre-
hensive study of how existing compositional stochastic 
gradient  schemes  can  contend  with  misspecification 
and the degradation, if any, that such misspecification 
leads  to  from  a  rate  standpoint.  We  summarize  our 
major contributions next and note that numerics have 
been provided for on a misspecified risk-averse prob-
lem (Section 5) and a misspecified MDP (e-companion 
Section D.1) whereas the impact of conservatism arising 
from  employing  robust  approaches  has  also  been  ex-
plored (e-companion Section D.2). 

(i)  Unaccelerated schemes for two-level problems. In Sec-
tion 2, we consider two-level compositional problems 
complicated by misspecification, when the outer func-
tion is  differentiable whereas the inner function is 
merely  continuous.  Here,  we derive  almost  sure  con-
vergence guarantees in the convex and nonconvex 
regime. From a rate standpoint, the sequence is charac-
terized by a rate of Õ(k�2=5) in the nonconvex regime in 
terms of an appropriate residual function, matching the 
correctly specified statements developed by Yang et al. 
(2019), where ̃O( )· suppresses logarithmic terms.

(ii)  Accelerated schemes for two-level problems. When we 
further impose a smoothness requirement on the inner 
function g in Section 3, the rates for the nonconvex and 
strongly convex regimes are seen to improve to Õ(k�1=2)
and O(k�1), respectively. Again, we observe that these 
findings do not display any degradation from their cor-
rectly specified counterparts and represent the best 
available rates for such problem classes.

(iii)  Extensions to multilevel problems. Finally, when (ii) 
is extended to T-level compositional problems in Section 
4, we obtain rate statements Õ(k�1=2) and O(k�1) for non-
convex and strongly convex problems, respectively, again 
showing  no  degradation  of the  correctly specified  rates 
obtained by Chen et al. (2021b) and Balasubramanian et al. 
(2022) in the nonconvex regime.

1.3.1.Organization and Notation. The remainder of this 
paper  is  organized  into  five  sections.  We  consider  the 
application of unaccelerated and accelerated schemes on 
two-level  compositional  problems  in  Sections  2 and  3, 
respectively. Extensions to the T-level regime are consid-
ered in Section 4 whereas preliminary numerical investi-
gations are conducted in Section 5. The paper concludes 
with a brief set of remarks in Section 6.

1.3.1.1. Notation. For x ∈ Rn, we denote its transpose 
and  Euclidean  norm  as  x′ and ‖x‖,  respectively  (i.e., 
‖x‖ �

ffiffiffiffiffiffiffi
x′x

√
). For a function f, we denote its gradient at x 

by ∇f (x) and denote a sampled gradient by ∇fv(x) if fv is 
differentiable, where v represents the realization of the 
associated random variable; the Clarke subdifferential 
of f at x is denoted by ∂f (x) and is equivalent to the sub-
differential of f at x when f is convex. We denote an ele-
ment of ∂f (x) by ∇̃f (x), whereas its stochastic sample is 
denoted by ∇̃fv(x). We denote the expectation of fv at x 
by Ev[fv(x)] where v denotes the associated random var-
iable; in the absence of a subscript of E, the associated 
random  variable  will  be  clear.  We  denote  “converges 
to” as “ → ”, and denote “with probability 1” as 
“w.p.1.” We denote the Euclidean projection of a vector 
y ∈ Rn on a set X⊂ Rn by ΠX [y] �arg minx∈X ‖y�x‖2.

2. A Basic Algorithm
In this section, we first discuss how we sample first-order 
information for the functions f8g, φ(1), and φ(2) at solution 
xk with possibly incorrect estimates of model parameters 
θk

1 and θk
2. Next, we propose a scheme to resolve the mis-

specified compositional problem (1.1). Lastly, we derive 
the almost sure  convergence of the sequence  produced 
by our algorithm and derive a rate guarantee.

We first define the sampling oracle (SO). In particular, 
we focus on the scenario where the random variables w, v 
are independent of each other and assume access to the 
following black box SO, which independently generates 
stochastic first-order information upon each query. Note 
that here we use ∇̃xg(x; θ2) to handle the possible non-
smoothness of function g, whereas we directly write the 
stochastic gradients as ∇fv,∇φ(1)

ξ 1
, and ∇φ(2)

ξ 2
.

Sampling oracle  (SO).  (i)  Given  x∈X ⊂ Rn, θ2 ∈Θ2, 
the  SO returns  an  unbiased  sampled  function  value 
gw(x; θ2) ∈ R

m and an unbiased sampled Jacobian 
∇̃xgw(x; θ2) ∈ R

n×m such that E[gw(x; θ2)] �g(x; θ2) and 
E[∇̃x gw(x; θ2)] �∇̃xg(x; θ2) ∈ ∂g(x, θ2).

(ii) Given y∈ Rm, θ1 ∈Θ1, the SO returns an unbiased 
sampled gradient ∇yfv(y; θ1) ∈ R

m such that E[∇yfv(y; θ1)] �
∇yf (y; θ1).

(iii)  Given  θj ∈Θj for  j �1,  2,  the  SO  returns  an 
unbiased  sampled  gradient ∇φ(j)

ξ j
(θ j) ∈ R

dθj such  that 
E[∇φ(j)

ξ j 
(θ j)]  ∇� φ(j)(θ j).
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For  notational  convenience,  we  write ∇̃gw(x; θ2)¢ 
∇̃xgw(x; θ2) and ∇fv(y; θ1)¢∇ y fv(y; θ1).  The main  chal-
lenge in solving the misspecified compositional optimi-
zation problem (1.1) is that we lack access to an 
unbiased estimator of the true gradient of f8g; this issue 
is exacerbated by the presence of misspecification in that 
the true parameters θ∗1 and θ∗

2 are not known explicitly. 
To  be  specific,  the  lack  of  an  accurate  estimator  of 
Ew[gw(xk; θ∗2)] leads  to  a  bias  induced  in  evaluating 
∇fvk(Ew[gw(xk; θ∗2)]; θ

∗
1). Moreover, the lack of knowledge 

of θ∗
1 and θ∗

2 in a misspecified regime further impacts the 
bias of our estimator. To address the two aforementioned 
issues,  we  develop  a  class  of  efficient  algorithms  to 
resolve the misspecified compositional problem.

Next, we propose the misspecified stochastic compo-
sitional gradient descent (m-SCGD) algorithm. The algo-
rithm  iteratively  updates  the  solution  of  xk using  past 
queried first-order information. After the first k iterations, 
we let yk denote an estimator of Ew[gw(xk; θ∗2)], which is 
the  expected  value  of  gw under  the  correctly  specified 
model, and we let θk1 and θk

2 denote the estimators of the 
model  parameters.  Based  on  the  chain  rule,  we  update 
the  current  solution  xk using  a  quasistochastic  gradient 
step defined as follows, for any k≥1:

xk+1 �ΠX [xk�αk∇̃gw2
k
(xk; θk

2)∇fvk(yk; θk
1)]:

Notably, here we employ the subgradient ∇̃gw2
k
(xk; θk

2)
in view of the possible nonsmoothness in the inner layer 
function  g(• ; θ).  Because  yk serves  as  an  estimator  of 
Ew[gw(xk; θ∗2)], we then query the SO at current solution 
xk+1 with an incorrect estimate of the model parameter 
θk

1 and  update  yk by  constructing a  weighted  average 
between prior values and the new sample gw1

k+1
(xk+1; θk

2)
returned by the SO using βk, as defined by the following 
update for k≥1:

yk+1  � (1�βk)yk + βkgw1
k+1
(xk+1; θk

2):

Finally, we update our estimators θk
1 and θk

2 using pro-
jected  stochastic  gradient  steps  with  steplengths  γ1,k 

and γ2,k, respectively, as specified next for k≥1:

θk+1
1 �ΠΘ1[θ

k
1�γ1,k∇φ(1)

ξ 1,k+1
(θk

1)], and

θk+1
2 �ΠΘ2[θ

k
2�γ2,k∇φ(2)

ξ 2,k+1
(θk

2)]:

Algorithm 1(m-SCGD)
Input: x1 ∈ R

n, y1 ∈ R
m, θ1

1 ∈ R
dθ1 , θ1

2 ∈ R
dθ2 , SO, K, 

step-sizes {αk},{βk},{γ1,k},{γ2,k}.
Output: The sequence {xk}

K
k�1.

for k�1, 2,: : :, K do
Query the SO for the sample generalized gradient 
∇̃gw2

k
(xk; θk

2) and sample gradient ∇fvk(yk; θk
1). Update

xk+1 �ΠX [xk�αk∇̃gw2
k
(xk; θk

2)∇fvk(yk; θk
1)]:

Query the SO for the sample value of g at (xk+1, 
θk

2), obtain gw1
k+1
(xk+1; θk

2). Update

yk+1  � (1�βk)yk + βkgw1
k+1
(xk+1; θk

2):

Query the SO for the sample gradients 
∇φ(1)

ξ1,k+1
(θk

1),∇φ(2)
ξ2,k+1

(θk
2). Update

θk+1
1 �ΠΘ1[θ

k
1�γ1,k∇φ(1)

ξ 1,k+1
(θk

1)],

θk+1
2 �ΠΘ2[θ

k
2�γ2,k∇φ(2)

ξ 2,k+1
(θk

2)]:

end for

The details are summarized in Algorithm 1. Having 
presented  Algorithm  1,  we  then  conduct  a  theoretical 
analysis  to  investigate  its  performance.  The  key  ques-
tion  is  whether  and  how  fast  the  generated  solution 
sequence converges to a solution. Intuitively, with a suf-
ficiently large number of observations, the estimators θk1 
and θk

2 would induce minuscule errors. Nevertheless, it 
remains unclear how the random errors induced under 
misspecification  interact  with  those  incurred  from  the 
estimation of Ew[gw(xk; θ∗2)] in evaluating the sampled 
gradient ∇fvk(Ew[gw(xk; θ∗2)]; θ

∗
1),  especially  in  the  case 

that Ew[gw(xk; θ∗2)] is corrupted by misspecification aris-
ing  from  the  parameter  sequence {θk

2}.  Moreover,  for 
any solution trajectory generated by our algorithm, as 
the  parameters  are  misspecified  in  each  update,  it  is 
unclear how these errors accumulate and interact with 
each other. To further address these questions, we first 
impose some smoothness and moment assumptions on 
the stochastic component functions.

Assumption 2.1.Let Cg, Vg, Cf , Vf , Lf , κf , and κg be posi-
tive scalars. 

(i)  The outer function f(• ; θ1) is continuously differentia-
ble for every θ1 ∈Θ1, the inner function g(• ; θ2) is continu-
ous for every θ2 ∈Θ2, and the feasible set X  is closed and 
convex. There exists at least one optimal solution to problem 
(1.1).

(ii)  For every θ2 ∈Θ2, the function g(• ; θ2) is Lipschitz 
continuous  with  parameter  Cg,  and  the  random  variables 
gw(x; θ2) and ∇̃gw(x; θ2) have  bounded  second  moments 
such that

E[‖∇̃xgw(x;θ2)‖2] ≤Cg, andE[‖gw(x;θ 2)‖
2] ≤Vg, ∀x∈X :

(iii) For every θ1 ∈Θ1, the function f(• ; θ1) is Lf -smooth 
such that for all y, y∈ Rm

‖∇y f (y; θ1) � ∇y f (y; θ1)‖ ≤Lf‖y�y‖:

In addition, the random variables ∇y fv(y; θ1) and fv(y; θ1)
have bounded second moments such that

E[‖∇y fv(y;θ 1)‖
2] ≤Cf andE[‖fv(y;θ 1)‖

2] ≤V f , ∀y∈ Rdy :
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(iv)  For  every  x∈X,  the  value  mapping  g(x; •) is  Cg- 
Lipschitz  continuous  in  θ2,  and ∇̃xg(x; •) is  κg-Lipschitz 
continuous in θ2. For every y∈ Rm, the gradient mapping 
∇yf (y; •) is κf-Lipschitz continuous in θ1.

We also impose the following smoothness and 
moment assumptions on the model parameter functions.

Assumption  2.2.Let  Cθ1, Cθ2,µθ1
,  and µθ2 

be  positive 
scalars. 

(i)  The model parameter function φ(j)(θ j) is µθ j
-strongly 

convex and the feasible set Θj is closed and convex for j �1, 2.
(ii)  For j�1, 2,  and for every θj ∈Θj , the random vari-

able ∇φ(j)
ξ j
(θ j) has  a  bounded  second  moment  such  that 

E[‖∇φ(j)
ξ j
(θ j)‖2] ≤Cθ j .

Apart from the various assumptions on functions f, g 
and model parameter functions φ(1), φ(2), as well as the 
associated moment requirements on the associated ran-
dom gradients and Jacobians, in some part of our analy-
sis, we focus on the scenario where the overall objective 
function F(x; θ∗1, θ∗2) �f8g(x; θ∗1, θ∗2) is LF-smooth, as cap-
tured by the next assumption.

Assumption  2.3.The function F(• ; θ∗1, θ∗2) is LF-smooth, 
that is, there exists LF > 0 such that

F(x; θ∗1, θ∗2) �F(x; θ∗1, θ∗2)

≤ ∇F(x; θ∗1,θ∗
2)

⊤ (x�x) +
LF

2
‖x�x‖2, ∀x, x∈X :

Here we provide an illustrative example where the non-
smoothness of g under Assumption 1 would not impact 
the smoothness of F. Consider a case where the inner 
function g is nonsmooth and defined as g(x) �max{0, x}
whereas the outer level function f is defined as f(y) �y2 

and is clearly smooth. One may see that the overall func-
tion f8g defined as f8g(x)  (�max{0,x})2 is also smooth.

Note that such an example is by no means artificial 
and the max{·, 0} operator has been adopted in many 
risk management applications for capturing downside 
risk. For instance, letting U(·, ω) denote a random utility 
function,  its  associated  semivariance  (Rigamonti  and 
Lučivjanská 2022) is defined as

Eω[max(Eω[U(x,ω)] �U(x,ω),0)2], 

which  captures  the  dispersion  of  the  random  utility 
U(·, ω) falling below the mean. Another example is risk- 
averse  semideviation  optimization  (Ruszczýnski  and 
Shapiro 2006, Ahmed et al. 2007), which also employs 
the max{·, 0} operator to quantify the downside risk (see 
the detailed formulation in Section 5).

2.1. Almost Sure Convergence
We prove the almost sure convergence of the m-SCGD 
algorithm in the following theorem and provide a 
detailed proof in e-companion Section A.2.

Theorem 2.1 (Almost Sure Convergence). Suppose 
Assumptions 2.1 and 2.2 hold. Suppose X is a convex feasi-
ble region. Let {(xk,yk,θk

1,θk
2)}

K
k�1 be the sequence computed 

via  Algorithm  1.  Let  the  step-sizes {αk},{βk},{γ1,k},  and 
{γ2,k} be  such  that 

P ∞
k�1 αk  ∞� ,

P ∞
k�1 βk  ∞� ,

P ∞
k�1 γ j,k 

 ∞� for j ∈ {1, 2}, βk=γ2,k decreasing to zero monotoni-
cally, and

X∞

k�1
α2

k + β2
k + γ2

1,k + γ2
2,k +

α2
k

γ2,k
+

α2
k

γ1,k
+

α2
k

βk

 !

< ∞:

(a)  If F(• ; θ∗1, θ∗2) is convex and let X∗be the set of optimal 

solution to problem (1.1). Then {xk} converges almost surely 

to a random point in X∗.
(b)  Suppose Assumption 2.3 holds and X¢R n. Then any 

limit point of the sequence {xk} is a stationary point of prob-

lem (1.1) almost surely.

2.2. Convergence Rates
Theorem 2.1 in Section 2.1 establishes the almost sure 
convergence guarantees for the m-SCGD algorithm for 
both convex and nonconvex objectives. We now investi-
gate the rate of convergence when we have diminishing 
step-size sequences of the form

αk �Cak�
a, βk �5k�b, γ j, k �2=(µθ j

kc) for j �1, 2, 

where a, b, c∈ (0, 1] are positive real numbers and Ca > 0 
is  a  constant.  Optimizing  the  rate  over  a,  b,  and  c, 
we obtain the following result for nonconvex objectives. 
Notably, we distinguish the impact of misspecification 
on the rate.

Theorem 2.2(Convergence Rate for Nonconvex Objec-
tives).  Suppose  Assumptions  2.1,  2.2,  and  2.3 hold,  and 
X � Rn.  Let  the  step-sizes  be  αk �k�3=5, βk �5k�2=5,  and 
γ j,k �2=(µθ j

kc) for j �1, 2. Let {(xk, yk,θk
1, θk

2)}
K
k�1 be the 

sequence generated by Algorithm 1. 
(a)  For any K > 0, we have

P K
k�1αkE[‖∇F(xk;θ∗

1,θ∗
2)‖

2]
P K

k�1αk
≤O

ln K
K2=5

� �
+O

P K
k�1k�3=5�c

K2=5

 !

:

(b)  Suppose c≥2=5. Then for any K > 0, we have

P K
k�1 αkE[‖∇F(xk; θ∗1,θ∗

2)‖
2]

P K
k�1 αk

≤ O
ln K
K2=5

� �
:

The detailed proof is provided in e-companion Section 
A.3.

Remark 2.1. The previous result shows that our 
scheme  achieves  a  rate  of Õ(K�2=5) for  nonconvex 
objectives, matching the Õ(K�2=5) convergence rate for 
two-level  basic-SCGD  derived  in  Yang  et  al.  (2019), 

Yang, Fang, and Shanbhag: Misspecified Compositional Optimization 
8 Operations Research, Articles in Advance, pp. 1–17, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
2.

16
.1

91
.1

25
] 

on
 3

0 
Se

pt
em

be
r 

20
24

, a
t 1

8:
22

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



despite the misspecification of the parameters θ ∗
1 and 

θ∗
2.  In  conclusion,  the  corruption via  misspecification 

in θ 1 and θ 2 does not adversely affect the rate of con-
vergence under the caveat that the steplength sequence 
γ i,k (where  i�1,  2)  employed  for  learning  θ∗1 and  θ∗2 
diminishes suitably fast. However, the constant in the rate 
is indeed affected by the presence of misspecification.

3. Accelerated Schemes
In Section 2, we establish a Õ(K�2=5) rate of convergence 
for  the  misspecified  stochastic  composition  optimiza-
tion problem with a nonsmooth inner function g (• ; θ2). 
In this section, by assuming g(• ; θ2) to be smooth, we 
propose an accelerated gradient descent method when 
updating  the  estimator  yk.  We  prove  the  almost  sure 
convergence of the sequence produced by the algorithm 
and show that the algorithm achieves a faster rate for 
nonconvex and strongly convex objectives.

Recall that in Section 2, at each iteration, we update 
our estimator yk by the weighted average of the previ-
ous estimator and the new sample gw1

k+1
(xk+1; θk

2)
returned  by  SO.  To  accelerate  the  sequence,  a  funda-
mental  question  is  how  to  obtain  a  better  estimator. 
When the information parameter θ∗2 is perfectly known, 
Chen  et  al.  (2021b)  and  Balasubramanian  et  al.  (2022) 
proposed accelerated schemes that achieve faster rates 
under some mild assumptions by employing an addi-
tional linearization term. We adopt this idea in develop-
ing an accelerated method when θ∗2 is unavailable as a 
priori  and  establish  convergence  results.  Before  pro-
ceeding,  in  addition  to  Assumptions  2.1 and  2.2,  we 
impose the following assumptions.

Assumption  3.1.Let  Lg,  Cg,  and  Cf be  positive  scalars. 
We assume the following. 

(i)  The  function  g(• ; θ2) is  Lg-smooth  for  any  θ2 ∈Θ2, 
that is, there exists a positive scalar Lg that

‖∇xg(x;θ 2)�∇xg(x;θ 2)‖ ≤Lg‖x�x‖, ∀x,x ∈X, θ2∈Θ2:

(ii)  The random variables ∇gw(x; θ2) and ∇fv(y; θ1) have 
bounded fourth moments such that

E[‖∇gw(x; θ2)‖
4] ≤C2

g and E[‖∇fv(y; θ1)‖
4] ≤C2

f ,

∀x ∈X , y ∈ Rm, θ1 ∈Θ1, θ2 ∈Θ2:

We point out that a vast class of distributions including 
Gaussian, uniform, and logistic, among others, are char-
acterized  by  bounded  fourth  moments.  Furthermore, 
this assumption is commonly employed to achieve 
acceleration  in  stochastic  compositional  optimization 
(Wang et al. 2017a, b; Yang et al. 2019). In the remainder 
of this section, we propose an accelerated algorithm that 
achieves a faster convergence rate. At the k-th iteration, 
we first update xk+1 by employing a projected gradient 
step and invoking the chain rule under the misspecified 

model that

xk+1 �ΠX [xk�αk∇gw1
k
(xk; θk

2)∇fvk(yk; θk
1)]:

To  achieve  acceleration,  we  query  the  SO twice  at  xk 

with misspecified parameter θk
2 to obtain two indepen-

dent samples of ∇gw2
k
(xk; θk

2) and gw3
k
(xk; θk

2). This facili-
tates building an update y k+1 as a weighted average of 
the prior value, namely, yk, and the independently sam-
pled value gw3

k
(xk; θk

2) added to a conditionally indepen-
dent stochastic linearization term given by ∇gw2

k
(xk; θk

2)
⊤

(xk+1�xk), leading to the following update rule that

yk+1  � (1�βk)yk+ βkgw3
k
(xk; θk

2) + ∇gw2
k
(xk; θk

2)
⊤ (xk+1�xk):

(3.1) 

Finally,  similar  to  the  m-SCGD  algorithm,  we  update 
the parameters θk

1, θk
2 by the projected stochastic gradi-

ent method, defined as follows for k≥1:

θk+1
1 �ΠΘ1[θ

k
1�γ1,k∇φ(1)

ξ 1,k+1
(θk

1)], and

θk+1
2 �ΠΘ2[θ

k
2�γ2,k∇φ(2)

ξ 2,k+1
(θk

2)]:

The  details  of  this  misspecified  accelerated  stochastic 
compositional  gradient  descent  (m-aSCGD)  algorithm 
are summarized in Algorithm 2.

Algorithm 2(m-aSCGD)
Input: x1 ∈ R

n, y1 ∈ R
m, θ1

1 ∈ R
dθ1 , θ1

2 ∈ R
dθ2 , SO, K, 

step-sizes {αk},{βk},{γ1,k},{γ2,k}.
Output: The sequence {xk}

K
k�1.

for k�1, 2,: : :, K do
Query the SO to obtain a sample gradient of g at 
xk and θ k

2, given by ∇gw1
k
(xk, θk

2); query the SO to 
obtain a sample gradient of f at yk and θk

1, denoted 
by ∇fvk(yk, θk

1). Update xk+1 by

xk+1 �ΠX [xk�αk∇gw1
k
(xk; θk

2)∇fvk(yk; θk
1)]:

Query the SO to obtain a sample gradient ∇gw2
k
(xk; θk

2)
and a sample function value gw3

k
(xk; θk

2) at xk and θk
2.

Update yk+1 by

yk+1  � (1�βk)yk+ βkgw3
k
(xk; θk

2) + ∇gw2
k
(xk; θk

2)
⊤ (xk+1�xk):

end for

3.1. Almost Sure Convergence
We first prove the almost sure convergence of the iter-
ates  generated  by  the  accelerated  algorithm.  First,  we 
note that when both layers f and g have Lipschitz contin-
uous gradients with Lipschitz constants Lf , Lg > 0, 
respectively, the objective function F also has Lipschitz 
continuous  gradients.  Thus,  Assumption  2.3 holds  if 
both Assumptions 2.1 (iii) and 3.1 (i) hold. We denote 
the Lipschitz constant as LF > 0. Theorem 3.1 shows the 
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almost  sure  convergence  of  the  m-aSCGD  algorithm, 
where  we  provide  the  detailed  proof  in  e-companion 
Section B.1.

Theorem 3.1(Almost Sure Convergence of m-aSCGD ). 
Suppose that Assumptions 2.1, 2.2, and 3.1 hold. Let 

{(xk,yk,θk
1,θk

2)}
K
k�1 be the sequence generated by Algorithm 

2,  and  let  the  step-sizes {αk},{βk},{γ1,k},  and {γ2,k} be 

such that 
P ∞

k�1 αk  ∞� ,
P ∞

k�1 βk  ∞� ,
P ∞

k�1 γ j,k  ∞� , ∀j �
1, 2, αk ≤ Mβk for all k≥0 for some M > 0, βk=γ2,k 

decreasing to zero monotonically, and

X∞

k�1
α2

k + β2
k + γ2

1,k + γ2
2,k +

α2
k

γ1,k
+

α2
k

γ2,k
+

α2
k

βk

 !

< ∞:

(a) Suppose  that  F(• , θ∗1, θ∗2) is  convex,  and X∗ denotes 
the set of optimal solutions to problem (1.1). Then {xk} con-
verges almost surely to a point in X∗.

(b)  Suppose X¢R n. Then any limit point of the sequence 
{xk}∞k�0 is a stationary point of (1.1) almost surely.

3.2. Convergence Rates
We now derive the rates of convergence of the 
m-aSCGD  algorithm  under  nonconvex  and  strongly 
convex settings in the following theorem, with dimin-
ishing step-size sequences taking the form

αk �Cak�
a, βk �5k�b, and γ j, k �2=(µθ j

kc) for j �1, 2, 

where a, b, c∈ (0, 1] are positive real numbers and Ca > 0 
is a constant.

Theorem 3.2 (Convergence Rate of m-aSCGD for 
Nonconvex  Objectives).  Suppose  that  Assumptions  2.1, 
2.2, and 3.1 hold, and X � Rn. Let the step-sizes be 
αk �k�1=2, βk �5k�1=2,  and  γj,k �2=(µθ j

kc) for  j �1,  2. 
Let {(xk,yk,θk

1,θk
2)}

K
k�1 be the sequence generated by Algo-

rithm 2. 
(a)  For any K > 0, we have

P K
k�1 αkE[‖∇F(xk; θ∗1,θ∗

2)‖
2]

P K
k�1 αk

≤O
ln K
ffiffiffiffi
K

√
� �

+ O
P K

k�1 k�1=2�c

ffiffiffiffi
K

√

 !

:

(b)  Suppose c≥1=2. Then for any K > 0, we have

P K
k�1 αkE[‖∇F(xk; θ∗1, θ∗2)‖

2]
P K

k�1 αk
≤ O

ln K
ffiffiffiffi
K

√
� �

:

The detailed proof is provided in e-companion Section 
B.2.

We  conclude  this  section  by  considering  the  case 
where F(• ; θ∗1, θ∗2) is σ-strongly convex. In particular, we 
say  that  a  function  F(• ; θ∗1, θ∗2) is  σ-strongly  convex  if 
there exists a constant σ> 0 such that for all x∈X ,

F(x; θ∗1, θ∗2) �F(x∗; θ∗1, θ∗2) ≥σ‖x�x∗‖2: (3.2) 

Then, letting the step-sizes αk, βk, and γk be defined as

αk �
2

σ(k+ 1)
, βk �5k�1, and γj,k �

2
µθ j

k for j �1, 2, 

our next theorem shows that Algorithm 2 achieves a fas-
ter rate under strong convexity.

Theorem 3.3 (Convergence Rate of m-aSCGD for 
Strongly  Convex  Objectives).  Suppose  Assumptions  2.1, 
2.2,  and  3.1 hold,  the  objective  function  F  is  σ-strongly 
convex  satisfying  (3.2),  and  X  is  convex.  Let {(xk,yk,θk

1, 

θk
2)}

K
k�1 be  the  sequence  generated  by  Algorithm  2,  where 

αk�2=(σ(k+ 1)), βk�5k�1, and γ j, k�2k�c=µθ j 
for j �1, 2. 

(a)  For any K > 0, we have

E[‖xK �x∗‖2] ≤ O(K�1) +
2

K(K + 1)
XK

k�1
O(k1�c):

(b)  Suppose c �1. Then for any K > 0, we have

E[‖xK �x∗‖2] ≤ O(K�1):

We defer the detailed proof to e-companion Section B.3.

Remark  3.1.Theorem 3.2 shows that our accelerated 
scheme achieves a faster rate of convergence with an 
additional  smoothness  assumption.  Meanwhile,  our 
result  improves  the  O (K�4=9) convergence rate  ob-
tained for nonconvex two-level a-SCGD developed by 
Yang  et  al.  (2019)  by  incorporating  the  linearization 
term in the update for yk+1. In fact, this scheme 
achieves a near-optimal rate and misspecification 
leads  to  no  degradation  from  the  optimal  rate  com-
pared  with  that  obtained  with  perfect  knowledge  of 
θ∗

1 and  θ∗2.  Moreover,  the  rate  statement  in  Theorem 
3.3 shows  that  the  accelerated  scheme  achieves  the 
optimal rate, improving on the rate provided in Yang 
et  al.  (2019)  and  displaying  a  corresponding  lack  of 
degradation from the rate obtained in perfectly speci-
fied strongly convex regimes.

Furthermore, it is worth pointing out that our mis-
specified  optimization  framework  is  able  to  accom-
modate other real-world applications where the 
misspecified sequence {(θk

1, θk
2)} is generated through 

other  approaches  instead  of  SGD.  In  fact,  based  on 
Lemma  A.11 in  e-companion Section  A.3, we realize 
that the overall convergence rate exhibits no degrada-
tion if the misspecification error ‖θk

j �θ∗
j‖

2 diminishes 
to zero at a rate no slower than at which ‖yk�
g(xk; θ∗2)‖

2 decays  to  zero  for  both  nonconvex  and 
strongly  convex  problems  when  the  environmental 
parameters {(θ∗

1, θ∗2)} are  explicitly  known.  A  slower 
rate  will  result  in  a  build-up  of  error,  and  beyond  a 
certain point, convergence cannot be guaranteed. The 
utilization  of  SGD  in  learning {(θ∗

1, θ∗2)} is  to  show 
that such a rate is indeed obtainable.
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4. Multilevel Misspecified Compositional 
Optimization

In Sections 2 and 3, we have considered the two-level 
compositional problem afflicted by misspecification. 
As discussed in Section 1, the general T-level misspe-
cified compositional problem assumes immense rele-
vance. Recall that the T-level problem is of the form 
given by

min
x∈X

F(x; θ∗1, : : :, θ∗T)

¢E ω1[f
(1)
ω1

(Eω2[f
(2)
ω2

(⋯ (EωT [f (
T)

ωT
(x; θ∗T)]) ;⋯; θ∗2)]; θ

∗
1)],

where θ ∗
j �arg min

θ j∈Θj

Eξ j [φ
(j)
ξ j
(θ j)], for j �1, 2,: : :, T:

(4.1) 

Akin to the two-level case, throughout this section, we 
assume  the  model  parameter  function  φ(j) is  strongly 
convex  over  a  convex  feasible  region  Θj,  admitting  a 
unique optimal solution θ ∗

j , for j �1, 2,: : :, T. We focus 
on the scenario where the random variables ω1, : : :, ωT 

are independent of each other, and denote by f(j)(yj) �
Eωj [f

(j)
ωj (yj)] for j �1, 2,: : :, T. We assume access to the 

following zeroth and first-order stochastic oracle 
(SO):

(Sampling Oracle (SO) for T-level problem.)
• Given x ∈X ⊂ RdT , θT ∈ΘT, the SO returns an unbi-

ased sampled function value f (T)ωT
(x; θT) ∈ RdT�1 and an un-

biased stochastic gradient ∇x f (T)ωT
(x; θT) ∈ RdT×dT�1 such that 

E[f (T)ωT
(x; θT)] �f (T)(x; θT) and E[∇xf (T)ωT

(x; θT)]  ∇� xf (T)(x; θT).
• Given yj ∈ Rdj , θj ∈Θj , the SO returns an unbiased 

sampled  function  value  f(j)ωj (yj ; θj) ∈ Rdj�1 and  an  unbi-
ased stochastic gradient ∇yj

f (j)ωj (yj ; θj) ∈ Rdj×dj�1 for each 
layer  j�1,: : :, T�1  such  that E[f (j)ωj (yj ; θj)] �f (j)(yj ; θj)
and E[∇yj

f (j)ωj (yj ; θj)]  ∇� yj
f (j)(yj ; θj).

• Given  θj ∈Θj for  j�1, 2,: : :, T,  the  SO returns  an 
unbiased stochastic gradient ∇φ(j)

ξ j
(θ j) ∈ R

dθj such that 
E[∇φ(j)

ξ j
(θ j)]  ∇� φ(j)(θ j).

For notational simplicity, we write ∇f (T)ωT
(x; θT)¢ 

∇x f (T)ωT
(x; θT) and ∇f (j)ωj (yj ; θj)¢∇ yj

f (j)ωj (yj ; θj). Akin to the 
two-level  scenario,  the  main  challenge  of  solving  the 
general T-level misspecified compositional optimization 
problem  lies  in  contending  with  the  unavailability  of 
an  unbiased sample gradient. To illustrate this,  under 
the  T-stage  setting  with  misspecified  parameters (θ1, 
θ2, : : :, θT), using the chain rule, an unbiased sampled 
gradient is given by

∇f (T)ωT
(x; θT)∇f (T�1)

ωT�1
(f (T)(x; θT); θT�1)

⋯ ∇f (1)ω1
(f (2)8⋯8f

(T)(x; θ2, : : :, θT); θ1):

One can see that this unbiased sample gradient requires 
access to the correct parameters (θ∗

1, θ∗2, : : :, θ∗T) and the 
values f(T)(x; θ∗T), : : :, f(2)8⋯8f

(T)(x; θ∗2, : : :, θ∗T). Unfortu-
nately,  the  misspecification  in  model  parameters  and 
errors  induced  when  estimating  the  functions’  values 
result in a bias when we adopt a plugin estimator. Let-
ting  y(j) be  an  estimator  for  f(j)8⋯8f

(T)(x; θ∗j , : : :, θ∗T), 
when the model parameters are perfectly known, Yang 
et al. (2019) developed a multitimescale approach that 
recursively updates y(j). In this case, we compute a sam-
pled gradient by

∇f (T)ωT
(x; θk

T)∇f (T�1)
ωT�1

(y(T�1); θk
T�1) ⋯ ∇f (1)ω1

(y(1); θk
1), 

whose bias diminishes to zero as k→ ∞ .
Nevertheless, without prior knowledge of the model 

parameters,  the  estimators  y(j)’s  are  also  corrupted  by 
misspecification, which makes it particularly challeng-
ing to apply gradient descent approaches. Recall that in 
Sections 2 and 3, for the two-level misspecified composi-
tional problem (1.1), in iteration k, we update our esti-
mator of the inner function value g(xk; θ∗2) by combining 
an inertial update with an accelerated linearization 
scheme, under a misspecified parameter θk

2, and establish 
the  almost  sure  convergence  and  rates  of  convergence. 
Under the general T-level scenario, the misspecification 
in model parameters and inaccurately estimated values 
of f (T)(x; θ∗T), : : :, f(2)8⋯8f

(T)(x; θ∗2, : : :, θ∗T) further exacer-
bates the bias of the computed sample gradient, because of 
the  more  complicated  multilevel  nested  structure.  There-
fore, it remains an open problem whether and how efficient 
algorithms can be developed to tackle the general multile-
vel misspecified compositional optimization problem (4.1).

To address this issue, throughout this section, we assume 
the satisfaction of the following smoothness requirements 
and boundedness conditions on fourth moments.

Assumption  4.1.Let {Cfj }
T
j�1,{Vfj }

T
j�1,{Lθ j }

T
j�1,  and {κ fj }

T
j�1 

be positive scalars. 
(i)  For j�1,: : :, T, the function f(j)(• ; θj) is continuously 

differentiable for every θj ∈Θj . The feasible set X  is closed 
and convex, and there exists at least one optimal solution to 
problem (4.1).

(ii)  For every j�1,: : :, T, the random variables f(j)
ωj (yj ; θj)

and ∇f (j)ωj (yj ; θj) have bounded fourth moments such that

E[‖f (j)ωj
(yj ; θj)‖4] ≤V2

fj
and E[‖∇f (j)ωj

(yj ; θj)‖4] ≤C2
fj ,

∀yj ∈ Rdj , ∀θ j ∈Θj :

(iii)  For every j�1,: : :, T and for every θj ∈Θj , the func-
tion f (j)(• , θj) is Lfj -smooth such that

‖∇f (j)(yj ; θj) � ∇f (j)(y j ; θj)‖ ≤Lfj‖yj �y j‖, ∀yj , yj ∈ R
dj :

(iv)  For all x ∈X, the value mapping f (T)(x; •) is 
CfT -Lipschitz  continuous in  θT,  and the  gradient  mapping 
∇f (T)(x; •) is  κfT -Lipschitz  continuous  in  θT.  For  j�2, 
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: : :, T�1,  for  all  yj ∈ Rdj ,  the  value  mapping  f(j)(yj ; •) is 
Cfj -Lipschitz continuous in θ j, and the gradient mapping 
∇f (j)(yj ; •) is κfj -Lipschitz continuous in θj. For all y1 ∈ R

d1, the 
gradient mapping ∇f (1)(y1; •) is κf1-Lipschitz continuous in θ1.

Note  that  the  Lfj -Lipschitz  continuous  gradient  for 
every layer function f (j) in Assumption 4.1 (iii) implies 
Assumption 2.3, that is, F has Lipschitz continuous gra-
dient with parameter LF > 0.

Contrary to the two-level scenario where only bounded 
second moments are required to ensure the efficiency of 
algorithms, as we have mentioned earlier, the misspecifi-
cation  indeed  exacerbates  the  bias  under  the  multilevel 
nested structure, especially under the accelerated scheme. 
For the purpose of acceleration, we also impose the fol-
lowing mild assumptions on the smoothness and fourth- 
order moments for the model parameter functions.

Assumption 4.2.Let {Cθ j }
T
j�1 and {µθ j

}T
j�1 be positive scalars. 

(i)  For  j�1,: : :, T,  the  model  parameter  function  φ(j) is 
µθ j

-strongly convex, and the feasible set Θj is closed and convex.
(ii)  For  j�1,: : :, T  and  all  θj ∈Θj ,  the  random  vari-

able ∇θ j φ
(j)
ξ j
(θ j) has  a  bounded  fourth  moment  such  that 

E[‖∇θ j φ
(j)
ξ j
(θ j)‖4] ≤C2

θ j
.

By the smoothness and the boundedness of the fourth 
moment of each layer f(j), we adopt the accelerated line-
arization  scheme  in  Section  3 to  develop  a  new  algo-
rithm. Our algorithm iteratively updates the solution xk 

and the unknown model parameters θk
j ’s. In particular, 

at iteration k, we first update the solution xk+1 by a gradi-
ent step using the chain rule with misspecified model 
parameters θk

1, : : :, θk
T and estimators y(1)k , : : :,  y(T�1)

k via 
the following for k ≥1.

xk+1 �ΠX

�
xk�αk∇f (T)

ω1
T,k
(xk; θk

T)∇f (T�1)
ω1

T�1,k
(y(T�1)

k ; θk
T�1)

⋯ ∇f (1)ω1
1,k
(y(1)k ; θk

1)
�
:

After updating x k+1, we employ the accelerated lineari-
zation scheme to derive an estimator for f (T)(xk+1; θ∗T). 
Similar to the two-level scenario discussed earlier, using 
the misspecified parameter θT

k for this layer, we query 
the SO at xk to obtain independent samples of the gradi-
ent ∇f (T)

ω2
T,k
(xk; θk

T) and the function value f(T)ω3
T,k
(xk; θk

T), and 

update y(T�1)
k+1 by a weighted average of f(T)ω3

T,k
(xk; θk

T) and 
previous estimator y (T�1)

k , plus an additional lineariza-
tion term ∇f (T)

ω2
T,k
(xk; θk

T)
⊤ (xk+1�xk) such that

y(T�1)
k+1  � (1�βk)y

(T�1)
k + βk f (T)

ω3
T,k
(xk; θk

T)

+ ∇f (T)ω2
T,k
(xk; θk

T)
⊤ (xk+1�xk):

For the remainder of the layers, we recursively apply 
a similar inertial update rule based on obtaining inde-
pendent samples of the gradient ∇f (j+1)

ω2
j+1,k

(y(
j+1)

k ; θk
j+1) and 

function value f (j+1)
ωj,k+1(y

(j+1)
k ; θk

j+1) with misspecified 
parameter θk

j+1 at y(j+1)
k , and update y(j)k+1 by

y(j)k+1  � (1�βk)y
(j)
k + βk f (j+1)

ω3
j+1,k

(y(j+1)
k ; θk

j+1)

+ ∇f (
j+1)

ω2
j+1,k

(y(
j+1)

k ; θk
j+1)

⊤ (y(
j+1)

k+1 �y(j+1)
k )

for j �T�2,: : :, 1. Finally, we update the model para-
meters θk

1, θk
2, : : :, θk

T by basic SGD, as prescribed by the 
following update rule:

θk+1
j �ΠΘj [θ

k
j �γ j,k∇φ(j)

ξ j,k+1
(θk

j )], for j �1, 2,: : :, T:

The  above  procedure  completes  the  essential  update 
steps within each iteration, which simultaneously com-
putes  the  main  solution  xk and  update  model  para-
meters {θk

j }
T
j�1. We provide the details of this 

misspecified  T-level  stochastic  compositional  gradient 
descent (m-TSCGD) algorithm in Algorithm 3.

Algorithm 3(m-TSCGD)
Input:  x1 ∈ RdT , yj

1 ∈ R
dj for  j �T�1,: : :, 1, θ1

j ∈ R
dθj 

for  j �1, 2,: : :, T, SO,  K,  step-sizes {αk}
K
k�0, {βk}

K
k�0, 

{γ j,k}
K
k�0 for j �1,: : :, T.

Output: The sequence {xk}
K
k�1.

for k�1, 2,: : :, K do
Query the SO to obtain sample gradients 
∇f (T)

ω1
T,k
(xk; θk

T) and ∇f (j)
ω1

j,k
(y(

j)
k ; θk

j ) for j �T�1,: : :, 1. 
Update

xk+1 �ΠX

�
xk�αk∇f (T)

ω1
T,k
(xk; θk

T)∇f (T�1)
ω1

T�1,k
(y(T�1)

k ; θk
T�1)

⋯ ∇f (1)ω1
1,k
(y(1)k ; θk

1)
�
:

Query  the  SO  for  f(T)ω3
T,k
(xk; θk

T) and ∇f (T)
ω2

T,k
(xk; θk

T). 
Update y(T�1)

k+1 by

y(T�1)
k+1  � (1�βk)y

(T�1)
k + βkf

(T)
ω3

T,k
(xk; θk

T)

+ ∇f (T)ω2
T,k
(xk; θk

T)
⊤ (xk+1�xk):

for j�T�2,: : :, 1 do
Query the SO for f (j+1)

ω3
j+1,k+1

(y(j+1)
k ; θk

j+1) and 

∇f (j+1)
ω2

j+1,k
(y(

j+1)
k ; θk

j+1). Update y(j)k+1 by

y(j)k+1  � (1�βk)y
(j)
k + βkf

(j+1)
ω3

j+1,k
(y(

j+1)
k ; θk

j+1)

+ ∇f (
j+1)

ω2
j+1,k

(y(
j+1)

k ; θk
j+1)

⊤ (y(j+1)
k+1 �y(j+1)

k ):
end for
for j�1, 2,: : :, T do

Query the SO for the sample gradients ∇φ(j)
ξ j,k+1

(θk
j ). 

Update model parameters by

θk+1
j �ΠΘj [θ

k
j �γ j,k∇φ(j)

ξ j,k
(θk

j )]:

end for
end for
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4.1. Convergence Rates
Recall that in Section 3.2, we establish the convergence 
rates of the m-aSCGD algorithm for two-level misspeci-
fied stochastic compositional problems with nonconvex 
and strongly convex objectives. Despite the misspecifi-
cation,  our  rates  match those  provided by  Chen  et al. 
(2021b) and Balasubramanian et al. (2022) with explicit 
knowledge of model parameters. Under the T-level set-
ting, with misspecification, it remains unclear if indeed 
Algorithm 3 produces a convergent sequence and if so, 
how  fast  this  sequence  converges.  Furthermore,  the 
resulting degradation in the convergence rates remains 
an open question. To address these issues, we derive the 
convergence  rates  of  Algorithm  3 for  nonconvex  and 
strongly convex objectives and assess the impact of mis-
specification.  We  employ  the  following  diminishing 
step-size sequences:

αk�Cak�
a, βk�5k�b, γj,k�2=(µθ j

kc) for j �1, 2,: : :, T, 

where a, b, c∈ (0, 1] are positive real numbers and Ca > 0 
is a constant.

Now, we present the convergence guarantees of 
Algorithm 3 for nonconvex objectives.

Theorem 4.1 (Convergence Rate of m-TSCGD for 
Nonconvex Objectives).  Suppose  Assumptions  4.1 and 
4.2 hold,  and  X� RdT .  Let  the  step-sizes  be  αk �k�1=2, 
βk �5k�1=2, and γ j,k �2k�c=µθ j 

for j �1, 2,: : :, T. Let 

{(xk,y(
T�1)

k , : : :, y(1)k , θk
1, : : :, θk

T)}
K
k�1 be  the  sequence  gener-

ated by Algorithm 3. 
(a)  For any K > 0, we have

P K
k�1 αkE[‖∇F(xk; θ∗1, : : :, θ∗

T)‖
2]

P K
k�1 αk

≤ O
ln K
ffiffiffiffi
K

√
� �

+ O
P K

k�1 k�1=2�c

ffiffiffiffi
K

√

 !

:

(b)  Suppose c≥1
2. Then for any K > 0, we have

P K
k�1 αkE[‖∇F(xk; θ∗1, : : :,θ∗

T)‖
2]

P K
k�1 αk

≤ O
ln K
ffiffiffiffi
K

√
� �

:

Then, the following theorem presents the convergence 
rate for strongly convex objectives.

Theorem 4.2 (Convergence Rate of m-TSCGD for 
Strongly  Convex  Objectives).  Suppose  Assumptions  4.1
and  4.2 hold,  and  X  is  convex.  Let  the  objective  function 
F(x; θ∗1, : : :, θ∗T) be  σ-strongly  convex  satisfying  (3.2).  Let 

{(xk,y(
T�1)

k , : : :,y(1)k ,θk
1, : : :,θk

T)}
K
k�1 be the sequence generated 

by Algorithm 3, by setting the step-sizes as αk �2=
(σ(k+ 1)), βk �5k�1, and γj,k �2k�c=µθ j 

for j�T, : : :, 1. 

(a)  For any K > 0, we have

E[‖xK �x∗‖2] ≤ O(K�1) +
2

K(K + 1)
XK

k�1
O(k1�c):

(b)  Suppose c �1. Then for any K> 0, we have

E[‖xK �x∗‖2] ≤O(K�1):

We defer the proofs for Theorems 4.1 and 4.2 to 
e-companion Sections C.3 and C.4, respectively.

Remark 4.1.Akin to the results in the two-level regime, 
we again find that the rate statements are shown to be 
the optimal (or near-optimal) and show no degradation 
from those obtained in the correctly specified regimes. 
Notably,  these  rate  statements  display  a  concrete  im-
provement in terms of their invariance with respect to T 
and display an improvement over the findings in Yang 
et al. (2019) in terms of the actual rate as well  as their 
dependence  on  T.  We  emphasize  that  the  dependence 
on T in  the rate statement appears in  terms of  a larger 
constant hidden in the O( )· notation.

Further, following the intuition that misspecification 
does not degrade the overall rate of convergence, it is 
also natural to conjecture that the optimal O(T�1=2) con-
vergence  rate  should  be  achievable  for  unaccelerated 
m-SCGD, by employing a more refined analysis based 
on  recent  advances  (Chen  et  al.  2021a).  We  leave  this 
extension for future work.

5. Numerical Experiments
In this section, we investigate the empirical performance 
of our proposed algorithms. We consider the misspeci-
fied risk-averse mean-deviation problem, which can be 
cast  as  a  three-level  compositional  optimization  prob-
lem. Next, we provide the detailed experimental setup 
and extensive numerics, whereas in e-companion Sec-
tion D, we provide further numerics on a misspecified 
MDP and consider an uncertain portfolio optimization 
problem where the cost of conservatism is empirically 
studied.

5.1. Risk-Averse Mean-Deviation Optimization
Let U(• , ω; θ∗) be a random utility function and let θ∗be 
the  true  model  parameter.  We  focus  on  the  following 
misspecified  mean-deviation  risk-averse  optimization 
problem, defined as

maxζ

h
Eω[U(ζ, ω; θ∗)] � Eω[(Eω[U(ζ ,ω; θ∗)]

�U(ζ ,ω; θ∗))p+ ]
1=p
�

σ
2
‖ζ‖2

i
, (5.1) 

where  p > 1  is  a  positive  scalar,  and  the  true  model 
parameter  θ∗ is  the  unique  optimum  to  a µθ-strongly 
convex  problem.  The  goal  of  this  problem  is  to  maxi-
mize the expected utility with mean-deviation risk and 
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ℓ 2-penalties  under  the  misspecified  regime.  Given  the 
true  model  parameter θ∗,  this  problem  reduces  to  the 
classical mean-deviation risk-averse optimization prob-
lem examined by Ruszczyński and Shapiro (2006) and 
Ahmed et al. (2007). Meanwhile, this problem displays a 
three-level compositional structure in that it is equiva-
lent to

min ζ F(ζ) �f (1)(Eω2[f
(2)
ω2

(Eω3[f
(3)
ω3

(ζ;θ ∗)]; θ∗)]) +
σ
2
‖ζ‖2

h i
, where 

f (1)((y1, y2))¢ y1+ y1=p
2 ,

f (2)ω2
(z, ζ; θ∗)¢( z,(z+ U(ζ ,ω2;θ∗))p+ ),

f (3)ω3
(ζ;θ ∗)¢(� U(ζ,ω3;θ∗), ζ):

As  pointed  out  by  Yang  et  al.  (2019),  this  problem  is 
challenging because of the biased stochastic gradients. 
In this setting, only the inner functions f (2) and f (3) are 
complicated by uncertainty, but a bias is induced when 
calculating the gradient ∇f (1), regardless of whether f(1)
is deterministic or not. Therefore, solving this problem 
is as challenging as solving a three-level compositional 
problem. We tackle this misspecified compositional 
optimization problem by the three-level m-TSCGD 
algorithm (Algorithm 3), and compare its performance 
with the three-level a-TSCGD in Yang et al. (2019) with 
the  true  model  parameter  θ∗.  In  our  experiments,  we 
consider the scenario where θ∗ is the unique optimum 
to the following problem

θ∗�arg min
θ∈R50

E (vi �s⊤i θ)2 +
µθ
2
‖θ‖2

h i
: (5.2) 

Here  we  assume  a  linear  model  where  vi �s⊤i θ̃ + ε i , 
si , θ̃ ∈ R50, and εi is a zero-mean noise term. We gener-
ate ̃θas per θ̃ ~Unif [0,1]50. In each simulation iteration, 
si and ε i are generated as per si ~Unif [0,1]50 and 
ε i ~N (0, 1),  respectively.  It  follows  that  vi �s⊤i θ̃ + ε i . 
Note that µθ �0:1 to ensure the objective is µθ-strongly 
convex.  Also,  in  our  simulation,  we  first  generate  106 

samples and solve the batch version of the problem and 
take the solution as θ∗. Consider a utility function of a 
least-squares form given by

U(ζ, ωi ; θ) � �(yi �x⊤i ζ + c⊤ (θ�θ∗))2:

Here we let ωi  � {xi , yi}, and we assume a linear model 
that y i �x⊤i ζ̃ + ɛi , where x i , ζ̃ ∈ Rd and ɛi is zero-mean. 
We generate ̃ζ ~Unif [0,1]d and employ it in all experi-
ments.  In  each  simulation  iteration,  we  consider  four 
settings to test the performance of our algorithm under 
different levels of misspecification. In each setting, we 

let c∈ R50 and sample each of its components indepen-
dently from a uniform distribution provided in Table 1; 
we generate xi and ɛi as per xi ~N (0d×1, 0:9 · Id×d) and 
ɛi ~N(0, 0:2), respectively, whereby yi �x⊤i ζ̃ + ɛi .

We set p �2, and problem (5.1) falls in the regime of 
convex optimization. We provide a benchmark compari-
son by generating 106 samples, solving the batch version 
of the problem, and taking the solution ζ∗as the optimal 
solution. In our simulations, at the k-iteration, we first gen-
erate one sample of {si , vi} to update our estimator of the 
model parameter θk by single-level SGD. Then, to update 
the solution ζk, we draw a random sample from {xi , yi}
and apply the accelerated scheme using the misspecified 
θk.  We  demonstrate  the  performance  of  the  three-level 
m-TSCGD on both convex and strongly convex objectives.

5.2. Convex Objectives
We first investigate the performance of the m-TSCGD in 
the convex regime. We consider problem (5.1) without 
any ℓ 2-penalty, that is, σ �0. We set the step-sizes as 
αk�min {0:0002, 0:02k�1=2} and β1, k�β2, k�min {0:0005, 
0:05k�1=2} for  m-TSCGD.  In  addition,  to  update  the 
model  parameters  θk,  we  set  the  corresponding  step- 
sizes in m-TSCGD as γk �min {10�4, 10=k}. Here we let 
d �100, 200. We run both algorithms for 107 iterations, 
compare  the  performance  of  m-TSCGD  over  the  four 
different misspecification setups, and plot the trajectory 
of the empirical log-error log (E[‖∇F(ζRk)‖

2]) averaged 
over  10  independent  simulations,  where  this  metric 
matches  that  considered  in  Theorem  4.1,  a  detailed 
explanation  for  which  is  provided  in  Appendix  D.1. 
We provide the results in Figure 1. We observe that the 
slopes  of  logk  against  log(E[‖∇F(ζRk)‖

2]) are  close  to 
�1=2,  matching the theoretical  claim  in  Theorem  4.1
that  the  produced  sequence  converges  at  a  rate  of 
Õ(k�1=2) for the three-level convex problem.

5.3. Strongly Convex Objectives
Next, we test our algorithm on σ-strongly convex pro-
blems  with  σ�0:5.  We  run  m-TSCGD  and  a-TSCGD 
with  step-sizes  as  αk �min {0:0002, 2=(σ(k+ 2))}, β1,k �
β2,k �min {0:0004, 4=(k+ 2)},  and  γk �min {10�4, 10=k}. 
We conduct 10 independent simulations, each of them 
consisting of 5×105 iterations, and plot the average of 
the  log-error  log(‖ζk�ζ∗‖2).  We  conduct  the  experi-
ments for d �100, 200.

In Figure 2, we observe that the slopes of the averaged 
log-error log(‖ζk�ζ∗‖2) generated by misspecified algo-
rithm approximately equal �1 over all misspecification 

Table 1. Distribution of c for Different Levels of Misspecification in Risk-Averse Mean-Deviation Optimization

Setup Significant Moderate Slight Correct

Distribution of c c~Unif [0,100]50 c~Unif [0,60]50 c~Unif [0,30]50 c�0
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setups, matching Theorem 4.2 where a rate of O(k�1) is 
derived for three-level σ-strongly convex problems. This 
also supports our theoretical analysis that the choice of 
step-sizes defined in Theorem 4.2 improves the rate from 
Õ(k�2=5) to O(k�1) for σ-strongly convex objectives.

5.4. Insights from E-Companion Sections D.1 
and D.2

In Section D.1, we consider the nonconvex misspecified 
compositional  problem  and  observe  that  the  empirical 
rates support theoretical claims, whereas in Section D.2, 
we observe that the impact of conservativism in robust 
approaches on uncertain portfolio selection problems can 
be significant in comparison with the proposed avenue.

6. Concluding Remarks
As systems grow in size and complexity, problem para-
meters  are  often  not  known  a  priori.  One  avenue  for 
addressing the unavailability of problem parameters is 
to employ user-specified uncertainty sets, which have 
been adopted in conjunction with a robust optimization 
approach.  An  alternative  approach  rooted  in  classical 
research in economics emerges when there is a true or 
nominal value of this parameter and requires learning 
this parameter through available data while resolving 
the  misspecified  optimization  problem.  We  consider 
the class of misspecified problems complicated by risk, 
nonconvexity, and, in a limited sense, dynamics. A uni-
fied framework for contending with such problems is 

Figure 1.  (Color online) Empirical Log-Convergence Rate of the m-TSCGD Algorithm for General Convex Objective Under Dis-
tinct Levels of Misspecification When d �100, 200 
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Figure 2.  (Color online) Empirical Log-Convergence Rate of the m-TSCGD for σ-Strong Convex Objective Under Distinct Levels 
of Misspecification When d �100, 200 
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available  through  compositional  stochastic  optimiza-
tion problems. We consider the misspecified variant of 
such  a  class  of  problems  and  develop  the  data-driven 
compositional  optimization  schemes  that  can  resolve 
misspecification while solving the original problem. Our 
key  findings  include  that  two-level  compositional  sto-
chastic gradient schemes and their accelerated counter-
parts display no degradation of rate in strongly convex 
and  nonconvex  settings  from  their  correctly  specified 
counterparts. In fact, such statements continue to hold 
for accelerated schemes for the T-level multistage coun-
terparts in strongly convex and nonconvex regimes.

Yet much remains to be investigated for this avenue 
of  decision-making.  In  particular,  can  this  framework 
accommodate more stylized and sophisticated learning 
models where smoothness and convexity concerns are 
weakened? To what extent can the statements be 
extended  to  misspecification  in  the  presence  of  risk- 
afflicted constraints? Our future work will consider pre-
cisely such avenues.
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