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Abstract—This paper focuses on the registration problem of
shape graphs, where a shape graph is a set of nodes connected
by articulated curves with arbitrary shapes. This registration
requires optimization over the permutation group, made chal-
lenging by differences in nodes (in terms of numbers, locations)
and edges (in terms of shapes, placements, and sizes) across
graphs. We tackle this registration problem using a neural-
network architecture with an unsupervised loss function based
on the elastic shape metric for curves. This architecture results
in (1) state-of-the-art matching performance and (2) an order of
magnitude reduction in the computational cost relative to baseline
approaches. We demonstrate the effectiveness of the proposed
approach using both simulated data and real-world 2D retinal
blood vessels and 3D microglia graphs.

Index Terms—shape graph registration, statistical shape anal-
ysis, quadratic assignment solver, matching network.

I. INTRODUCTION

Using shapes to characterize objects in images and videos
is critical for object detection, tracking, and recognition
tasks. Given tremendous variability between shapes within
and across object classes, a statistical analysis of shapes
becomes essential. There is a rich literature on various facets of
shape analysis. The biggest challenge in shape analysis is the
registration or matching of parts across objects during shape
comparisons. Elastic approaches have addressed this need by
incorporating registration as integral to shape comparisons.
Such elastic techniques have been developed for several kinds
of objects, from scalar functions and Euclidean curves to 2D
surfaces, branching trees, networks, and graphs.

In this paper, we focus on specific type of obects called
shape graphs and address the problem of registering shape
graphs under the elastic shape metric. Shape graphs are
objects that contain sets of Euclidean nodes connected by
articulated edges. To compare the shapes of two such graphs,
one must account for their node connectivity and the presence
and shapes of edges, making registration challenging. Classical
optimization tools (see, e.g., Guo et al. [1]) are severely
limited by the computational cost that grows exponentially
with number of nodes. This paper explores a deep-learning-
based paradigm that promises faster solutions and state-of-
the-art performance. Several recent papers use deep networks
for graph matching, but they are mainly limited to regular
(Euclidean) graphs and do not deal with shape graphs. The
main contributions of this paper are: (1) introducing the

Shape Graph Matching Network (SGM-net) for shape graph
registration, (2) handling graphs with arbitrary cardinality, and
(3) demonstrating the performance and efficiency gains of our
proposed method over current benchmarks.

II. PROPOSED FRAMEWORK

Here we present the proposed deep neural-network,
SGM-net, for registering pairs of shape graphs.

A. Shape graph representation
A shape graph is a collection of Euclidean nodes with some

pairs connected by articulated curves. We represent a shape
graph by a pair of variables: an adjacency matrix to capture
its edge attributes and a node matrix to represent its node
attributes. If the graph has n nodes, then its adjacency matrix
is A 2 Sn⇥n, where S is the shape space of curves [2], and
Ai,j denotes the shape of edge starting from node i and ending
at node j, i 6= j. If there is no edge, then Ai,j = 0 denoting
a null edge (0 2 S). We also define Ã 2 Sn⇥n, where Ãi,j is
simply a reflection re-parameterization of curve in Ai,j . Let
each node i be assigned a vector attribute ui 2 Rk and let
u 2 Rn⇥k be the node attributes of all n nodes. Then, the
pair (A, u) specifies a graph G.

To reduce algorithmic complexity, we define graph connec-
tivity matrices [3] denoted by C 2 Rn⇥ne and F 2 Rn⇥ne as
follows. Let s = 1, . . . , ne index the non-zero edges in G. If
there is an actual edge Ai,j originating from node i, then the
entry (i, n(i� 1) + j) in C is set to one, and zero otherwise.
F is the same, except it uses the edges in Ã instead of A.
Shape Graph Metric and Registration: Next, we define a
metric for comparing two shape graphs G = (A, u) and G

0 =
(A0

, u
0). At first, assume that the two graphs have the same

number of nodes, say n. (We will relax this condition later in
this section). The number of edges in G and G

0 can differ and
are ne and n

0
e, respectively. The edge metric de is given by:

de(Ai,j , A
0
i,j) = min{ds(Ai,j , A

0
i,j), ds(Ãi,j , A

0
i,j)}, where

ds is the shape metric between planar curves [2]. Additionally,
let the node distance matrix to be D 2 Rn⇥n such that
Dij = kui � u

0
jk, for any ui, u

0
j 2 R2, where k · k is standard

vector norm. The composite distance between two graphs G

and G
0 is defined as:

dg(G,G
0) = �(

X

i,j

de(Ai,j , A
0
i,j)) + (1� �)Tr(D) ,
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where the parameter 0 < � < 1 controls the balance between
the contributions of the nodes and edges.

Let P denote the set of all n ⇥ n permutation matrices.
For any P 2 P , let G ⇤ P represent the graph obtained by
taking the nodes of G and re-ordering them according to P .
The graph registration problem is then given by:

P̂ = arg min
P2P

dg(G,G
0 ⇤ P ) . (1)

That is, we find a re-ordering of nodes of G0 so that they are
best matched with the nodes of G in terms of dg .
Building Affinity Matrices: One can reformulate this
problem using two large affinity matrices as follows.
Define an edge-affinity matrix Ke 2 Rne⇥n0

e according
to K

s,s0
e = �(1 � de(As,A

0
s0 )

↵ ), ↵ = max{de(As, A
0
s0)}.

An element K
s,s0
e of this matrix compares the shape of

edge s of G with the edge s
0 of G

0. The closer this
value is to one, the more similar the two shapes are.
Similarly, the node affinity matrix Kp 2 Rn⇥n is given by:
K

i,j
p = (1� �)(1� Dij

⌘ ) , ⌘ = max{Dij}.
Factorized formulation of QAP: The pairwise graph-
matching problem (Eqn. 1) can be rewritten as a
quadratic assignment problem (QAP) according to:
maxP2P vec(P )T

Kvec(P ), where K 2 Rn2⇥n2

is
called the composite affinity matrix between two graphs. Its
diagonal and off-diagonal elements store the node and edge
affinities across the graphs. Zhou et al. [3] showed that K

can be factorized exactly as:

K = diag(vec(Kp)) + (C 0 ⌦ C)diag(vec(Ke))(F
0 ⌦ F )T

,

where C,F and C
0
, F

0 are the graph connectivity matrices
for G and G

0, and ⌦ denotes the Kronecker product. We
note that (C 0 ⌦ C), (F 0 ⌦ F )T are both of size (n2 ⇥ nen

0
e),

diag(vec(Ke)) is of size (nen
0
e ⇥ nen

0
e) and diag(vec(Kp))

is of size (n2 ⇥ n
2). Plugging the factorized formulation into

QAP leads to an equivalent objective function:

max
P2P

{Tr
�
K

T
p P

�
+ Tr

�
K

T
e (C

T
PC

0 � FT
PF

0)
�
}, (2)

where � denotes the Hadamard product of matrices.
Using Null Nodes to Improve Registration: In case the
graphs G,G

0 have different number of nodes, say n, n
0, where

n  n
0, we can append G with m = n

0 � n null nodes to
bring them to the same size of n

0. We incorporate the null
nodes by extending the node distance matrix D to D̃ and node

affinity matrix Kp to K̃p as follows. Set D̃ =


D

✏1m⇥n0

�
,

where 1(m⇥n0) is an (m ⇥ n
0) matrix of ones. We use this

D̃ to compute the larger node affinity matrix K̃p 2 Rn0⇥n0

as earlier. Here ✏ = Tr(D)/n is chosen to penalize matching
of real nodes in G

0 with null nodes in G. We also extend the
graph connectivity matrices C,F 2 Rn⇥ne to C̃, F̃ 2 Rn0⇥ne

accordingly. The entries in the appended parts equal a con-
stant ⇠, which is a small positive number that allows taking
logarithms later.

B. SGM-net for shape graph matching

Motivated by the factorized formulation of [3], we propose
a novel, deep network that solves the vertex classification
using an association graph [4]. However, instead of using
a very large affinity matrix (as used in [3]), this network
takes six smaller matrices: K̃p 2 Rn0⇥n0

, Ke 2 Rne⇥n0
e ,

C̃, F̃ 2 Rn0⇥ne , C
0
, F

0 2 Rn0⇥n0
e as inputs and outputs

a node registration matrix. This node registration is then
used to register points along the matched edges. The overall
architecture of the SGM-net is shown in Fig. 1, including both
the training and inference procedures.

The proposed architecture provides several conceptual and
practical advantages compared to a current SOTA. For in-
stance, the Neural Graph Matching Network (NGM) of
Wang et al. [4] builds the association graph directly from
a computationally expensive (in space and time) composite
affinity matrix K, which is of size O(n02 ⇥ n

02). Thus, when
applied to shape graphs, the NGM can only handle graphs
of a maximum of 70 nodes or so on current hardware. Our
approach uses smaller matrices and can handle much larger
shape graphs. Besides, NGM primarily registers the node
features. Our network takes in the edge shapes as additional
information and jointly performs registration using both edge
and node features.

1) Matching aware embeddings of affinity matrices: We set
the initial edge-affinity embedding to be E

(0), an n
02 ⇥ l0

matrix, where each of the l0 columns is a replicate of
vec(log(C̃KeC

0T � F̃KeF
0T )), l0 is the initial affinity embed-

ding size, � is the Hadamard product, and log is elementwise.
The intuition behind this equation is that if the edges in G and
G

0 are similar, then the corresponding connected nodes in the
association graph tend to have a high classification score.

We define an unweighted adjacency matrix Ā = C̃F̃
T ⌦

C
0
F

0T , which is an n
02 ⇥ n

02 sparse matrix of 1s and 0s. An
entry in Ā indicates if there is an edge between the correspond-
ing two vertices in the association graph or not. We adapt
the Graph Attention Networks (GATConv) [5] to construct
the initial node embedding V

(0) = GATConv(K̃p, Ā,Ke) 2
Rn02⇥l0 . The attention operator is applied to each node in the
association graph, and the attention coefficients are computed
based on Ke. This way different weights are assigned to
each node, by aggregating the edge features from each node’s
neighbors.

The graph convolutional step updates node and edge em-
beddings iteratively according to:

V
(k)
i = fu

⇣h
fh([E

(k�1)
, ĀV

(k�1)]i), fv(V
(k�1))

i

i

⌘
, (3)

E
(k)
i = fh([E

(k�1)
, ĀV

(k�1)]i), i = 1, 2, . . . , n02
, (4)

where V
(k)

, E
(k) 2 Rn02⇥lk are node- and edge-affinity

embeddings. The notation [· , ·] implies a concatenation of ma-
trices. The message passing functions fh, fu : R2lk�1 ! Rlk

and fv : Rlk�1 ! Rlk are all implemented by networks with
two fully-connected layers and ReLU activation.
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Fig. 1: Overall architecture for the SGM-net. With an unsupervised loss function, this architecture uses two flows that discover
and aggregate the node- and edge-affinity features separately.

2) Sinkhorn and Gumbel Sinkhorn network: We utilize the
Sinkhorn layer [6] to perform classification by turning the final
embedding matrices V

(k) and E
(k), obtained in Eqn. 4, into

a doubly stochastic matrix as follows: for i = 1, 2, . . . , n02,
we compute xi = fc(V

(k)
i ) 2 R, and yi = fe(E

(k)
i ) 2 R, and

set S = exp(x+y
2⌧ ) 2 Rn02⇥1, where exp is elementwise. Here

fc, fe : Rlk ! R are both single fully-connected layers and ⌧

is a normalization constant. After reshaping the classification
score matrix S into Rn0⇥n0

, the doubly-stochastic matrix can
be obtained by element-wise division on rows and columns:
S = S↵ (1n01T

n0S), S = S↵ (S1n01T
n0), where symbol ↵ is

element-wise division.
Similar to [6], the Gumbel Sinkhorn layer [4] is a post-

selection technique that is applied at the inference stage.
This layer enables searching over the space of all possible
permutation matrices and uses the Hungarian algorithm to
select the one with the highest objective score. The Gumbel
Sinkhorn layer is the same as the Sinkhorn layer, except that
now S is defined as exp(x+y+g

2⌧ ), where g is sampled from
standard Gumbel distribution with CDF e

�e�x

.
3) Training Loss: As shape graphs are constructed from

real-world 3D images [7, 8], there is no ground truth infor-
mation available for training. During the training stage, the
network performs optimization on the loss function L(S) as
given in Eqn. 2, with S replacing P . The objective score is
the negative of the loss function.

III. EXPERIMENTS

Next we provide results on shape graph registration using
the proposed SGM-net, and compare them to SOTA methods.

Real Datasets: The first is 2D Retinal Blood Vessel (RBV)
dataset for networks extracted from colored fundus images [7,
8]. The second set is for the 3D Microglia dataset available
on NeuroMorpho.Org [9]. Synthetic Dataset: The synthetic
data is created by starting with actual 2D RBV networks and
introducing noise, clutter, and distortions to generate paired
shape graphs [1]. A total of 900 (registered) pairs are simulated
for training. The synthetic data for 3D Microglia datasets is
simulated similarly.

For each experiment, we collect simulated and real data
to form 1800 pairs for training the network. For testing, we
include 100 pairs of synthetic graphs and 100 pairs of real
graphs. Note that for the real data, there is no ideal pairing
available; we randomly pair these graphs. The training and
testing data have no overlap.
Evaluation metrics. For quantitative evaluation, we use the
graph shape metric dg defined in Section II-A. The smaller the
distance, the better the registration. Additionally, we compute
the node objective score Tr

⇣
K̃

T
p S

⌘
, where a larger objective

points to a better registration. For qualitative results, we
visualize geodesics under estimated registrations. Given the
availability of known ground truth in synthetic experiments,
we naturally compare results with the ground truth.
State-of-the-art baselines: There are no existing DNNs to
perform shape graph registration under the shape metrics. We
have adapted three recent DNNs for shape-graph matching
to enable comparisons. These are: 1. PCA-GM [6] approxi-
mates the distribution of node embeddings using cross-graph
convolutions. We adapt this approach to also learn how to
weigh neighbors in convolutions based on the shape of edges.
2. CIE-H [10] introduced a Hungarian Attention module that
dynamically constructs a structured and sparsely connected
layer, taking into account the most contributing matching pairs
as hard attention during training. 3. NGM [4] learns with
Lawler’s QAP with given affinity matrices. For a learning-free
method, we also include a SOTA method Factorized Graph
Matching (FGM) [3] with details as presented in [1].
Quantitative Results: We compute the shape graph distance
before d

B
g and after registration d

R
g , and compute a relative

graph-distance reduction as dB
g �dR

g

dB
g

. We also compute the
node objective score which is defined earlier. The larger
the distance reduction and node objective score, the better
the registration. Table I shows the comparison between our
proposed SGM-net and other recent graph-matching networks
for 2D and 3D shape graphs, respectively. We can see that
the SGM-net outperforms other deep neural networks in all
experiments in terms of graph distance reduction and node
objective score. Besides, the SOTA QAP solver NGM failed
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2D Retinal Blood Vessels (RBVs)
Ty

pe Size Method Graph Dist. Node Time Speed Gain
Node Graph Reduc.(%) Score (s) over FGM

R
ea

l

45
-6

5

12
50

-1
85

0

CIE 39.34 21.11 0.07 2385 times
PCA-GM 40.59 21.28 0.63 265 times

NGM 43.25 21.30 1.25 133 times
FGM 45.58 20.30 167 –
Ours 47.20 21.31 0.7 240 times

R
ea

l

12
0-

20
0

35
00

-4
50

0 CIE 32.54 57.10 1.1 1018 times
PCA-GM 34.24 57.66 3.31 338 times

FGM 44.72 57.09 1120 –
Ours 42.83 59.27 5.31 211 times

Sy
nt

he
tic

12
0-

20
0

35
00

-5
50

0 CIE 45.23 50.92 0.09 –
PCA-GM 49.12 49.99 3.13 –
Gnd.Truth 50.09 50.93 – –

Ours 52.84 50.93 5.18 –
3D Microglia datasets –

Sy
nt

he
tic

80
-1

20

10
00

-2
00

0 CIE 53.43 33.31 0.09 –
PCA-GM 53.31 33.31 0.21 –
Gnd.Truth 53.63 33.33 – –

Ours 55.26 33.34 .0.98 –

R
ea

l

80
-1

20

10
00

-2
00

0 CIE 25.95 29.41 0.08 3625 times
PCA-GM 19.05 28.52 0.22 1318 times

FGM 35.62 30.02 290 –
Ours 34.93 31.08 1.26 230 times

TABLE I: Performance comparisons on 2D RBV and 3D
Microglia datasets: (For graph distance reduction and node
scores the larger, the better). The best results are in blue bold.
For graphs with more than 70 nodes, the NGM fails.

to finish on the original Retinal Blood Vessel [7, 8], and
Microglia datasets [9] (graphs with around 100 nodes) with
an Nvidia RTX A100 (80GB) GPU. However, our method
SGM-net finishes the experiments on the original datasets
with any 24GB GPU, while improving performance. Be-
tween our SGM-net and the SOTA learning-free method
FGM [3], they achieve similar performances in terms of graph
distance reduction and node objective score. However, the
biggest justification for using SGM-net comes in form of
improved computational speed. SGM-net incurs much lower
cost as listed in Table I. We can see after the training
stage, the time gains for SGM-net over FGM are substantial.
SGM-net is almost 220 times faster than FGM.
Geodesic deformations. the SGM-net can achieve perfor-
mance similar to that with ground truth registration. At the
halfway point (the bottom row), the ground truth and SGM-net
registration largely preserve the salient structures and display
a more natural deformation. However, The PCA-GM [6] and
CIE-H [10] suffer from bad registration and provide distortion
paths as shown in the red dashed box. NGM failed to run the
experiments due to large memory needs.

IV. CONCLUSION AND DISCUSSION

This paper proposes a deep learning-based registration
framework for handling shape graphs that appear in biological
and anatomical data. This method uses unsupervised training
and learning-based registration to provide state-of-the-art re-
sults and order-of-magnitude improvements in computational
costs. The key distinction from the past methods is that it

Ground Truth Ours PCA-GM CIE-H

Left Right

Fig. 2: Geodesics examples: The bottom row illustrates the
halfway points of geodesic paths between the left and right
shape graphs, as computed by different methods. Our approach
shows a natural deformation of blood vessels.

incorporates the shape metrics for curves in comparing edges
across graphs. It obtains speed gains of ⇡ 200 � 300 times
the SOTA technique FGM.
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