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Abstract
Automatic recognition of bird behavior from long-term, un-
controlled outdoor imagery can contribute to conservation ef-
forts by enabling large-scale monitoring of bird populations.
Current techniques in AI-based wildlife monitoring have fo-
cused on short-term tracking and monitoring birds individu-
ally rather than in species-rich flocks. We present BirdCollect,
a comprehensive benchmark dataset for monitoring dense
bird flock attributes. It includes a unique collection of more
than 6,000 high-resolution images of Demoiselle Cranes
(Anthropoides virgo) feeding and nesting in the vicinity of
Khichan region of Rajasthan. Particularly, each image con-
tains an average of 190 individual birds, illustrating the com-
plex dynamics of densely populated bird flocks on a scale that
has not previously been studied. In addition, a total of 433 dis-
tinct pictures captured at Keoladeo National Park, Bharatpur
provide a comprehensive representation of 34 distinct bird
species belonging to various taxonomic groups. These images
offer details into the diversity and the behaviour of birds in vi-
tal natural ecosystem along the migratory flyways. Addition-
ally, we provide a set of 2,500 point-annotated samples which
serve as ground truth for benchmarking various computer vi-
sion tasks like crowd counting, density estimation, segmenta-
tion, and species classification. The benchmark performance
for these tasks highlight the need for tailored approaches
for specific wildlife applications, which include varied con-
ditions including views, illumination, and resolutions. With
around 46.2 GBs in size encompassing data collected from
two distinct nesting ground sets, it is the largest birds dataset
containing detailed annotations, showcasing a substantial
leap in bird research possibilities. The database is available at:
https://iab-rubric.org/resources/wildlife-dataset/birdcollect

Introduction
Birds are vital components of our ecosystems worldwide,
playing critical roles in pollination, pest control, seed dis-
persal, and other ecological processes. However, both mi-
gratory and non-migratory bird populations face escalating
threats from anthropogenic pressures like habitat loss1, cli-
mate change (Li, Liu, and Zhu 2022), and overexploita-
tion. Habitat degradation and destruction are major threats
to avian biodiversity globally. Consequently, North Amer-
ica has lost nearly 3 billion birds since 1970 (Rosenberg
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Figure 1: Visual description outlining the potential applica-
tions and challenges associated with our proposed dataset
BirdCollect.

et al. 2019), with grassland-dwelling and aerial insectivores
amongst the most affected. Globally, 1 in 8 bird species is
now threatened with extinction2. Urgent conservation action
is imperative to reverse these declines and prevent irrepara-
ble damage to ecosystems. Long-distance migratory birds
that traverse continents are especially vulnerable, as they de-
pend on networked habitats along their flyways for nesting
and wintering. For instance, collision with man-made struc-
tures like power lines and wind turbines results in millions
of migratory bird mortalities annually.

Quantitative long-term monitoring is essential to track
climate change indicators like shifts in arrival time, nest-
ing locations, and migration routes. Targeted conservation
planning hinges on high-quality data on avian distribution,
abundances, and behavior. AI and vision techniques through
tasks like crowd-counting, density estimation, segmentation
and species classification can automate bird monitoring from
imagery. However, lack of labeled data for migratory birds
limit the research progress in this field.

Our research endeavors to leverage advanced vision tech-
niques for an enriched analysis of bird behavior. We present

2https://www.stateofthebirds.org/2022/
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Datasets Size
Source Annotation Type

Density Diverse
ConditionsCuration Annotation Point

Annotation
Segmentation

Mask
Species
Classes

CBD-6000 ∼ 800 MB Internet Manual ✓ ✗ ✓ Low ✓
Penguin
Dataset 28GB Site

Collection
Crowd

Sourced ✓ ✗ ✓ High ✓

BirdSnap - Internet Crowd
Sourced ✗ ✗ ✓ Low ✗

NA Birds 512MB Internet Crowd
Sourced ✗ ✗ ✓ Low ✗

BirdCollect
(Ours) ∼ 46 GB Site

Collection Manual ✓ ✓ ✓
Very
High ✓

Table 1: Comparison of BirdCollect with existing public birds dataset. Here, diverse conditions refers to the varying conditions
of lighting, viewpoints and aerial/ground conditions. Further, the average number of birds per image is considerably larger than
in any other public dataset, depicting true monitoring conditions.

a comprehensive and one of the largest bird datasets, named
BirdCollect, compiled from two prominent locales: Khichan
village in Rajasthan and Keoladeo National Park (hereafter
referred to as Bharatpur) in Rajasthan, India. In collabora-
tion with Indian wildlife experts, we focus on Demoiselle
cranes that gather in Rajasthan, India during winter months.
The dataset encompasses high-resolution annotated images
and videos, capturing crane flocks across diverse scenarios.
Furthermore, a distinct subset within our dataset features
high-quality images of 34 bird species, aiding species iden-
tification for protective measures. We further conduct exten-
sive experiments to benchmark the performance of cutting-
edge models on the proposed dataset, demonstrating its in-
tricacies across multiple computer vision tasks.

Relevant Literature and Birds Datasets
Existing Datasets: The existing bird monitoring datasets
predominantly contain images with low bird density and
fewer birds per image (see Table 1). Among the pub-
licly available datasets, most of the annotations are crowd-
sourced, which can have unreliable annotations especially
with high densities. In contrast, our dataset has manual su-
pervised annotations. Other datasets like CBD-6000 (Kim
and Kim 2020), NA birds 3, and BirdSnap (Berg et al. 2014)
also comprise lower density internet images lacking real-
world diversity. The Penguin dataset covers varying condi-
tions with penguins. However, the dataset contains species
information and labels for three different classes of pen-
guins.
Literature: Recent advances in crowd counting employ
density map regression or localization approaches. Density
map based techniques (Bai et al. 2020) predict maps using
feature extraction and regression head but rely substantially
on human point annotations. Localization methods (Sam
et al. 2020) on the other hand forecast individual locations
but struggle with duplicate detections and noise. To miti-
gate the reliance on dense annotations, weakly-supervised
transformer architectures such as (Liang et al. 2022) have
gained traction by requiring fewer labels. Semantic seg-

3https://dl.allaboutbirds.org/nabirds

mentation has primarily utilized Convolutional Neural Net-
works (CNN) (Long, Shelhamer, and Darrell 2015). Trans-
formers (Strudel et al. 2021) leverage context modules and
self-attention to enhance per-pixel accuracy. Universal ar-
chitectures like DETR (Carion et al. 2020) and MaskFormer
(Cheng, Schwing, and Kirillov 2021) have inspired works
(Cheng et al. 2022; Jain et al. 2023) that enable adaptabil-
ity across segmentation tasks. Fine-grained recognition re-
lies on object-part and attention-based methods. Object-part
approaches (Zheng et al. 2017) extract features from dis-
criminative regions. Attention techniques including (Bera
et al. 2022) enhance features and localization via attention.
Self-attention mechanisms, as used in models (Sun, He, and
Peng 2022) enhance feature representation, while weakly
supervised methods (Zhang et al. 2019) are able to iden-
tify and fuse parts using only image labels. With the emer-
gence of denoising diffusion probabilistic models (DDPM)
(Ho, Jain, and Abbeel 2020; Nichol and Dhariwal 2021), dif-
fusion models have been applied to object detection (Chen
et al. 2022) and segmentation (Gu et al. 2022).

Benchmark Results and Analysis
As shown in the review section, there are limited datasets
that provide an opportunity for analysing the activities of
birds in high-density settings. Therefore, in this research,
we present the BirdCollect dataset with the objective to pre-
pare an annotated benchmark dataset for promoting design
and development of algorithms for long term ethograming
of birds. This is one of the largest datasets with detailed an-
notations available in the research community for bird mon-
itoring and analysis. The proposed dataset aims to address
the following key research questions:
RQ1: How can we accurately count individual birds in
highly dense flocks?
RQ2: How can density be estimated robustly across diverse
conditions with occlusion and variability?
RQ3: What techniques can effectively segment clustered,
partially occluded birds?
RQ4: How can rare species be effectively classified from
imbalanced datasets and limited training samples?
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Figure 2: (a) Sample images of the Demoiselle crane from the Khichan village. (b) Sample images of different species of birds
obtained from Bharatpur.

Dataset Collection

The proposed BirdCollect is a large-scale dataset for analyz-
ing and tracking dense avian flocks utilizing computer vision
techniques including crowd counting, semantic segmenta-
tion, and species classification. It comprises of images col-
lected from two distinct nesting grounds associated with the
conservational efforts. Site-1 is the Khichan village, an im-
portant wintering habitat for migratory birds like Demoiselle
Cranes shows large bird densities in a migratory staging
area. The images from Khichan village, renowned for host-
ing migratory birds from Central Asia, contain dense flocks
of Demoiselle Cranes (K, S1). While Site-2 is in Bharatpur,
Rajasthan a UNESCO World Heritage Site (Arya and Syr-
iac 2018) known for its rich diversity of resident and migra-
tory bird species. Bharatpur provides variability in birds and
environmental conditions like water, trees, and nature. The
dataset curated from site-2, renowned for its large congre-
gation of non-migratory resident breeding birds, includes 34
avian species (B, S2). By collecting data from both sites, we
aimed to analyze and compare the presence and diversity of
birds across different habitats. The dataset comprises 6,986
high-resolution multi-scale images captured using multiple
cameras across the two locations of Khichan and Bharatpur.

Data collection spanned from November to March to cap-
ture migratory species arriving in winter to their natural
habitats, enabling detailed environmental study. This man-
ual image capturing spanned over several months at the
prime seasonal period for avian populations across both
sites. The images were collected using multiple mobile cam-
era (iPhones and Samsung) and DSLR cameras to capture
varying resolutions. This enables evaluating image quality
and model performance across sensors. Data from group (K,
S1) was captured using both mobile and DSLR cameras,
while data from group (B, S2) was obtained using DSLR
cameras. Despite different original formats, all images were
converted to standard JPEG to ensure consistency for pub-
lic release of the dataset. Drone imagery was avoided due
to non-invasive monitoring concerns, as demoiselle cranes

are sensitive to their environment and could be frightened
or injured. Moreover, gathering data for (B, S2) posed chal-
lenges due to factors like camouflage, low lighting, frequent
motion, and obstructions caused by dense forests.
Dataset Statistics: Table 2 summarizes the characteristics of
data gathered from these two distinct sites. For the Demoi-
selle Crane dataset (K, S1), the labeled samples comprise
2,163 total images divided into training and test sets in a 70-
30 ratio. The 1,473 image training set has a mean of 191 and
median of 82 birds per image. Furthermore, the 690 test im-
ages have a mean of 188 birds and median of 69.5 per image.
Similarly, the multi-species bird dataset (B, S2) consists of
433 images with 34 different species captured in their natu-
ral habitats.

Similar to existing crowd counting datasets, the Demoi-
selle crane dataset (K, S1) provides a challenging benchmark
tailored to wildlife scenarios, specifically avian populations
characterized by significant density and distribution varia-
tions and frequent occlusion in each image. This enables
more robust analysis and benchmarking while accounting
for key challenges in wildlife data that diverge from other
domains based on viewpoint diversity, highly variable crowd
counts, scale ranges, and image variety. As evident in Fig-
ure 3, the data exhibits a long-tailed distribution, which is
prevalent in natural wildlife imagery. The differences in the
inherent populations of bird species, along with varying ease
of capture, lead to uneven image distribution across cate-
gories. As mentioned earlier, this data imbalance poses chal-
lenges for fine-grained classification within the constrained
data context.

Annotation Process
The annotation process for our proposed dataset is cate-
gorized into three distinct computer vision tasks: Crowd
counting and Density estimation, Semantic Segmentation
and Species classification. As shown in Table 2, a total of
2596 images were annotated.
Crowd Counting: Quantifying the bird count within
an image contributes to effective bird monitoring. Point
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Figure 3: Distribution of bird species in the Bharatpur
dataset (B, S2) closely resembles a long-tailed distribution.

Site Location Camera Sensor Resolution # Samples
Site-1 Mobile Sensor 1920 x 1080 220
Site-1 Mobile Sensor 2400 x 1600 445
Site-1 Mobile Sensor 4000 x 3000 61
Site-1 Mobile Sensor 4032 x 3024 109
Site-1 DSLR 6000 x 4000 484
Site-1 DSLR 6960 x 4640 2907
Site-1 Mobile Sensor 3840 x 2160 2327
Site-2 DSLR - Bharatpur 5472 x 3648 433

# Total Samples 6986

Table 2: Details of the number of images of birds col-
lected from two distinct sites, hereafter referred to as Site-1,
Khichan village (K, S1) and Site-2, Bharatpur (B, S1).

Site Location Camera Sensor Resolution # Samples
Site-1 Mobile sensor 1920 x 1080 220
Site-1 Mobile Sensor 2400 x 1600 317
Site-1 Mobile Sensor 4000 x 3000 28
Site-1 DSLR 6960 x 4640 1598
Site-2 DSLR - Bharatpur 5472 x 3648 433

# Total Samples 2596

Table 3: Details of annotated samples corresponding to dif-
ferent resolution and camera sensors.

based annotations are used to localize a bird in percep-
tion, using https://www.robots.ox.ac.uk/∼vgg/software/via/
via demo.html Oxford VGG Image Annotator tool. Un-
like most avian datasets that are curated via internet and
annotated using crowd-sourcing 4, our dataset has been an-
notated using manual supervision particularly because the
scale and density of dataset makes it unreliable to trust the
crowdsourced annotations. Counting in crowded scenes is
challenging, particularly because they rely on large amounts
of data annotation to achieve high performance thereby im-
peding the development of accurate models due to the ac-
companying cost and time constraints associated with the
annotations. Further, annotating the wildlife bird datasets is
even more challenging due to the natural variation including

4https://www.birds.cornell.edu/citizenscience/

significant changes in scene illumination, strong object and
location correlations, and diversity in bird species.
Semantic Segmentation of individual birds facilitates be-
havioral analysis and tracking. The complexity of labeling
bird flocks encourages the adoption of advanced segmen-
tation models, like Segment Anything (SAM)(Kirillov et al.
2023) for pseudo-labeling. However, directly applying SAM
is hindered (Zhang et al. 2023) by background noise and ex-
traneous objects. To mitigate this, we generate segmentation
masks utilizing SAM guided by existing point annotations
for crowd counting. Additionally, input images are parti-
tioned into distinct regions to further refine pseudo-labels.
For images in (B, S2) with fewer birds, CVAT is used to
manually generate segmentation masks.
Species Classification The dataset contains 34 distinct bird
species labeled by experts using species information per the
IOC 13.1 taxonomy (Gill, Donsker, and Rasmussen 2023).
This helps to ensure accuracy and reliability in identifying
the comprehensive representation of avian classes.

Considering the scale and diversity of the dataset, along
with complexity associated with the annotation process a set
of data has been annotated using point labels under manual
supervision. The remaining images stay unlabeled, present-
ing opportunities to explore unsupervised or weakly super-
vised learning methods.

Visual Quality Evaluation
We also evaluate the visual quality of the proposed dataset
using the BRISQUE score (Mittal, Moorthy, and Bovik
2012). The dataset achieves an average BRISQUE score of
32.34 on a scale of 0 to 100, where lower the score bet-
ter is the quality. In addition, the BRISQUE scores for the
dataset obtained from two distinct sites are as follows: 31.39
(31.24 - training set; 33.55 - testing set) for (K, S1), and
37.80 (37.55 - training set; 39.25 - testing set) for (B, S2).
This finding suggests a consistent and high level of image
quality across several collection sites. These results imply
that the dataset contains images of high visual quality and
complexity, influenced by a variety of factors that affect im-
age representation.

Experimental Setup
Implementation Details: The dataset contains images and
annotations for birds collected manually from two sites over
4-5 months. Benchmark experiments were run on a multi-
GPU Nvidia DGX A100 station with 2 80GB GPUs. We
have also used the Megadetector toolkit (Beery, Morris, and
Yang 2019) to initially crop out the birds in case of species
classification task, as feeding the entire image makes it diffi-
cult for the model to learn meaningful features of the birds.

Baseline Methods
We perform benchmarking for the aforementioned tasks and
the details are mentioned below.

Crowd counting and Density Estimation In the realm
of crowd counting and analysis, several innovative ap-
proaches have been proposed. Context-aware-crowd-
counting (CAN) (Liu, Salzmann, and Fua 2019) adaptively
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Figure 4: Sample images visualizing annotation process. (A): Point annotations for Crowd counting, (B): Species identification
annotation using labels and (C): Segmentation masks (i) input image, (ii) SAM generated mask without prompts, (iii) SAM
generated mask using point annotations as guidance. (iv) SAM mask when image is given in parts as input along with points.

encodes contextual information, prioritizing high-density re-
gions. By incorporating multi-scale features, contrasts, and
learned attention maps, it generates scale-aware density rep-
resentations. Another notable method, DM-Count (Wang
et al. 2020), introduces a novel solution by employing distri-
bution matching through optimal transport to overcome the
limitations associated with Gaussian smoothing. This elim-
inates the need for fixed kernel smoothing, enhancing accu-
racy. P2PNet, on the other hand, takes a unique approach by
directly outputting 2D point coordinates for head locations.
Utilizing Hungarian matching and regression, it achieves
accurate counting without the requirement for intermedi-
ate density maps. M-SFANet (Thanasutives et al. 2021) ad-
dresses scale variation and background suppression chal-
lenges by integrating multi-scale features through ASPP and
CAN modules, yielding high-resolution density and atten-
tion maps. Finally, CrowdFormer (Savner and Kanhangad
2023) uses pyramid vision transformers and patch embed-
dings to capture global context for weakly-supervised crowd
counting, significantly enhancing prediction accuracy.

Diffuse-Denoise-Count (Ranasinghe et al. 2023) formu-
lates crowd density map generation as a conditional denois-
ing diffusion process (Ho, Jain, and Abbeel 2020). It models
the diffusion process by adding Gaussian noise to the den-
sity maps and reversing the process for generation. Forward
process Fq is formulated as :

Fq : q (st | st−1) = N
(
st |

√
1− ηtst−1, ηtI

)
(1)

Here I is the identity matrix. The sample s0 is gradually
transformed to a noisy sample st for t ∈ {1, . . . , T} upon
addition of Gaussian noise. Further, the noise is sampled
from a Gaussian distribution with a variance determined by
the noise schedule η1, . . . , ηj , . . . , ηT . st is computed by ap-
plying the forward transformation to s0 and a noise vector
ν ∼ N (0, I)

st =
√
ᾱts0 + (1− αt) ν (2)

ᾱt :=
∏t

τ=1 ατ =
∏t

τ=1 (1− ητ ) and ητ . The conditional
density map training objective Lcwd is a weighted sum of (i)
Lhybrid or denoising loss and (ii) Lvlb or variational lower
bound loss (Nichol and Dhariwal 2021).

Lcwd = Lhybrid + γctLct (3)

Auxiliary Lct loss computed from encoder-decoder features
helps to learn the crowd-specific features.

Segmentation For the task of semantic segmentation, sev-
eral notable methods have been proposed in the literature.
OneFormer (Jain et al. 2023) excels at generating ground
truths from panoptic annotations and adapting dynamically
with multi-scale features, employing contrastive loss and
CoordConv for spatial information. Mask2former (Cheng
et al. 2022) utilizes masked attention for precise segmen-
tation masks, featuring a multi-scale design that integrates
hierarchical features. SegFormer (Xie et al. 2021) intro-
duces a hierarchical transformer encoder for multi-scale fea-
tures and an MLP decoder combining local and global at-
tention for robust representations. ClipSeg (Lüddecke and
Ecker 2022) distinguishes itself by supporting both zero-
shot and one-shot segmentation through CLIP and a trans-
former decoder, leveraging CLIP’s text-image embedding
space for enhanced generalization. Finally, Segment Any-
thing (SAM) (Kirillov et al. 2023) contributes efficient in-
stance segmentation with point annotations, addressing real-
world complexities while guiding accurate mask generation,
offering potential for unsupervised learning and maintaining
semantic-aware features.

Species Classification In fine-grained classification, inno-
vative techniques have emerged. Mutual-Channel (MC)
(Chang et al. 2020) leverages individual feature map chan-
nels with an MC Loss for distinct recognition. Progres-
sive Multi-Granularity (PMG) (Du et al. 2020) sequen-
tially captures multi-granularity representations. HERBS
(Chou, Kao, and Lin 2023) enhances features with
high-temperature refinement and background suppression.
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Models Backbone MAE RMSE
CAN CNN 29.37 44.65

CSRNet CNN 28.12 47.06
P2P-Net CNN 145.06 296.41

M-SFANet CNN 199.29 265.47
DMCount CNN 27.44 58.28

CrowdFormer Transformer 28.90 70.72
Diffuse Denoise-Count DDPM 26.18 41.24

Table 4: Benchmarking results of the crowd counting tech-
niques on the (K, S1) dataset

Model (K, S1) (B, S2)
Mask2Former 0.24 0.56

SegFormer 0.54 0.52
ClipSeg 0.6 0.77

OneFormer 0.76 0.94
Grounded Dino + SAM 0.49 0.92

Grounded SAM 0.63 0.93
SAM + Point Annotation 0.76 0.88

Table 5: Benchmarking the segmentation performance on
the proposed dataset in terms of mIoU values.

FGVC-PIM (Chou, Lin, and Kao 2022) selects discrimi-
native regions and fuses them via graph convolution. ViT-
NeT (Kim, Nam, and Ko 2022) integrates ViT encoder and
neural tree decoder for hierarchical decision-making in fine-
grained classification.

Evaluation Protocol
BirdCollect dataset consists of two distinct subsets: (K, S1)
and (B, S2). We conduct studies for four different tasks, and
to maintain consistency across these tasks, we define two
different protocols, the details of which are listed below:
Protocol 1 - Unified Protocol: In the unified protocol, the
2596 annotated images, encompassing (K, S1) and (B, S2)
datasets, are divided into a 70-30 ratio for training and test-
ing. Accordingly, we have 1817 samples in the training set
and 779 samples in the test set. We then keep the split con-
sistent for performing the benchmarking experiment of the
recent state of the art methods for (i) Crowd counting, (ii)
Density estimation, and (iii) Segmentation respectively. For
the crowd counting and density estimation task we utilize
the point annotations as the ground truth and then predict the
counting estimate along with the density maps. The seman-
tic segmentation task aims to evaluate the mean-IoU scores
scores across the segmentation masks.
Protocol 2 - BirdSpecies Protocol: The second protocol
includes 433 images of 34 different bird species (B, S2)
from Bharatpur. Further, we use samples from the (K, S1)
dataset as the 35th class, resulting in a total sample count
of 441. The addition of eight images introduces the demoi-
selle crane as a new class, creating a 35-class problem. This
setup is designed to test classification within an imbalanced
dataset, addressing the challenge of identifying species with
limited samples. The benchmarking results are evaluated for
accuracy in classifying the test samples into one of the 35
species using a 70-30 split.

Method Backbone %Acc
HERBS Transformer 82.11

PMG CNN 66.67
MC Loss CNN 72.10
Vit-Net Transformer 21.48

FGVC-PIM Transformer 38.26

Table 6: Benchmarking results for species classification
tasks on (B, S2) dataset

Evaluation Metrics
To evaluate the performance of the bird counting algorithms
on the dataset, we utilize the standard metrics including
Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE), and Mean Intersection over Union (mIoU) for seg-
mentation. In the case of species classification, we assess the
effectiveness of the methods using classification metric of
computing the overall accuracy by comparing the predicted
class labels to the corresponding ground truth labels. The
evaluation process involves rigorous testing and validation
procedures to ensure the reliability.

Results and Analysis
In this section, we provide an overview of the baseline re-
sults obtained for different computer vision tasks. The state
of the art models, protocols, and dataset details are discussed
in the previous section.

For the unified protocol-1, we present the findings of
crowd counting and density estimation experiments con-
ducted on the (K, S1) dataset, as detailed in Table 4. We ob-
serve the variation of MAE ranging from 26.18 to 199.29,
with the minimum MAE acchieved by Diffuse Denoise-
Count(Ranasinghe et al. 2023). It is evident that state-of-
the-art methodologies struggle when tasked with automati-
cally analyzing images of bird flocks, both on ground and
in-flight. These can be attributed to the variations in density
and occlusion levels within the images. The method centered
around diffusion models performs relatively better by gener-
ating high quality narrow kernel density maps that maintain
pixel value distribution and enable accurate contour-based
counting. Their stochastic map fusion also improves local-
ization compared to single-output CNNs and Transform-
ers. Furthermore, the (B, S2) dataset comprises several bird
species, so counting birds lack meaningful interpretability.

Table 5 presents the outcomes of semantic segmentation
in the context of both the (K, S1) and (B, S2) datasets. The
distinctive characteristics of individual birds pose challenges
for models to accurately segment dense flocks. Their dis-
tinct shapes, color, features and high degree of variability
in crowded settings complicates the ability to distinguish
the boundaries between them. We employ MIoU as a met-
ric to assess segmentation model effectiveness. Upon exam-
ination, it’s evident that OneFormer(Jain et al. 2023) and
SAM(Kirillov et al. 2023), utilizing input point annotations,
demonstrate the highest performance on the (B, S2) with
mIoU of 0.76. Further, Results on (B, S2) dataset shows
some gains in the performance with highest mIoU of 0.94
achieved by OneFormer, particularly because the samples
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Figure 5: Visual sample representations of segmentation mask obtained from cutting-edge models. Column 1 displays input
images, column 2 shows pseudo ground truth. Columns 3 to 5 depict the binary masks from various models. Rows 1-2 show
(K, S1) subset, while the last row presents (B, S2) subset from the BirdCollect dataset.

have fewer birds though with significant variations. How-
ever, the challenges of density, flight pattern and diverse
backgrounds makes the task challenging. Some examples of
predicted segmentation masks by top-performing models are
visualised in Figure 5.

For protocol-2, experiments performed (Table 6) for
species classification on (B, S2) challenges the state-of-the-
art models in the limited data regime. The variations in per-
formance with highest accuracy of 82.11% depends on the
ability to mitigate background noise and enhance multi-scale
features to focus on discriminative regions. The challenge
of classifying rare species within imbalanced datasets with
constrained samples, as seen in our dataset, is mainly due to
reliance of models on localization of subtle discriminative
regions. Also, the model sensitivity to class imbalance often
results in suboptimal feature suppression or refinement.

Across various protocols, it becomes evident that ex-
isting methods face challenges in analyzing high-density
bird flocks under diverse conditions and identifying species
within data exhibiting a long-tailed distribution. Thorough
experiments highlighted the intricate nature of the proposed
dataset, emphasizing its potential to propel advancements in
deep learning models.

Conclusion and Broader Impact
The development of automated non-invasive monitoring
(Kshitiz et al. 2023) technologies to track large bird flocks
offers immense potential for enhancing bird behaviour anal-
ysis with minimal human intervention. Computer vision
techniques including crowd counting and density estima-
tion help facilitate examining migration patterns and spa-
tial distribution of the avian populations. Further, the study
of changes in flock density provides critical ecological in-
sights, unveiling shifts in environmental factors influencing

population health, such as climate and food chain ecosys-
tem. In addition, semantic segmentation of flocks is crucial
for unraveling behaviour dynamics and supporting effective
ecological monitoring for conservation. However, the lack
of comprehensive annotated large scale datasets capturing
the intricacies of diverse habitats and behaviors have con-
strained the avian habitat research. Through extensive ex-
periments, we demonstrate the complexity of the proposed
dataset including diverse density and variable illumination
conditions. These ecological insights can help drive data-
driven conservation initiatives, safeguarding threatened mi-
gratory species. We believe curating and releasing bench-
mark datasets of this nature is crucial for pushing the bound-
aries of technologies to help develop long-term monitoring
of flocks to protect vulnerable avian populations facing es-
calating anthropogenic threats worldwide.
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