
Better Monocular 3D Detectors with LiDAR from the Past

Yurong You∗†, Cheng Perng Phoo∗†, Carlos Andres Diaz-Ruiz‡, Katie Z Luo†,

Wei-Lun Chao§, Mark Campbell‡, Bharath Hariharan†, Kilian Q Weinberger†

Abstract— Accurate 3D object detection is crucial to
autonomous driving. Though LiDAR-based detectors have
achieved impressive performance, the high cost of LiDAR
sensors precludes their widespread adoption in affordable
vehicles. Camera-based detectors are cheaper alternatives but
often suffer inferior performance compared to their LiDAR-
based counterparts due to inherent depth ambiguities in images.
In this work, we seek to improve monocular 3D detectors
by leveraging unlabeled historical LiDAR data. Specifically, at
inference time, we assume that the camera-based detectors have
access to multiple unlabeled LiDAR scans from past traver-
sals at locations of interest (potentially from other high-end
vehicles equipped with LiDAR sensors). Under this setup, we
proposed a novel, simple, and end-to-end trainable framework,
termed AsyncDepth, to effectively extract relevant features
from asynchronous LiDAR traversals of the same location for
monocular 3D detectors. We show consistent and significant
performance gain (up to 9 AP) across multiple state-of-the-
art models and datasets with a negligible additional latency of
9.66 ms and a small storage cost. Our code can be found at
https://github.com/YurongYou/AsyncDepth.

I. INTRODUCTION

To drive safely, autonomous vehicles and driver assist sys-

tems must detect traffic participants and obstacles accurately.

Current state-of-the-art prototypes rely on LiDAR sensors

that provide accurate 3D information[1]. However, LiDAR

sensors are expensive and their high cost precludes their mass

adoption in consumer cars. Most commercially available

driver assist systems instead rely on cheaper sensors —

(360◦-view) monocular cameras. Although more affordable,

image-based 3D object detectors substantially underperform

their LiDAR-based counterparts due to the inherent difficulty

of inferring depth from images [2].

While it may be impractical and cost-prohibitive for every

vehicle to be equipped with LiDAR sensors, some (e.g. high-

end luxury, police, etc.) vehicles within a community may

be outfitted with such sensors. In this setting, a few LiDAR-

equipped vehicles collect data and share them (anonymously)

with a large fleet of camera-only cars. If a camera-only car

traverses a route for which past LiDAR data is available, it

can fuse this data with its own sensor readings. A natural

question to ask is: can we improve camera-based 3D object

detectors using LiDAR data from the same location, but

collected in the past?

∗ Equal contributions
† Computer Science Department, Cornell University {yy785, cp598,

kzl6, bh497, kqw4}@cornell.edu
‡ Mechanical and Aerospace Engineering Department, Cornell University

{cad297, mc288}@cornell.edu
§ Department of Computer Science and Engineering, Ohio State Univer-

sity chao.209@osu.edu

Current Camera-Image Past LiDAR Point Information

Disambiguate Foreground
from Background

Correct 3D Background
Depth Estimations

Fig. 1: Can past LiDAR traversals help monocular 3D

object detection? Here we show a current image (left) and

an asynchronous depth map rendered from a past LiDAR

traversal (right). The asynchronous depth map provides accu-

rate depth for background regions (red arrows) and helps the

monocular model disambiguate foreground objects in current

scene (blue arrows).

Prior work has shown that combining 3D LiDAR point

clouds with 2D images can improve 3D object detection

[3]–[5], but these models crucially relies on a synchronized

LiDAR and camera sensors. In our case, however, the 3D

data we have comes from a different car passing through the

scene presumably at a different time. As such, vehicles and

pedestrians will obviously have moved in the interim. Since

these are the objects we want to detect in the current scene,

these asynchronous offline LiDAR scans will not capture the

shape and location of these objects.

However, even though the objects of interest may not

be present in these past LiDAR scans, we argue that these

scans still contain vital information for accurate 3D object

detection. By aggregating data across multiple traversals, we

can identify and remove transient objects [6] and thus obtain

accurate 3D data about the static background. We posit that

this 3D information about the background, collected from

past traversals, can then be used to both detect foreground

objects in the current image as well as localize them. First,

because foreground objects move and are therefore transient,

they will correspond to regions where the current image

data is inconsistent with the previously collected depth

(blue arrows in Figure 1). This can help the model detect

ambiguous or partially occluded objects. Second, in the areas

where the previously collected depth is consistent with the

current image, (i.e., the background), we get accurate depth

for free (red arrows). This accurate depth can be used by the

image detector to localize foreground objects in 3D, e.g., by

reasoning about where the pedestrian’s feet meet the road.

Based on this insight, we propose a simple and effective

approach for combining these asynchronous 3D data from

past traversals with image-based detectors. We project each

of the point clouds aggregated at each location into a depth

map for each camera [7], [8]. From these depth maps,

features are extracted, pooled across all past traversals, and

combined with the image representation as the (intermediate)

input to the monocular detector. During training, the depth-

map based feature extractor is trained jointly with the object

detector. During inference, the camera-only model can use

the features extracted from past LiDAR scans to better detect

and localize the objects.

We validate our approach, termed AsyncDepth, across two

real-world self driving datasets, Lyft L5 Perception [9] and

Ithaca365 [10], with two representative camera-based 3D

object detection models [1], [11]–[14]. Using our method,

we observe a consistent improvement across both datasets,

and up to 9.5 mAP over the baselines on far away ranges.

Our contributions are as follows:
• We study a novel yet highly practical scenario where

asynchronous historical LiDAR point cloud data is

available to camera-only perception systems.

• We show the practicality by proposing a simple and

general approach to integrate asynchronous point cloud

data into 3D monocular object detectors.

• We empirically demonstrate that our method yields

consistent performance gains with low additional la-

tency (9.66 ms) and a tiny storage cost across different

datasets, detection ranges, object types, and detectors.

II. RELATED WORK

Perception for Autonomous Vehicles. Sensing the envi-

ronment around a vehicle can be done via different input

modalities, such as LiDAR or camera. LiDAR sensors are

more expensive than cameras but are capable of capturing

3D geometry of the traffic scenes at high fidelity. Current

state-of-the-art 3D object detectors therefore mostly rely on

LiDAR sensors [15]–[19]. Camera-based 3D object detectors

are a cheaper but also less accurate alternative due to depth

ambiguities induced by perspective projections. The use of

stereo-cameras [2], [5], [20]–[22] can close the gap, however

the most common sensors in end user cars are monocular

cameras [11], [13], [14], [20], [23]–[33], as they can be easily

integrated within the car to capture a full 360 view around

the vehicle. These monocular-based models can be roughly

divided into two categories based on whether the detection is

performed in 2D perspective view [13], [23], [24], [26], [27]

or in 3D [11], [14], [20], [25], [28]–[33]. In this work we

show that both types of these models can be vastly improved

through the use of offline LiDAR scans from past traversals.

Sensor Fusion in 3D Object Detection. LiDAR sensors

yield accurate 3D geometry but suffer from sparse resolution;

cameras, on other other hand, provide high resolution input

but are inept in capturing 3D information. Given their

complementary characteristics, multiple research efforts have

explored fusing LiDAR and images for better 3D object

detection [3], [4], [34], [35]. In contrast to our work, these

approaches typically assume synchronous sensors and still

require expensive LiDARs during inference. You et al. [5]

address the cost issue by proposing to correct camera based

perception through sparser (4-beams) and therefore cheaper

LiDAR sensors. We explore an alternative setup, where

the current scene is only captured by cheap cameras but

asynchronous LiDAR scans from the past are available. In

principle, this is a much harder setup but it is of great

practical value as it allows all cars to benefit from the LiDAR

scans of a few (expensive) vehicles.

LiDAR Scans from Past Traversals. With accurate

GPS/INS, LiDAR data from past traversals can be geo-

located and aligned for easy retrieval. Recent work has

started to explore the use of such data to aid perception and

visual odometry [6]. MODEST [36] leverages past traversals

to discover dynamic objects without any annotations. Rote-

DA [37] utilizes previous traversals to adapt pre-trained de-

tectors to new target domains. You et al. [38] propose the use

of past LiDAR point clouds to create feature descriptors for

improving LiDAR-based 3D object detectors. Nonetheless,

these prior works demonstrate that past traversals are useful

for various tasks in autonomous driving. We leverage this

observation but in contrast, we are the first to show how

to utilize past LiDAR to improve camera-only 3D object

detection — a common setting in practice.

III. ASYNCDEPTH

Setup. We follow a typical test-time camera-only sensor

setup: the autonomous vehicle is equipped with synchronized

sensors, including C calibrated cameras and localization sen-

sors (e.g., GPS/INS) but no LiDAR sensors. The C cameras

are calibrated and have corresponding intrinsic and extrinsic

matrices {(P i, T i)}. These cameras capture C images of

the surrounding environment at a certain frequency. When

the vehicle drives through a location p, we denote the

instantaneous images captured by the cameras as {Ii
p ∈

R
H×W×3, i = 1, . . . , C}. We also record the global 6-DoF

localization as a rigid transformation Gp that maps from the

local to the global coordinate frame. We do not assume that

the fields of view of the C cameras overlap, so work aims to

develop a monocular 3D object detector that can identify

objects of interest (dynamic traffic participants like cars,

pedestrians, etc.) and infer their 3D positions, orientations,

and sizes in the scene from these images.

Detector abstraction. Current state-of-the-art monocular

3D object detectors [11], [13], [23]–[25] mostly follow a

“featurize-then-detect” pipeline. Given images {Ii
p} and the

corresponding camera parameters {(P i, T i)}, the detector

first extracts image features {f(Ii
p)} from each of the images

via a (usually pre-trained) featurizer f ; a detector head h then

lifts these 2D feature maps to 3D object bounding boxes

Bp = h({f(Ii
p), P

i, T i}) (here f and h contain learnable

parameters). Such lifting from 2D to 3D is a notoriously

ill-posed problem for monocular detectors, since accurate

depth cannot be measured geometrically from the given

2D images [39]. Current detectors get around this issue by

learning a prior over depth [11], [13], [14], [25], [32], but

without any geometric or multi-view information, accurate

depth estimation can be challenging.

(P
i,T

i,G
p
,
S

tp)

S
Nmax

p

⋯⋯

⋯

I
1

p

I
C

p

f

g

⋯

{Dn,C
p

}Nmax

n=1

{Dn,1
p

}Nmax

n=1

S
1

p

Gp

⋯

f(I1

p
)

f(IC

p
)

{g(Dn,C
p

)}Nmax

n=1

{g(Dn,1
p

)}Nmax

n=1 ⋯

F
C

p depth

F
1
p depth

F
C

p

F
1

p

h

⋯ ⋯

Fig. 2: Overview of AsyncDepth. It consists of three parts: (top left) general “featurize-then-detect” pipeline for monocular

3D detection; (bottom) extracting asynchronous depth features from past LiDAR traversals of the same location; (top right)

fusing the image features with AsyncDepth features. Please refer to subsection III-C symbol definitions.

Overview of our approach. We propose a novel feature

learning approach, termed AsyncDepth, to extract additional

geometric information from past LiDAR scans that comple-

ments the image features {f(Ii
p)} for 3D monocular object

detection (Figure 2). We start by constructing asynchronous

depth maps from the historical LiDAR point clouds using

the localization and camera parameters. We then featurize

these depth maps using a featurizer g and aggregate them

across traversals. The aggregated features are appended as

additional channels to the image features for the detector

head h. The whole pipeline is fully differentiable and can

be learned end-to-end alongside almost all state-of-the-art

monocular 3D object detectors.

A. Past LiDAR Traversals

Past LiDAR traversals from other vehicles. We assume

offline data-sharing among vehicles equipped with different

sensor modalities. These vehicles drive about the same areas,

collect unlabeled sensor data, and share it with other vehicles

when they are not operating. Specifically in this work, we

focus on one particular setting: vehicles with camera-only

setups have access to past traversal data from vehicles with

LiDAR sensors (this can be realized via community sharing

or as a service provided by a vehicle manufacturer). These

past LiDAR point clouds, though not capturing information

about the instantaneous dynamic objects in the current drive,

can provide abundant 3D information about the static en-

vironment. It has been shown by [38] that LiDAR-based

detection models can be enhanced by these past traversals.

Different from [38], we assume a camera-only setup for

the operating vehicle. We hypothesize that the environment

information within these past LiDAR traversals can greatly

help monocular models detect objects. We validate this

hypothesis with a generally applicable and simple framework

for monocular 3D detectors.

LiDAR Densification. We follow [38] and maintain a

maximum of Nmax g 1 LiDAR traversals for the driving

locations (bottom half of Figure 2). Each traversal n is a

sequence of point clouds {Qn
r ∈ R

k×3}, where r index the

frame and k is the number of points, obtained from the past

traversals of other vehicles. We transform each point cloud

into the same global coordinate system via the associated

6-DoF localization. We combine point clouds along the road

to obtain a densified point cloud Sn
p =

⋃

r∈R Qn
r , where

R is a subset of frames sampled every s meters along the

road near location p. Of course, these point clouds contain

both dynamic objects in the past and static background. But

as pointed out by [6], [36], with multiple traversals of the

same scene, simple statistics (i.e. ephemerality/persistency

point score) can already help to disambiguate dynamic/static

components. Rather than constructing hand-crafted statistics

from these point clouds, we propose to learn a feature

extractor that can extract relevant information from them.

B. Asynchronous Depth Feature from Past LiDAR

As discussed previously, inferring depth information from

images is an ill-posed problem. However, the densified point

clouds {Sn
p }

Nmax

n=1 at location p can provide strong cues for

estimating the object position. We project this point cloud

into each camera’s image to yield a corresponding depth

map. Concretely, we use the current 6-DoF localization

Gp and the i-th camera’s parameters (P i, T i) to perform

this projection. For every 3D point in the densified point

cloud Sn
p (represented in homogeneous coordinates as qj ≡

[xj , yj , zj , 1]
¦), we project it to the local camera coordinate,

q̂j = [x̂j , ŷj , ẑj , 1]
¦ ≡ T iG−1

p qj .

We then project each of these points q̂j onto the image plane

of the i-th camera by perspective projection:

[ûi
j ẑj , v̂

i
j ẑj , ẑj]

¦ ≡ P iq̂j

ui
j , v

i
j = +ûi

j,, +v̂
i
j,

where (ui
j , v

i
j) are the corresponding pixel indices on the i-th

image. Projecting all points in Sn
p into the image plane of

camera i and filling the corresponding depth value renders a

depth map Dn,i
p ∈ R

H×W (see the right image of Figure 1)

Dn,i
p [u, v] = max

{

max(ui
j
,vi

j
)=(u,v) ẑj ,−1

}

,

where we take the maximum depth when multiple points are

projected into a same pixel and fill the empty pixel with -

1. This implicitly favors background depth since foreground

depth is usually closer. As shown in Figure 1, such a depth

map provides very rich depth prior for the image. Intuitively,

once the model detects an object in 2D, figuring out its depth

is a much easier task with the surrounding background depth.

C. Feature Learning and Detection

The previous depth maps, {Dn,i
p }, can be noisy since

they were captured under different conditions and contain

different sets of prior foreground objects. To extract rele-

vant information, we feed them through a 2D backbone g,

which is designed to yield depth feature maps g(Dn,i
p) ∈

R
H′

×W ′
×ddepth with the same size as that of the image

features f(Ii
p). To aggregate the depth features from different

traversals, we apply an order invariant pooling function to

pool the feature maps along the traversal dimension:

F i
p depth

[u, v] = pool(g(Dn,i
p)[u, v], n = 1, . . . , Nmax).

We use mean pooling in our implementation by default.

The pooled feature maps from the past LiDAR traversals

are concatenated with the corresponding image features

along the feature dimension as the new 2D features F i
p =

concat(F i
p depth

, f(Ii
p)). We then apply the same detector

head h (with slight change to input feature size) to obtain

the bounding box predictions Bp = h({F i
p , P

i, T i}). As a

result, the information from past LiDAR traversals can be

incorporated into the existing camera-only object detection

models with minimal changes in model architecture.

Training and Inference. We train the whole model, includ-

ing (i) the depth backbone g that takes LiDAR scans of

past traversals as input, (ii) the image featurizer f that takes

images at the current time as input, and (iii) the detector head

h, end-to-end with loss signals from annotated 3D labels

of the current scene. We keep the loss designs of baseline

camera-based detection models intact.

During inference, we assume that the model has access

to the past LiDARs traversals and generates the depth map

online. The depth map backbone can run in parallel with the

image featurizer to reduce latency.

IV. EXPERIMENTS

Datasets. We validate our approach on two large-scale

datasets: Lyft L5 Perception Dataset [9] and Ithaca365 [10]

Dataset. To the best of our knowledge, these are the only

two publicly available autonomous driving datasets that have

both bounding box annotations and multiple traversals with

accurate localization (Note that nuScenes [40] contains some

scenes with multiple traversals but the localization in z-axis

is not accurate [41]). The Lyft dataset is collected in Palo

Alto (California) and the Ithaca365 dataset is collected in

Ithaca (New York). Both datasets provide camera images (6

ring-camera images in Lyft and 2 frontal-view images in

Ithaca365) and 3D LiDAR scans (40-beam in Lyft and 128-

beam in Ithaca365). We thus perform 360-degree detection

on Lyft and frontal-view only detection on Ithaca365. The

detection range is set to maximum 50m to the ego vehicle,

following the setup of most camera-only detection models

developed on nuScenes dataset [40]. For the Lyft dataset,

to ensure fair assessment of generalizability, we re-split the

dataset so that the training set and test set are geographically

disjoint; we also discard locations with less than 2 traver-

sals in the training set. This results in a train/test split of

10,499/3,412 examples. For the Ithaca365 dataset, we follow

the default split of the dataset, which results in 4,445/1,644

train/test examples covering the same route but with different

collection times. Adhering to our setup, synchronized LiDAR

point clouds are not used during testing.

Localization. With current localization technology, we can

achieve high localization accuracy (e.g., 1-2 cm level ac-

curacy with RTK). We assume good localization in asyn-

chronous LiDAR traversals and the camera-only systems and

study the effect of the localization error in the supplementary.

Evaluation metric. We adopt similar metrics from the

nuScenes dataset [40] to evaluate the detection perfor-

mance. We evaluate detection performance within 50m of

the ego vehicle. The mean average precision (mAP) is the

mean of average precisions (AP) of different classes under

{0.5, 1, 2, 4}m thresholds that determine the match between

detection and ground truth. Because Lyft and Ithaca365

datasets do not provide the objects’ velocities and attributes

ground-truths, we only compute 3 types of true positive

metrics (TP metrics), including ATE, ASE and AOE for

measuring translation, scale and orientation errors. These

TP metrics are computed under a match distance threshold

of 2m. Additionally, we also compute a distance based

breakdown (0-30m, 30-50m) for these metrics. We evaluate

5 foreground objects (car, truck, bus, pedestrian and bicy-

cle) on Lyft and 2 objects (car, pedestrian) on Ithaca365.

Similar to NDS (nuSccenes detection score), we calculate

the overall detection score (DS) for these two datasets as

DS = 1
6 [3·mAP+

∑

mTP∈TP
(1−min(1,mTP))]. To showcase

the most significant improvements from AsyncDepth, we

mainly present mAP evaluation results on the main paper and

include the rest in the supplementary due to space limitations.

Detection models. We experiment with two representative,

high-performing monocular 3D object detection models:

FCOS3D [13] and Lift-Splat [1], [11], [12], [14]. FCOS3D

extends 2D object detection [42] to 3D by detecting objects

in perspective views and regressing additional 3D targets for

each of the detected objects. The Lift-Splat style model first

constructs a Bird’s Eye View (BEV) representation of the

scene and then applies a detection head. This BEV represen-

tation is constructed by predicting the depth distribution for

each pixel on the image feature map and “splatting” the cor-

responding weighted 2D features into BEV space via camera

parameters. Thanks to their strong performance and clean

Method mAP
Car Truck Bus Bicycle Pedestrian

0-30 30-50 0-50 0-30 30-50 0-50 0-30 30-50 0-50 0-30 30-50 0-50 0-30 30-50 0-50

FCOS3D [13] 14.6 47.4 23.6 37.9 4.5 3.1 4.2 5.1 3.9 5.1 20.3 1.3 10.1 25.7 3.6 15.7
+ AsyncDepth 16.0 48.3 24.5 38.8 7.2 4.1 6.0 9.2 7.7 8.9 24.4 1.5 10.8 26.3 1.7 15.8

∆ AP +1.4 +0.9 +0.9 +0.9 +2.7 +1.0 +1.8 +4.1 +3.8 +3.8 +4.1 +0.2 +0.7 +0.6 -1.9 +0.1

Lift-Splat [11] 23.3 65.2 25.6 50.7 11.9 5.6 9.9 18.7 13.3 15.7 31.3 0.3 13.7 35.7 4.2 21.3
+ AsyncDepth 25.4 66.7 27.0 52.2 14.5 6.9 11.0 22.4 22.8 24.0 34.3 0.4 15.9 35.9 8.4 23.8

∆ AP +2.1 +1.5 +1.4 +1.5 +2.6 +1.4 +1.1 +3.7 +9.5 +8.3 +3.1 +0.1 +2.3 +0.3 +4.2 +2.5

TABLE I: Mean Average Precision (mAP) of two types of detectors across different ranges and object class types

on the Lyft dataset. We evaluate two types of monocular 3D object detection models (FCOS3D [13] and Lift-Splat [1],

[11] We show the mAP metric and its breakdown across different ranges (in meters) and class objects. “∆ AP” indicates

the gain. We observe AsyncDepth improves the reference detectors in all but one case. Other corresponding metrics (ATE,

ASE, AOE and DS) are included in the supplementary material where we observe a similar trend.

Method mAP
Car Pedestrian

0-30 30-50 0-50 0-30 30-50 0-50

FCOS3D [13] 25.0 46.3 23.8 36.2 18.3 7.8 13.8
+ AsyncDepth 29.2 51.7 29.6 42.2 20.0 10.3 16.2

∆ AP +4.2 +5.4 +5.8 +6.0 +1.7 +2.5 +2.4

Lift-Splat [11] 39.4 66.6 30.2 52.8 37.1 13.7 26.0
+ AsyncDepth 42.9 70.2 38.2 58.3 37.6 16.6 27.5

∆ AP +3.5 +3.6 +8.0 +5.5 +0.5 +2.9 +1.5

TABLE II: Mean Average Precision (mAP) of two types

of detectors across different ranges and object types on

the Ithaca365 dataset. Please refer to Table I for naming.

AsyncDepth improves reference models in all cases.

design, these two types of monocular 3D object detection

models have been well-received by the community [26]–[31].

Implementation details. We strive for a clean and simple

implementation to show the generalizability of the proposed

approach: we adopt an official implementation [43] of these

two models with minimal changes only for supporting the

Lyft and Ithaca365 datasets, and use the exact same hyper-

parameters on both datasets without bells and whistles.

For the Lift-Splat / BEVDet model, we adopt the efficient

camera-to-BEV transformation implementation in [1] and

a detection head similar to [44]. We use a Swin-T [45]

pre-trained on nuImages [40] as the image backbone, and

supervise depth prediction by the smooth-L1 loss against

ground-truth depth during training. For the FCOS3D model,

we follow the original paper and use the official training

schedule. We use a pretrained ResNet101 [46], [47] with

deformable convolutions [48] for image feature extraction.

We use ResNet18 [47] to extract features from the depth

maps for the different 3D detectors. We deploy a feature

pyramid network [49] to extract multi-scale features if the

3D detector of interest is also using multi-scale features. For

both datasets, we use a maximum 5 other traversals at the

reference location to obtain the depth maps. For the Lyft

dataset, for each past traversal we use point clouds closest

to {0,−20, 20}m to the ego vehicle along the road since

we are performing 360-degree detection; for the Ithaca365

dataset, we use {0, 10, 20}m for frontal-view detection.

A. Monocular 3D Detections with AsyncDepth

We show the performance of various detectors with and

without AsyncDepth on Lyft and Ithaca365 in Table I and

Table II respectively. Overall, we observe that using LiDAR

scans from past traversals can significantly improve the

performance of monocular 3D object detectors. On Lyft,

we observe an improvement of 1.8 mAP averaged across

different detectors and different classes at various evaluation

thresholds. On Ithaca365, we observe an even more pro-

nounced improvement over the baselines (the AsyncDepth

variants outperform the baseline by an average of 3.9 mAP).

To understand where the performance gains are from, we

look at the performance of the detectors on various classes.

On Lyft, we observe that the biggest improvements come

from the detection of bus and bicycles (with an improvement

of 6 points and 1.9 respectively); on Ithaca365, the perfor-

mance gain of AsyncDepth largely reflects on car detection,

with a remarkable 5.8 improvement in performance.

In addition, we also look at the performance of the detec-

tors at various ranges. The performance improvement from

using AsyncDepth is most pronounced in the challenging far-

range object detection (30-50m). On Lyft, we even observe

a stark improvement of 9.5 mAP in far-range bus detection

over the Lift-Splat baseline; on Ithaca365, we observe an

average improvement 6.9 over the baselines across the two

detectors on car detection. This suggests that all the detectors

benefit from the depth information encoded in the features,

particularly in the far ranges where it is especially difficult

to infer depth from images.

B. Ablation study

All ablations are on the Lift-Splat detector on the Ithaca365.

Effect of using synchronous depth maps. Our approach

involves learning complementary features from the asyn-

chronous depth maps constructed from historical traversals.

Discerning readers might question how our method would

perform if we instead used synchronous depth maps for

learning the feature extractors. In Table III, we observe

that learning features from synchronous depth map (+

Lift-Splat
Variants

mAP
Car Pedestrian

0-30 30-50 0-50 0-30 30-50 0-50

baseline 39.4 66.6 30.2 52.8 37.1 13.7 26.0
+ AsyncDepth 42.9 70.2 38.2 58.3 37.6 16.6 27.5
+ SyncDepth 51.1 72.3 44.9 62.3 48.0 29.9 39.9

TABLE III: Mean average precision for Lift-Splat model

with asynchronous/synchronous depth map on Ithaca365

dataset. “+ AsyncDepth” stands for the proposed method us-

ing depth maps from asynchronous LiDAR. “+ SyncDepth”

stands for an oracle scenario where we replace asynchronous

depth maps with synchronized depth.

Depth
Featurizer

mAP
Car Pedestrian

0-30 30-50 0-50 0-30 30-50 0-50

N/A 39.4 66.6 30.2 52.8 37.1 13.7 26.0

Down. + Avg. 39.8 66.7 31.5 53.3 37.7 14.5 26.5
Random Init. 41.6 69.1 37.0 57.0 35.1 16.0 26.2

ImageNet Init. 42.9 70.2 38.2 58.3 37.6 16.6 27.5

TABLE IV: Mean average precision of our methods with

different depth featurizers. “Down. + Avg.” stands for di-

rectly using the downsampled projected asynchronous depth

maps and averaging them across traversals; “Random Init.”

and “ImageNet Init.” initialize the same featurizer randomly

and from ImageNet pre-trained weights, respectively.

SyncDepth) indeed outperforms the baseline by a significant

margin, thus validating the claim that accurate depth is

crucial to 3D object detection. Though leveraging offline

depth maps (+AsyncDepth) is worse than using synchronous

depth maps, synchronous depth maps requires real-time

LiDAR sensing which is expensive to obtain. Offline depth

maps are a cheaper alternative that can significantly boost

the performance of detectors, greatly improving the sensing

ability of camera-only autonomous vehicles.

Effects of feature extractors. One key aspect of our

approach is to deploy an image featurizer to featurize the

asynchronous depth-maps before aggregating various infor-

mation from different traversals. To validate such a design

choice, we consider a non-learning baseline (Down. + Avg.)

in which we first downsample each offline depth map to

appropriate sizes using bilinear interpolation and average

them to form a single channel feature that can be appended

to the extracted image feature maps. We present the result in

Table IV. Naively averaging the asynchronous depth-maps

does bring forth some improvements over the baseline but it

is far from using a learnable feature extractor. In addition, we

also investigated the difference between using a pre-trained

ImageNet ResNet18 and a randomly initialized ResNet18.

Although the backbone has been pretrained on ImageNet,

consisting of natural images, we observed improvements

brought by this initialization, especially on car detections.

This validates previous results in the literature [50]–[54].

Different number of historical traversals. Throughout

the text, we assume the max number of past traversals for

each scene Nmax f 5. However, due to privacy concerns or

hardware failures, we might have access to less than 5 during

inference. To investigate the robustness of AsyncDepth, we

Traversals mAP
Car Pedestrian

0-30 30-50 0-50 0-30 30-50 0-50

Nmax = 0 39.4 66.6 30.2 52.8 37.1 13.7 26.0

Nmax = 1 40.2 66.4 34.8 54.2 35.5 16.2 26.3
Nmax ≤ 2 41.8 68.2 36.0 56.1 36.6 17.0 27.4
Nmax ≤ 5 42.9 70.2 38.2 58.3 37.6 16.6 27.5

TABLE V: Mean Average Precision of using AsyncDepth

with various number of past traversals during inference.

Nmax = 0 corresponds to vanilla Lift-Splat baseline model

without using past LiDAR traversals. Nmax f m stands for

only using f m past traversals during testing.

conduct inference with various number of upper bound for

Nmax in Table V. With just 2 traversals for each scene,

AsyncDepth can outperform the baseline (Nmax = 0) by

a large margin (3.3 AP for car and 1.4 AP for pedestrian).

Data storage and latency. We provide an analysis of the

additional computational and storage overhead introduced

by our method. On average, the AsyncDepth part yields an

extremely low 9.66 ms latency (whole model: 70.78 ms,

image featurizer: 23.94 ms). This is due to the relatively

small network (ResNet-18) in AsyncDepth. The latency can

be further decreased since the depth featurizer can run in

parallel with the image featurizer. For data storage and

transmissions, the LiDAR points for 5 past traversals of a

single scene take about 17.16 MB. For context, the average

American commute about 15 miles to work on average [55].

For typical usage, our method needs 13.49 GB to store 5

past traversals. The cost to store this amount of data is low

— with current technology, it costs about $0.01/GB for hard

drives — and it can be further reduced with compression.

Supplementary. Please refer to the supplementary for more

ablation studies and qualitative visualization.

V. CONCLUSION

We explore using asynchronous LiDAR scans from past

traversals to improve monocular 3D detectors for au-

tonomous vehicles. Though not containing information about

the location/shape of the target objects in the current scene,

we show that these LiDAR scans still contain vital informa-

tion that can aid 3D object detection. Specifically, we extract

offline depth maps from the past traversals and use these

depth maps to learn features that aid monocular 3D object

detectors. Our approach is simple, lightweight, and compat-

ible with practically all state-of-the-art monocular detectors.

We show consistent enhancement of multiple detectors on

multiple datasets, opening up new possibilities in improving

monocular 3D detection using past traversals.

ACKNOWLEDGMENT

This research is supported by grants from the US

NSF (IIS-1724282, TRIPODS-1740822, IIS-2107077, OAC-

2118240, OAC-2112606 and IIS-2107161), the ONR DOD

(N00014-17-1-2175) and the Cornell Center for Materials

Research with funding from the NSF MRSEC program

(DMR-1719875). Katie Luo was supported in part by an

NVIDIA Graduate Fellowship.

REFERENCES

[1] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S. Han,
“Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye
view representation,” in ICRA, 2023. 1, 2, 4, 5

[2] R. Qian, D. Garg, Y. Wang, Y. You, S. Belongie, B. Hariharan,
M. Campbell, K. Q. Weinberger, and W.-L. Chao, “End-to-end pseudo-
lidar for image-based 3d object detection,” in CVPR, June 2020. 1,
2

[3] X. Bai, Z. Hu, X. Zhu, Q. Huang, Y. Chen, H. Fu, and C.-L.
Tai, “Transfusion: Robust lidar-camera fusion for 3d object detection
with transformers,” 2022 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), Jun 2022. [Online]. Available:
http://dx.doi.org/10.1109/CVPR52688.2022.00116 1, 2

[4] C. Sautier, G. Puy, S. Gidaris, A. Boulch, A. Bursuc, and
R. Marlet, “Image-to-lidar self-supervised distillation for autonomous
driving data,” 2022 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), Jun 2022. [Online]. Available:
http://dx.doi.org/10.1109/CVPR52688.2022.00966 1, 2

[5] Y. You, Y. Wang, W.-L. Chao, D. Garg, G. Pleiss, B. Hariharan,
M. Campbell, and K. Q. Weinberger, “Pseudo-lidar++: Accurate depth
for 3d object detection in autonomous driving,” in ICLR, Apr. 2020.
1, 2

[6] D. Barnes, W. Maddern, G. Pascoe, and I. Posner, “Driven to distrac-
tion: Self-supervised distractor learning for robust monocular visual
odometry in urban environments,” in ICRA. IEEE, 2018, pp. 1894–
1900. 1, 2, 3

[7] Y. Xu, X. Zhu, J. Shi, G. Zhang, H. Bao, and H. Li, “Depth
completion from sparse lidar data with depth-normal constraints,” in
ICCV, October 2019. 2

[8] Y. Zhang and T. Funkhouser, “Deep depth completion of a single rgb-d
image,” in CVPR, June 2018. 2

[9] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Fer-
reira, M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah,
A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet,
“Level 5 perception dataset 2020,” https://level-5.global/level5/data/,
2019. 2, 4

[10] C. A. Diaz-Ruiz, Y. Xia, Y. You, J. Nino, J. Chen, J. Monica,
X. Chen, K. Luo, Y. Wang, M. Emond, W.-L. Chao, B. Hariharan,
K. Q. Weinberger, and M. Campbell, “Ithaca365: Dataset and driving
perception under repeated and challenging weather conditions,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2022, pp. 21 383–21 392. 2, 4
[11] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from

arbitrary camera rigs by implicitly unprojecting to 3d,” Lecture

Notes in Computer Science, p. 194–210, 2020. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-58568-6 12 2, 4, 5

[12] J. Huang, G. Huang, Z. Zhu, and D. Du, “Bevdet: High-performance
multi-camera 3d object detection in bird-eye-view,” arXiv preprint

arXiv:2112.11790, 2021. 2, 4
[13] T. Wang, X. Zhu, J. Pang, and D. Lin, “Fcos3d: Fully convolutional

one-stage monocular 3d object detection,” ICCV Workshop, Oct
2021. [Online]. Available: http://dx.doi.org/10.1109/ICCVW54120.
2021.00107 2, 4, 5

[14] C. Reading, A. Harakeh, J. Chae, and S. L. Waslander, “Categorical
depth distribution network for monocular 3d object detection,” in
CVPR, 2021, pp. 8555–8564. 2, 4

[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” in NeurIPS,
2017. 2

[16] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in CVPR, 2018. 2

[17] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in CVPR, 2019. 2

[18] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in ICCV, 2019, pp. 12 697–12 705. 2

[19] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage
object detector,” in CVPR, 2020, pp. 11 040–11 048. 2

[20] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q.
Weinberger, “Pseudo-lidar from visual depth estimation: Bridging the
gap in 3d object detection for autonomous driving,” 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR),
Jun 2019. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2019.
00864 2

[21] P. Li, X. Chen, and S. Shen, “Stereo r-cnn based 3d object detection
for autonomous driving,” in CVPR, June 2019. 2

[22] Y. Wang, B. Yang, R. Hu, M. Liang, and R. Urtasun, “Plumenet:
Efficient 3d object detection from stereo images,” IROS, Sep
2021. [Online]. Available: http://dx.doi.org/10.1109/IROS51168.2021.
9635875 2

[23] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun,
“Monocular 3d object detection for autonomous driving,” in CVPR,
2016, pp. 2147–2156. 2

[24] G. Brazil and X. Liu, “M3d-rpn: Monocular 3d region proposal
network for object detection,” ICCV, Oct 2019. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2019.00938 2

[25] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai, “Bev-
former: Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers,” in ECCV, 2022. 2

[26] T. Wang, Z. Xinge, J. Pang, and D. Lin, “Probabilistic and geometric
depth: Detecting objects in perspective,” in CoRL. PMLR, 2022, pp.
1475–1485. 2, 5

[27] D. Park, R. Ambrus, V. Guizilini, J. Li, and A. Gaidon, “Is pseudo-
lidar needed for monocular 3d object detection?” in ICCV, October
2021, pp. 3142–3152. 2, 5

[28] Y. Zhang, Z. Zhu, W. Zheng, J. Huang, G. Huang, J. Zhou, and J. Lu,
“Beverse: Unified perception and prediction in birds-eye-view for
vision-centric autonomous driving,” arXiv preprint arXiv:2205.09743,
2022. 2, 5

[29] E. Xie, Z. Yu, D. Zhou, J. Philion, A. Anandkumar, S. Fidler,
P. Luo, and J. M. Alvarez, “Mˆ 2bev: Multi-camera joint 3d detection
and segmentation with unified birds-eye view representation,” arXiv

preprint arXiv:2204.05088, 2022. 2, 5

[30] Y. Liu, T. Wang, X. Zhang, and J. Sun, “Petr: Position embedding
transformation for multi-view 3d object detection,” in ECCV, 2022. 2,
5

[31] Y. Liu, J. Yan, F. Jia, S. Li, Q. Gao, T. Wang, X. Zhang, and J. Sun,
“Petrv2: A unified framework for 3d perception from multi-camera
images,” in ICCV, 2023. 2, 5

[32] Y. Wang, V. C. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon,
“Detr3d: 3d object detection from multi-view images via 3d-to-2d
queries,” in CoRL. PMLR, 2022, pp. 180–191. 2

[33] Z. Chen, Z. Li, S. Zhang, L. Fang, Q. Jiang, and F. Zhao, “Graph-
detr3d: Rethinking overlapping regions for multi-view 3d object de-
tection,” in ACM MM, 2022. 2

[34] X. Han, H. Wang, J. Lu, and C. Zhao, “Road detection based on the
fusion of lidar and image data,” International Journal of Advanced

Robotic Systems, vol. 14, no. 6, p. 1729881417738102, 2017. 2

[35] S. Vora, A. H. Lang, B. Helou, and O. Beijbom, “Pointpainting:
Sequential fusion for 3d object detection,” 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 4603–4611,
2020. 2

[36] Y. You, K. Z. Luo, C. P. Phoo, W.-L. Chao, W. Sun, B. Hariharan,
M. Campbell, and K. Q. Weinberger, “Learning to detect mobile
objects from lidar scans without labels,” in CVPR, June 2022. 2,
3

[37] Y. You, C. P. Phoo, K. Z. Luo, T. Zhang, W.-L. Chao, B. Hariharan,
M. Campbell, and K. Q. Weinberger, “Unsupervised adaptation from
repeated traversals for autonomous driving,” in NeurIPS, Dec. 2022.
2

[38] Y. You, K. Z. Luo, X. Chen, J. Chen, W.-L. Chao, W. Sun,
B. Hariharan, M. Campbell, and K. Q. Weinberger, “Hindsight
is 20/20: Leveraging past traversals to aid 3d perception,”
in International Conference on Learning Representations, 2022.
[Online]. Available: https://openreview.net/forum?id=qsZoGvFiJn1 2,
3

[39] R. Hartley and A. Zisserman, Multiple view geometry in computer

vision. Cambridge university press, 2003. 2

[40] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in CVPR, 2020, pp.
11 621–11 631. 4, 5

[41] https://www.nuscenes.org/nuscenes#data-format. 4

[42] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional
one-stage object detection,” in ICCV, 2019, pp. 9627–9636. 4

[43] M. Contributors, “MMDetection3D: OpenMMLab next-generation
platform for general 3D object detection,” https://github.com/
open-mmlab/mmdetection3d, 2020. 5

[44] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection
and tracking,” in CVPR, 2021, pp. 11 784–11 793. 5

[45] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in ICCV, 2021, pp. 10 012–10 022. 5

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in CVPR. Ieee,
2009, pp. 248–255. 5

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778. 5

[48] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in ICCV, 2017, pp. 764–773. 5

[49] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in CVPR, 2017, pp.
2117–2125. 5

[50] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly,
and N. Houlsby, “Big transfer (bit): General visual representation
learning,” in ECCV. Springer, 2020, pp. 491–507. 6

[51] X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme,
M. Lucic, J. Djolonga, A. S. Pinto, M. Neumann, A. Dosovitskiy,
et al., “A large-scale study of representation learning with the visual
task adaptation benchmark,” arXiv preprint arXiv:1910.04867, 2019.
6

[52] Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith,
K. Saenko, T. Rosing, and R. Feris, “A broader study of cross-domain
few-shot learning,” in ECCV. Springer, 2020, pp. 124–141. 6

[53] C. P. Phoo and B. Hariharan, “Self-training for few-shot transfer across
extreme task differences,” in ICLR, 2021. 6

[54] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” in ICLR, 2021. 6

[55] https://www.nrc.gov/docs/ML1006/ML100621425.pdf. 6

