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Abstract. We consider single-source shortest path algorithms that per-
form a sequence of relaxation steps whose ordering depends only on the
input graph structure and not on its weights or the results of prior steps.
Each step examines one edge of the graph, and replaces the tentative
distance to the endpoint of the edge by its minimum with the tentative
distance to the start of the edge, plus the edge length. As we prove,
among such algorithms, the Bellman-Ford algorithm has optimal com-
plexity for dense graphs and near-optimal complexity for sparse graphs,
as a function of the number of edges and vertices in the given graph.
Our analysis holds both for deterministic algorithms and for randomized
algorithms that find shortest path distances with high probability.

1 Introduction

Dijkstra’s algorithm finds shortest paths in directed graphs when all edge
weights are non-negative, but the problem becomes more difficult when negative
edge weights (but not negative cycles) are allowed. In this case, despite recent
breakthroughs on near-linear time bounds for graphs with small integer edge
weights [5], the best strongly-polynomial time bound for single-source shortest
paths remains that of the Bellman-Ford algorithm [4,10,18], which takes time
O(mn) on graphs with m edges and n vertices, or O(n?) on dense graphs.

Both Dijkstra’s algorithm and the Bellman-Ford algorithm (as well as an
unnamed linear-time algorithm for single-source shortest paths in directed
acyclic graphs) can be unified under the framework of relazation algorithms,
also called label-correcting algorithms [8]. These algorithms initialize tentative
distances D[v] from the source vertex to each other vertex v, by setting D[s] = 0
and D[v] = +oo for v # s. Then, they repeatedly relax the edges of the
graph. This means, that for a given edge u — v, the algorithm updates D[v] to
DJu] + length(u — v). In Dijkstra’s algorithm, each edge u — v is relaxed once,
in sorted order by the tentative distance D[u]. In the Bellman-Ford algorithm,
an edge can be relaxed many times. The algorithm starts with the tentative dis-
tance equal to the correct distance for s, but not for the other vertices. When-
ever the algorithm relaxes an edge u — v in the shortest path tree, at a time
when u already has the correct distance, the tentative distance to v becomes
correct as well. Thus, the goal in designing the algorithm is to perform these
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distance-correcting relaxations while wasting as little effort as possible on other
relaxations that do not correct any distance, and on the overhead in selecting
which relaxation to perform.

We would like to prove or disprove the optimality of the Bellman—Ford algo-
rithm among a general class of strongly-polynomial shortest path algorithms,
without restricting the types of computation such an algorithm can perform,
but such a result appears to remain far out of reach. Instead, in this work we
focus only on relaxation algorithms, asking: how few relaxation steps are needed?
Note that, without further assumptions, a shortest path algorithm could “cheat”,
computing a shortest path tree in some other way and then performing only n—1
relaxation steps in a top-down traversal of a shortest path tree. To focus purely
on relaxation, and prevent such cheating, we consider non-adaptive relaxation
algorithms, in which the sequence of relaxation steps is determined only by the
structure of the given graph, and not on its weights nor on the outcome of earlier
relaxation steps. Dijkstra’s algorithm is adaptive, but the linear-time DAG algo-
rithm is non-adaptive. Another example of a non-adaptive algorithm comes from
past work on the graphs in which, like DAGs, it is possible to relax every edge
once in a fixed order and guarantee that all tentative distances are correct [12]. As
usually described, the Bellman-Ford algorithm is adaptive. Its typical optimiza-
tions include adaptive rules that disallow repeatedly relaxing any edge u — v
unless the tentative distance to u has decreased since the previous relaxation,
and that stop the entire algorithm when no more allowed relaxations can be
found. However, its same asymptotic time bounds can be achieved by a non-
adaptive version of the Bellman-Ford algorithm, with a round-robin relaxation
sequence, one that merely repeats n — 1 rounds of relaxing all edges in the same
order per round. A non-adaptive asynchronous distributed form of the Bellman-
Ford algorithm is widely used in distance vector routing of internet traffic, to
maintain paths of minimum hop count between major internet gateways [13].

1.1 Known Upper Bounds

We do not require non-adaptive relaxation algorithms to be round-robin, but we
are unaware of any way to take advantage of this extra flexibility. Nevertheless,
among round-robin algorithms, there is still freedom to choose the ordering of
edges within each round, and this freedom can lead to improved constant factors
in the number of relaxation steps performed by the Bellman-Ford algorithm.
Yen [21] described a method based on the following idea. Choose an arbitrary
linear ordering for the vertices, and partition the edges into two subsets: the edges
that are directed from an earlier vertex to a later vertex in the ordering, and the
edges that are directed from a later vertex to an earlier vertex. Both of these two
edge subsets define directed acyclic subgraphs of the given graph, with the chosen
linear ordering or its reverse as a topological ordering. Use a round-robin edge
ordering that first relaxes all of the edges of the first subgraph, in its topological
order, and then relaxes all of the edges of the second subgraph, in its topological
order. If any shortest path is divided into contiguous subpaths that lie within
one of these two DAGs, then each two consecutive subpaths from the first and
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second DAG will be relaxed in order by each round of the algorithm. In the
worst case, there is a single shortest path of n —1 edges, alternating between the
two DAGs, requiring [n/2] rounds of relaxation. For complete directed graphs,
this method uses (3 4 o(1))n? relaxation steps, instead of the (1+o0(1))n?® that
might be used by a less-careful round-robin method.

As we showed in earlier work [2], an additional constant factor savings can be
obtained by a randomized algorithm that selects from a random distribution of
non-adaptive relaxation sequences, and that obtains a correct output with high
probability rather than with certainty. To do so, use Yen’s method, but choose
the vertex ordering as a uniformly random permutation of the vertices, rather
than arbitrarily. In any shortest path tree, each vertex with more than one child
reduces the number of steps from the source to the deepest leaf by one, reducing
the number of alternations between the two DAGs. For each remaining vertex
with one child in the tree, the probability that it lies between its parent and
child in the randomly selected ordering is %, and when this happens, it does not
contribute to the bound on the number of alternations. With high probability, the
number of these non-contributing vertices is close to one third of the single-child
vertices. Therefore, with high probability, the maximum number of alternations
between the two DAGs among paths on the shortest path tree is (% + 0(1))n,
and an algorithm that uses this method to perform (% + 0(1))n3 relaxation steps
will find the correct shortest paths with high probability.

The worst-case asymptotic time of these methods remains O(n?) for complete
graphs, and O(mn) for arbitrary graphs with m vertices and n edges. Both Yen’s
method and the randomized permutation method can also be used in adaptive
versions of the Bellman-Ford algorithm, with better constant factors and in the
randomized case leading to a Las Vegas algorithm rather than a Monte Carlo
algorithm, but it is their non-adaptive variants that concern us here.

1.2 New Lower Bounds
We provide the following results:

— Any deterministic non-adaptive relaxation algorithm for single-source short-
est paths on a complete directed graph with n vertices must use (% — 0(1))n3
relaxation steps.

— Any randomized non-adaptive relaxation algorithm for shortest paths on a
complete directed graph with n vertices, that with high probability sets all
distances correctly, must use (1—12 — o(l))n3 relaxation steps.

— For any m and n with n < m < 2(3), there exists a directed graph on m edges
and n vertices on which any deterministic or high-probability randomized
non-adaptive relaxation algorithm for shortest paths must use 2(mn/logn)
relaxation steps. When m = 2(n'*¢) for some ¢ > 0, the lower bound
improves to £2(mn).

These lower bounds hold even on graphs for which all edges weights are zero
and one, for which an adaptive algorithm, Dial’s algorithm, can find shortest
paths in linear time [9].
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1.3 Related Work

Although we are not aware of prior work in the precise model of computation
that we use, variants of the Bellman-Ford algorithm have been studied and shown
optimal for some other related problems:

— The k-walk problem asks for a sequence of exactly k edges, starting and one
vertex and ending at the other, allowing repeated edges. The Bellman-Ford
algorithm can be modified to find the shortest k-walk between two vertices
in time O(kn?), non-adaptively. In any non-adaptive relaxation algorithm,
the only arithmetic operations on path lengths and edge weights are addition
and minimization, and these operations are performed in a fixed order. There-
fore, the sequence of these operations can be expanded into a circuit, with
two kinds of gates: minimization and addition. The resulting (min, +)-circuit
model of computation is somewhat more general than the class of relaxation
algorithms, because the sequence of operations performed in this model does
not need to come from a sequence of relaxation steps. The k-walk version of
the Bellman-Ford algorithm is nearly optimal in the (min, +)-circuit model:
circuit size 2(k(n — k)n) is necessary [14]. However, this k-walk problem
is different from the shortest path problem, so this bound does not directly
apply to shortest paths.

— Under conditional hypotheses that are standard in fine-grained complexity
analysis, the O(km) time of Bellman-Ford for finding paths of at most k
steps, for graphs of m edges, is again nearly optimal: neither the exponent
of k nor the exponent of m can be reduced to a constant less than one. For
large-enough k, the shortest path of at most k steps is just the usual shortest
path, but this lower bound applies only for choices of k that are small enough
to allow the result to differ from the shortest path [15].

— Another related problem is the all hops shortest path problem, which asks to
simultaneously compute k paths, having distinct numbers of edges from one
to a given parameter k. Again, this can be done in time O(km) by a variant of
the Bellman-Ford algorithm, and it has an unconditional £2(km) lower bound
for algorithms that access the edge weights only by path length comparisons,
as Bellman-Ford does [6,11]. Because it demands multiple paths as output,
this lower bound does not apply to algorithms that compute only a single
shortest path.

— Meyer et al. [17] study a version of the Bellman-Ford algorithm, in which edges
are relaxed in a specific (adaptive) order. They construct sparse graphs, with
O(n) edges, on which this algorithm takes £2(n?) time, even in the average
case for edge weights uniformly drawn from a unit interval. This bound applies
only to this algorithm and not to other relaxation orders.

2 Deterministic Lower Bound for Complete Graphs

The simplest of our results, and the prototype for our other results, is a lower
bound on the number of relaxations needed by a deterministic non-adaptive



420 D. Eppstein

relaxation algorithm, in the worst case, on a complete directed graph with n
vertices.

Theorem 1. Any deterministic non-adaptive relaxation algorithm for single-
source shortest paths on a complete directed graph with n vertices must use at
least (5 — o(1))n® relazation steps.

Proof. Fix the sequence o of relaxation steps chosen by any such algorithm. We
will find an assignment of weights for the complete directed graph, such that
the distances obtained by the relaxation algorithm are not all correct until (% -
0(1))n3 relaxation steps have taken place. Therefore, in order for the algorithm
to be correct, it must make this many steps. For the weights we choose, the
shortest path tree will form a single directed path, of n — 1 edges, starting at the
source vertex. In order for the relaxation algorithm to achieve correct distances
to all vertices, its sequence of relaxations must include a subsequence consisting
of all path edges in order. The weights of these edges are unimportant (because
we are considering only non-adaptive algorithms) so we may set all path edges
to have weight zero and all other edges to have weight one.

To determine this path, we choose one at a time its edges in even positions:
its second, fourth, sixth, etc., edge. These chosen edges include every vertex in
the path, so choosing them will also determine the edges in odd positions. When
choosing the ith edge (for an even number i), we make the choice greedily, to
maximize the position in o of the step that relaxes this edge and makes its
endpoint have the correct distance. Let s; denote this position, with so =0 as a
base case recording the fact that, before we have relaxed any edges, the source
vertex already has the correct distance. Then the length of ¢ is at least equal to
the telescoping sum

(52 —80) + (84 — 52) + (86 — 54) + -+~

When choosing edge ¢, for an even position i, there are ¢ — 1 earlier vertices,
whose position in the shortest path is already determined, and n—¢+1 remaining
vertices. Between step s;_o and step s; of the relaxation sequence o, it must relax
all n —i+ 1 edges from the last endpoint of edge i — 2 to one of these remaining
vertices, and all 2("72”1) edges between pairs of the vertices that remain to be
corrected. For, if it did not do so, there would be an edge that it had not relaxed,
and choosing this edge next would cause s; to be greater; but this would violate
the greedy choice of edge i to make s; as large as possible. Therefore,

8i — Si_p > (n—i—i—l)—i—?(n ;H) = (n—i+1)2

Summing over all |(n — 1)/2] choices of edges in even positions gives, as a
lower bound on the total number of relaxation steps,

3

Z i — Si—2 > Z n—z—|—1 n6—n7

i=2,4.6,... i=2,4,6,.

where the closed form for the summation follows easily by induction.
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3 Randomized Lower Bound for Complete Graphs

It does not make much sense to consider expected time analysis for non-adaptive
algorithms, because these algorithms have a fixed stopping time (determined as
a function of the given graph), and we want their output to be correct with high
probability rather than in any expected sense. Nevertheless, it is often easier
to lower-bound the expected behavior of randomized algorithms, by using Yao’s
principle [20], according to which the expected cost of a randomized algorithm on
its worst-case input can be lower bounded by the cost of the best deterministic
algorithm against any random distribution of inputs.

In order to convert high-probability time bounds into expectations, we con-
sider randomized non-adaptive algorithms that are guaranteed to produce the
correct distances, and we define the reduced cost of such an algorithm to be the
number of relaxations that it performs until all distances are correct, ignoring
any remaining relaxations after that point.

Lemma 1. If a randomized non-adaptive relazation algorithm A takes s(QG)
steps on any weighted input graph G and computes all distances from the source
vertex correctly with probability 1 — o(1), then there exists a randomized non-
adaptive relaxation algorithm B that is guaranteed to produce correct distances
and whose expected reduced cost, on weighted graphs G with n vertices and m
edges, is at most s(G) + o(mn).

Proof. Construct algorithm B by using the relaxation sequence from algorithm
A, appending onto it the sequence of relaxations from a conventional non-
adaptive deterministic Bellman-Ford algorithm. Then with probability 1 — o(1)
the relaxed cost of B counts only the relaxation sequence from algorithm A, of
length s(G). With probability o(1) the relaxed cost extends into the determinis-
tic Bellman-Ford part of the sequence, of length O(mn). Because this happens
with low probability, its contribution to the expected reduced cost is o(mn).

Corollary 1. Any lower bound on expected reduced cost is also a valid lower
bound, up to an additive o(mn) term, on the number of relaxation steps for
a randomized non-adaptive relaxation algorithm that produces correct distances
with high probability.

With this conversion to expected values in hand, we may now formulate Yao’s
principle as it applies to our problem. We need the following notation:

Definition 1. For any graph G, with a specified source vertez, let W be the
family of assignments of real weights to edges of G. Let Dg be the family of
probability distributions of weights in Wq, and let X be the class of relaxation
sequences on G that are guaranteed to produce correct distances from the speci-
fied source vertex. For any randomized non-adaptive relaxation algorithm A and
weight vector w € Wg, let rqg(A,w) denote the expected reduced cost of run-
ning algorithm A on G with edges weighted by w. For o € ¥g and D € Dg
let pc(o, D) be the expected reduced cost of sequence o on weight vectors drawn
from D.
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Lemma 2 (Yao’s principle). For any graph G with specified source vertex,
and any randomized non-adaptive relaxation algorithm A,

min max ra(A,w) = ax min pc(o, D).

Proof. This is just the minimax principle for zero-sum games, applied to a game
in which one player chooses a relaxation sequence o € Y, the other player
chooses a weight vector w € W¢, and the outcome of the game is the reduced
cost for o on w. According to that principle, the value of the best mixed strategy
for the sequence player, against its worst-case pure strategy (the left hand side
of the equality in the lemma) equals the value of the best mixed strategy for the
weight player, against its worst-case pure strategy (the right hand side).

Corollary 2. For any weight distribution D € D¢, min,ex, pe(o, D) is a valid
lower bound on the expected reduced cost of any randomized non-adaptive relaz-
ation algorithm that is guaranteed to produce correct distances.

Proof. An arbitrary algorithm A can only have a greater or equal value to the
left hand side of Lemma 2, and an arbitrary weight distribution D can only have
a smaller or equal value to the right hand side. So the expected reduced cost of
the algorithm, on a worst-case input, can only be greater than or equal to the
value given for D in the statement of the corollary.

Theorem 2. Any randomized non-adaptive relaxation algorithm for shortest
paths on a complete directed graph with n vertices, that with high probability
sets all distances correctly, must use at least (1—12 — 0(1))n3 relazation steps.

Proof. We apply Corollary 2 to a weight distribution D defined as follows: we
choose a random permutation of the vertices of the given complete graph, start-
ing with the source vertex, we make the weight of edges connecting consecutive
vertices in order along this permutation zero, and we make all other weights one.
Thus, each weighting of the complete graph drawn from this distribution will
have a unique shortest path tree in the form of a single path, with all paths from
the source vertex equally likely. For any weight vector w drawn from D, let
be this path.

Let o be any relaxation sequence in ¥ p. As in the proof of Theorem 1, we
define s; (for a weight vector w to be determined) to be the step at which the
second endpoint of the ith edge of 7, has its shortest path distance set correctly.

Let C; denote the conditional probability distribution obtained from D by
fixing the choice of the first i edges of m,. Under condition C;, the remaining
n — i — 1 vertices remain equally likely to be permuted in any order. There are
2("737") choices for edge i + 2, each of which is equally likely. Therefore, the
expected value of s;5 — s; is greater than or equal to the average, among these
edges, of their distance along sequence o from position s;. (It is greater than or
equal, rather than equal, because this analysis does not take into account the
requirement that edge 7 + 1 must be relaxed first, before we relax edge i + 2.)

e . . P —i—1 .
Sequence ¢ can minimize this average if, in ¢, the next 2(” 5 ) relaxation
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rearrangeable
non-blocking network

biregular
bipartite digraph

Fig. 1. Schematic view of the graphs used for our lower bound construction

steps after s; are exactly these distinct edges. When o packs the edges in this
minimizing way, the average is 2(”7;71) /2; for other sequences it can only be
greater. Therefore,

i1
Elsiyo —si | Ci] > (n ; )

Summing these expected differences, over the sequence of values s; for even i,
and applying Corollary 1 and Corollary 2, gives the result.

4 Lower Bounds for Incomplete Graphs

In our lower bounds for complete graphs, the edges in even and odd positions of
the shortest paths perform very different functions. The edges in even positions
are the ones that, at each step in the shortest path, force the relaxation sequence
to have a large subsequence of relaxation steps. Intuitively, this is because there
are many possible choices for the edge at the next step and all of these possibili-
ties (in the deterministic bound) or many of these possibilities (in the randomized
bound) must be relaxed before reaching the edge that is actually chosen. The
edges in odd positions, on the other hand, do not contribute much directly to
the length of the sequence of relaxation steps. Instead, they are used to connect
the edges in the even positions into a single shortest path.

To construct graphs that are not complete, for which we can prove analogous
lower bounds, we make this dichotomy more explicit. For a chosen “capacity”
parameter ¢, we will construct graphs that have two designated subsets of ¢
vertices, S and T' (with the source vertex contained in subset S). We will connect
the vertices in T' to the vertices in S by a biregular bipartite directed graph of
some degree d ~ m/2¢, a graph in which each vertex in T" has exactly d outgoing
neighbors and each vertex in .S has exactly d incoming neighbors. This biregular
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graph will perform the function of the even position edges in our complete graph
lower bounds: it will have many edges to choose from, forcing any relaxation
algorithm to make a long subsequence of relaxations between each two chosen
edges. The detailed structure of this graph is not important for our bounds. In
the other direction, from S to T, we will construct a special graph with the
property that, no matter which sequence of disjoint edges we choose from the
biregular graph, we can complete this sequence to a path. A schematic view of
this construction is depicted in Fig. 1. We begin the more detailed description
of this structure by defining the graphs we need to connect from S to 7. The
following definition is standard:

Definition 2. A rearrangeable non-blocking network of capacity c is a directed
graph G with ¢ vertices labeled as inputs, and another ¢ vertices labeled as out-
puts, with the following property. For all systems of pairs of inputs and outputs
that include each input and output vertex at most once, there exists in G a system
of vertex-disjoint paths from the input to the output of each pair.

Observation 3. A complete bipartite graph K. ., with its edges directed from
c input vertices to ¢ output vertices, is a rearrangeable non-blocking network of
capacity c, with 2c vertices and c¢* edges. In this case, the disjoint paths realizing
any system of disjoint input-output pairs is just a matching, formed by the edges
from the input to the output in each pair.

Lemma 4. For any capacity c, there exist rearrangeable non-blocking network
of capacity ¢ with O(clogc) vertices and edges.

Pippenger [19] credits the proof of Lemma 4 to Beizer [3], who used a recursive
construction. A more recent construction of Alon and Capalbo [1] is based on
blowing up an expander graph, producing enough copies of each vertex that a
system of edge-disjoint paths in the expander can be transformed into a system
of vertex-disjoint paths in the non-blocking network. Their networks are non-
blocking in a stronger sense (the vertex-disjoint paths can be found incrementally
and efficiently), but we do not need that additional property. A simple counting
argument shows that o(clogc) edges is not possible: to have enough subsets of
edges to connect ¢! possible systems of pairs, the number of edges must be at
least log, c!. For non-blocking networks with fewer vertices and more edges we
turn to an older construction of Clos [7]:

Lemma 5 (Clos [7]). Suppose that there exists a rearrangeable non-blocking
network G. of capacity ¢ with n vertices and m edges. Then there exists a rear-
rangeable non-blocking network of capacity c® with 3cn — 2¢® vertices and 3cm
edges.

Proof. Construct 3c copies of G, identified as ¢ input subunits, ¢ internal sub-
units, and ¢ output subunits. The input subunits have together ¢? input vertices,
which will be the inputs of the whole network. Similarly, the output subunits
have together c? output vertices, which will be the outputs of the whole net-
work. Identify each output vertex of an input subunit with an input vertex of an



Lower Bounds for Non-adaptive Shortest Path Relaxation 425

7SS

EE s

232 ()
R TE
(exz x2

%%

NS NS NAAA NAAA

YYNN, YN YYNN YN

N LN, L

Fig. 2. Three rearrangeable non-blocking networks of capacity 16. Each network’s input
vertices are in its left column and its output vertices are in the right column. Left:
Complete bipartite graph. Center: Three-stage Clos network, with pairs of input and
output vertices in consecutive stages connected by edges rather than being identified
as single vertices. Right: Nine-stage network obtained by expanding each subunit of
the center network into a three-stage network.

internal subunit, in such a way that each pair of these subunits has exactly one
identified vertex. Similarly, identify each output vertex of an internal subunit
with an input vertex of an output subunit, in such a way that each pair of these
subunits has exactly one identified vertex.

An example of this network, for ¢ = 4 and G = K4, can be seen in an
expanded form as the middle network of Fig. 2. For greater legibility of the figure,
instead of identifying pairs of vertices between subunits, these pairs have been
connected by added edges. Contracting these edges would produce the network
described above.

To produce vertex-disjoint paths connecting any system of disjoint pairs of
inputs and outputs, consider these pairs as defining a multigraph connecting the
input subunits to the output subunits of the overall network. This multigraph has
maximum degree ¢ (each input or output subunit participates in at most ¢ pairs),
and we may apply a theorem of Dénes Kénig according to which every bipartite
multigraph with maximum degree ¢ has an edge coloring using ¢ colors [16]. These
colors may be associated with the ¢ internal subunits, and used to designate
which internal subunit each path should pass through. Once this designation is
made, each subunit has its own system of disjoint pairs of inputs and outputs
through which its paths should go, and the paths through each subunit can be
completed using the assumption that it is rearrangeable non-blocking.

Corollary 3. For any constant € > 0 and any integer ¢ > 1, there exist rear-
rangeable non-blocking networks of capacity ¢ with O(c) vertices and O(c'*¢)
edges.

Proof. We prove the result by induction on the integer i = [log,1/¢]. As a
base case this is true for ¢ = 1 (for which ¢ = 0) and for arbitrary ¢, using the
complete bipartite graph as the network. For smaller values of €, apply the induc-
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tion hypothesis with the parameters 2e and [+/c], to produce a rearrangeable
non-blocking network N of capacity [/c] with O(y/c) vertices and O(c'/?**)
edges. Applying Lemma 5 to N produces a rearrangeable non-blocking network
of capacity > ¢ with O(c) vertices and O(c'*¢) edges, as desired. Deleting excess
vertices to reduce the capacity to exactly ¢ completes the induction.

Theorem 3. For any m andn withn < m < 2(3), there exists a directed graph
onm edges and n vertices on which any deterministic or high-probability random-
ized non-adaptive relazation algorithm for shortest paths must use £2(mn/logn)
relazation steps. When m = Q2(n'™¢) for some e > 0, the lower bound improves
to 2(mn).

Proof. We construct a graph according to the construction outlined above, in
which we choose a capacity ¢, set up two disjoint sets S and T of ¢ vertices,
connect T" to S by a biregular bipartite digraph of some degree d, and connect S
to T by a rearrangeable non-blocking network of capacity c. We allocate at least
m/2 edges to the biregular graph, and the rest to the non-blocking network,
giving d &~ m/2c. For the £2(mn/logn) bound, we use the non-blocking network
of Lemma 4, with ¢ = O(n/logn). For the 2(mn) bound, we use the non-
blocking network of Corollary 3, with ¢ = ©(n). In both cases, we can choose
the parameters of these networks to achieve these asymptotic bounds without
exceeding the given numbers n and m of vertices and edges. We pad the resulting
graph with additional vertices and edges in order to make the numbers of vertices
and edges be exactly n and m, and set the weights of these padding edges to be
high enough that they do not interfere with the remaining construction.

Next, we choose a random distribution on weights for the resulting network
so that, for every relaxation sequence o, the expected reduced cost of o, for
weights from this distribution, matches the lower bound in the statement of
the lemma. For deterministic non-adaptive relaxation algorithms, this will give
the desired lower bound directly, via the simple fact that the worst case of any
distribution is always at least its expectation. For randomized algorithms, the
lower bound will follow using Corollary 1 and Corollary 2 to convert the lower
bound on expected reduced cost into a high-probability lower bound.

As in Theorem 2, the random distribution on weights that we use is deter-
mined from a random distribution on paths from the source, such that the
shortest path tree for the weighted graph will contain the chosen path. We can
accomplish this by setting the lengths of the path edges to zero and all other
edge lengths to one. Unlike in Theorem 2, these paths will not necessarily include
all vertices in the graph and the shortest path tree may contain other branches.
To choose a random path, we simply choose a sequence of edges in the biregular
graph, one at a time, in order along the path. In each step, we choose uniformly
at random among the subset of edges in the biregular graph that are disjoint
from already-chosen edges. Because of the biregularity of the biregular part of
our graph, each chosen edge is incident to at most 2(d — 1) other edges, and
eliminates these other edges from being chosen later. At least ¢/2 choices are
possible before there are no more disjoint edges, and throughout the first ¢/4
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choices there will remain at least m/4 edges to choose from, disjoint from all
previous edges. The sequence ends when there are no more such edges to choose.
Once we have chosen this sequence of edges from the biregular graph, we con-
struct a set of vertex-disjoint paths in the rearrangeable nonblocking network
that connects them in sequence into a single path.

For any given relaxation sequence o, as in the proof of Theorem 2, let 7 be
the subsequence of edges in o that belong to the biregular part of the graph,
and consider a modified relaxation algorithm that, after relaxing each edge in 7,
immediately relaxes all edges of the non-blocking network. Define the reduced
cost for 7 to be the number of relaxation steps made from 7 before all dis-
tances are correct, not counting the relaxation steps in the non-blocking net-
work. Clearly, this is at most equal to the reduced cost for o, because ¢ might
fail to relax a path in the non-blocking network when 7 succeeds, causing the
computation of shortest path distances using o to fall behind that for 7. Define
t; to be the step in the relaxation sequence for 7 that relaxes the ith chosen
edge from the biregular graph, making the distance to its ending vertex correct.
Then the expectation of t; — ¢;_; (conditioned on the choice of the first ¢ — 1
edges is at least the average, over all edges that were available to be chosen as
the ith edge, of the number of steps along 7 from ¢;_; to the next occurrence of
that edge. This expectation is minimized when the edges occurring immediately
following position ¢; 1 in 7 are exactly the next available edges, and is equal to
half the number of available edges; for other possibilities for 7, the expectation
can only be even larger. The expected reduced cost for 7 equals the sum of these
differences t; — t;—1. Since there are £2(c) steps in which the number of available
edges is £2(m), the expected reduced cost for 7 is £2(cm). The expected reduced
cost for o can only be larger, and plugging in the value of ¢ (coming from our
choice of which type of non-blocking network to use) gives the result.

5 Conclusions and Open Problems

We have shown that, for a wide range of choices for m and n, the Bellman-Ford
algorithm is asymptotically optimal among non-adaptive relaxation algorithms.
Adaptive versions of the Bellman-Ford algorithm are faster, but only by con-
stant factors. Is it possible to prove that, among adaptive relaxation algorithms,
Bellman-Ford is optimal? Doing so would require a careful specification of what
information about the results of relaxation steps can be used in choosing how to
adapt the relaxation sequence.

The constant factors of é and % in our deterministic and randomized lower
bounds for complete graphs are far from the constant factors of % and % in
the corresponding upper bounds. Can these gaps be tightened? Is it possible to
make them tight enough to distinguish deterministic and randomized complex-
ity? Alternatively, is it possible to improve the deterministic methods to match
the known randomized upper bound?

For sparse graphs (m = O(n)), our lower bound falls short of the Bellman-
Ford upper bound by a logarithmic factor. Can the lower bound in this range be
improved, or can the Bellman-Ford algorithm for sparse graphs be improved?
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In this work, we considered the worst-case number of relaxation steps used
by non-adaptive relaxation algorithms for the parameters m and n. But it is also
natural to look at this complexity for individual graphs, with unknown weights.
For any given graph, there is some relaxation sequence that is guaranteed to find
shortest path distances for all weightings of that graph, with as few relaxation
steps as possible. An algorithm of Haddad and Schéffer [12] can find such a
sequence for the special case of graphs for which it is as short as possible, one
relaxation per edge. What is the complexity of finding or approximating it more
generally?
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