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ABSTRACT The joint analysis of audio and video is a powerful tool that can be applied to various
contexts, including action, speech, and sound recognition, audio-visual video parsing, emotion recognition
in affective computing, and self-supervised training of deep learning models. Solving these problems
often involves tackling core audio-visual tasks, such as audio-visual source localization, audio-visual
correspondence, and audio-visual source separation, which can be combined in various ways to achieve
the desired results. This paper provides a review of the literature in this area, discussing the advancements,
history, and datasets of audio-visual learning methods for various application domains. It also presents an
overview of the reported performances on standard datasets and suggests promising directions for future
research.

INDEX TERMS computer vision, audio-video analysis, contrastive learning, multi-modal analysis

l. INTRODUCTION
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We rely on auditory cues to perform various tasks in our
daily lives, including voice recognition, object recognition,
recognizing sounds of musical instruments, and identifying
vehicles. While vision recognition systems are designed to
visually confirm an event or an object’s presence, including
auditory features, can improve their accuracy. For example,
it can be difficult to differentiate between a fire brigade
vehicle and an ambulance from a distance based on visual
information alone, but the inclusion of the sirens’ sound
makes it easy to distinguish between the two. In some cases,
we are able to recognize events in our environment based
solely on the sounds we hear without the need for visual
input. For example, children may recognize the presence of
an ice cream truck only by hearing its distinctive sound.
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FIGURE 1: A typical multi-modal network with video
(image frames), audio & optical flow modalities as input.
The embeddings of all the modalities are fused together
before sending the fused embedding through a classifier.

e

There are also interesting findings from human perception
studies that show how auditory interpretation can change

when video data is present. A compelling demonstration
is the McGurk effect [1], a phenomenon in which the
integration of auditory and visual speech information leads
to the perception of a different sound than the one spoken.
This occurs when a person hears a sound incompatible with
the visual information presented, such as seeing a person’s
mouth produce a different sound than what is being heard.
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For example, if a person sees a video of someone saying
"ba" but hears the sound "ga," they may perceive the sound
as "da." The McGurk effect illustrates how our brains rely
on auditory and visual information when interpreting speech
and demonstrates visual information’s strong influence on
our perception of sound.

There are other cases when a video event interpretation
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FIGURE 2: The number of audio-video papers over the
years, clustered into three categories: pre-deep learning
(Pre_DL, blue), supervised deep learning (Sup_DL, red),
and self-supervised deep learning (SS_DL, green).

is changed by audio. Imagine a video of a person walking
across a room and then picking up a glass of water. If
the sound of the person’s footsteps is played at the same
time as the video, the viewer will perceive the person as
simply walking across the room. However, if the sound of
the person’s footsteps is played slightly before the video,
the viewer may perceive the person as walking towards the
camera and then stopping. This is because the sound of the
footsteps arriving before the visual information creates the
impression that the person is coming closer. This demon-
strates how the timing of audio can affect our perception of
the spatial relationships in a visual scene.

Computer vision researchers have recognized the poten-
tial for auditory features to improve accuracy and even
change visual interpretation. As a result, significant research
has been conducted in this area, focusing on improving
performance for traditional computer vision tasks such as
action or activity recognition and addressing association
problems such as sound source localization and separation
in images. Despite this progress, the full potential of jointly
exploiting audio and video has yet to be realized. This
is partly due to the challenges presented by processing
auditory features, including the susceptibility of acoustic
signals to noise and the difficulty of combining auditory
and visual signals.

We started by selecting around 100 papers related to
audio-visual learning. For this selection, we used Keith
Price’s Bibliography'. It is an already annotated database of
papers with indexes for keywords, words, author, year, jour-
nal/conference. It contains resources related to the computer
vision community. Some of the keywords that we used for
searching through papers were audio-visual learning, multi-
modal learning, sound & video. The website first appeared

Uhttp://www.visionbib.com/bibliography/contents.html
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FIGURE 3: PRISMA [2] flow diagram for our review
process.

in 1994. From the hundred papers, we started by sorting
papers from well-known groups in recent times. Most of
these recent papers use self-supervision. We gathered around
40 papers that use self-supervised learning. Later, we started
including the new papers as they kept publishing. As for
supervised deep learning and pre-deep learning approaches,
we included everything we could find in the Keith Price
Bibliography. Later, we added the newer approaches of
supervised deep learning as we could find. Our survey can
also be looked at in terms of PRISMA [2] (Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses)
framework. In figure 3, we show the systematic approaches
in accordance with PRISMA.

As shown in Figure 2, the number of audio-video papers
in computer vision has significantly increased due to the
advancement of deep learning. Among these deep learning
approaches, self-supervised methods, which do not require
extensive labeled datasets, have seen a notable rise in
popularity.

In the pre-deep learning era, many methods were based
on probabilistic techniques such as Gaussian mixture models
(GMMs) or hidden Markov models (HMMs) (as shown in
Table 2). However, to our knowledge, the total number of
papers that used audio and visual data was not as much com-
pared to the modern era of deep learning. It was probably
due to the requirements of higher computing power. The
most common tasks in this era were speaker localization,
speaker diarization, or sound source localization.

Early deep learning architectures for audio-visual tasks
often used parallel channels for audio and video data,
integrating their features at higher levels and training on
labeled data. However, as these tasks became more complex,
the need for large amounts of labeled data became un-
sustainable. This led to the development of self-supervised
approaches, which do not rely on labels. These approaches
include contrastive learning using positive and negative pairs
[3], using a teacher video network trained with labels to train
an audio network without labels [4], [5], and using clus-
tering to self-label videos [6]—[8]. Self-supervised learning
approaches typically solve the audio-visual correspondence
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or association task as a pretext learning task. Then, the pre-
trained network is used to solve a downstream task using a
limited number of manual labels to demonstrate the efficacy
of the learning method.

The primary novelty of our work, delineated in Table 1,
lies in its comprehensive scope within the domain of audio-
visual learning, surpassing the breadth of existing review
works. Contrary to most of these works, which predom-
inantly focus on recent deep learning-based approaches or
specific sub-problems within the domain, our survey extends
beyond these confines. Our review embraces contemporary
deep learning methodologies and the foundational pre-deep
learning methods. This dual focus enables our work to
provide a more holistic and inclusive overview of the field,
positioning it as a more expansive and thorough review
compared to the current literature. Additionally, our work
delves into the various applications of audio-visual analysis
methods and systems, offering insights into their diverse
practical implementations. We include a qualitative analysis
of current methodologies, identifying existing gaps and
challenges. Based on these findings, we discuss prospective
opportunities for future research in the field of audio-visual
learning.

The industrial significance of this review work extends
across diverse domains. It can serve as a valuable reference
point for various applications:

o Self-driving car: This review can be a good reference
point for the self-driving vehicle industry to search
relevant literature or methodologies. Audio-visual anal-
ysis systems can be used to improve the detection of
emergency vehicles in self-driving cars. Sometimes, the
lanes can be too congested for emergency vehicles.

« Wildlife monitoring: Extending the reach of our work
to wildlife monitoring applications to provide tools
for environmental conservation. Audio-visual analysis
methods we have discussed can be deployed to aid in
tasks such as detecting & and tracking wildlife move-
ments, protecting wild habitats, securing against illegal
poaching, and mitigating human-wildlife conflicts.

e Meeting room diarization: In the following section,
we discuss the applications and opportunities of the
meeting room diarization problem in more detail. It is
an area of audio-visual learning that still needs more
focus or interest from different researchers.

o Classroom interaction: Another industrial usefulness of
our survey is improving teacher-student interaction in
the classroom, as this field heavily depends on auditory
and visual cues. The qualitative comparison that we
provide will be helpful for many.

This research endeavors to delve into the realm of audio-
visual learning, highlighting the present methodologies,
discernible gaps, and potential opportunities. It particularly
accentuates the underlying challenges and assumptions in-
herent in various computational strategies. Our investigation
primarily concentrates on the learning methodologies em-
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Authors Summary of Survey

Focuses only on deep learning based approaches.
Zhu et al. [9] Provides a survey on four AV tasks.
Michelsanti et al. [10] Survey about deep leamlng based AV speech
enhancement & separation. Focuses only on one task.
He et al. [11] SL}rVey of deep learning based depression recognition
of humans.

Zeng et al. [12] Survey of emotion recognition.

Survey of sentiment and emotion recognition using
Shoumy et al. [13] text, audio & video combined with physiological signals.
" . Results and challenges of AV fusion strategies.
Katsaggelos et al. [14] Discusses in terms of AV speech recognition.
Focuses on video saliency detection (VSD) task.
Saliency detection refers to identifying important
object/things/patterns in a video.

Chen et al. [15]

Akhtar & Falk [16] of audio-visual signal at end-user.

Potamianos ef al. [17] Rev'lew'of aulomagc speech recognition in
audio-visual domain.

Zhang et al. [18] Rev1f_:w of deep. l.earmr.lg based multi-modal
emotion recognition of human.

Analyzes how seeing the talker affects auditory perception

Campbell [19] of speech. Goes beyond McGurk [1] effect.

Survey of multimedia quality assessment. Assessing quality

TABLE 1: Summary of other surveys in the domain of
audio-visual analysis.

ployed in this domain rather than engaging in direct compar-
ative analysis of diverse deep learning architectures. While
we offer a qualitative assessment of these methodologies, it
is important to note that a quantitative comparison falls be-
yond the purview of our current study. This approach allows
us to focus more on these methodologies’ theoretical and
conceptual aspects, providing insights into their strengths
and limitations within the context of audio-visual learning.

We summarize the relevant works in Table 2, Table 3,
and Table 4 according to three categories: pre-deep learning,
supervised deep learning, and self-supervised deep learning.
These tables present each work by task solved, the dataset
used for training and testing, input features employed, the
computational method, and the method used to fuse audio
and video sources. This layout of the paper follows the order
of columns in these tables.

In Section II, we discuss the core audio-visual tasks
solved followed by a discussion of the datasets used for
these tasks in Section III. The technical approaches em-
ployed are discussed in Section IV. Section IV includes
the computational approaches to solve different problems.
Then, in Section V, we have summarized and discussed the
performances reported by different papers along with our
analysis of the quantitative performances reported. Then, we
wrap up our survey by first discussing the new opportunities
for future research in this field in Section VI. Then, we
conclude by summarizing our analysis in Section VII.
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TABLE 2: Pre-deep learning computer vision works that used audio and video. For each work, we list the task solved, the
dataset used for training and testing, the input features employed, the computational method, and the method used to fuse

audio and video sources.

EM for learning

A: MFCC

Authors Method Task Features Fusion Data/Dataset
Kidron et al. [20] Canonical correlation Sound Localization - Projection to VEA
analysis 1D subspace
EM for params. learning & Gaussian approx. of
Beal et al. [21], [22] BI for tracking Speaker Tracking - delay in microphones & V1-S
position in frame
Ben-Yacoub et al. [23] Robust Correlation Speaker Verification A: LPCC SVM XM2VTS??
Joint probability Projection to lower
Fisher & Darrell [24] to calc. mutual info. AVC - dimension from higher Vi-A
between A-V data
Factor graph multinet V: color, histogram
Naphade & Huang [251, [26] for context Event Understanding structure ete. ; Video Clip

HMM& GMM
Kulesh et al. [27] HMM & GMM Clip Recognition - VI-A
Hung et al. [28] BIC [29] Speaker Diarization - - AMI meeting [30]

V: Sapatio-temporal dynamic

Violent scene

V: Motion sequence

between A-V signal

over interval

Nam et al. [31] activity signature computation characterisation A: Raw audio - VI-A
A: Gaussian Modeling
V: Visual disturbance Movie genre V: Motion content & color .
Rasheed & Shah [32] A: Energy peakiness test classiﬁcgation A: Raw audio ) VEA
Vermaak et al. [33] V_Locé'_l‘c;lf?t?];gfcmng Speaker Tracking g?;:ilicclzofrllhg VZ{ - VI-A
Perceptual Grouping Principle: V: motion & shape
Ravulapalli & Sarkar [34] such as Gestalt principles A-V association A: Spectrogram - Vf-A
of similarity
Speaker segmentation: BIC V: Grey-scale difference
Vajaria et al. [35] Speaker clustering: GSC Speaker localization image - Vi-A
SSL: PCA (eigen vector) A: MFCC
. A-V association Clip retrieval V: Image difference

Vajaria et al. [36] & clustering [35] ofpa query A:gMFCC ) VEA

Vajaria et al. [37] Segmentation into ATPs: BIC Speaker diarization V: Image difference Concatenation after Video clip

) A-clustering: GSC Speaker localization A: MFCC PCA on both
Maximizing mutual info.
. between projected - V: Pixel, motion Projection to lower
Fisher et al. [38] low dimle)nsjional Speaker localization A: Periodogram dimeglsion from higher VEA
A-V data
A-V synchrony as V: Pixel intensity V: NTSC
Hershey & Movellan [39] mutual info. estimate Speaker localization A: Avg. energy - A: Raw audio
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TABLE 3: Supervised deep learning computer vision works that used audio and video. For each work, we list the task

solved, the dataset used for training and testing, the input features employed, the computational method, and the method
used to fuse audio and video sources.

Authors Task Network/Method Loss Inputs Fusion Dataset
’ Generating structured Feat. Ext.: CNN [41] Acceptor V: Frames, Flow Grenander’s .
Souza et al. [40] video interpretations Classifier: SVM function A: Spectrogram BoAW structure [43] CMU Kitchen [42]

recognition

Clsf. 1s.:Cross-entropy

A: Spectrogram

Sound generation SG: SampleRNN [45] - Vi & I
Zhou et al. [44] given visual V: VGG-19 [46] Cross-entropy Motion Concatenation VEGAS [44]
Chen e al. [47] A-V navigation Deep remfgrcement Pr0x1‘mz.11 pf)llcy V RGB & Depth Concatenation Matterpprt3D [48]
learning optimization A: Binaural spectrogram Replica [49]
- Reinforcement learning Proximal policy V: RGB & Depth
Chen et al. [50] A-V navigation based on transformer optimization A: Binaural spectrogram B Matterport3D [48]
. .. . ELBO Bayesian fusion MiT [52]
Subedar et al. [51] Action recognition Bayesian DNN Cross-entropy VI-A Framework UCF101 [53]
A-V event Dual attention .
Wu et al. [54] localization matching Cross-entropy VI-A - AVE [55]
Multi-modal Feat. Ext.: BN- e V: RGB, Flow . . .
Kazakos et al. [56] fusion Inception [58] Classification loss A: Spectrogram Concatenation Epic-Kitchens [57]
. . L V: CNN, LSTM . V: RGB, Flow
Liu et al. [59] Saliency prediction A: 3D.CNN KL divergence A: Log-MFCC CNN MVVA [59]
Vid. classification V: ResNet-18 [61] Binary V:Frames AudioSet [62]
Qian et al. [60] A-V alignment,AVC A: CRNN [63] cross-entropy A: Sepctrogram - SoundNet-Flickr [64]
SSL, AVSS Grad-CAM
Ramaswamy & Multi task learning V,A Feat. Ext.: CNN A-V Triplet Gram V: Frames MFB [65] & AVE [55]
Das [65] for SSL via AVC Feat.->Fusion-> LSTM Matrix Loss [65] A: Log-MFCC LSTM
SSL via Cross-entropy
Tsiami et al. [66] saliency estimation STAViS [66] Correlation coefficient VI-A Different ways -
Norm. scanpath saliency
Predict sound Prediction V: Frames .
Owens et al. [67] from silent video CNN->RNN error : Sub-band envelopes B Greatest Hits [67]
Shi et al. [68] Material Recognition CNN V: Geometry MFB->Concat. GLAudio [68]
A: Spectrogram
Magnitude loss . Cross-modal VoxCeleb2 [70]
Lee et al. [69] AVSS (speech) Encoder-decoder SI-SDR VI-A affinity LRS2, LRS3
. CNN->LSTM-> Cross-entropy Addition
Zhou et al. [71] Event localization Lincar A-V similarity loss VI-A of features AVE [55]
Tian e al. [55] Event localization CNN->Attn.->LSTM Contrastive VEA Dual multimodal AVE [55]
residual netw. [55]
Binaural audio Difference betwn. FAIR-Play []
Xuet al. [72] genearation from Using SHD & HRIR left and right Vi-A - MUSIC-Stereo []
mono-aural audio channel spectrum YT-Music []
] Efficient action ] R Ly loss V: Frames o Kinetics [74]
Gao et al. [73] recognition Teacher-student KL-divergence A: Spectrogram Concatenation Kinetics-Sound [75]
i Efficient action V: Resnet [61] Saliency V: Frames R .
Korbar et al. [76] recognition A: VGGish [62] ranking loss [76] A: MEL-spectrogram SportsIM [77]
Hierarchical Noise contrastive V: Ego & third Home Action
Rai et al. [78] action recognition Cooperative learning eestimation (NCE) person view - Genome ]
A: MFCC
Generating emotion Cross & self V: Vf
Ji et al. [79] controllable Encoder-decoder reconstruction loss A: MFCC Concatenation MEAD [80]
talking face
Panda ef al. [81] Efficient video LSTM Effcy. Is.:Gumbel-softmax V: RGB & motion Concatenation Kinetics-Sound [75]

Compositional I: 2D-CNN Concatenation & UCF51 [53]
Chen et al. [82] Video classification Teacher-student contrastive V: 3D-CNN Residual block VGG-Sound [83]
learning A: 1D-CNN
. A-V event Attention based Cross-modal
Xia & Zhao [84] localization background suppression Cross-entropy VEA gated attention AVE [53]
Jiang et al. [85] Egocentric AVSL V: CNN Cross-entropy Vi Vi Concatenation EasyCom [86]
A: ResNet-18 [61] A: Spectrogram
A-V question V enc.: Resnet-18 [61] V: Vf
Li et al. [87] answering A enc.: VGGish [62] Cross-entropy A: Spectrogram - MUSIC-AVQA [87]
Enc.->LSTM A: Spectrogram
Metric scale Opt. 3D V: VI Max. pool->
Yang et al. [88] 3D pose reconstruct 3D CNN hefi)t maps A: Spectrogram Concatgnation PoseKernel [88]
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TABLE 4: Self-supervised deep learning computer vision works that used audio and video. For each work, we list the pretext task used, the downstream task
solved, the dataset used for training and testing, the learning method explored along with the loss function, and the method used to fuse audio and video sources.
(Abbreviations in Network column. A: Audio, V: Video/Visual, F: Face and L: Lip attribute extractor accordingly. For the rest of the abbreviations please refer to

the Acronyms [VII])

contrastive loss

Action recognition

A: VGG [46] like

Authors Learning Method, Loss Function Pretext Task Downstream Tasks Network Fusion Dataset
ﬁzz;m[i%e;l]owc & Zisser- Contrastive A-V correspondence Sound & Video classification L3-Net [75] Concatenation -

. . . . V: [89], [90] .
Aytar et al. [4] Teacher(V)-Student(A) Sound representation learning Sound Classification A: CNN - Flickr [91]
Korbar et al. [92] Curriculum learning with A-V temporal synchronization Audio classification V: MCx [93] Concatenation Kinetics [74]

SoundNet [4]
AudioSet [62]

Contrasting by randomly shifting au-

SSL , AVSS , A-V action

man [103]

beddings

Owens & Efros [94] R Predict A-V alignment .. V,A: CNN Tile & Concatenation AudioSet [62]
dio recognition
Owens et al. [6] 2‘;‘1(‘)‘; ;L“;fr as label OR Binary cod- 1 p o yiet audio from visual input | Object & Scene recognition | V,A: CNN - Flickr [91]
Multi speaker sound source separation V:Dilated ResNet-
Zhao et al. [95] from mixture AVSS SSL 18 [611.A:U-Net [96] - MUSIC [95]
] Semi-supervised attention + R V: VGG-16 [46] R Flickr [91]
Senocak et al. [97) Unsupervised triplet loss [98] SSL A: CNN SoundNet [4]
V:ResNet-152 [61]
Multi-modal multiple instance learn- . .
Gao et al. [99] ing using weak labels [97] AVSS - A: NMF - AudioSet [62]
MIML for object-audio AV-Bench [100]-[102]
matching
Arandjelovi¢ & Zisser- | Euclidean distance between V&A em- |\ v 1 ecpondence SSL AVE-Net [103] Euclidean distance AudioSet [62]

Afouras et al. [104]

Contrastive

Audio-visual synchronization

Multi-speaker sound source
separation, Speaker tracking &
detecting and Correcting mis-
aligned A-V data

V,A: VGG-M [105]

Accumulation

LRS2 [106], LRS3 [107],
Columbia [108]

Asano et al. [7]

Sinkhorn clustering

Self-labelling using
optimal transport algorithm

V: R(2+1)D-18 [93]
A: ResNet [61]

VGG-Sound [83]
Kinetics [74]
Kinetics-Sound [75]
AVE [55]

Morgado et al. [3]

Contrastive for CMD

CMA)

(AVID)+

Action recognition

V:R2+1)D-18 [93] &
A:Conv2D

Kinetics [74], UCF-101
[53], HMDB-51 [109]

Afouras et al. [110]

Contrastive for SSL + Clustering for
self-label

SSL & Self-labelling

Object detection

Faster R-CNN [111] for
object detection

VGG-Sound [83], Au-
dioSet [62]

Chen et al. [112]

Contrastive with cross-modal corre-
spondence + Negative mining from
background

SSL

V,A: CNN

Flickr-SoundNet [64],
VGG-SS [112]

Rouditchenko et al. [113]

Multi speaker sound source separation
from mixture + Disentanglement of
initial representations

AVSS and Image segmentation

V:Dilated ResNet-18 [61]
& A: U-Net [96]

AVE [55]

Nagrani et al. [114]

Contrastive with Curriculum mining

Person identity

Face:VGG-M [115] &
Voice:VGG-Vox [70]

VoxCeleb [70]

Multi-instance  multi-label learning

V: ResNet [61] & A: VG-

and A-V understanding

A:VGGish [62]

Tian et al. [116] with cross-modal attention A-V video parsing - Gish [62] - LLP [116]
Wu & Yang [117] Contrastive for cross-modal Attention A-V video parsing - V,A: CNN Cross-modality attention LLP [116]
Hu et al. [8] Max-margin loss A-V correspondence SSL, Multi-source detection | V:VGG-16  [46] & | Flickr [91]

Morgado et al. [118]

Weighted contrastive & Instance dis-
crimination loss to address False pos-
itive & False negative respectively

Cross modal instance discrim-
ination

Action recognition

V:RQ2+1)D [93] & A:9-
layer 2D CNN

UCF-101 [53], HMDB-
51 [109]

Morgado et al. [119]

Predict FOA from ZOA

Converting mono audio to
spatial audio

V: Resnet-18 [61]
Motion: FlowNet2 [120]
A: 2D-CNN encoder

Concatenation

REC-STREET [119]
YT-ALL [119]

STVYNYNOC Pue SNOILOVSNYYL 333 4o} siaded Jo uoneredald :/e jo Joyiny

SSaooy 3331
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V: YOLOV2 [121] & A:

Auditory Vehicle Track-

Gan et al. [5] Teacher(V)-Student(A) framework SSL Vehicle tracking CNN - ing [5]
Gao & Grauman [122] Consistency + co-separation loss AVSS - xil\l;g;n[e;—(sl]S [61] & A: Concatenation AudiouSet [62]
Gao & Grauman [123] L2 loss of spectrogram prediction Monoaural to binaural AVSS V: ResNet-18 [61] & A: Concatenation FAIR-Play [123]

U-Net [96]

Harwath et al. [124]

Contrastive

Image-audio retrieval

Speech-prompted object local-
ization, Clustering A-V pattern

V: VGG [46]

Similarity scoring func-
tion

Places audio caption

Hu et al. [125]

Energy function

Automatic speech recognition

Multi-modal RBM [125]

Multi-modal RBM

AVLetters [126], AVLet-
ters2 [127]

Zhao et al. [128]

Curriculum learning

Exploits A-V correspondence
for SSL & AVSS

V: Resnet-18 [61], Mo-
tion: PWC-Net [129] &
Sound sep.:U-Net [96]

Attention->concatenation

MUSIC [95] & URMP
[130]

SSL, AVSS & Audio spatial-

V:ResNet-18  [61] &

Yang et al. [131] Classification cross entropy Channel flip prediction ization A-S&E [132] Concatenation YouTube-ASMR [131]
. . A-V speech recognition & Ac- . Correlational-RNN AVLetters [126] &
Yang et al. [133] Maximum correlation loss tivity classification - Correlational-RNN [133] Encoder CUAVE [134]
Khosravan et al. [135] Classification err. or Regression err. AVS as binary classification & -~ VACNN  [94], (V-A Concatenation AudioSet [62]
regression concat.)->3D-CNN
. Multi task learning for A-V F: Resnet-18 [61], A: U-
Gao & Grauman [136] Srgisr;:;gzlccomrastlve + Mask pred. speech separation using cross- - Net [96] & Lip mtn.:3D- Concatenation K%Z(]:i‘;{b;z[l[?g]é’]CUAVE
y modal speaker embedding CNN->TCN ’
Tian et al. [138] Cyclic co-learning of SSL & AVSS AVSS & SSL - SSL: [138] & AVSS: [95] - MIT MUSIC [95]
. MUSIC [95], MUSIC-
Xuan et al. [139] Proposal based paradigm SSL - LSTM based - Synthetic [140], SSL [97]
Zhang et al. [141] Transformer Activity recognition - - - EPIC-Kitchens-55 [57]
Zhou et al. [142] Video motion graph Gesture matching - - - TED-talks [143] & Per-
sonal Story
Mercea et al. [144] Triplet Is. + reconstruction ls. A-V zero-shot learning - - - GZSL [144]
Liang et al. [145] Generator [146] Talking Head Generation - Encoder-Decoder Concatenation VoxCeleb2 [137],MEAD

[80]

Contrastive span training for predict-

Visual commonsense reason-

Joint-Encoder

Zellers [147] ing masked snippet Video representation learning ing & Activity recognition Transformer (Transformer) -
MUSIC [95],VGG-
Hu [148] Cycle-consistent Random Walk [149] SSL - Graph - Sound  [83],VoxCeleb2
[137]

Afouras et al. [150]
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Il. CORE AV TASKS AND PROBLEM CONTEXTS

The joint analysis of audio and video connects the two
otherwise distinct areas of research. The aim is to explore
the synergies between the complementary signals for a better
understanding of the dynamic scenes. A video refers to
a sequence of frames. With most of the modern cameras
videos are captured at 30 frames per second (fps) rate.
There are high-speed cameras that can take more fps.
Along with the visual information a regular video almost
always contains audio. For enhancing human understanding
of scenes auditory and visual information are both useful.
So, researchers have started looking into the joint analysis
to exploit useful information from both modalities.

Audio refers to the acoustic information in the environ-
ment. It encompasses a range of sounds and frequencies.
The spectrogram refers to the visualization of the frequency
over time. Convolutional neural networks (CNNs) have been
very successful in extracting useful information from 2D
signals such as images. Accordingly CNNs are what are
normally used for spectrogram as well. Because spectrogram
can be looked at as a 2D image depicting the frequency con-
tent over time. Spectrogram S(f,t) can be mathematically
defined using the Short-Time Fourier Transform (STFT),
representing the magnitude of frequency components at
various time intervals:

S(f,t) = \/jO 2(T)w(T — t)e 72T qT| (1)

Here, x(T') is the input audio signal, w(7T —t) is a window
function, f denotes frequency, and ¢ represents time.

A joint audio-visual analysis architecture 4 comprises
two-stream networks. The audio sub-network takes raw
audio or spectrogram as input and the video sub-network
expects 2D images as input. Both of these sub-networks
refer to a CNN-based neural network architecture like
ResNet [61].

Vid = (Image, Audio)
Gaud(Audio) = f,
¢image(lmage) = fv

The feature embeddings f,, and f, are then fused together
before sending the fused embeddings through the classifi-
cation layer. The classification layer normally comprises an
MLP (Multi-Layer Perceptron).

The joint analysis of audio-video is a powerful tool
that can be applied to many problem contexts, including
action/speech/sound recognition, audio-visual video parsing
(AVVP), emotion recognition in affective computing, and
self-supervised training of deep learning models. The solu-
tion to these problems often involves solving a set of core
audio-video tasks that can be combined in various ways
to achieve the desired results. Some core technical tasks
involved in the audio-video analysis include the following.
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Audio-visual block

Video embeddings

Video frames
Visual input Video
sub-network
Audio embeddings

Audio
sub-network

FIGURE 4: General two-stream audio-visual network show-
ing just the feature/embedding extractor block. The embed-
dings can then be used for solving different audio-visual
tasks.

Spectrogram

Audio input

Video
embeddings

Similarity
measure

Audio
embeddings

Audio-visual
block

FIGURE 5: Audio-Visual Sound Source Localization (SSL)
architecture. It shows the use of the extracted embeddings
by A-V block from figure [4].

o Video-based sound source localization (SSL) [5],
(81, [20], [60], [65], [66], [85], [94], [95], [97], [103],
[110], [131], [138], [139], [148], [151], [153], [162]-
[166] involves marking pixels’ correspondence to each
sound source, such as vehicles, in video frames. When
the source of sound is a person, we have the audio-
visual speaker localization (AVSL) [23], [35] problem,
which involves identifying and locating the speaker(s)
in an audio-visual scene, such as identifying and lo-
cating a person speaking in a video and tracking the
speaker [21], [22], [33]. The problem’s difficulty level
arises if the number of pixels in a video frame for the
sound source is small compared with the image size.

o Audio-visual source separation (AVSS) [60], [69],
[95], [99], [113], [122], [123], [131], [138], [167],
[168] involves separating the audio and visual compo-
nents of a multimedia signal, such as separating the
sound of a person speaking [37]-[39], [104], [136]
from the visual image of the person. Related to this
is speaker diarization [28], [37], which is the problem
of identifying and labeling the different speakers in an
audio signal. Humans can easily differentiate between
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FIGURE 6: Audio-Visual Source Separation (AVSS) archi-
tecture. Conditioning on the input image it separates the
corresponding audio from the mixture.

Element wise
multiplication

Output audio

or separately identify the sounds of different objects
from a mixture of multiple sounds, such as the sound of
a guitar, drums, and vocals in music. In many cases, we
can even differentiate between the sound of different
types of guitars or two different vocals in a song that
contains multiple other sounds. The ability to localize
each sound source helps in the sound source separation
process and vice versa.

« Audio-Visual classification into objects [68], [114],
[150], [160], [169], actions [51], [73], [76], [78],
[118], activity [55], [711, [84], [133], [141], [147],
[170]-[173], speech [106], [107], [125], [174]-[176],
emotions [170], [177]-[193], saliency prediction [59],
[66], [76], [194] and other tasks that uses information
from audio [4], [75], [79], [124], [160], [195]-[198]
to enhance pure-video-based classification, such as for
a moving car, dog barking, or cooking an omelet.
Zhang & Li [199] have come up with a benchmark
for visual-audio (audio image) denoising, which tackles
the audio denoising task as an image segmentation
problem in the audio image domain. Their approach
also generalizes to speech denoising, audio separation,
audio enhancement, and noise estimation problems.

Video and Audio pairs not
aligned/synchronized

Video and Audio pairs
aligned/synchronized

FIGURE 7: Depicting the Audio-Visual
ment/Synchronization (AV) problem.

Align-
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o Audio-visual alignment (AVA) involves aligning or
synchronizing audio and visual signals in time, such
as aligning [104], [200], [201] the sound of a person
speaking with the video of their mouth moving. Similar
to AVA, audio-visual Synchronization (AVS) [104],
[135], [200]-[209] involves synchronizing audio and
visual signals in time. This specific facet/connection
within the realm of audio-visual modality has been
utilized as an approach to offer simulated guidance in
self-supervised [92], [94], [104], [125], [135], [163]

m—’llllllllllllllll mﬂunn.,,““l
@_‘lllﬂlllmuuu

@—mllllllmulll
Video and Audio pairs

Video and Audio pairs not
corresponded corresponded

FIGURE 8: Depicting the natural Correspondence between
Audio-video (AVC). Other than being a core problem by
itself, AVC is also exploited by self-supervised approaches
for providing pseudo labels.

— Audio-visual correspondence (AVC) [24], [34],
[60], [69], also known as cross-model correspon-
dence (CMC), involves detecting and aligning
audio and visual events in time and determining
whether they are related. Similar to how audio-
visual synchrony (AVS) has been harnessed, many
have also employed audio-visual correspondence
(AVC) as a method of self-supervision [8], [65],
[75], [128], [155].

These core technical tasks in audio-video analysis can
be combined to solve different problems. In the following
subsections, we outline how solutions to these tasks can be
used to solve these larger problems in computer vision.

A. VIDEO RECOGNITION OR AUDIO-VISUAL VIDEO
PARSING (AVVP)

Video recognition is the process of automatically analyzing
and understanding the content of a video. This typically
involves extracting structured information from the video,
such as identifying and labeling the different objects and
people in the video, detecting and classifying events [210]
or actions, and extracting semantic information, such as text
or speech. A restricted version of this problem is audio-
visual video parsing (AVVP) [116], [117], [211], [212]
which also involves extracting structured information [40]
from the video but specifically focuses on analyzing only
the audio and visual components of the video. It has
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many potential applications, such as clip recognition [27],
[213], event recognition [25], [26], [40], [54], violent scene
recognition [31], movie genre recognition [31], [32], video
summarization [40], tracking [5], [21], [22], [33], video
search & retrieval [36].

Audio-video analysis can be a powerful tool for these
problems. It allows for the analysis of both the sound and
visual components of a video and can provide important
contextual information about the video. Specifically, it can
be used in the following ways.

o Audio-Visual Alignment: By aligning [94] a video’s
audio and visual components, it is possible to under-
stand better the relationship between the sound and the
movement. This can be useful for recognizing videos
that involve both sound and movement, such as talking
heads [145] or music videos.

« Audio-Visual Classification: By analyzing the sound of
a video, it is possible to classify [81], [82] the video
based on its characteristics. For example, the sound of
a person speaking can be used to classify the video as
a news segment, while the sound of music can be used
to classify the video as a music video.

e Sound Source Localization: By determining the loca-
tion of the sound source [5], [110] in a video, it is
possible to understand better the context of the video.
For example, if the sound of a person speaking is
coming from the left side of the screen, the person
is likely facing the left.

o Audio-Visual Synchronization: By synchronizing [8],
[75], [92], [104] a video’s audio and visual compo-
nents, it is possible to understand better the timing
and duration of the video. This can be useful for
recognizing videos that involve precise timing, such
as sports or dance videos.

B. AUDIO-VISUAL QUESTION ANSWERING:
Audio-visual question answering (AVQA) [87] is a task
that involves answering questions about an audio-visual
scene. This can include answering questions about what
is happening, such as identifying objects or actions or
answering questions about what a person is saying in a
video. It is a key area of research in computer vision and ar-
tificial intelligence, as it has numerous applications in fields
such as education, entertainment, and customer service. By
answering questions about an audio-visual scene, AVQA
has the potential to improve our understanding of the world
around us and enhance our ability to interact with it.

Here are some of the ways audio-video analysis can be

used in AVQA.

o Audio-visual source separation [95] can be useful in
AVQA, as it can help improve the accuracy of speech
recognition algorithms and reduce the noise and dis-
tractions that can interfere with understanding a scene.

o Audio-visual alignment allows for analyzing the rela-
tionship between verbal and nonverbal cues, which can
provide additional context [214], [215].

o Audio-Visual classification [216] can be useful in an-
alyzing the relationship between sound and emotion,
which can provide additional context and help improve
the system’s accuracy [217].

o Cross-modal analysis can be useful in the integration of
information from multiple sources, which can provide
a more complete understanding of a scene [87].

C. AFFECT RECOGNITION

Emotion recognition, also known as affect recognition, has
been extensively studied by researchers from various fields,
such as psychology, linguistics, computer vision, speech
analysis, and machine learning. This field aims to recognize
the emotions and moods of individuals through various
communicative signals, including audio and visual cues.
Traditionally, physiological data such as electrodermal activ-
ity (EDA), electrocardiography (ECG), and blood pressure
have been commonly used in emotion recognition research.
In computer vision, most approaches have focused on visual
data, such as facial expressions or facial points, while a
smaller number have used audio data. Zeng et al. [12] pro-
vides a comprehensive overview of the various approaches,
techniques, and features used in emotion recognition.

Despite the longstanding interest in emotion recognition,

most previous efforts have focused on using a single data
modality, such as visual, audio, or physiological signals.
Very few approaches have utilized multi-modal audio-visual
data. One potential reason for this is the lack of sufficient
datasets. Previous research has shown that multi-modal
visual-physiological data can outperform approaches using
a single modality of data [170], [177]-[193], [218], [219].
Therefore, it is likely that using audio data in combination
with physiological and visual data could also improve the
performance of emotion recognition systems.

The joint analysis of the audio and video is used to

recognize affect in the following manner.

o Establishing audio-visual correspondence (AVC) [220]
and Cross-modal Agreement (CMA) [221] may be use-
ful in identifying affective cues such as body postures,
facial expressions, and vocal inflections.

o Audio-visual Alignment (AVA) and Audio-visual Syn-
chronization (AVS) may be useful in identifying and
analyzing the temporal relationships between affective
cues [186], [189], [192], [218], [222].

o Audio-Visual Classification may be useful in identify-
ing affective cues such as vocal inflections or prosodic
features [180], [188], [223].

D. SELF-SUPERVISED LEARNING

Self-supervised learning is a type of machine learning where
the model is trained using only the data itself, without the
need for explicit labels or supervision. This can be useful
when labeled data is scarce or expensive to obtain. Creating
a trained network using self-supervised learning consists of
two parts. In the first part, the network is trained without su-
pervision using a pretext task. Next, this pre-trained network

VOLUME 4, 2016



Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

is refined with limited, labeled training data for a second
downstream task. Audio-video analysis can be useful for
the first step in self-supervised learning. The pretext tasks
could include audio-visual correspondence [8], [65], [75],
[103], [104], [128], [155], [195] or synchronization [92],
[94], [104], [125], [135], [163], and audio-visual source
separation [95], [99], [113], [122], [128], [135]. These pre-
trained networks are then used for downstream tasks such
as audio-visual classification and audio source localization.
Table [4] gives an overview of different self-supervised
learning approaches along with different pretext tasks used
by them.

E. AUDIO-VISUAL LARGE LANGUAGE MODELS
(AV-LLMS)

Audio-Visual Large Language Models (AV-LLMs) [224],
[225] combine the power of large language models (LLMs)
and audio-visual learners. The objective here is to harness
the power of audio-visual learning into the LLMs. This
integration enables LLMs with the capability of understand-
ing multimedia content more comprehensively. Through
this better understanding of auditory & visual contents in
a video, LLMs are better able to perform tasks such as
generating captions for videos, summarizing videos, and
multimedia generation.

The advent of AV-LLMs represents a promising field in
Al research, though the number of published papers remains
limited. Models like Gemini [226] and SORA [227] leverage
both audio and video data for improved comprehension of
LLMs. But they don’t explicitly generate audio data as
output. Despite this limitation, their utilization of multi-
modal data highlights a significant step towards AV-LLM:s.
As research progresses, we anticipate the invention of more
comprehensive models through the development of AV-
LLMs.

lll. DATASET

Many video datasets are available, but not all include sound.
This section will examine the most commonly used datasets
for audio-visual learning. To our knowledge, only two
audio-visual datasets existed before the rise of deep learning:
XM2VTS?3, NIST Meeting Room [228].

This is because earlier vision techniques did not require
large training data. However, as we know, deep learning
models require a significant amount of data. As a result, sev-
eral audio-visual datasets have been released or developed to
meet this demand. Some of the most commonly used audio-
visual datasets include VGG-Sound [83], AudioSet [62],
Epic-Kitchens [57], Kinetics [74], and Flickr-SoundNet [4].
Arandjelovic and Zisserman also created a refined version
of the Kinetics [74] dataset called Kinetics-Sounds [75]
to ensure that audio and visual events were aligned and
both visible and audible. The original Kinetics [74] dataset

3http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
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sometimes required alignment between audio and video
tracks.

Apart from the above-mentioned popular datasets in re-
cent a few new datasets and benchmark [229]-[232] have
been released. Geng et al. [229] has released the first
Untrimmed Audio-Visual (UnAV-100) dataset. It comprises
10K untrimmed videos with each video containing 2.8
audio-visual (30K in total) events on average. Unlike other
audio-visual datasets for event localization UnAV-100 [229]
contains multiple audio-visual events in each video.

Ego4D [230] by Grauman et al. is an egocentric
audio-visual dataset of daily activities at different loca-
tions/scenarios such as home, workplace, outdoor, etc.
MMG-Ego4D [231] by Gong et al. which is a refined and
re-annotated version of the original Ego4D [230] dataset.
MMG-Ego4D [231] introduces a new problem for action
recognition tasks termed as Multi-modal Generalization
(MMG). MMG is the study of multi-modal system behavior
when one modality is missing or limited. Both Ego4D [230]
and MMG-Ego4D [231] contain audio and video data.

REALIMPACT [232] by Clarke et al. is the first object
impact sound fields that have been recorded in real life
or environment. All other such datasets were modeled in
simulations. REALIMPACT dataset contains 150,000 im-
pact sound recordings, which involve 50 everyday objects.
They also offer comprehensive annotations, encompassing
information such as precise impact locations, microphone
positions, contact force profiles, material categorizations,
and RGBD images.

In the section [V-D] we report performances of different
methods on these datasets. From table 11, we see that pre-
training on AudioSet [62] gives the best result. Out of all
the popular datasets, AudioSet [62] is the only one that
contains hierarchical annotations of audio-visual events. As,
AudioSet [62] was designed for audio event classification,
audio and visual events are not always synchronized. So,
it is not well suited for tasks that rely on both visual
and auditory cues, such as Audio-Visual Sound Source
Localization, Audio-Visual Sound Source Separation, etc.
In the tables[ 12, 4] we see that VGG-Sound [83], Flick-
Soundnet [64] are more commonly used for training and
reporting performance of SSL, AVSS tasks. So through our
analysis, we propose that self-supervised pre-training on Au-
dioSet [62] is better for sound classification/recognition or
sound representation learning tasks. But for tasks dependent
on multi-modal feature representation learning it would be
better to use other datasets [55], [74], [83]. These datasets
are well suited when the goal is to solve tasks that require
the objects producing the sounds to be visibly present in the
video.

In the following sections, we will discuss some of the
most commonly used datasets for audio-visual learning.
Table 5 provides an overview of some of the most commonly
used datasets for audio-visual learning. The table is divided
into two sections. The first section lists datasets on which
most models are typically trained. The second section lists
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[ Dataset [ #of classes | Size | Task ]
Common for training

Epic-Kitchens [57] - 55 hrs Action recognition

VGG-Sound [83] 309 200K Action recognition
VGG-SS [112] 220 Sk SSL

Kinetics [74] 400 306K Action recognition

Kinetics-Sound [75] 34 19K Sound classification

AudioSet [62] 632 208K Audio classification

UCF [53] 101 13K Action recognition
Flickr-Soundnet [64] 50 - SSL

Common for reporting results

HMDB [109] Action Recognition
Dgi%éz[?);f&] 4] Sound recognition
MUSIC [95] AVSS
VocCeleb [70] - - AVSS
Columbia [108] - - SSL

TABLE 5: Overview of the common datasets

some of the datasets that are popular only for reporting
results after being pre-trained on one of the datasets in the
first part of Table 5.

A. EPIC-KITCHENS

Epic-Kitchens [57] is a first-person cooking video dataset
created by 32 participants. The dataset contains 11.5M
frames and 55 hours of videos recorded independently with-
out scripts. It also includes 39.6K labeled action segments
and 454.3K object bounding boxes, and audio of participant
actions and narrations. The dataset is divided into train and
test sets, with the test set featuring both seen and unseen
kitchen recordings and benchmarks for object detection and
action recognition. In addition to audio-visual data, the
dataset also includes optical flow information.

1) EPIC-SOUNDS

EPIC-SOUNDS [235] is a version of EPIC-KITCHENS-
100 [236] dataset. EPIC-SOUNDS [235] contains temporal
annotations for audio events along with the actions that
might have resulted into that in that event. These actions can
be solely distinguished from the audio stream and then could
be classified as different sound classes. Huh et al. [235]
have provided human annotations for object materials for the
actions that include colliding objects. The dataset includes
44 audio classes and a total of 75.9k audible events. This
dataset is benchmarked for audio recognition tasks.

B. VGG-SOUND

The VGG-Sound dataset [83] contains over 200k YouTube
video clips with a duration of 10 seconds each, representing
309 different sound classes. Each class includes 200-1000
video clips extracted from YouTube videos using various
queries. A maximum of two clips were created from each
downloaded video. The videos depict a range of acoustic
environments with noise to simulate real-life conditions.
The labels for the sound classes in this dataset are non-
hierarchical, in contrast to the AudioSet dataset [62]. In
most videos, a single dominant sound source is visible and
audible, although other noises may be present.
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1) VGG-SS

Chen et al. [112] have released the VGG-Sound Source
(VGG SS) audio-visual localization benchmark, which in-
cludes bounding box annotations for the sound sources in
the VGG-Sound dataset videos. This benchmark is well-
suited for use in top computer vision journals.

C. KINETICS

The Kinetics dataset [74] is widely used for action recogni-
tion tasks and features 400 classes of human action collected
from YouTube videos. The dataset contains a total of 306
videos. Where each clip is drawn from a different YouTube
video and lasts for 10 seconds. Then the videos were labeled
for a single dominant action, though other actions may also
be present. The dataset includes 250-1000 training videos
per class, 50 validation videos per class, and 100 test videos
per class. Although the action labels were created based only
on the visual modality, the dataset contains audio. So this
dataset has been extensively used for multi-modal audio-
visual action recognition tasks.

1) Kinetics-Sounds

As discussed above Kinetics-Sounds [75] is a subset of
Kinetics [74] dataset. Kinetics-Sounds [75] is labeled for
human actions and contains 34 human action classes. The
dataset contains a total of 19k videos of 10s long. The whole
dataset has been split into the train (15k), validation (1.9k),
and test (1.9k) sets.

D. AUDIOSET

AudioSet [62] is a manually labeled dataset for audio event
detection, featuring 632 hierarchical audio event categories
organized to a depth of six. Each category contains at least
100 videos, all 10 seconds long and drawn from YouTube
alongside their accompanying audio. The dataset as a whole
comprises 4,971 hours of video. However, this dataset
doesn’t contain temporal boundary annotations thus making
it unsuitable for audio-visual event localization tasks. Also,
AudioSet [62] was created for audio event detection, so the
audio and visual elements are not perfectly aligned. In many
cases, the audio can be heard but the sounding object may
not be well centered or visible at all.

1) AVE

AVE [55] a subset OF AudioSet [62] dataset. Unlike
AVE [55] contains 4143 YouTube videos. The videos are
10s long and have been annotated for temporal boundaries
of audio-visual events. The dataset contains a total of 28
audio-visual events. Each video consists of a minimum of
one event lasting for at least 2s. The dataset contains events
from different domains, such as animal activities, music
performances, human activities, etc. Each event domain
contains a minimum of 60 and a maximum of 188 videos.

VOLUME 4, 2016



Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

E. SOUNDNET

Soundnet [112] is a large-scale audio-visual dataset that
contains over two million videos downloaded from Flickr
using popular tags [91] as queries. However, the audio and
visual events in the dataset are not well aligned, and some
videos do not show the sounding object in the frame. To
address this issue, Senocak et al. [64] introduced the Flickr-
Soundnet [64] benchmark, a subset of Soundnet [112] that
is annotated and ensures that the object emitting sound
is visible in the frame. The Flickr-Soundnet [64] dataset
consists of 144K videos and is a useful resource for audio-
visual localization tasks.

F. UCF

The UCF dataset [53] is a comprehensive collection of
human actions, comprising 101 labels and over 13K videos
spanning 27 hours. Despite the introduction of more chal-
lenging datasets such as VGG-Sound [83], and VGG-
SS [112], researchers continue to report results on UCF [53]
for comparison with older approaches.

G. HMDB

HMDB or HMDBS51 [109], which stands for Human Motion
Database. HMDB [109] is a manually labeled human action
database containing 51 action classes. This dataset is a
collection of 6,766 video clips from various online sources,
including YouTube, digitized movies, etc. The 51 action
classes can be categorized into 5 major action types. Each
of those 51 classes contains at least 101 clips, and each
clip contains a single action occurring for at least 1 second.
These videos contain different challenging conditions, such
as variations in camera viewpoint and motion, background
cluttering, and changes in the position, scale, and appear-
ances of the actors. Although the dataset does not contain
audio, researchers commonly report results on this dataset
for comparison with other approaches.

H. NIST MEETING ROOM

The NIST Meeting Room [228] Pilot Corpus is one of
the very few datasets that became popular in the pre-deep
learning era. The dataset contains audio-visual recordings
and transcripts of 19 meetings totaling to 15 hours. This
dataset contains 5 different types of meetings; of these 3
types were simulated or unreal. The video data was collected
through 4 stationary and 1 moving/floating camera. The
stationary cameras were placed at the 4 surrounding walls
of the room. For experimenting with far-field recognition
systems, the audio data was collected using 3 microphone
arrays placed at different locations in the meeting room.
Apart from the microphone arrays audio was also captured
using 2 personal wireless microphones and 4 microphones
fixed on the conference table. Because of the 2 wireless
personal microphones, the participants were allowed to
move about the meeting room, thus resulting in a more
natural scenario. The total length of the multi-sensor data
reaches 266 hours of audio and 77 hours of video.
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FIGURE 9: An example of a recent vision transformer-
based architecture that utilizes the transformer decoder.
These architectures normally use CNNs as a backbone for
extracting features.

IV. COMPUTATIONAL APPROACHES

Several works have utilized audio-visual multi-modal data
with labeled data for supervision in tasks such as sound
generation given visual input [44], [67]], sound source
localization [60], [65], [66], audio-visual source separa-
tion [60], action recognition or event localization [51], [54],
[56]], and saliency estimation or prediction [59], [66] (see
Table 3. Many of these approaches utilize video frames,
spectrograms, or MFCC as visual and aural inputs. However,
some works have also incorporated motion information [44],
[56], [59] (optical flow) alongside video frames as visual
input. These approaches have employed various methods
for fusing multi-modal data.

Deep learning models’ success heavily relied on data
availability, which became abundant due to the proliferation
of social media and advances in technology, particularly
video recording devices. However, many of these models
required supervision, leading to a need for extensive human
annotation of the data. The annotation process is time-
consuming, tedious, and prone to error, especially when
dealing with video data, which often contains many image
frames, events, actions, objects, and persons. As a result,
researchers turned to self-supervised learning, which was
also applied to audio-visual analysis [4], [6], [7], [75], [92],
[94], [95], [97], [99], [103], [104]. A summary of self-
supervised audio-visual approaches can be found in Table
4.

A. SOUND SOURCE LOCALIZATION (SSL)

In the pre-deep learning era, researchers used various meth-
ods to solve the problem of audio-visual (AV) source local-
ization, such as probabilistic models [20], [38] and canonical
correlation analysis (CCA) [20], [100]. Speaker tracking
tasks [33] also require speaker or source localization to track
the speaker effectively. For localization, Vermaak et al. [33]
uses time delay of arrival. Other problems, such as speaker
localization [35]—[39], also fall under the realm of sound
source localization (SSL) and use probabilistic methods to
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Challenges Summary

Scarcity of
annotated data

Self-supervised learning which takes advantage
of the inherent synchronization of data

Absence of
one modality

Self-supervised learning which takes advantage
of the inherent synchronization of data

Misalignment between
modalities

Mostly tackled as regression problem. Where the model
tries to predict if the modalities are in sync.

Absence of
one modality

Generates one modality given another.
Mostly audio is generated given visual input.

People have used different approach such as RNNs,
TBN & Concatenation. Concatenation at feature level
is the most common.

Fusion Strategies

TABLE 6: Summary of challenges in audio-visual analysis.

solve the task of speaker localization.

Most recent approaches have used deep learning tech-
niques, including a two-stream network with one stream for
visual input and another for aural input. Some deep learning
models have been trained in a self-supervised, or unsu-
pervised manner [8], [94], [95], [97], [103], [104], [110],
[112], [128], [131], [135]. A few self-supervised approaches
have been trained using a contrastive loss [104], [110],
[112]. Other self-supervised approaches have solved the
problem of sound source localization as a downstream task
while optimizing for learning audio-visual correspondence
or synchronization or alignment [8], [94], [103], [104],
[128], [131] as a pretext tasks. We describe some illustrative
pre-deep learning and deep learning works next.

1) Pre-deep learning

Kidron et al. proposed a Canonical Correlation Analysis
(CCA)-based algorithm for localizing pixels associated with
a single sound source in [20]. This approach can also be
used for speaker localization and has the advantage of
having no user-defined parameters. However, CCA requires
many visual features to generate reliable statistics. To ad-
dress this shortcoming, the authors introduced sparsity in
their approach.

MFCC: Fused Video
Audio features: features
features Concat.
Skg ion: Ch int détection using Bayesi
Information Critdrion (BIC)
; P B ;
| Clustering using graph spectral partitioning |
¥ 7 ¥ '
Clustered Clustered Clustered Clustered
frame frame frame frame
(Audio) (Audio-Fused) (Fused) (Video)

Localization using

Localization using
Mutual information

Mutual information

FIGURE 10: An example of SSL architecture [35] in the
pre-deep learning era. Vajaria et al. [35] have exploited
the mutual information between the multi-modal data for
speaker localization.
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Vajaria et al. proposed various approaches for speaker
localization [35] and used them to solve speaker clip re-
trieval [36] and speaker diarization [37]. They used the
Bayesian information criterion to segment feature vectors
and graph spectral partitioning to cluster the segments of a
speaker in a video clip. After segmenting and clustering the
multi-modal feature vectors, the authors applied principal
component analysis to localize the sound source or speaker.
The dominant eigenvector or the vector with the largest
eigenvalue identified portions of the image with motion,
and the following eigenvectors separated those portions into
different individuals.

Fisher et al. proposed a non-parametric approach for
localizing speakers in a video frame in [38]. Their approach
does not assume any existing density in data and instead
projects audio-visual features onto a low-dimensional joint
subspace, which they learned by maximizing the mutual
information between the projected low-dimensional features.

Hershey and Movellan [39] proposed an approach that
locates speakers by exploring audio-visual synchronization.
They first measured audio-visual synchrony by calculating
the mutual information between audio and visual feature
vectors and then used a secondary model, such as the
centroid computation model, on the mutual information
estimates to localize the speaker or sound source.

Ben-Yacoub er al. [23] proposed a speaker verifica-
tion system that uses facial data and speech. They tested
their system on the XM2VTS dataset and found that the
fused approach outperformed both audio-only and visual-
only models. For the fused model, they used a Support
Vector Machine (SVM) to fuse audio-visual features at
the decision/classification level. They modeled the speaker
verification problem as a binary classification problem using
SVM, with the data regarded as multi-dimensional data from
different modalities. To perform speaker verification, they
trained a single SVM classifier on multi-dimensional multi-
modal data.

Ravulapalli and Sarkar [34] demonstrated a technique for
associating audio and video events using Gestalt principles
of similarity from human perception. They first calculated
periodicities in audio and visual domains to perform the
association. They applied the Fourier transform to the audio
spectrogram to calculate audio periodicity and detected
significant audio events using a line detection algorithm
applied to the spectrogram image. They grouped similar
audio events by calculating distances between audio events
and matched the resulting audio event clusters with visual
event clusters. Finally, they formed audio-visual event pairs
based on the maximum likelihood of the audio and visual
events belonging to the same event.

2) Supervised deep learning

Several approaches have addressed the problem of SSL in
a supervised manner, including [60], [65], [66]. Qian et
al. [60] proposed a two-stage multi-task learning approach
for SSL and audio-visual source separation (AVSS). In the
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Application Architecture Backbone

Image or Audio classification R\e;sGl\g,t[‘[é}] gg ggg

Clip or Video classification ng\i t[?76;] gg ggg

Audio generation SampleRNN [45] RNN

Saliency prediction STAViS [66] Vo 8\\]11:1
i&ﬁi?g Sr(:;,(ci:ognition CRNN [63] f;fs g\l\/lll\?n o

A-V Correspondence AZE-_II\\IIS [[712]3] gg ggg

Sound Source Separation é géglztt—[lg 86 ][ 61] 2D CNN

Action Recognition X 122]()2 ;2:?16&9[3 (31] gg ggg

TABLE 7: Summary of different deep neural network
(DNN) architecture.

first stage, their network is trained for audio and video clas-
sification tasks and a binary classification task for learning
audio-visual correspondence. The second stage consists of
a Grad-CAM [237] module, which uses class predictions
and audio-visual features to unravel class-specific features in
each modality and learn fine-grained audio-visual alignment.
For visual feature extraction, the authors used ResNet-18
[61] and CRNN [63] for audio feature extraction. This
model can also be used with unlabelled videos, as it utilizes
a pre-trained network.

Ramaswamy and Das [65] proposed an algorithm for SSL
that can be trained in supervised, weakly supervised, and
self-supervised learning schemes. First, audio and visual
features are extracted using [46], [238]. Then, an LSTM-
based fusion module called the Audio Visual Fusion Block
(AVFB) is used to fuse the extracted audio and visual
features and learn spatial attention. The output of the AVFB
is fed to the Segment-Wise Attention Block (SWAB) module
to determine the importance of each audio-visual segment.
The aggregated features from each modality are then fed to
a series of fully connected layers for supervised or weakly-
supervised learning, or the Audio Visual Triplet Gram
Matrix Loss (AVTGML) is calculated for self-supervised
learning.

Tsiami et al. [66] proposed a Spatio-Temporal network
(STAVIS) for sound source localization through learning
visual saliency. STAVIS consists of a Spatio-temporal visual
network made up of a 3D-ResNet [61], and Deeply Super-
vised Attention Module (DSAM), and an Audio Representa-
tion Network made up of the first seven layers of SoundNet
[4]. Audio and video features are projected to a common
hidden dimension through affine transformations, and lo-
calization is performed using cosine similarity, weighted
inner product, or bilinear transformation. The first approach
provides a single localization, while the others can provide
single or multiple localizations.

Liu et al. [59] proposed a model for estimating visual
saliency using multi-modal data to predict salient faces
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from videos. They also introduced the MV VA database®* for
training and testing their model. The proposed model can
predict salient faces in the presence of multiple faces in a
single frame through three branches: one for video frames,
one for audio signals, and one for cropped faces from those
frames. The visual branch includes a two-stream network
consisting of a network for visual frames and another for
flow information, which is then concatenated and processed
through Convolutional LSTMs. The audio branch consists of
3D-CNNs, and the face branch consists of LSTMs, which
generate a face saliency map. These multi-modal features
are then integrated with a fusion module to generate the
final saliency. Cropped faces are motivated by their ability
to explain most attention or fixations.

3) Self-supervised deep learning

Hu et al. [8] learn audio-visual correspondence by opti-
mizing a max-margin loss to teach the network to cluster
multi-modal vectors, enabling the network to capture mul-
tiple audio-visual correspondences. Other self-supervised
approaches solve the problem of SSL in various ways, such
as predicting audio-visual alignment from shifted audio-
visual input [94], separating the sound source from the
mixture of multiple audio (spectrogram) inputs [95], [122],
and using an attention module to learn audio-visual synchro-
nization [97], [135]. There have also been a few supervised
deep learning approaches for SSL [60], [65], which are
summarized in Table 3.

B. AUDIO-VIDEO SOURCE SEPARATION (AVSS)

In the deep learning era, the problem of audio-visual source
separation (AVSS) has been approached using various ma-
chine learning methods, such as self-supervised learning
[94], [99], [113], [122], [123], [128], [131], [138] and
supervised learning [60], [69]. However, these approaches
all have the limitation of assuming that all objects in a
scene make sound, and, like in the case of sound source
localization, most approaches assume that a single object is
the source of the sound at any given time.

To our knowledge, the only work that handles multiple
sound sources is by Tian et al. [138]. They recognized the
interdependence of sound localization and sound separation
tasks and proposed a cyclic co-learning framework. Their
proposed model consists of two sub-networks: the Visual
Grounding Network for sounding objects and the Audio
Visual Sound Separation Network. These two sub-networks
complement each other, with the Visual Grounding Network
trained using a contrastive learning method and the Sepa-
ration Network trained using the mix and separate method
proposed by Zhao et al. [95]. Through the use of cyclic co-
learning, the authors [138] demonstrated that their approach
performs better than current approaches that only solve one
of these tasks (AVSS or SSL), highlighting the reciprocal
relationship between the two tasks.

“https://github.com/MinglangQiao/MV VA-Database
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Self-supervised approaches have also been used to solve
audio-visual source separation as a downstream task using
networks trained on pretext tasks such as predicting audio-
visual alignment, generating binaural sound from monoaural
sound, and predicting if audio channels are flipped ac-
cordingly [94], [123], [131]. Other self-supervised learning
approaches [99], [113], [122], [128] have employed different
loss functions and learning methods to solve audio-visual
source separation.

C. OBJECT OR SPEAKER TRACKING

Several works have tracked audio-visual objects or speakers
using the Probabilistic Graphical, or Probabilistic Generative
model [21], [22]. Beal et al. [21], [22] used an EM algorithm
to learn the model parameters and Bayesian Inference to
perform speaker tracking over a video sequence. Their setup
consists of two microphones and one camera, and they
fused audio and visual data by learning a linear mapping
between microphone time delay and object/speaker position
in the image frame. Vermaak et al. [33] proposed a speaker
tracking system that also used generative models. Their
setup, similar to that of [21], [22], consisted of a single
fixed camera and a pair of microphones. The soundtrack
was based on the Time Delay of Arrival (TODA) between
the two microphones, which was an initialization for the
visual tracking model. The visual tracking model included a
generative model for motion with a likelihood-based feature
search model. The authors applied a particle filter (PF)
to fuse the predictions from the audio and visual model
and track the speaker. In this setup, the sound and visual
models complement each other to improve overall tracking
capability.

D. AUDIO-VISUAL CLASSIFICATION

1) Pre-deep learning

Naphade and Huang [25], [26] proposed a probabilistic
model that uses factor graphs to model context and improve
event recognition for the semantic understanding of objects,
sites, and events. After segmenting videos into shots, they
extracted visual features such as color (histogram, moment),
shape, structure, and texture. For audio features, they used
Mel-frequency cepstral coefficients (MFCC), delta, and en-
ergy coefficients of different magnitudes and counts. The
concepts in this work are represented using multinet [239],
a collection of multijects [239] that can describe the time
sequence features of an object, site, or event using a proba-
bility distribution. In this work, the authors used a mixture
of Gaussian components for a site and a hidden Markov
model (HMM) for object and event multijects and learned
the parameters of these probabilistic models through the
Expectation-Maximization (EM) algorithm. They detected
events in two steps: first, detecting concepts for each video
shot, and then classifying the video clip using a global
constraint while taking the shot-level detection from the first
step into consideration. The detection of concepts is a binary
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classification problem, meaning the concept is either present
or absent.

Kulesh er al. [27] presented an approach for video clip
recognition that uses an HMM and Gaussian mixture model
(GMM) to model video and audio, respectively, using color
histograms and MFCC as features. They estimated the tran-
sition matrix of the HMM using the Baum-Welch algorithm.

In their work, Fillipe et al. [240] showed how to use
Grenander’s pattern theory structures to build a structured
semantic understanding of audio-video events by reasoning
on the multiple-label decisions of deep visual and auditory
models. They proposed a structured model that does not
require joint training of the structural semantic dependencies
and deep models but rather links them as independent com-
ponents. Furthermore, they used Grenander’s structures to
facilitate and enhance the fusion of multimodal sensory data,
particularly combining auditory and visual features. As a
result, they observed significant improvements in the quality
of semantic interpretations using deep models and auditory
features in combination with Grenander’s structures.

2) Supervised deep learning
Video clip classification:

Video clip classification involves assigning labels to an
entire video clip. However, clip-level models, which ag-
gregate clip-level classifiers for video classification, are
not practical for long videos, as they are computationally
complex to process. Therefore, researchers have focused
on developing efficient video recognition systems that can
handle long videos [73], [81], [241]-[248].

Some approaches aim to select important frames or clips
by analyzing the visual modality or video frames [242]-
[244], [246]-[248], while others consider both the audio
and visual modalities [73], [81], [241], [245].

Gao et al. [73] feed the first frame of a video through
their pre-trained image student model and the whole video
through their video teacher network. They assume that the
first frame of a video is the most important, but it could be
argued that they are still using the whole video by feeding
it through the video teacher network.

Panda et al. [81] proposed an approach that selects the
modality important for the classification of a particular clip
on the fly and then aggregates the results of different classi-
fiers for the classification of the entire video. This approach
does not rely on a video teacher network for guiding the
self-supervised training of the video classification network.

Action classification:

Kazakos et al. [56] extract features from overlapping
temporal windows for each modality, fusing them through
temporal average pooling and concatenation. They then pass
the fused features through a fully connected layer and feed
the output through two different fully connected layers
for learning verbs and nouns, turning it into a multi-task
learning problem.

In contrast, Wang et al. [249] proposed the Temporal
Segment Network (TSN), which performs late multi-modal
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fusion. Temporal Binding Network performs mid-level fu-
sion, generating only one prediction based on the fused
features, while TSN generates a segment-level prediction for
each modality and then fuses them to get the final prediction.

Subedar et al. [S51] proposed an uncertainty-aware
Bayesian deep learning approach for action recognition that
fused multi-modal features based on uncertainty estimates.
Their goal was to learn the predictive output distribution
of action recognition through learning the posterior param-
eters using either Markov Chain Monte Carlo sampling,
variational inference techniques, or Monte Carlo dropout
approximate inference.

Yang et al. [133] proposed a method for activity classifi-
cation from temporal data using RNNs, which was already
discussed in this section.

Chen et al. [82] proposed network consisted of an image
teacher trained on ImageNet and an audio teacher trained on
the AudioSet [62] dataset, both of which taught a 3D CNN-
based video student network. However, in this work, the
student was not simply trained to follow the teacher. Instead,
a cross-modal distillation and composition setting was used
to distill and combine knowledge from the different teacher
networks using different modalities of data. Another unique
aspect of this approach was the fusion of audio-visual data
through the use of a residual block that added a linear
combination of the concatenated multi-modal features to the
original features from the teacher network.

Pre-trained teacher network

Video frames Video embeddings

Vid 3D CNN
o nput based video | FC->So |
classifier ‘ ﬂmax
Student network
Spectrogram
Audio
sub-network

Image frame

‘ 2D CNN
mage input ’
based image
classifier

FIGURE 11: A typical A-V teacher-student network with
pre-trained image/video teacher. During training the teacher
sub-network is kept frozen while the student sub-network
learns the embedding space of the teacher.

Audio embeddings

FC->Soft
max

Fusion

Image embeddings

E. FUSION STRATEGIES FOR CLASSIFICATION

In deep learning approaches, audio and visual data are typ-
ically fed to two different sub-networks to extract features.
The most common approach for fusing multi-modal data
is to concatenate the extracted high-level features or to
perform fusion at the prediction or classification level. In
the first case, two different classification heads are used for
the two modalities, and the final classification is made by
fusing the results of the two classifiers. Another approach
involves concatenating the extracted features and feeding the
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combined features to a classification head. However, these
approaches do not consider the inherent correlation between
the modalities.

Vanderplaetse et al. [250] demonstrated different methods
for combining audio-visual features, such as multiplying the
classification output, averaging the output logits and using
a single classifier, and concatenation. These methods were
applied at different points along the pipeline and the results

of these different merging strategies were reported.

Authors Approach BE;[lel:;]l:)I:i
Ngiam et al. [251] RBMs Concatenation
Optimal linear Canonical
Slaney & Covell [252] transform correlation analysis
Canonical

Sargin et al. [253]

correlation analysis

X Probabilistic Projection from
Fisher ef al. [38] model higher to lower dim.
Yang et al. [133] RNN Correlational-RNN

Srivastava & Deep RBMs Concatenation

Salakhutdinov [254]

Vanderplaetse et al. [250]

Neural networks

Different ways

Chen et al. [82]

Neural network

Residual block

Kazakos et al. [56]

Temporal binding network
(Neural metwork)

Concat.

Tian et al. [55]

Dual multi-modal
residual network
(Neural network)

Residual block

Hossain &
Muhammad [255]

CNN->ELM->SVM

Extreme Learning
Machine (ELM) [256]

TABLE 8: Multi-modal Fusion

A few other complex approaches, such as Restricted
Boltzmann Machines (RBMs) and autoencoders, have been
used for fusing multi-modal audio-visual data. For example,
Ngiam et al. [251] trained an RBM model to construct a
modality given the other as input. Srivastava & Salakhut-
dinov [254] used a deep learning-based approach (Deep
RBMs) for the same task as Ngiam et al. [251].

Yang et al. [133] used an RNN-based approach for fusing
multi-modal audio-visual data and proposed Correlational
Recurrent Neural Network (RNN), a new temporal model
for this task. They showed the effectiveness of Correlational-
RNN on the audio-visual speech recognition task by using
maximum correlation loss and a reconstruction loss to learn
audio-visual correlations.

Some traditional vision approaches, such as Sargin et
al. [253] and Slaney & Covell [252], have used Canonical
Correlation Analysis (CCA) to merge multi-modal audio-
visual data while others have used the projection of high-
level audio-visual data to lower dimensions for fusing the
signals.

Kazakos er al. [56] has proposed Artificial Neural Net-
work based approach for addressing the problem of optimal
multi-modal fusion in egocentric videos. They introduced
Temporal Binding Network (TBN). Their fusion strategy
involves concatenating multi-modal features or embeddings
within each overlapping temporal segment referred to as
Temporal Binding Window (TBW).
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FIGURE 12: Cross and within modal contrastive loss.
Contrastive loss function can contrast between similar and
dissimilar data points in the high dimensional embedding
space.

F. AUDIO-VIDEO ANALYSIS FOR SELF-SUPERVISED
LEARNING

Audio-video analysis can be used for self-supervised learn-
ing as a pretext task for training a network. Pretext tasks are
tasks the network is trained to perform without supervision
and can be used to learn features from the data itself. Some
examples of pretext tasks for audio-video analysis include
audio-visual correspondence or synchronization and audio-
visual source separation. This section reviews the details and
nuances of this pretext training. Once the network is pre-
trained on these tasks, it can be fine-tuned on a downstream
task, such as audio-visual classification or audio source
localization, using a limited amount of labeled data.

Contrastive learning is a common method for self-
supervised learning in audio-visual analysis [75], [92],
[104]. However, one limitation of this approach is the need
for a large number of negative samples to be effective. This
has led to contrastive learning being more commonly used in
image classification or data analysis rather than audio-video
analysis, as the cost of processing and mining negative and
positive samples in video data could be high in terms of
computational complexity.

One solution to this issue was the use of a memory
bank, as proposed in [257], to store the features extracted
from a video as it was fed through the network only
once, eliminating the need for repeated feature extraction.
However, this approach did have the potential drawback of
missing out on backpropagation during network input. Misra
& Maaten of [257] argued that this was insignificant if the
number of negative samples was large enough.

Another strategy used by Korbar et al. [92] was to utilize
curriculum learning in conjunction with contrastive learning
to not only mine negative samples but also to introduce
harder-to-differentiate negatives later in the training stage.
These hard negatives were mined from the same video
as the positive samples but with a time gap, while the
easy negatives were mined from a different video. The
effectiveness of curriculum learning in this context was
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demonstrated in [92].

Several works [6]-[8] have investigated the clustering
of extracted audio-visual features, in which the assigned
clusters serve as pseudo labels for data. This method is also
a potential solution for contrastive learning, as clustering
approaches eliminate the need for a large number of nega-
tives.

Owens et al. [6] proposed two models in their work, one
based on k-means clustering. They first calculate the statis-
tical summary of sound using the approach of McDermott
and Simoncelli [258] and then cluster the processed audio
using k-means, using these assigned clusters as a pseudo
label for visual data. However, the issue with this approach
is that the value of £ is a hyperparameter.

Asano et al. [7] addressed this problem by using a
hyperparameter-free clustering method, the Sinkhorn-Knopp
clustering algorithm, to solve optimal transport problems.
In their approach, audio and visual features are clustered
separately in a modality-agnostic way, generating a single
label for the multi-modal data by synchronizing the last or
output layers of the audio and video sub-networks.

Another problem with contrastive learning is sampling
negative and positive samples, often done randomly, leading
to potential false positives and false negatives. Morgado et
al. [118] propose a solution to this issue by using a weighted
contrastive learning loss to decrease the contribution of
false positives based on the calculation of audio-visual
correspondence of the same instance (v;” @;). Additionally,
they address the false negative problem by considering
the similarity (ﬁdej) between instances. Sun et al. [164]
proposed a false negative aware approach by taking the
intra-modal similarity into consideration while selecting
negative pairs.

Morgado et al. introduced an approach [3] that does
not require many negative pairs, unlike other contrastive
learning approaches. They achieved good performance by
combining Audio-visual instance discrimination and cross-
modal agreement (CMA) with only 1024 negative pairs
per sample in the dataset and using 32 positive pairs to
optimize CMA. Therefore, this approach can be considered
an efficient contrastive learning framework. The authors
evaluate performance on the downstream tasks of action
recognition on the Kinetics [74] dataset and the task of audio
classification on the ESC-50 [233] dataset. The authors
noted that using more negative pairs did not significantly
improve performance compared to the increased time com-
plexity.

Chen et al. [112] proposed a method for automatically
mining hard negatives for a contrastive learning framework
from the background of video frames. They addressed
the problem of audio-visual source localization (SSL) by
training their model to learn the sound source localization
map by calculating the similarity between extracted visual
and audio features. The authors also introduced the concept
of a Tri-map, an uncertain region around the sound source
that is difficult to classify. While mining for hard negatives,
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this uncertain region was ignored. In addition to hard
negatives, which were mined from the same input video,
the authors also introduced easy negatives, which were
created from other videos in the dataset. They found that
introducing the Tri-map and ignoring the uncertain region
while generating negative samples led to better performance.
They also introduced a benchmark for SSL called VGG-
Sound Source and achieved state-of-the-art performance on
the Flickr-SoundNet [64] dataset. For training their model,
the authors only used the central frames of the raw videos
as input to the visual sub-network, along with 3s of audio
around these input frames. They reported that using all the
frames did not significantly improve performance.

Yang et al. [133] proposed an RNN-based architecture
(CorrRNN) using GRUs for solving audio-visual speech
recognition and activity classification tasks. CorrRNN is an
encoder-decoder architecture with a multi-modal encoder
and multi-modal decoder. The multi-modal encoder consists
of three components: a Dynamic Weighting module (DW),
a GRU module, and a Correlation module. DW assigns
weights to the input by calculating the coherence of the input
modalities over time. The GRU module fuses the multi-
modal input and creates a joint feature space representation,
effectively fusing the input. The correlation module calcu-
lates the correlation between the input modalities, later used
as the correlation loss. The decoder reconstructs the input
from the representation created by the encoder. However, in
contrast to other encoder-decoder approaches, the authors
[133] used four losses: a fused-reconstruction loss, a self-
reconstruction loss, and a cross-reconstruction loss. The
fused reconstruction loss measures the error in reconstruct-
ing both inputs from the joint representation. The self-
reconstruction loss measures the error in reconstructing the
input of one modality given the encoded representation of
the same modality. The cross-reconstruction loss measures
the error in reconstructing the input of one modality given
the encoded representation of another modality.

Other self-supervised learning techniques include using
teacher-student networks [4], [5] and attempting to predict
audio-visual alignment after shifting the audio [94].

G. AUDIO-VISUAL ANALYSIS IN AFFECT RECOGNITION
Table 9 presents an overview of audio-visual-based affect
recognition techniques, many of which utilized pre-deep
learning methods. According to a survey conducted by
Zeng et al. [12], there are several common methods for fus-
ing multi-modal features, including feature level, decision or
classifier level, and model level fusion. Feature level fusion
involves combining multi-modal features before sending
them through a machine learning model or classifier, often
through concatenation. However, this method can be prob-
lematic due to the various features at different time scales,
temporal structures, and metric levels. Decision-level fusion
involves passing data or features from each modality through
different models and making a final classification decision
based on the results of each model or classifier. While
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Authors Feature Technique
Busso et al. [190] Markers, Prosody SVM
Eigenfaces Linear discriminant
Go et al. [187] MFCC analysis (LDA)
Hoch et al. [259] Gabor feature SVM
Prosody
Vertical gray level
Pal et al. [185] FO-F3 k-means
Schuller et al. [183] AAM,Prosody, Voice SVM
Sebe et al. [182] Motion units,Prosody Bayessian network
Song et al. [181] FAPs, Prosody THMM
Gabor wavelets e
Wang & Guan [180] Prosody, MFCC Fisher’s-LDA
Zeng et al. [179] Motion units, Prosody MFHMM
Adaboost +
Zeng et al. [178] LLP, Prosody MHEMM
Zeng et al. [260] Motion units, Prosody SNoW
Zeng et al. [221] Motion units, Prosody MFHMM
Zeng et al. [223] Motion units, Prosody HMM
Wollmerer al. [192] MEFCC, Facial flow LSTM
Karpouzis et al. [186] FPs, Prosody RNN
Caridakis et al. [189] Facial points, Prosody RNN
Fragopanagos & . . Neural network
Taylor [188] FAPs, Prosody (NN)
Petridis & . .
Pantic [184] Facial points, MFCC Adaboost, NN
. Low level descriptor
Ringeval et al. [191] MECC , LGBP from -
three orthogonal planes
Schoneveld et al. [219] Face Image, MFCC CNN->LSTM
Hossain &
Muhammad [255] MFCC & Image CNN->ELM->SVM

TABLE 9: Audio-visual analysis for affect recognition is
categorized based on features and techniques.

this addresses some of the issues of feature-level fusion, it
also has its own limitations, such as treating interdependent
multi-modal data as independent. Model-level fusion is a
relatively understudied area that requires further research
and exploration.

The most commonly used features in audio-visual affect
recognition include facial points, MFCC, prosody, motion
units, and features of faces or lips. Among the audio-
visual affect recognition approaches, Busso et al. [190],
Petridis and Pantic [184] and Schuller et al. [183] have
employed feature-level fusion, which concatenates multi-
modal features and passes them through a single affect
recognition model or classifier. Decision-level fusion, on
the other hand, has been used by Hoch et al. [259], Go
et al. [187], Pal et al. [185], Wang and Guan [180], Zeng
et al. [178], Zeng et al. [260], and Zeng et al. [223].
However, decision-level fusion ignores the inherent corre-
lation between these multi-modal features. In an effort to
benefit from both decision- and feature-level fusion, the
remaining approaches in Table 9 have used model-level
fusion: Caridakis et al. [189], Fragopanagos and Taylor
[188], Karpouzis et al. [186], Sebe er al. [182], Song et
al. [179], and Zeng et al. [221].

W'"ollmer et al. [192], Caridakis et al. [189], Fragopana-
gos and Taylor [188], Karpouzis et al. [186], and Petridis
and Pantic [184] have used neural networks (NNs) to
learn and model multi-modal audio-visual data and extract
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features from it. Other popular methods include SVM [183],
[190], [259] and different types of HMMs [178], [179],
[181], [221], [223].

As can be inferred from the above discussion, there have
been relatively few approaches in the deep learning era
for emotion recognition using multi-modal audio-visual data
due to the lack of large-scale affect recognition datasets that
include audio and visual data. Deep learning approaches,
however, rely heavily on large datasets. For a more com-
prehensive review of emotion recognition, we refer readers
to the work of Zeng et al. [12] and Wu et al. [261].

H. GENERATING ONE MODALITY FROM THE OTHER
Zhou et al. [44] proposed an approach for generating
sound given visual input using a dataset called Visually
Engaged and Grounded AudioSet (VEGAS), a subset of the
AudioSet [62] dataset. The proposed architecture consists of
a video encoder and a sound generator, with a three-layer
SampleRNN [45] being used for the sound generator. The
authors [44] experimented with three different video encoder
architectures: the Frame-to-frame method using an Imagenet
pre-trained VGG-19 [46], the Sequence-to-sequence method
initialized with visual features from the fc6 layer of VGG-
19, and the Flow-based method similar to the sequence-to-
sequence method but concatenating flow features with visual
features. The concatenated visual and flow features were
used in all three methods to initialize the sound generator’s
hidden state of the coarsest RNN tier.

Other techniques for sound generation approaches include
diffusion models [262], [263], Foley Analogies [264].

In alternative approaches, sound serves as a key stimulus
for various applications, including the generation of visual
scenes [265], the reenactment of face expressions [266]—
[268], the reenactment of gestures [142], [269], the creation
of emotion-controllable talking heads or faces [79], [146]
and the generation of animations [270], [271].

In the domain of Generative Al, diffusion model based
Computer Vision applications have seen a increase in ap-
plication. As we can see from the above discussion this
trend has extended to the audio-visual multi-modal domain
as well.

I. VIDEO SEGMENTATION

Video segmentation requires partitioning a video into se-
mantically meaningful clips or segments. The goal is to
group together the frames or the pixels in a frame. Video
segmentation is useful for better analyzing and understand-
ing videos. The video segmentation task can be divided into
two types:

1) Spatial Segmentation: [272]-[274]

o Frame-level Segmentation: It refers to segmenting
individual frames in a video while treating each
frame independently. The target is to identifying
the objects in a frame without considering the
temporal dependencies i.e. not tracking the same
object across frames.
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o Object-level Segmentation: This includes identi-
fying and tracking specific objects across consec-
utive frames. The main goal is on maintaining
consistency in the segmentation of objects over
time.

2) Temporal Segmentation: [275]-[280]

o Shot Boundary Detection: This refers to detecting
the start and end frames of a shot. Shot is a
continuous sequence of frames capturing an event
without interruption. Shot boundary detection is
very crucial for video summarizing and indexing.

o Action Segmentation: Segmenting or identifying
the continuous sequence of frames that captures
different actions or activities performed. The is
very common for applications such as surveil-
lance, sports analysis and human-computer inter-
action.

J. REALTIME AUDIO-VISUAL ANALYSIS

Joint audio-visual analysis itself is a interdisciplinary field.
Audio-visual analysis with the objective of real-time pro-
cessing adds an additional layer of complexity for the
researchers. Undertaking this task demands for distinct
optimization techniques even if the target platform is robust
computer devices with GPUs and powerful processing unit.
But the difficulty of this task amplifies when the target
is to deploy such systems on edge devices or hardware
with limited power resources. In this context this inherently
multidisciplinary field requires synthesis of expertise in
computer vision, machine learning, edge computing and
internet of things (IoT).

Real-time audio-visual systems find application in a vari-
ety of scenarios, including affective computing [281]-[283],
real-time video editing [284], privacy & security [285],
[286], different classification & recognition tasks [287]—
[292], sound synthesis or generation [293].

V. SUMMARY OF REPORTED PERFORMANCES

The use of deep learning has consistently demonstrated
superior performance in audio-visual learning tasks, similar
to its impressive results in other computer vision tasks
that utilize machine learning techniques. In this section, we
will focus on comparing the performances of recent deep
learning approaches, with a particular emphasis on self-
supervised learning methods, as reported in the literature.
These methods have proven highly effective in achieving
state-of-the-art results in audio-visual learning tasks.

They are using multi-modal audio-visual data better [55]
than relying on only one of these modalities. Especially for
self-supervised techniques, using only the audio modality
doesn’t provide as good a performance as that of using
only the visual modality. On the other hand, self-supervised
learning methods are becoming increasingly popular be-
cause of the cost associated with human annotation. In
the case of utilizing inherent information from within the
data, multi-modality is better than uni-modality [55], [198].
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However, manual supervision still proves to be superior in
the case of uni-modal analysis or when multi-modal data is
not available.

A. FOUR BENCHMARK TASKS

Researchers have attempted to solve various downstream
tasks in order to compare and demonstrate the effectiveness
of their deep-learning models. We will examine the reported
performance of different methods on four popular down-
stream tasks: audio-visual source separation (AVSS), sound
source localization (SSL), object/action/sound classification,
and clustering. These tasks are widely used as benchmarks
for audio-visual learning models, as they challenge a model
to learn the coherent relationship between audio and vi-
sual features - the central objective of any audio-visual
learner. While many self-supervised learning approaches
pre-train the network to learn or solve for audio-visual
correspondence (AVC) as a pretext task, it is difficult to
measure or quantify this pretext task directly. Therefore,
the performance of the model is often evaluated with it.
The five tasks provide comprehensive ways to assess the
effectiveness of a model in learning the complex interplay
between audio and visual features.

B. METRICS

There is no universally accepted standard metric for eval-
uating the performance of the chosen tasks, and different
measures are typically used for each task. Table 10] shows
the common metrics used to compare or measure the per-
formance of different tasks.

Audio-visual Tasks Common Metrics

AV Sound Separation (AVSS) signal distortion ratio (SDR), signal
interference ratio (SIR), signal to ar-

tifacts ratio (SAR)

Sound Source Localization accuracy, area under the curve (AUC),

(SSL) consensus intersection over union
(cloU)

Object/Action Classification accuracy, mean average precision
(MAP)

Clustering normalized mutual information (NMI)

TABLE 10: Metrics used to evaluate the performance of
audio-visual tasks.

Three measures, namely signal distortion ratio (SDR),
signal interference ratio (SIR), and signal-to-artifacts ratio
(SAR), are commonly used in audio-visual self-supervised
(AVSS) tasks, where the goal is to learn the coherent
relationship between audio and visual features from un-
structured and unlabeled data. AVSS methods are typically
evaluated using three measures, as they provide a way to
quantify the quality of the reconstructed audio signal and
the separation performance of the model.

The signal distortion ratio (SDR) is a measure of the
quality of a reconstructed signal compared to the original
signal. It is defined as the ratio of signal power to distortion
power and is typically used to evaluate the performance of
audio separation algorithms.

VOLUME 4, 2016

Dt T
SRy @)
Dic (i — &)
where x; is the original signal and Z; is the reconstructed
signal.

The signal interference ratio (SIR) is a measure of the
quality of a reconstructed signal compared to the interfer-
ence signal, which is the unwanted part of the reconstructed
signal. It is defined as the ratio of the signal power to
the interference power and is often used to evaluate the
performance of audio separation algorithms.

SDR = 10log;,
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where z; is the original signal, Z; is the reconstructed signal,
and z; is the interference signal.

The signal to artifacts ratio (SAR) is a measure of the
quality of a reconstructed signal compared to the artifacts,
which are the errors or distortions introduced by the sepa-
ration process. It is defined as the ratio of the signal power
to the artifact power and is frequently used to evaluate the
performance of audio separation algorithms.

SIR = 10logy
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where x; is the original signal and Z; is the reconstructed
signal.

Among the metrics, SDR and SIR are more reliable than
SAR. In our summary tables, we will report on just the
signal-to-distortion ratio (SDR) metric, which is also the
metric reported by most papers.

Localization in audio refers to the ability of a model to
accurately identify the temporal locations of sound events
in an audio signal. In the given scenario, the Consensus
Intersection over Union (cloU) and Area Under Curve
(AUC) metrics are generally employed to evaluate the local-
ization performance. The cloU metric measures the degree
of overlap between the predicted and ground-truth bounding
boxes, while AUC measures the overall performance of the
model in terms of true positive rate and false positive rate.
To obtain the final localization map, a weighted summation
is performed over valid categories using the normalized
predicted probabilities as weights. This approach helps to
give higher weightage to categories with higher confidence
scores, thereby improving the accuracy of the final localiza-
tion map. Final cloU scores for each instrument/sound class
on each frame is calculated by

SAR = 10log,

Zle O.cloU.,
¢]
Zc:l 9C
The class index of instruments is represented by the
variable ’c, and the variable 6, is set to 1 if the instrument
of class ’c’ makes sounds and O otherwise. By using this

method, the evaluation score of cloU class will only be high
if the model is able to accurately associate specific classes

®

cloU _class =
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of instruments with the sounds they produce, thus ensuring
that the evaluation metric is class-specific and accurate.

Object, action, and sound recognition can be measured
using three measures: percentage accuracy, mean average
precision (MAP), and area under the curve (AUC). Mean
average precision (MAP) measures accuracy in a classifica-
tion task. It is defined as the mean of the average precision
scores for each class in the classification task.

The normalized mutual information (NMI) is a useful
evaluation metric for comparing the performance of different
clustering algorithms or for evaluating the performance
of a clustering algorithm on a dataset. It is often used
in evaluation measures for clustering tasks, particularly
when the true cluster assignments are not known. NMI
is a measure of the similarity between two clusterings of
data. It is defined as the mutual information between the
two clusterings, normalized by the average entropy of the
clusterings. The normalized mutual information (NMI) is a
metric that ranges from O to 1, with a higher value indicating
a greater similarity between the two clusterings.

21(C1,Cy)
H(Cy)+ H(Cy)
where I(C1, C2) is the mutual information between the two
clusterings, H(C1) is the entropy of the first clustering, and

H(C5) is the entropy of the second clustering.
The mutual information between the two clusterings is

calculated as:
2 2

c1€C1 c2€C2

NMI = (6)

p(Cl, 62)

pep(e)

I(Cy,C2) = p(er, c2)log

where C7 and C5 are the two clusterings, ¢; and ¢y are
clusters in the respective clusterings, and p(c1), p(cz2), and
p(e1, o) are the probabilities of clusters ¢, co, and the joint
probability of ¢; and cs, respectively.

The entropy of clustering is calculated as follows:

=—> ple)

ceC

) log p(c) ®)
where C is the clustering and c is a cluster in the clustering.

C. DATASETS
We have gathered results reported on multiple datasets,
including the highly regarded and challenging Audioset
[62], VGG-Sound [83], and Kinetics [74]. Other datasets
that we will consider include UCF-101 [53] and HMDB
[109]. By comparing the performance of various approaches
or models on these different datasets, we aim to provide
a comprehensive understanding of the strengths and limi-
tations of these methods in solving audio-visual tasks. It
is important to consider a range of datasets in order to
ensure the generalizability and robustness of these methods
to diverse data.

In the domain of self-supervised learning AudioSet [62]
is better for pre-training for tasks that involve sound classi-
fication/recognition. In many instances, the sounding object
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is not visible in AudioSet [62]. Thus making it better suited
for classification or recognition task. Although the other
datasets such as VGG-Sound [83], Kinetics-Sound [75],
Flickr-Soundnet [64] doesn’t contain so many different as
Audioset [62] but the well alignment (both visible and
audible) between the audio and video modality makes them
better suited for other complex tasks. These tasks include
Sound Source Localization, Audio-visual Source Separation,
etc.

D. REPORTED PERFORMANCES

In this section, we have summarised quantitative perfor-
mance on different classification, sound localization & sep-
aration, and clustering tasks. Then we have provided a
conclusion by analyzing the quantitative results. For sum-
marizing we have mainly focused on approaches that have
used self-supervised pre-training. The quantitative results
are taken from the reported results by the respective authors
on the aforementioned different downstream tasks. We are
mainly focusing on the self-supervised learning approaches
because of the fact that self-supervised learning has become
more popular than supervised approaches in recent times.
Also, these self-supervised pre-training approaches have
achieved performance that is on par with or better than the
supervised approaches. Again the tasks that the supervised
learning approaches have tried to solve are less popular
than the ones targeted by self-supervised approaches. Also,
in the most popular/challenging benchmarks/datasets, the
self-supervised learning approaches have gained the best
performances. Where as the supervised learning approaches
show results on datasets that are not as large in terms of size
and categories present. Considering all of the above facts we
have put our focus on methods that were pre-trained using
self-supervision.

Table 11 shows performance on a downstream object,
sound, and action classification tasks. Note that the ESC-
50 [233] and DCASE [234] sound datasets are relatively
small, simple, and outdated compared to current sound
datasets. Despite this, researchers have used these datasets
to compare with approaches that came up before the intro-
duction of the newer challenging datasets. The reasons for
comparing ESC-50 [233] and DCASE [234] are twofold:
1. showing that training on newer datasets is better than
training on older datasets, 2. proving the superiority of
the new algorithm/approach over older approaches. The
networks in table 11 were trained on different datasets
such as Audioset [62], Kinetics [74], VGG-Sound [83] and
SoundNet [4]. Later they are used for downstream classifi-
cation tasks. By comparing the quantitative performances,
we see that pre-training on Audioset [62] provides the best
performance for downstream sound and action classification
tasks.

Table [13] presents the performance of clustering ap-
proaches for self-labeling in the field of multi-modal anal-
ysis. However, they have yet to outperform contrastive
learning approaches. However, the clustering approaches
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TABLE 11: Performance comparison for object/action/sound classification task

Task Method Pre-training Dataset Train-Test mAP Joacc.
Object Owen et al. [6], 2016 YFCC100M [91] PASCAL VOC 07 47.4%
SUN397 21.4%
Object  Arandjelovic & Zisserman [75], 2017 Flickr-SoundNet [64] ImageNet 32.3%
Object Afouras et al. [110], 2021 AudioSet-Instrument [103] VGGSound [83] 52.3%
AudioSet [62] 44.3%
Openlmages (test) 39.9%
Sound Aytar et al. [4], 2016 SoundNet [4] ESC [233] 74.2%
DCASE [234] 88%
Sound  Arandjelovic & Zisserman [75], 2017 Flickr-SoundNet [64] ESC [233] 79.3%
DCASE [234] 93%
Sound Korbar et al. [92], 2018 Audioset [62] ESC [233] 76.7%
DCASE [234] 91%
Kinetics [74] ESC [233] 80.6%
DCASE [234] 93%
Sound Morgado et al. [3], 2021 Audioset [62] ESC [233] 89.1%
DCASE [234] 96 %
Kinetics [74] ESC [233] 79.1%
DCASE [234] 93%
Action Owens and Efros [94], 2018 Audioset [62] UCF [53] 82.1%
HMDB [109] -
Action Korbar et al. [92], 2018 Kinetics [74] UCF [53] 85.8%
HMDB [109] 56.9%
Audioset [62] UCF [53] 89.0%
HMDB [109] 61.6%
Action Morgado et al. [3], 2021 Kinetics [74] UCF [53] 87.5%
HMDB [109] 60.8%
Audioset [62] UCF [53] 91.5%
HMDB [109] 64.7%
Action Morgado et al. [118], 2021 Kinetics [74] UCF [53] 85.6%
HMDB [109] 55.0%
Action Vedaldi et al. [112], 2021 VGG-Sound [83] Flickr-SoundNet [64] (test)  0.590 (AUC)

TABLE 12: Performance comparison for audio-visual sound
source separation (AVSS) and sound source localization
(SSL) tasks.

TABLE 13: Performance comparison for just video (V), just
audio (A), and audio-video (AV) clustering tasks.

Method Train-Test MI
Task Method Train-Test SDR/%acc Arandjelovic & Zisserman [75], 2017  Kinetics-Sound [75] V:0.409
AVSS Zhao ef al. [95], 2018 MUSIC [95] 6.05 (SDR) A:0.330
AVSS__ Owens & Efios [94], 2018 __ VoxCeleb [70] 7.6 (SDR) Asano et al. 7], 2020 VGG-Sound [83] - V:0.528
AVSS  Gao & Grauman [122], 2019 MUSIC [95] _ 7.64 (SDR) A0.475
AudioSet [62]  4.26 (SDR) AV:0.567
AVSS  Aforous ef al. [104], 2020 LRS2 10.8 (SDR) o .
AVSS Chen ef al. [167], 2023 MUSIC [95] _ 11.17 (SDR) Kinetics-Sound [75] AV: 0.502
AVE [55] 5.02 (SDR)
SSL__ Aforous er al. [104], 2020 LRS2 99.6% (%acc)
LRS3 99.7% (%acc) - datasets. In terms of numerical performance, the best SDR

Columbia [108] 90.8 (F1)

one can get is oo. This is when the reconstructed when

SSL Vedaldi er al. [112], 2021 VGG-SS [112] 0.382 (AUC)

SSL Sun er al. [164], 2023 VGG-SS [112] 03729 (AUC) the original signal z; and the reconstructed Z; signal are

address some of the limitations of the contrastive learning
methods, such as computation time and the need for a large
number of negatives. Also, the cluster assignments can be
used as week labels for solving other downstream [150]
tasks.

We have summarized the performances reported by peo-
ple on A-V Sound Source Separation (AVSS) and Sound
Source Localization (SSL) tasks in the table 12. Most of the
approaches reported here were trained on audio-visual data
then, for they report these two downstream tasks on some
well-known sound separation or localization benchmark
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equal/same. But in terms of signal processing perspective,
this can only happen when a network can truly separate the
target/actual audio signal from the interference, noise, and
added artifact signals. In the ideal case, it can be done by
signal processing-inspired deep learning approaches. But so
far we are far from achieving that.

VI. CURRENT GAPS AND FUTURE DIRECTIONS

The problems and gaps within current methodologies pre-
dominantly stem from certain oversimplified assumptions.
A notable area for future exploration is the prediction of
an object’s material properties, an endeavor that has been
minimally pursued due to data scarcity.
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Current strategies for the identification of sounding ob-
jects within an image predominantly revolve around a multi-
modal analysis pipeline. This process begins with the pre-
liminary selection of potential sounding object candidates,
which is typically accomplished using object detection tech-
nologies. Following this initial step, these strategies often
involve calculating a score that reflects the similarity or
correlation between sound and image features. This score
is pivotal in pinpointing the precise-sounding objects or
regions within an image. However, this reliance on object
detection technologies as a first step presents a significant
challenge. It heavily restricts the detection of silent objects
or non-sounding regions within an image. Without the aid of
such technologies, identifying these non-sounding elements
becomes exceedingly difficult, if not outright unfeasible.
This limitation underscores the heavy dependency on object
detection technologies in current approaches, highlighting
an area ripe for further research and development in the
field.

Exploring temporal action segmentation in a multi-modal
audio-visual context remains an area rich with research
potential. One promising avenue is the utilization of audio
data in conjunction with visual data. We posit that leveraging
audio data can provide a form of regularization for visual
network training. This approach can potentially streamline
the segmentation process by using audio cues to guide
and inform the visual analysis. Furthermore, incorporating
foundational or intuitive knowledge into the segmentation
process can significantly enhance performance. By integrat-
ing a deeper understanding of the relationships between
different objects and their interactions within a scene, such
knowledge can provide crucial context that aids in more
accurate and efficient segmentation. This strategy not only
helps tackle the inherent computational difficulties but also
paves the way for more sophisticated and nuanced interpre-
tations of audio-visual data in temporal action segmentation.

The advancement in the handling of multi-modal data,
particularly the integration of audio and visual features,
is a crucial area for development in the field of audio-
visual learning. The current state of research in this domain
has largely focused on two-stream networks, which have
been the primary method for exploring audio-visual learn-
ing problems. However, this approach has its limitations,
especially in terms of efficiency and adaptability to various
applications.

Therefore, it is imperative to develop a standardized
method for amalgamating audio and visual features. Pi-
oneering new methods for integrating these multi-modal
signals could lead to significant improvements in training
efficiency. Such advancements would not only enhance the
performance of audiovisual systems but also facilitate their
deployment on edge devices. This is particularly relevant
given the growing need for efficient, real-time processing in
numerous applications.

Further, exploring innovative approaches, such as employ-
ing attention mechanisms or Vision Transformers (ViTs),
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may offer promising avenues for multi-modal data fusion.
These technologies have the potential to revolutionize the
way audio and visual data are integrated, leading to more
sophisticated and effective audio-visual systems. Ultimately,
such advancements could open new research frontiers and
contribute substantially to the field of audio-visual learning.

Another critical gap in the audio-visual domain that still
warrants attention from researchers is the challenge of
continual learning & incremental learning. Although this
problem has tracked some interest [294]-[296] in recent
years, it is still far from solved. Continual learning refers to
the ability of machine learning models to keep learning and
adapting to new data without forgetting past information. In
the context of audio-visual learning, continual learning is
particularly important because of the influx of new data or
information.

There are two ways to approach the ongoing challenges
and opportunities in multi-modal research, particularly in
audio-visual data. Firstly, one can focus on developing new
approaches or methods for problems that have been already
defined. This involves innovating novel techniques for self-
supervision or crafting groundbreaking architectures. The
objective here is to enhance and refine the existing method-
ologies for tackling specific problems which are already
defined. Secondly, the focus can shift to addressing and
attempting to solve new problems. This means employing
audio-visual data to tackle issues that have not been previ-
ously approached in a multi-modal context.

A. NEW SOLUTIONS TO EXISTING PROBLEMS

Based on the consideration of gaps in research that we have
observed in this review, we believe the following directions
to be fruitful and important in the near future. They will
lead to new architectures and approaches to problems that
have been well studied for which datasets and benchmarks
exist to measure progress.

o New fusion architectures: So far, people have looked
at the audio-visual learning problems with two-stream
networks. Finding smarter ways to fuse these multi-
modal signals can improve the efficiency of the over-
all training procedure. Thus making the audio-visual
system deployable in edge devices. This advancement
could potentially unlock new avenues of opportunities
for researchers. We believe that using an attention
mechanism or utilizing ViT (Vision Transformer) could
represent a novel and intelligent approach for the fusion
of multi-modal data.

o Improving self-supervised learning: In the paradigm
of self-supervised learning, pretext tasks AVC and
AVS have traditionally been approached separately.
However, recent studies by Tian er al. [138] have
shown that SSLand AVSS can complement each other,
resulting in better representation learning during pretext
learning using the cyclic loss. This cyclic learning
process may also benefit from curriculum learning
techniques [297]. Solving AVC enables the network
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to learn the correct association between audio and
video. While AVS teaches the network to learn the
correct temporal association, emphasizing the asso-
ciation of occurrence between the two modalities.
These components are essential for training models
that can effectively capture the intricate relationships
and dependencies between audio and visual signals
in multimedia data. AVC and AVS can be utilized
to create harder positive and negative pairs, which is
a crucial aspect of pretext learning in self-supervised
learning. On the other hand, the complexity of the
task dictates the training order in curriculum learning.
So a technique for mining harder negatives could be
beneficial in self-supervised learning approaches when
used in conjunction with curriculum learning.
Localizing multiple sources: Self-supervised learning
has become the preferred approach for audio-visual
learning. But almost all self-supervised learning ap-
proaches suffer from one of two problems: the inability
to localize multiple sound sources in the same scene or
to localize silent objects in the scene. People have tried
using object detection or region proposal algorithms to
address these issues, but the overall performance of
self-supervised learning depends heavily on the region
proposal algorithm. Additionally, these object detection
models may need to be trained separately if they do not
perform well on the training dataset, leading to many
false positives. Retraining region proposals or object
detection algorithms separately also increase training
time.

Most of the current methods typically rely on an
object detector to select sound object candidates at
the beginning of the multi-modal analysis pipeline.
Similarly, silent object detection also relies heavily on
object detectors, and it is difficult or almost impossible
to find objects that do not make sound without using a
pre-trained object detection model. Present methods for
sound source localization often calculate a similarity
or correlation score between sound and image features
to identify sounding objects or regions in an image.
Consequently, these methods can not locate objects that
are not making any sound.

Mono to bin-aural audio: In recent years people [131],
[154] have started looking into learning spatial features
from bin-aural or multi-channel audio. However, the
lack of a multi-channel audio dataset has been a hin-
drance in the path to progress. Especially, there is a lack
of multi-channel audio datasets that are collected in
an unconstrained environment. Again there have been
some [72], [119], [123] approaches to convert mono-
aural audio to bin-aural/stereo audio. We believe this
could be an interesting field of research, converting
regular audio to bin-aural audio and then using the
converted audio to learn spatial features from the new
multi-channel audio.
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B. NEW OR UNEXPLORED PROBLEM CONTEXTS

The following are some of the problem contexts that need
focus from researchers in the future. Some of these are very
new contexts, and some of them are old problems that are
waiting to be considered again with new tools from deep
learning.

e 3D action recognition: 3D action recognition involves
understanding human actions in three-dimensional
space. It can be applied for solving tasks such as
video surveillance and virtual reality. It is a task that
prominently relies on visual cues. But audio can be
used as a complimentary modality to aid in localizing
where the action is happening in the 3D space.

o Speaker diarization: Speaker diarization is the process
of segmenting the audio stream into speaker-specific
segments. This involves identifying and distinguishing
each speaker separately. Speaker diarization is applica-
ble in transcription, sentiment analysis, and understand-
ing multi-speaker conversations. This problem was
more popular in the pre-deep learning era. However,
in recent years, the problem still lacks the necessary
attention and focus from the researchers.

o Predicting material properties of an object. The main
focus of this problem is predicting the material property
from visual and audio cues. The audio is captured
when hitting the objects with another object. This
problem has applications in industry for tasks like
quality control, and material science.

o Temporal action segmentation: Temporal action seg-

mentation is the process of segmenting video sequences
into meaningful events or segments. This problem was
discussed in the section IV-I. As can be seen from
our discussion above temporal action segmentation
problem hasn’t been very popular in the audio-visual
domain. Most people approach this problem using only
visual modality.
We believe that audio data can be used to regularize
the training of the visual network for temporal action
segmentation, and incorporating prior or common sense
knowledge can also improve the segmentation task’s
performance by learning relationships between differ-
ent objects.

e Detecting sound source which is not present in the
scene: This task is especially a challenging one. This
is also related to the sound source localization and
multi-source detection problem. In most cases, people
approach the problem of SSL assuming that there is
only one dominant source in the video or scene and
that the source is both visible and audible at the same
time. There hasn’t been any effort trying to locate
(identifying the type of object) sounding objects that
are not visible within the camera view.

o Wildlife Biometrics: Animal-ID has been popular in
the image-only domain, where the data is collected
using camera traps. To this day, there is no audio-visual
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dataset for this type of task. Identifying wildlife can
contribute to ecological research, conservation efforts,
and monitoring wildlife populations by providing a
non-intrusive method for animal identification.

o Audio-visual analysis in camera network: Audio-visual
analysis in camera networks integrates information
from both visual and auditory sources across a net-
work of audio & visual sensors. This interdisciplinary
approach has the potential to enhance surveillance and
monitoring, the autonomous vehicle industry, and edge
computing, thus creating a more robust and compre-
hensive analysis of events. This is a problem that has a
lot of potential and prospective applications. However,
the challenge lies in developing a network capable of
handling large streams of data while remaining efficient
and lightweight enough to be deployed on power-
constrained devices.

The above remains an open problem for the researchers
because of some assumptions that lead to the problems and
gaps in the current works. Among the prospective problems
in future research, predicting the material properties of an
object has been attempted relatively less due to a lack of
data.

In summary, future work in this field should also focus
on improving current self-supervised learning methods for
audio-visual learning rather than only attempting to improve
the performance of some downstream tasks. The focus
should be on improving the self-supervised pre-training
methods so that the models learn better representations.
On the other hand, as discussed above, certain persistent
challenges (revisiting old problems) and untapped oppor-
tunities (exploring new problems) still await interest from
researchers.

VIl. CONCLUSION

We have conducted an extensive survey of the historical
and current technical approaches in the domain of audio-
visual learning, along with an overview of relevant datasets.
Though researched for an extended period, this area has
witnessed significant advancements with the rise of deep
learning techniques. In most scenarios, multi-modal data
has proven to be more advantageous than uni-modal data.
Nonetheless, certain tasks, such as image frame classifica-
tion and object detection, yield optimal results with only
the visual modality, especially when human annotations are
available. However, this is not the case with solely audio-
based modality.

Both audio and visual modalities complement each
other, particularly in unsupervised or self-supervised tech-
niques. Typically, multi-modal analysis is employed in self-
supervised learning to pre-train a network on a pseudo
or pretext task. These networks, once pre-trained, can be
adapted for various downstream tasks, even those focusing
on a single modality. Impressively, these networks often
achieve performance levels comparable to those trained
through supervised methods. Yet, despite these advance-
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ments, there remains ample room for progress, especially
in the realm of self-supervised learning, given the labor-
intensive nature of labeling video data.

In section II, we delineated the fundamental technical
tasks intrinsic to the audio-visual domain and illustrated how
they address a plethora of real-world challenges. Section IV
delved into the computational methodologies employed to
tackle these tasks. We’ve categorized these methods based
on their timeline and techniques into two main types: pre-
deep learning and deep learning.

The paper underscores that the future trajectory of au-
diovisual learning research hinges on the exploration of
novel applications. There is increasing interest in leveraging
audiovisual learning for tasks like speaker identification,
emotion recognition, and action recognition. These research
avenues stand to gain immensely from multimodal data,
warranting further investigation.

Our findings also reveal that the choice of dataset greatly
influences the downstream objective. Thus, selecting the ap-
propriate pretext task and pre-training dataset with the final
objective in consideration is crucial. Section III sheds light
on prominent datasets, their applications, and associated
statistics. Furthermore, in section V, we have encapsulated
the reported quantitative performances, laying special em-
phasis on deep learning-based self-supervised techniques,
which presently dominate the challenges in audio-visual
data.

In summation, the paper provides a comprehensive
overview of the current state of audio-visual learning re-
search, highlighting its successes and limitations. The find-
ings suggest that there is still much to be explored and
discovered in this field and that future research should focus
on developing more efficient and effective approaches for
extracting and utilizing information from multi-modal data.
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