

1 **Title:** Characterization and Engineering of the Type 3 Secretion System Needle Monomer from
2 *Salmonella* Through the Construction and Screening of a Comprehensive Mutagenesis Library

3
4 **Authors:** Lisa Ann Burdette^{1*}, Samuel Alexander Leach^{2§}, Nolan Kennedy², Bon C.
5 Ikwuagwu^{2†}, Jordan S. Summers³, Danielle Tullman-Ercek^{2#}

6
7 **Author affiliations:**

8 ¹Department of Chemical and Biomolecular Engineering, University of California, Berkeley,
9 California, USA

10 ²Department of Chemical and Biological Engineering, Northwestern University, Evanston,
11 Illinois, USA

12 ³Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
13

14 **Running title:** Mutagenesis of the Type 3 Secretion Needle Protein

15
16 #Address correspondence to Danielle Tullman-Ercek, 2145 Sheridan Road, Silverman 3619,
17 Evanston, IL 60208; ercek@northwestern.edu .

18 *Present address: Bio-Techne, 614 McKinley Place NE, Minneapolis, MN 55413;
19 lisa.burdette@bio-techne.com

20 §Present address: 5206 N Winthrop Ave, Chicago, IL 60640

21 †Present address: Rocket Pharmaceuticals, Inc., 9 Cedarbrook Drive, Cranbury, NJ 08512

22
23

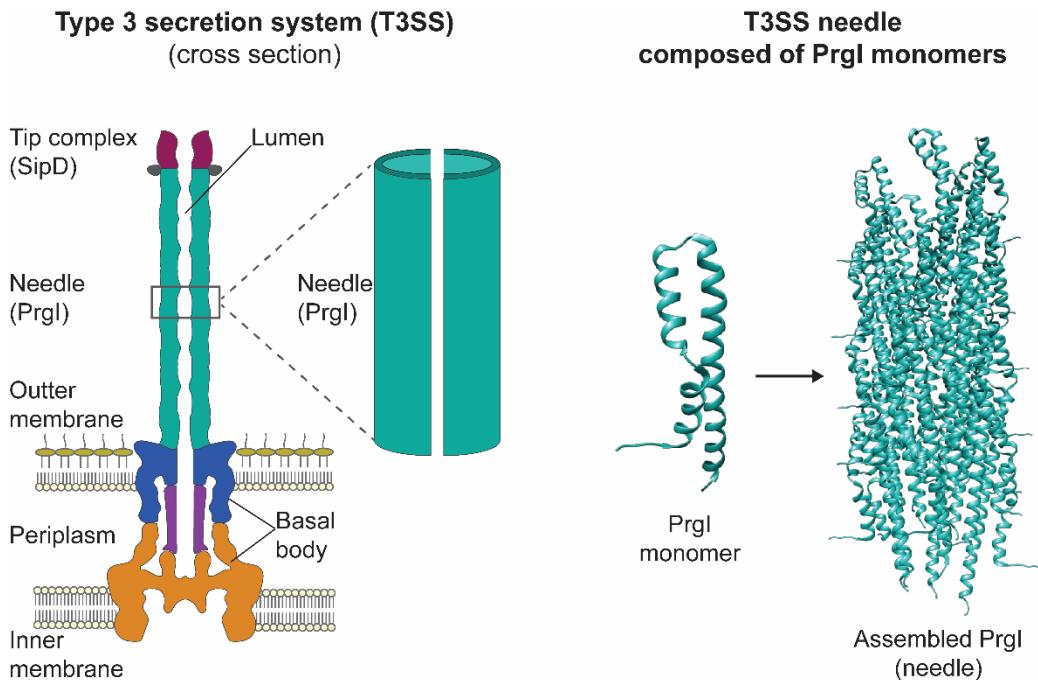
24 Abstract word count: 248

25 Importance word count: 135

26 Text word count: 4,974

27 **Abstract**

28 Protein production strategies in bacteria are often limited due to the need for cell lysis and
29 complicated purification schemes. To avoid these challenges, researchers have developed bacterial
30 strains capable of secreting heterologous protein products outside the cell, but secretion titers often
31 remain too low for commercial applicability. Improved understanding of the link between
32 secretion system structure and its secretory abilities can help overcome the barrier to engineering
33 higher secretion titers. Here we investigated this link with the PrgI protein, the monomer of the
34 secretory channel of the Type 3 Secretion System (T3SS) of *Salmonella enterica*. Despite detailed
35 knowledge of the PrgI needle's assembly and structure, little is known about how its structure
36 influences its secretory capabilities. To study this, we recently constructed a comprehensive codon
37 mutagenesis library of the PrgI protein utilizing a novel one pot recombineering approach. We
38 then screened this library for functional T3SS assembly and secretion titer by measuring the
39 secretion of alkaline phosphatase using a high-throughput activity assay. This allowed us to
40 construct a first-of-its-kind secretion fitness landscape (SFL) to characterize the PrgI needle's
41 mutability at each position as well as the mutations which lead to enhanced T3SS secretion. We
42 discovered new design rules for building a functional T3SS as well as identified hypersecreting
43 mutants. This work can be used to increase understanding of the T3SS's assembly and identify
44 further targets for engineering. This work also provides a blueprint for future efforts to engineer
45 other complex protein assemblies through the construction of fitness landscapes.


46 **Importance**

47 Protein secretion offers a simplified alternative method for protein purification from
48 bacterial hosts. However, the current state-of-the-art methods for protein secretion in bacteria are
49 still hindered by low yields relative to traditional protein purification strategies. Engineers are now
50 seeking strategies to enhance protein secretion titers from bacterial hosts, often through genetic
51 manipulations. In this study, we demonstrate that protein engineering strategies focused on altering
52 the secretion apparatus can be a fruitful avenue toward this goal. Specifically, this study focuses
53 on how changes to the PrgI needle protein from the type 3 secretion system from *Salmonella*
54 *enterica* can impact secretion titer. We demonstrate that this complex is amenable to
55 comprehensive mutagenesis studies and that this can yield both PrgI variants with increased
56 secretory capabilities and insight into the normal functioning of the type 3 secretion system.

57 **Introduction**

58 Bacteria are popular hosts for recombinant protein production because they are genetically
59 tractable, robust, and inexpensive to culture. Traditionally, bacterial protein expression methods
60 are intracellular, however, and downstream processing requires lysis and recovery of the protein
61 product from a biochemically similar milieu. Recovery of proteins expressed intracellularly in
62 bacteria is often further complicated by low soluble yields caused by host toxicity or accumulation
63 of the protein product in insoluble aggregates^{1,2}. Secreting the protein out of the cell has the
64 potential to alleviate these problems while retaining the benefits of bacterial protein production.
65 At least five types of bacterial secretion systems have been shown to secrete recombinant proteins
66 outside the cell, though commercial feasibility remains out of reach due to limitations on titer,
67 substrate compatibility, and efficiency^{3–6}.

68 The type 3 secretion system (T3SS) transports proteins directly from the cytoplasm to the
69 extracellular space and is thus a promising platform for protein secretion in bacteria. It is not
70 required for cellular viability, which allows it to be co-opted solely for heterologous protein
71 production. The T3SS is capable of secreting a wide variety of recombinant proteins^{7–9}. However,
72 the system remains unoptimized for secreting products at industrially viable titers, and the
73 engineering space remains largely unexplored. The structure of the T3SS is well-studied and plays
74 an integral part in its function (**Fig 1**). However, little is known about how the structure of the
75 T3SS influences its secretory capability. Learning how to manipulate the apparatus to improve
76 secretion efficiency for recombinant proteins is key to developing the T3SS as a platform for
77 protein production.

78

79 **Figure 1 – The type 3 secretion system needle is composed of assembled PrgI monomers.**
80 (Left) Schematic representation of the type 3 secretion system, which is a large protein complex
81 composed of a basal body that spans the inner and outer cell membranes as well as the periplasm¹⁰.
82 The needle (teal), composed of assembled PrgI monomers (right) that extend into the extracellular
83 space. The needle is capped by a tip complex composed of the SipD protein. Proteins are secreted
84 from the inside of the cell to the extracellular space through the lumen in the needle complex. PrgI
85 monomers are from the PDB structure 6dwb¹¹.

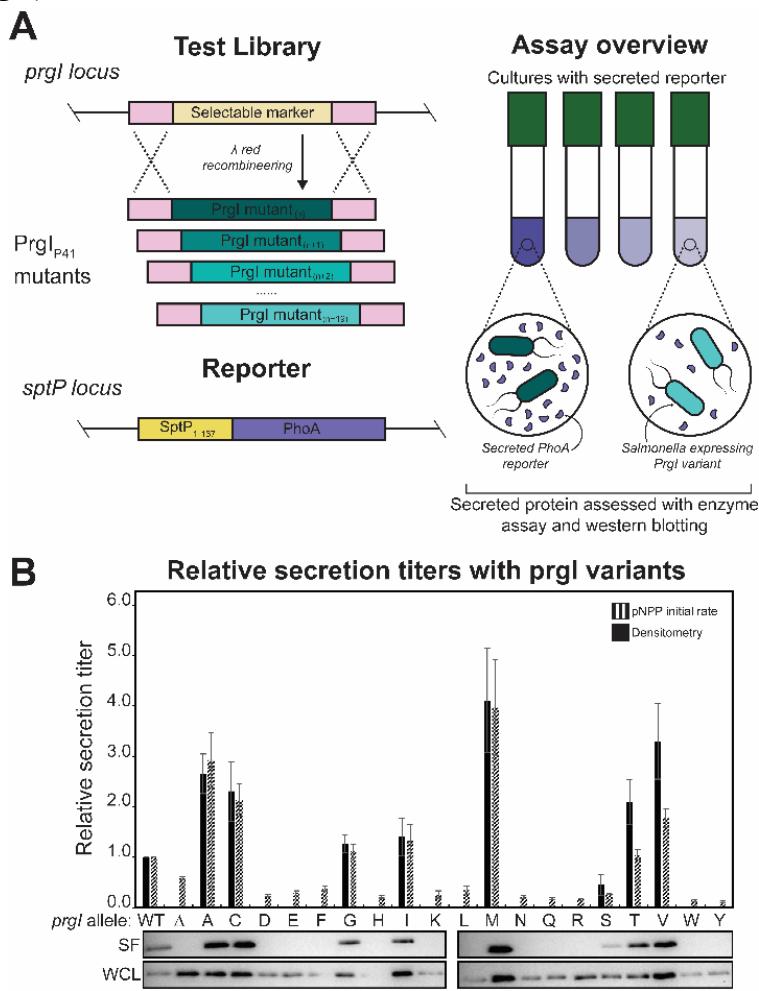
86

87 The T3SS is a large (3.5 MDa) protein complex that spans the inner and outer membranes
88 of the bacterial cell^{12,13} (Fig 1). A series of rings embedded in the inner and outer membranes
89 comprise the basal body (Fig 1). An oligomeric tunnel, rooted in the basal body and composed of
90 about a hundred copies of a single protein, PrgI, extends into the extracellular space (Fig 1). The
91 tunnel, or needle, is capped by a tip complex (Fig 1). A detailed mechanism of protein translocation
92 through the needle lumen remains unknown, but variations in the proteins that compose the T3SS
93 apparatus, including PrgI, affect its native secretion function^{14–17}.

94 We sought to probe an under-explored area: the impact of variations in T3SS apparatus
95 proteins on secretion. To do so, we chose to use deep mutational scanning and protein fitness
96 landscapes, which are powerful tools for defining protein structure-function relationships and
97 identifying candidates with improved characteristics¹⁸. This technique is frequently applied to
98 monomeric or small protein complexes with a direct functional output that is readily assayed.

99 Establishing a fitness landscape for self-assembling proteins can be more challenging, as any
100 functional screen or selection reports on both assembly and the functional output.

101 We used this combined output to our advantage, however, and adapted the recently
102 developed SyMAPS method¹⁹ to produce a “secretion fitness landscape” (SFL) of the *Salmonella*
103 *enterica* Typhimurium T3SS needle protein PrgI. Briefly, we created a first-of-its-kind
104 genomically-integrated comprehensive codon mutagenesis (CCM) library and ranked the library
105 members by secreted protein titer. Next generation sequencing of the ranked variants enabled
106 construction of an SFL. The SFL revealed design rules for a functional T3SS needle and provides
107 a blueprint for future engineering targets for increased secretion titer. Through this process, we
108 also were able to identify and confirm new hypersecreting variants. Beyond this immediate
109 application, the work provides a blueprint for the use of comprehensive library design and high-
110 throughput screening to characterize and engineer other multimeric protein structures, including
111 other T3SS proteins as well as the components of other secretion systems.


112 Results

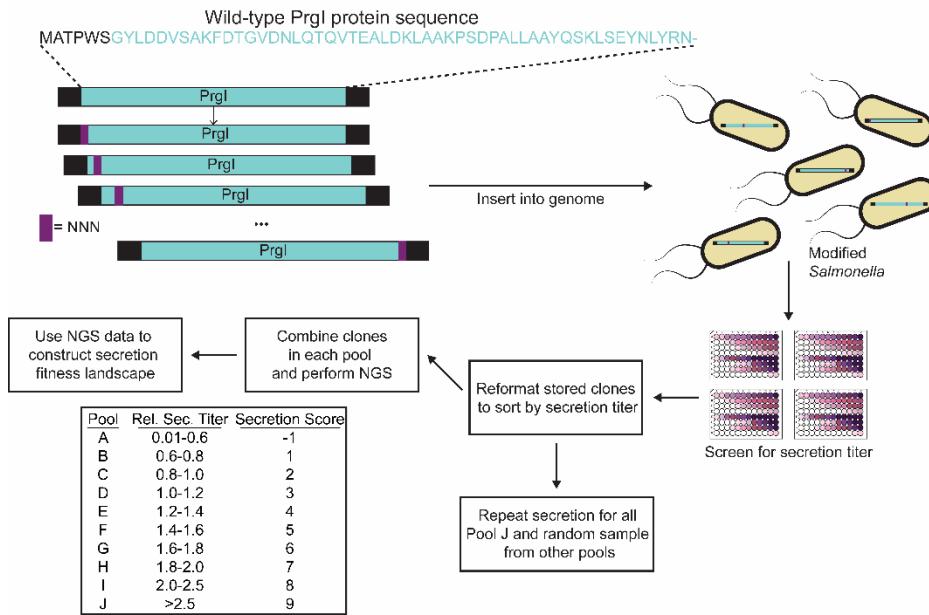
113 *Validating the construction and screening of a genomically-encoded PrgI variant library*

114 PrgI and several of its homologs have been analyzed through alanine scanning and targeted
115 substitution^{14,15,20,21}. Single amino acid changes produced variable secretion phenotypes, so we
116 hypothesized that a combined CCM and library screening approach could reveal hypersecreting
117 variants of PrgI. To accomplish this, we validated a genomic library construction and screening
118 strategy. SPI-1 T3SS assembly and activation is a tightly controlled, highly orchestrated
119 process^{12,22}, and SPI-1 genes have overlapping regulatory elements, particularly in the *prg* operon
120 where *prgI* is located^{23,24}. Thus, we sought to construct a genomically-encoded library to study
121 only the effect of structural changes in PrgI by maintaining the native regulatory structure and
122 induction cascade.

123 We chose to employ λ Red recombineering²⁵ to create the library because it enables
124 construction in a single step. To our knowledge, this technique has not been used in library
125 construction before we carried out this study, so we performed a pilot test by creating a saturation
126 mutagenesis library at only PrgI position 41 to validate both the library construction and screening
127 methods (**Fig 2A**). PrgI^{P41} was of interest because an alanine substitution at the homologous
128 position in MxiH, the needle protein for the *Shigella flexneri* T3SS injectosome, increased
129 secretion of native substrates¹⁵. The template strain for library construction contained a copy of

130 alkaline phosphatase fused to the T3SS secretion tag SptP integrated at the *sptP* locus, providing
131 a reporter for secretion titer through use of an enzyme activity assay (**Fig 2A**)²⁶. It also contained
132 selectable markers at the *prgI* locus, to be replaced by the *prgI* variants (**Fig 2A**). An equimolar
133 pool of all 20 fragments of the saturation mutagenesis library was introduced into this *sptP*::*sptP*^{I-167}-
134 *phoA* *prgI*::*catG-sacB* strain using a single λ Red recombineering event, and 68 of the resulting
135 clones were Sanger sequenced (**Fig 2A**). Of those 68 clones, 88% contained *prgI* alleles that
136 successfully replaced the *catG-sacB* cassette, and all variants were present except PrgI^{P41C}
137 (**Supplemental Fig 1**).

138 **Figure 2 – PrgI variants can be screened for activity.** (A) Schematic of the library generation
139 and screening methods for assessing PrgI variants. Genes encoding PrgI variants were cloned into
140 the *prgI* locus in a strain containing a SptP-tagged PhoA (alkaline phosphatase, “AP”) reporter at
141 the *sptP* locus. Variants were then assayed for enzyme activity as a proxy for secretion titer. (B)
142 SptP-AP-2xFLAG-6xHis was secreted from ASTE13 *sptP*::*sptP*^{I-167}-*phoA*-2xFLAG-6xHis
143 and the specified PrgI mutants in LB-L. “Δ” is ASTE13 *prgI*::*catG-sacB*. Relative secretion titer was
144 measured using densitometry from western blots and normalized to a PrgI^{WT} strain. Western blots


145 are representative of four biological replicates. Relative secretion titer was also measured by
146 averaging the slope of absorbance at 405 nm versus time for four biological replicates and
147 normalizing to PrgI^{WT} . Absorbance at 405 nm was recorded every 5 minutes for 16 hours on a
148 BioTek Synergy HTX plate reader at 37°C. Error bars represent standard error. Representative
149 western blots of the secreted fraction (SF) and the whole culture lysate (WCL) are shown below.
150

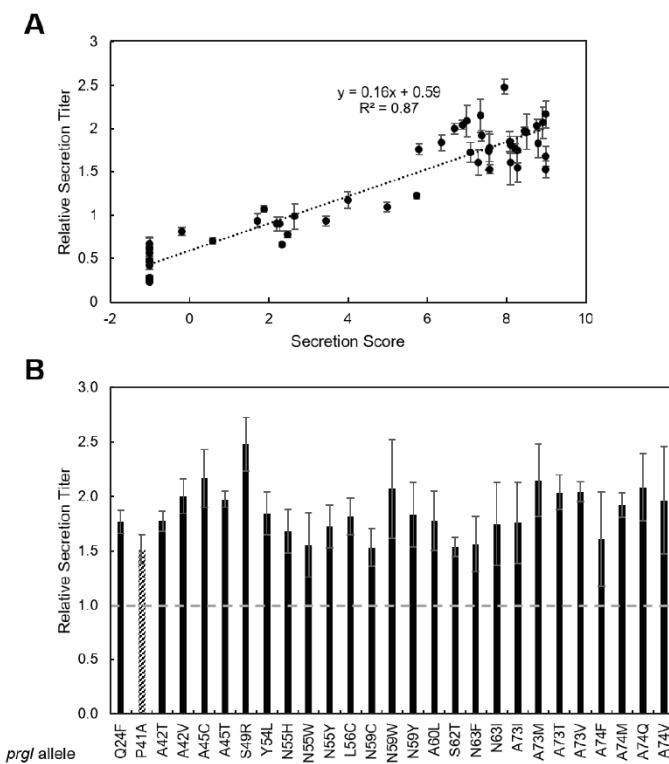
151 The PrgI^{P41} saturation mutagenesis library produced variable secretion titers, and several
152 variants increased secretion titer compared to wild-type PrgI (PrgI^{WT}) (**Fig 2B**). We used the initial
153 rate of secreted alkaline phosphatase activity as a proxy for secreted enzyme titer²⁷, and all variants
154 were normalized to PrgI^{WT} (**Fig 2**). Relative secretion titers as assessed by alkaline phosphatase
155 activity generally agreed with western blotting results (**Fig 2B**). The high rate of substitution at the
156 PrgI locus and the high coverage of the PrgI^{P41} library gave us confidence that we could construct
157 and screen a full PrgI library, and the variable secretion titers convinced us of the utility of such a
158 screen.

159 *Generating a secretion fitness landscape of PrgI*

160 With the genomically-encoded library construction and screening methods validated, we
161 constructed the full CCM library of PrgI . We created the library in a single λ Red recombineering
162 event using the $\text{sptP}::\text{sptP}^{l-167}\text{-phoA}$ $\text{prgI}::\text{catG-sacB}$ strain and an equimolar pool of synthetic,
163 double-stranded prgI gene fragments, each containing a single amino acid change (**Fig 3**). The
164 first and last six amino acids were not changed because they are essential for assembly^{15,20} and
165 wild-type (WT) residues were not present in the library. Because secretion titer is a phenotype
166 necessarily separate from genotype (the secreted protein is physically separated from the cell and
167 its associated genetic information), clones were screened individually in 96-well plates (**Fig 3**).
168 Glycerol stocks were maintained in the same array as the samples measured for secretion titer to
169 provide the link between genotype and secretion titer (**Fig 3**). We screened 4406 clones to capture
170 threefold the variant library size with a cushion for false positives from the recombineering
171 process. Secretion titer, as measured by the initial rate of secreted alkaline phosphatase activity,
172 was normalized to that of PrgI^{WT} to allow comparison across assay plates. The unscreened library
173 contained 99% of expected variants, and the screened clones captured 90% of the library. After
174 the initial screen, clones were re-arrayed according to relative secretion titer and sorted into ten
175 pools for high-throughput sequencing (**Fig 3**).

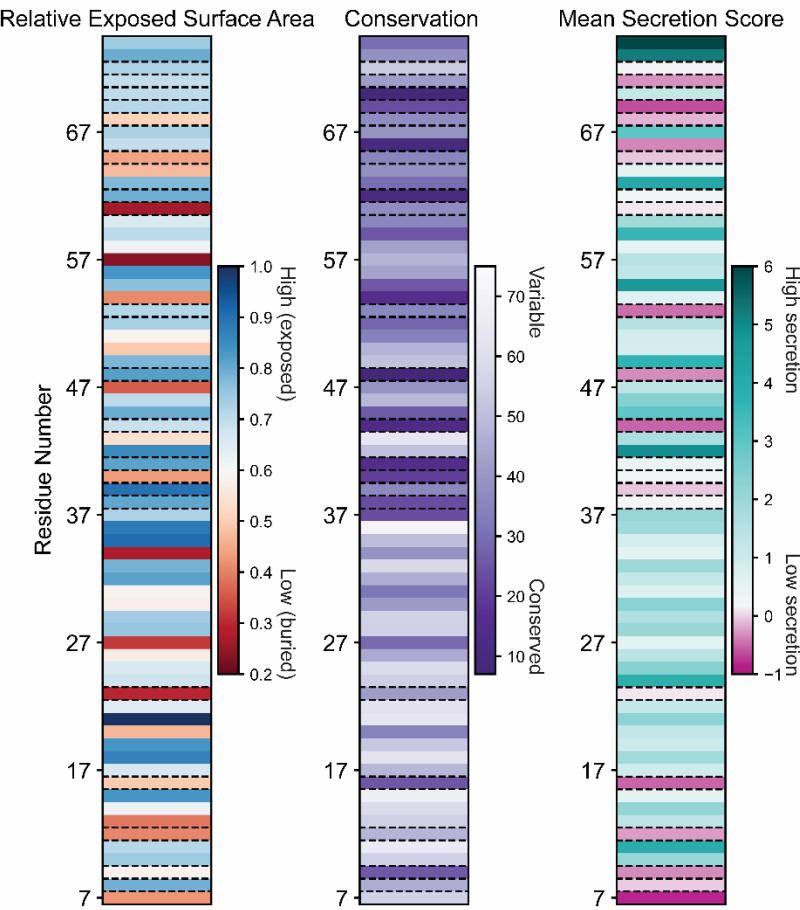
Workflow for generating and assessing *prgl* library

176 **Figure 3 – Workflow for PrgI library assembly, screening, and analysis.** Gene blocks coding
177 for a single amino acid change in PrgI were introduced to ASTE13 *sptP::sptP⁽¹⁻¹⁶⁷⁾-phoA-*
178 *2xFLAG-6xHis prgI::catsacB* as a mixture in a single recombineering event to create the library.
179 Individual colonies were inoculated for secretion and screened for alkaline phosphatase activity as
180 described in Methods. The randomly arrayed clones were sorted according to relative secretion
181 titer, combined into their assigned pools, and prepared for sequencing on an Illumina MiSeq.


Dividing clones into pools according to relative secretion titer allowed assignment of a “secretion score” to each variant (**Fig 3**). If variants appeared in multiple pools, a weighted-average secretion score was calculated using the relative abundance of the variant in each pool as weights. A window of likely pool appearances was defined by the alkaline phosphatase activity assay coefficient of variation (CV), and scores outside of that window were not included in the weighted average calculation (see **Supplementary Methods**). This scoring led to construction of a quantitative “secretion fitness landscape” (SFL) that reports on both functional substitutions and those that increased secretion titer (**Fig 4**). WT secretion levels are expected to fall within scores 2-5, variants with scores less than 1 are expected to be non-functional, and variants with scores above 7 are anticipated to confer secretion titers higher than PrgI^{WT}.

193 **Figure 4 – Weighted-average secretion scores for all single amino acid variants of PrgI.** The
 194 PrgI library was constructed and screened for relative secretion titer using the alkaline phosphatase
 195 (AP) activity assay. Variants were sorted into ten pools according to relative secretion titer and
 196 sequenced. If variants appeared in multiple pools, a weighted average secretion score was used.
 197 Wild-type residues not present in the library are indicated by hatches. Grey boxes denote variants
 198 that did not appear in any sequenced pools; i.e., those variants were not screened. Dark teal
 199 indicates higher secretion titer while dark pink indicates no secretion.

200
 201 *The SFL is experimentally validated and reflects known structural constraints*


202 The synthesized library did not contain WT residues or stop codons, nor was any amino
203 acid encoded with synonymous codons, so there were no controls within the SFL to assess validity
204 of the method internally. Instead, we validated the SFL experimentally. All clones from the highest
205 secreting pool (Pool J) and a random selection of 30 additional clones distributed across the
206 remaining pools (Pools A-I) were Sanger sequenced and re-evaluated individually in triplicate
207 using initial rate of secreted alkaline phosphatase activity as a proxy for secretion titer (Fig 5).
208 Secretion titer increased with secretion score ($R^2 = 0.87$), and all variants in Pool J showed
209 secretion titers at least 50% greater than PrgI^{WT} (Fig 5). Combined, these results confirm the ability
210 of the secretion score to predict general secretion behavior.

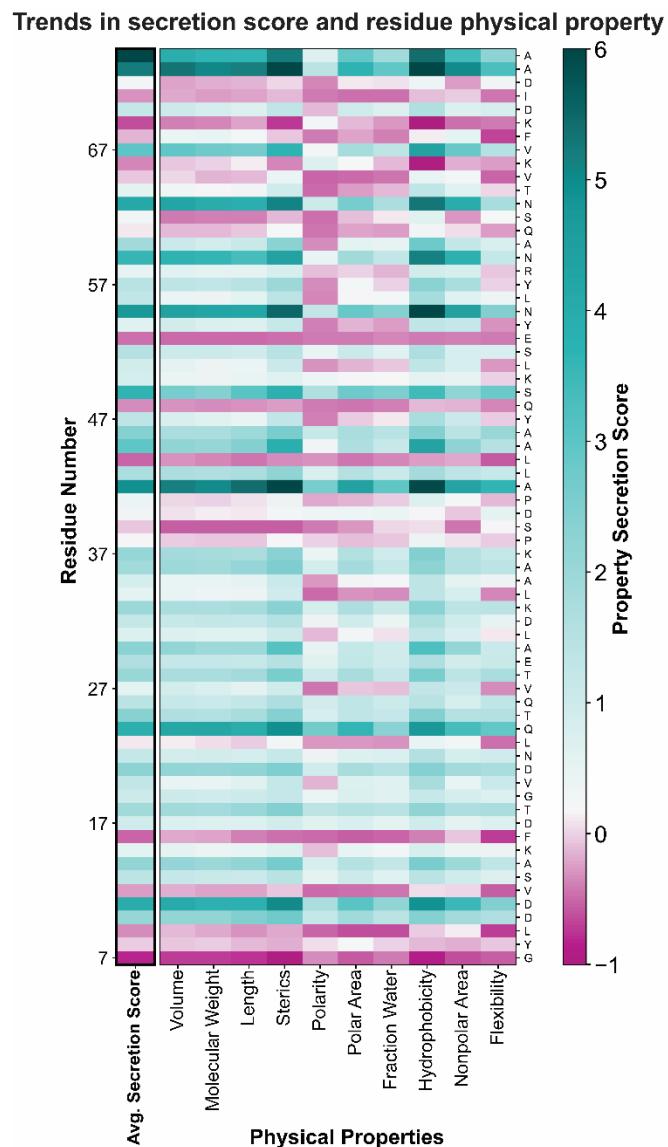
211 **Figure 5 – Weighted-average secretion scores predict relative secretion titer.** All clones from
212 the highest secreting pool and 30 random clones from the remaining pools were patched onto LB-
213 agar plates from the reformatted glycerol stocks sorted by pool (see supplementary methods for
214 details on reformatting). Patched colonies were inoculated for secretion titer measurement, which
215 followed the same workflow as library screening. Clones were Sanger sequenced, and the secretion
216 score was plotted against the newly measured secretion titer (A). Error bars represent standard
217 error of three biological replicates. Clones from the highest secreting pool were plotted separately
218 to highlight differences (B). WT-level secretion titer is indicated by a dotted line. $\text{PrgI}^{\text{P41A}}$ (stripes)
219 was included for comparison as the previous best secreting variant. Error bars represent one
220 standard deviation to allow direct comparison among variants.

221 The SFL can also be validated by examining poorly substituted residues in the context of
222 available structural information. To determine the overall mutability of each position in PrgI, an
223 average secretion score was calculated by averaging the secretion scores of all variants at each
224 position (**Fig 6, right**). **Table 1** lists all residues with an average secretion score < 0.5 i.e. most or
225 all variants were non-functional, making the position immutable. For each of these residues, we
226 calculated conservation and buried surface area (BSA) (**Table 1, Fig 6, left and middle**).
227 Conservation is a measure of how similar the amino acid sequence is between protein homologs
228 in different organisms. If a residue is highly conserved, it indicates that the position is likely crucial
229 in the function of the protein and cannot be mutated. We calculated conservation from all members
230 of Pfam group PF09392, which are T3SS needle homologs across enteric bacteria. BSA is a
231 measure of how accessible a residue is to solvent in the context of the protein complex. Residues
232 with a high BSA are likely crucial to the protein's structure and cannot be mutated without
233 affecting protein folding or structure. PDBePISA yielded BSA for each residue and each monomer
234 in PDB 6dwb²⁸, and BSA was averaged across all monomers and normalized to the averaged
235 accessible surface area per residue. For the poorly substituted residues listed in **Table 1**, most were
236 buried within the structure, conserved, or both (**Fig 6**), which suggests that the native amino acid
237 at those positions plays an important role in the needle structure. Indeed, recently solved structures
238 of the needle show that all residues in **Table 1** participate in inter- and intra-subunit interaction
239 networks that stabilize the needle filament or are essential for secretion activity^{17,29,30}.

Trends in secretion score, conservation, and BSA

240 **Figure 6 – Trends in secretion score, conservation, and buried surface area for PrgI variants.**
241 Relative exposed surface area of PrgI residues (high in blue, low in red) (left), relative conservation
242 of PrgI residues (conserved in purple, variable in white) (middle), and mean secretion score for
243 PrgI variants (high secretion in teal, low secretion in pink, WT secretion in white) (right).
244 Immutable residues are highlighted with dashed lines.
245

Native Residue	Normalized BSA	Conservation Score
G7	0.51	2.42
Y8	0.25	3.94
L9	0.55	7.16
V12	0.74	3.68
F16	0.98	7.24
L23	0.48	4.59
P38	0.56	7.55
S39	0.51	5.44
D40	0.37	7.98


P41	0.49	8.81
L44	0.45	9.12
Q48	0.51	10.00
E53	0.52	5.57
Q61	0.72	5.29
S62	0.53	9.48
V65	0.87	5.59
K66	0.28	9.62
F68	0.54	5.30
K69	0.25	7.52
I71	0.56	4.53
D72	0.48	2.72

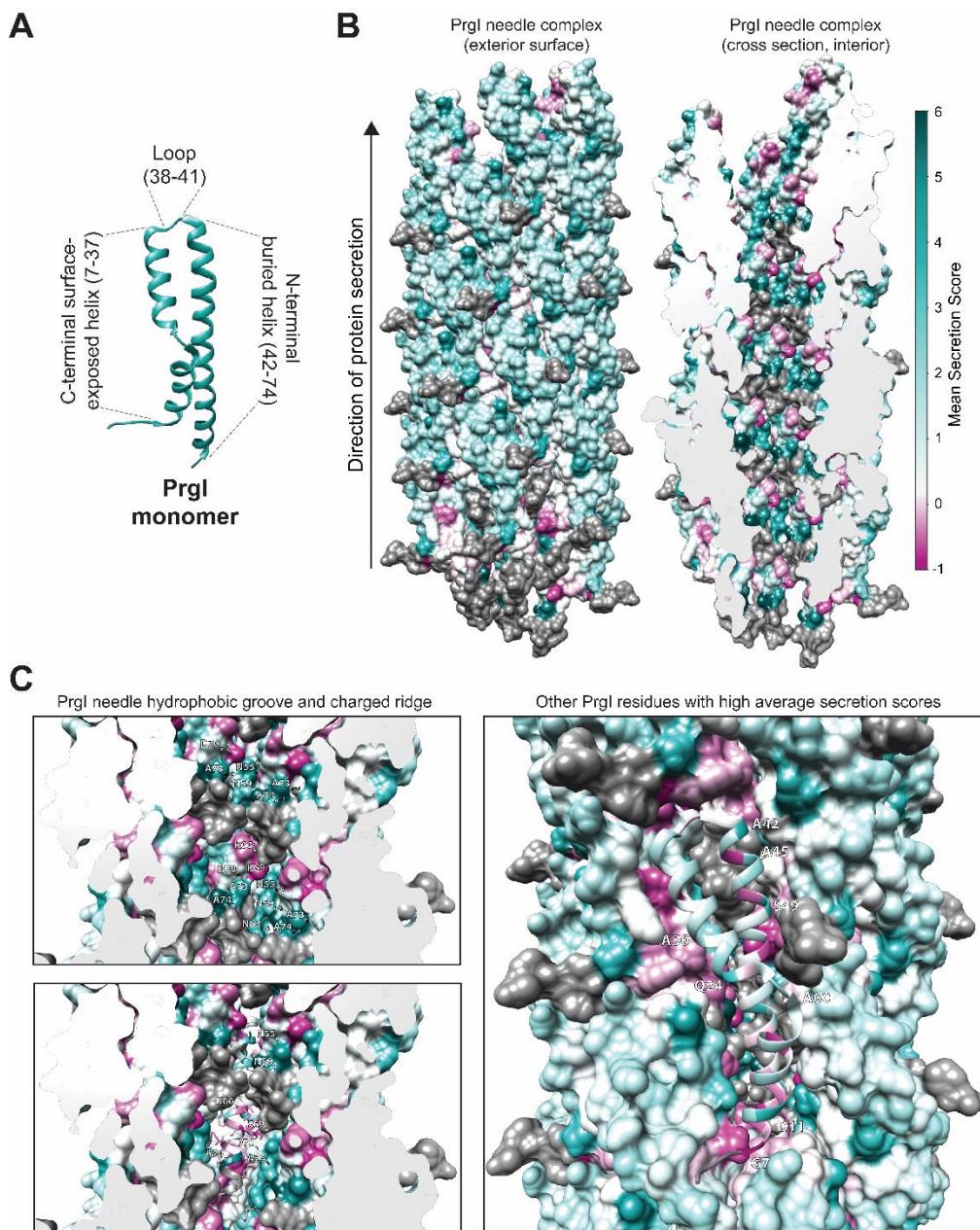
246 **Table 1 – BSA and conservation scores for poorly substituted residues.**

247

248 *Amino acid properties reveal substitution preferences*

249 Examining the preference for ten amino acid properties at each position condensed the SFL
250 and revealed substitution preferences (Fig 7). To do this, we grouped amino acids according to
251 particular properties including volume, molecular weight, length, steric hindrance, polarity, polar
252 area, fraction water, hydrophobicity, nonpolar area, and flexibility (Fig 7). We averaged the
253 secretion scores of these amino acid substitutions at each position to calculate a property secretion
254 score. Substitutions that increased secretion titer were often large and hydrophobic (Fig 7). The
255 residues that accepted few functional substitutions, i.e. those with low average secretion scores,
256 preferred no amino acid property (Fig 7). Many residues, especially in the N-terminal helix
257 (residues 7-37), had functional substitutions with all types of amino acids. In general, polar and
258 flexible amino acids were disfavored, often together in a repeating pattern throughout PrgI (see the
259 negative scores for polar substitutions at residues 23, 27, 31, etc). The native amino acids in this
260 pattern were hydrophobic except at positions R58 and T64.

261 **Figure 7 – Trends in amino acid property and secretion scores.** Amino acids were grouped by
262 the physical properties shown on the x-axis (bottom), and the secretion scores of each group at
263 each position were averaged to calculate a property secretion score. Low secretion is shown in
264 pink, high secretion is shown in teal, WT-like secretion is shown in white.


265

266 This preferential property patterning, tendency of hydrophobic residues to increase
267 secretion score, and the observation that buried and conserved residues were generally immutable
268 (Table 1, Fig 6) led us to hypothesize that conservation and BSA could serve as predictors of
269 mutational tolerance. Additionally, we hypothesized that patterns in mutability would correspond
270 to structural components of PrgI. To test this idea, we calculated conservation and BSA as before
271 for all residues. We clustered positions according to secretion score to better discern patterns in
272 the data. The clustering produced three groups that roughly corresponded to high, medium, and

273 low average secretion scores (**Supplemental Fig 2**). Importantly, residues that were both highly
274 conserved and buried had low mutational tolerance as expected, but that was the limit of the
275 predictive power of conservation and BSA on positional mutation tolerance. Residues with both
276 low BSA and low conservation allowed many functional substitutions, but few increased secretion
277 titer above PrgI^{WT} (**Supplemental Fig 2**). As expected from the prior observation of substitution
278 preferences by property, the highest secreting PrgI variants (cluster in the top left corner of
279 **Supplemental Fig 2**) were often large hydrophobic residues in the C-terminal helix.

280 *The SFL reveals structural substitution patterns*

281 PrgI is composed of two helices connected by a four-amino acid loop (**Fig 8A**). The N-
282 terminal helix is exposed to the exterior environment, while the C-terminal helix is packed into the
283 structure and forms the needle interior (**Fig 8A**). Mapping the average secretion score per residue
284 onto the needle structure confirmed a pattern suggested by the SFL and clustering (**Fig 4 and Fig**
285 **8**) — many substitutions were allowed in the N-terminal helix (**needle exterior, Fig 8B, left**), but
286 few increased secretion titer above PrgI^{WT}. Conversely, few substitutions were functional in the
287 C-terminal helix (**needle lumen, Fig 8B, right**), but functional substitutions frequently increased
288 secretion titer residues (**Fig 8B, dark teal substitutions**).

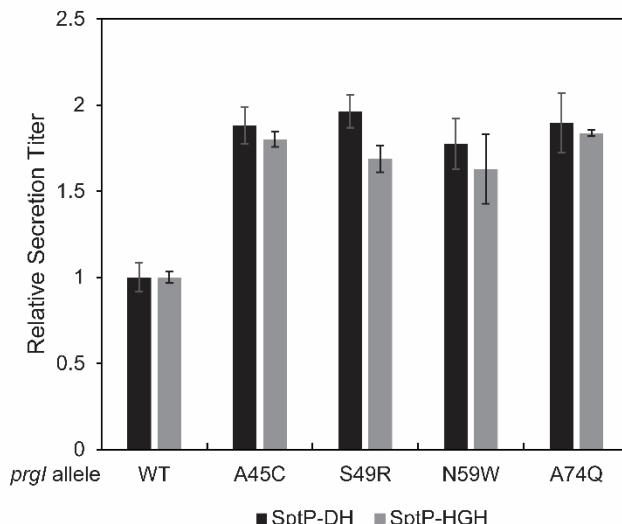
Figure 8 – Structural insights from secretion fitness landscapes. (A) The needle and monomer structures are PDB = 6DWB¹¹ from Chimera²⁸. The C-terminal helix comprises residues 7-37, the loop comprises residues 38-41, and the N-terminal helix comprises residues 42-74. (B) Interior and exterior residues show different patterns for secretion fitness. Secretion scores were averaged across all substitutions at each residue and mapped on to the PrgI needle structure. Dark grey denotes residues that were not modified in the library design. (C) Substitution with large hydrophobic amino acids increased secretion titer at residues that line the hydrophobic groove of the needle interior. The hydrophobic groove in the needle interior is composed of alternating N55, N59, A73, and A74 from the indicated chains. Residues L66, L69, Q77, and R80 form the charged, raised groove. Residue 70 contributes to the charged raised groove with its native aspartic acid but

299 also tolerated several amino acid substitutions. A ribbon colored by average secretion score shows
300 the predicted orientations of each amino acid.

301
302 The needle interior shows a stark substitution pattern, with alternating helical bands of
303 well-substituted and poorly substituted residues (**Fig 8B-C**). The band of poorly substituted
304 residues includes those C-terminal residues excluded from the library (**residues in grey, Fig 8**)
305 because they are essential for needle assembly^{15,20}. Models of the PrgI needle depict the needle
306 interior as a right-handed groove with alternating charged and hydrophobic residues forming the
307 edges and lumen of the groove, respectively³⁰ (**Fig 8C**). The raised, charged groove is highly
308 conserved across all species with a T3SS^{29,30}, so we were not surprised to discover that most
309 modifications at those residues disrupted secretion.

310 Poorly substituted residues also occurred at the interfaces between helices and adjacent
311 monomers (**Fig 8C**). A common theme of poorly substituted residues, aside from degree of burial
312 and conservation, was that the mutations that were tolerated were of similar character to the native
313 residue (**Fig 7**). This supports the hypothesis that these interfacial residues facilitate proper
314 structural arrangement and packing of each monomer within the needle structure.

315 Of the 63 variants with secretion scores greater than 7, 55 were in the C-terminal helix. We
316 were surprised to discover that half of those 55 favorable substitutions were present at residues 55,
317 59, 63, 73, and 74, which form or contact the hydrophobic groove in the needle lumen (**Fig 8C**).
318 The hydrophobic groove is fairly well-conserved (**Fig 6**), so it was surprising to find that many
319 mutations were not only tolerated but significantly increased secretion titer at these positions.
320 Further, the most favorable substitutions at those residues were larger and more hydrophobic
321 amino acids (**Fig 4, Fig 7**).


322 Well-substituted residues, or those with high average secretion scores, also included
323 positions 11, 24, 30, 42, 45, 49, and 60 (**Fig 8C**). Substitutions at residues 30, 45, 49, and 60 likely
324 change inter- or intra-monomer interactions, as those residues face neighboring chains (**Fig 8C**).
325 Residues 11, 24, and 42 face the needle exterior (**Fig 8C**), so the beneficial substitutions at those
326 residues must affect another aspect of T3SS assembly, solubility, or expression. Notably, residues
327 11 and 49 may be important for forming contacts with the tip protein SipD¹⁷.

328 *Beneficial mutations are additive with other secretion titer enhancements*

329 Secretion titer via the T3SS is maximized in an optimal growth medium with plasmid-
330 based expression of the secreted protein fused to the secretion tag SptP and overexpression of a

331 T3SS master regulator, *hilA*^{5,9}. Thus, we sought to evaluate whether the beneficial PrgI mutations
332 revealed by this study caused a general increase in secretion titer and were additive with those
333 existing strategies. We selected four top clones: A45C, S49R, N59W, and A74Q. N59W and A74Q
334 face the needle interior and have a different character than the native amino acid. A45C and S49R
335 likely affect inter-subunit interactions and/or interactions of PrgI with other T3SS components. In
336 combination with *hilA* overexpression and in an optimized medium, all four variants increased
337 secretion titer of two model proteins, the human domain of intersectin (DH) and recombinant
338 human growth hormone (HGH), at least 50% above PrgI^{WT}, indicating that the variants were
339 additive with the other improvements (Fig 9). There was no significant difference among the
340 variants, suggesting that a twofold increase in secretion titer was an upper limit for these variants
341 in combination with other enhancements of secretion titer.

PrgI variants improve titers of model proteins

342 **Figure 9 – High secreting PrgI variants enable increased secretion of model proteins.** The
343 WT strain along with four of the top secreting variants from the PrgI library were transformed with
344 the *hilA* overexpression plasmid and a plasmid expressing either SptP-DH or SptP-HGH. Each
345 strain was grown in an optimal growth medium. Secretion samples were collected after 8 hours,
346 and relative secretion titer was measured via semi-quantitative western blot. Error bars represent
347 the standard error of three biological replicates.

348

349 Discussion

350 Protein engineering relies on either building large libraries of randomly generated variants
351 or small libraries of rationally designed variants. However, as the cost of DNA synthesis and
352 sequencing has fallen, we are now able to construct CCM libraries, which encompass every
353 possible individual mutation across a protein sequence. These libraries combine the advantages of

354 the breadth in sequence space covered by a random mutagenesis library with the depth of a
355 rationally designed approach. While CCM has been applied to both individual proteins (e.g.
356 haloalkane dehalogenase³¹) and proteins which self-assemble into more complex structures (e.g.
357 the MS2 virus like particle¹⁹), it has been difficult to apply toward proteins involved in the structure
358 and function of living systems. One significant barrier has been the need to incorporate the library
359 into the genome to maintain the native expression and regulation of the gene. With this work, we
360 demonstrate that methods such as λ Red recombineering can be a scalable tactic for quickly
361 incorporating a CCM library directly into the genome. This opens the door to apply the deep
362 mutational scanning and protein fitness landscape framework to new cellular targets, including
363 other multimeric protein structures similar to secretion systems, and even proteins involved in
364 other cellular functions, like signaling or regulation.

365 One immediate advantage of the CCM approach is to engineer systems within living cells
366 to achieve a desired function. In this work, we discovered many variants with higher secretion
367 scores than PrgI^{WT} and four variants that conferred an ~50% increase in secretion titer above that
368 observed with PrgI^{WT}, even in the context of our optimal engineered system. In contrast, the
369 alanine scan of the *S. flexneri* T3SS PrgI homolog MxiH was only able to identify 7 variants with
370 enhanced secretion titer¹⁵.

371 The real power in the CCM approach is the information gleaned from the resulting fitness
372 landscapes. This information allows us to generate new hypotheses to deepen our understanding
373 of the protein structure/function relationship, which in turn can inspire new engineering
374 approaches to further our control of the system. In this work, we not only found single mutations
375 which increased secretion titer, but we were also able to analyze which positions were most tolerant
376 of mutations and what kind of amino acid substitutions were allowable to maintain function. These
377 granular data surpass what is possible through conservation studies of protein homologs, for
378 example. By connecting the SFL with the assembled PrgI structure, we discerned that many
379 favorable substitutions occurred in the C-terminal helix positions which make up the hydrophobic
380 groove in the needle lumen. These positions are highly conserved, so it was not obvious from
381 conservation alone that modifying the hydrophobic groove would not only be accepted but
382 substantially enhance secretion. Even more surprising was a preference for large hydrophobic
383 substitutions in high-secreting variants, a finding that would have been unlikely to be reached

384 using rational design methods. Future analysis of the SFL and the protein structure could further
385 our understanding of the T3SS's assembly and how proteins are secreted through the channel.

386 The secretion fitness landscape of PrgI does not provide a roadmap for mutations that
387 enhance native T3SS fitness. Rather, it might provide a roadmap for mutations that decrease native
388 T3SS fitness. The native secretion apparatus did not evolve to secrete a maximum amount of each
389 native substrate—secretion titers of native substrates via the T3SS are tightly controlled in its
390 native context^{32,33}. A recent alanine scan of PrgI revealed that mutations that increased secretion
391 of native effectors produced variable invasion levels of *S. enterica* Typhimurium into human
392 intestine epithelial cells, indicating that some mutations interrupted the native program of the
393 T3SS¹⁷. The high average secretion scores of cysteine and methionine underline this difference, as
394 the native PrgI lacks cysteine, methionine, histidine, and tryptophan.

395 Finally, this work highlights an underutilized approach toward engineering secretion
396 systems. Typically, efforts have focused on rewiring regulation to maximize expression of the
397 system⁵, modifying the secreted protein cargo to be secretable^{34,35}, and porting the machinery to
398 other organisms^{24,36}. Modifications to the structural proteins of the secretion system have mostly
399 been limited to targeted insertions or deletions^{16,37}. We have shown that even though they are
400 highly conserved, the engineering space for T3SS structural proteins is not limited. This work
401 provides a blueprint for engineering other T3SS proteins and proteins of other secretion systems
402 to further the goal of high titer, low cost of valuable heterologous proteins.

403 Materials and Methods

404 Strains and Growth Conditions for Secretion Experiments

405 Strains, plasmids, and primers used are listed in **Tables S1-S3**, respectively. Secretion
406 experiments were started by growing a single colony in the lysogeny broth Lennox formulation
407 (LB-L) (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl) with appropriate antibiotics (34 µg/mL
408 chloramphenicol for *PsicA* vectors, 50 µg/mL kanamycin for *PlacUV5 hilA*) for 12-16 hours overnight
409 in an orbital shaker at 37°C and 225 rpm unless otherwise specified. Overnight cultures were
410 diluted 1:100 into the appropriate medium supplemented with appropriate antibiotics and 100
411 µg/mL isopropyl β-D-1-thiogalactopyranoside (IPTG) if the strain carried *PlacUV5 hilA*. All
412 culturing steps were performed in 5 mL cultures in 24-well deepwell plates (Axygen) unless
413 otherwise specified. Secretion was performed at 37°C and 225 rpm in an orbital shaker for eight
414 hours unless otherwise specified. The secreted fraction was harvested by centrifuging cultures at

415 4000 x g for 10 minutes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
416 samples for the secretion fraction were prepared by adding supernatant to Laemmli buffer in a 3:1
417 ratio; SDS-PAGE samples for whole culture lysate were prepared by adding cell suspension to
418 Laemmli buffer in a 1:2 ratio. All SDS-PAGE samples were boiled at 95°C for 5 minutes
419 immediately after preparation.

420 *Protein Separation, Western Blotting, and Densitometry*

421 Samples were separated by SDS-PAGE and transferred to a polyvinylidene fluoride
422 membrane (PVDF, Millipore) for western blotting. If necessary, samples were further diluted in
423 1X Laemmli buffer such that all band signals were within twofold of the average signal across the
424 blot. Membranes were probed with mouse anti-FLAG per manufacturer's instructions (Sigma
425 Aldrich). A secondary labeling step was performed with goat anti-mouse IgG (H+L) HRP
426 conjugate according to manufacturer's instructions (Thermo Fisher) to facilitate chemiluminescent
427 detection. Bands were detected with the SuperSignal West Pico Plus or SuperSignal West Femto
428 (for the P41 mutants) substrates (Thermo Fisher) and a ChemiDoc XRS+ imaging system (Bio-
429 Rad).

430 All relative protein quantities from western blotting were calculated by performing
431 densitometry using ImageJ or Image Lab software (Bio-Rad) and normalizing to the average of
432 the replicates of the *PrgI*^{WT} samples. Relative protein amounts were corrected for dilution if
433 appropriate. Error bars are standard deviation on three biological replicates unless otherwise
434 specified (P41 mutant studies used four biological replicates).

435 *PCR and Cloning*

436 Primers used in this study are listed in **Table S3**. Polymerase chain reaction (PCR) was
437 performed with Phusion DNA polymerase for Quikchanges and constructing parts for
438 recombineering. Saturation mutagenesis at position 41 was performed by introducing mutations to
439 *prgI* carried on a *P_{lac}UV5*-inducible plasmid with a Quikchange protocol. Mutations were confirmed
440 by Sanger sequencing. Double-stranded DNA fragments for recombineering contained the
441 replacement gene(s) flanked 5' and 3' by 40 base pairs (bp) of homology to the genetic locus at
442 which the replacement gene(s) should be inserted. The 40 bp of homology was included in oligos
443 and attached via PCR using the primers listed in **Table S3**. The *catG-sacB* cassette was amplified
444 from the purified genome of *E. coli* TUC01, *PrgI* position 41 mutants were amplified from the
445 appropriate *P_{lac}UV5*-inducible plasmid, and *sptP-phoA-2xFLAG-6xHis* was amplified from a *P_{sicA}*

446 *sicP sptP-phoA-2xFLAG-6xHis* secretion plasmid. Colony PCR was performed by diluting a
447 colony in a 50 μ L PCR reaction containing the appropriate primers and amplifying with GoTaq
448 polymerase. Correct sequences were confirmed by Sanger sequencing.

449 *Strain Construction for Single Genomic Modifications*

450 Strain modifications were generated by λ Red recombineering as described by Thomason
451 *et al*²⁵. Briefly, a colony of ASTE13 carrying the pSIM6 plasmid was inoculated in LB-L with 30
452 μ g/mL carbenicillin and grown at 30°C and 225 rpm for 16-20 hours. The overnight culture was
453 diluted 1:70 into 35 mL of LB-L and grown at 30°C until OD₆₀₀ reach 0.4-0.6. The culture was
454 washed twice with 30 mL ice-cold sterile ddH₂O and centrifugation at 4600 x g for 3 minutes to
455 collect the cells. After the second wash, cells were resuspended in ~400 μ L of ice-cold sterile
456 ddH₂O. Aliquots of 50 μ L resuspended cells were mixed with 200 ng of the appropriate PCR
457 fragment and electroporated at 1800V for 5 milliseconds. A negative control containing no added
458 DNA was also electroporated. Cells were mixed with 950 μ L Super Optimal broth with Catabolite
459 repression (SOC) medium immediately after electroporation and either recovered at 30°C for an
460 hour for *cat-sacB* cassette introduction (first step of recombineering) or transferred to a test tube
461 containing 9 mL of LB-L and grown at 37°C, 225 rpm for four hours for *cat-sacB* removal and
462 replacement (second step of recombineering). Cells were diluted serially to 10⁻³ in sterile
463 phosphate buffered saline (PBS). 200 μ L of diluted cells was plated on 6% sucrose agar and grown
464 at 37°C overnight. The second step of recombineering for the Δ *invA* knockout replaced the *cat-*
465 *sacB* cassette by electroporating 1 μ L of a 10 μ M solution of a single 60 bp oligo containing the
466 first and last 30 bp of the *invA* gene.

467 *Library Construction*

468 A library of gene blocks carrying all possible amino acid substitutions was synthesized and
469 pooled by Twist Biosciences. Codons were fully randomized (“NNN”, meaning any nucleotide at
470 all three codon positions), but the library excluded wild-type residues and stop codons. Residues
471 1-6 and 76-80 were not modified. The lyophilized DNA from Twist Biosciences was reconstituted
472 in ultrafiltered water to a concentration of 200 ng/ μ L. Recombineering was performed with an
473 ASTE13 *sptP::sptP(I-167)-phoA-2xFLAG-6xHis prgI::cat-sacB* as described above with the
474 following modifications. 200 ng (4 μ L of a 50 ng/ μ L resuspended solution) of the library was
475 transformed into 100 μ L of recombination-competent cells via electroporation at 1800V and 5
476 milliseconds. A negative control containing no added DNA was also electroporated. Cells were

477 immediately mixed with 900 μ L SOC medium and transferred to a 14 mL disposable culture tube
478 (Fisherbrand) containing 2 mL of LB-L for a four-hour recovery at 37°C and 225 rpm.
479 Recombination efficiency was assessed by plating 200 μ L of cells diluted serially to 10⁻³ in sterile
480 PBS from both the library and the negative control on 6% sucrose agar and allowing colonies to
481 develop at room temperature for 24 hours. The remainder of the culture was mixed with 60%
482 glycerol in a 1:3 ratio and aliquoted into three cryovials for storage at -80°C. Before storage, 2 x
483 33 μ L aliquots of the glycerol mixture were diluted to facilitate plating single colonies for
484 screening. The first aliquot was diluted in 1.2 mL sterile PBS, and the second aliquot was diluted
485 in 1.2 mL PBS with 15% glycerol and frozen at -80°C. The 1.2 mL aliquot without glycerol was
486 further split into 3 x 400 μ L aliquots, and each was plated on a 15 cm agar plate with 6% sucrose
487 LB-agar. Colonies developed for 24 hours at room temperature.

488 *Library Screening*

489 Single colonies were inoculated in 0.5 mL LB-L in a 2 mL square 96-well deepwell plate
490 (Axygen) and grown overnight at 37°C, 350 rpm. ASTE13 *sptP::sptP(1-167)-phoA-2xFLAG-*
491 *6xHis*, ASTE13 *sptP::sptP(1-167)-phoA-2xFLAG-6xHis prgI::catG-sacB*, and ASTE13
492 *sptP::sptP(1-167)-phoA-2xFLAG-6xHis ΔinvA* were included in each deepwell plate as controls.
493 Overnight cultures were stored for analysis and high-throughput sequencing by diluting 180 μ L of
494 overnight culture with 60 μ L 60% glycerol in a sterile, round-bottom 96-well plate (Corning),
495 sealing the plate, and storing it at -80°C. To facilitate secretion, overnight cultures were diluted
496 1:100 into 0.5 mL Terrific Broth (TB) in a fresh 2 mL square 96-well deepwell plate and grown
497 for 8 hours at 37°C, 350 rpm. The secretion fraction was harvested by pelleting cells in the
498 deepwell plates at 4000 x g for 10 minutes, collecting 200 μ L of the supernatant, and storing it in
499 a sealed plate at 4°C.

500 *Alkaline Phosphatase Activity*

501 Alkaline phosphatase activity was measured by monitoring p-nitrophenol phosphate
502 (pNPP, Sigma) cleavage. A stock solution of 0.1 M pNPP prepared in 1 M Tris pH 8.0 was thawed
503 from -20°C and diluted to 0.01 M in 1 M Tris pH 8.0. 20 μ L of the secretion fraction was added
504 to 140 μ L of 1 M Tris pH 8.0, and 40 μ L of the 0.01 M pNPP solution was added to each well. AP
505 activity was measured on a BioTek Synergy HTX plate reader by monitoring absorbance at 405
506 nm at 37°C for one hour, taking measurements each minute.

507 *Sample Preparation for High Throughput Sequencing and Data Processing*

508 Detailed methods of sample preparation, high-throughput sequencing, and subsequent data
509 processing are available in the Supplemental Methods file.

510 **Acknowledgements**

511 The authors would like to thank many current and former members of the Tullman-Ercek
512 lab for making this study possible. Special thanks to Dr. Han Teng Wong, who did the initial
513 quality trimming of the high throughput sequencing reads. Many thanks to Dr. Kevin Metcalf and
514 Elias Valdivia for laying the groundwork for this project by developing the recombineering
515 protocol and mapping the MxiH mutations to PrgI. Thank you to Sara Fernandez Dunne and the
516 High Throughput Analysis Core at Northwestern for use of and support for the DigiLab HiGro
517 shakers and the Tecan Fluent used for library reformatting. We would also like to thank Dr. Emily
518 Hartman, Dr. Daniel Brauer, and Dr. Taylor Nichols for helpful discussions on processing and
519 visualizing the fitness landscape data.

520 The authors gratefully acknowledge funding for this work. SAL, LAB, and DTE were
521 supported in part by a National Science Foundation grant CBET-2043973 to DTE. LAB and NWK
522 received support in the form of National Science Foundation Graduate Research Fellowships. BCI
523 was supported in part by the National Institutes of Health Training Grant T32GM105538 through
524 Northwestern University's Chemistry of Life Processes Training Program. JSS was supported in
525 part by the National Institutes of Health Training Grant T32GM008449 through Northwestern
526 University's Biotechnology Training Program. DTE and JSS were supported in part through the
527 NSF Materials Research Science and Engineering Centers program (NSF DMR-2308691).

528 **References**

- 529 1. Derman, A. I., Prinz, W. A., Belin, D. & Beckwith, J. Mutations That Allow Disulfide Bond
- 530 Formation in the Cytoplasm of *Escherichia coli*. *Science* **262**, 1744–1747 (1993).
- 531 2. Dong, H., Nilsson, L. & Kurland, C. G. Gratuitous overexpression of genes in *Escherichia*
- 532 *coli* leads to growth inhibition and ribosome destruction. *J. Bacteriol.* **177**, 1497–1504
- 533 (1995).
- 534 3. Orozco-Hidalgo, M. T. *et al.* Engineering High-Yield Biopolymer Secretion Creates an
- 535 Extracellular Protein Matrix for Living Materials. *mSystems* **6**, 10.1128/msystems.00903-20
- 536 (2021).
- 537 4. Burdette, L. A., Leach, S. A., Wong, H. T. & Tullman-Ercek, D. Developing Gram-negative
- 538 bacteria for the secretion of heterologous proteins. *Microb. Cell Factories* **17**, 196 (2018).
- 539 5. Metcalf, K. J., Finnerty, C., Azam, A., Valdivia, E. & Tullman-Ercek, D. Using
- 540 transcriptional control to increase titer of secreted heterologous proteins by the type III
- 541 secretion system. *Appl. Environ. Microbiol.* AEM.01330-14 (2014)
- 542 doi:10.1128/AEM.01330-14.
- 543 6. Masi, M. & Wandersman, C. Multiple Signals Direct the Assembly and Function of a Type 1
- 544 Secretion System. *J. Bacteriol.* **192**, 3861–3869 (2010).
- 545 7. Guo, S., Alshamy, I., Hughes, K. T. & Chevance, F. F. V. Analysis of Factors That Affect
- 546 FlgM-Dependent Type III Secretion for Protein Purification with *Salmonella enterica*
- 547 Serovar Typhimurium. *J. Bacteriol.* **196**, 2333–2347 (2014).
- 548 8. Azam, A., Li, C., Metcalf, K. J. & Tullman-Ercek, D. Type III secretion as a generalizable
- 549 strategy for the production of full-length biopolymer-forming proteins. *Biotechnol. Bioeng.*
- 550 **113**, 2313–2320 (2016).

551 9. Burdette, L. A., Wong, H. T. & Tullman-Ercek, D. An optimized growth medium for
552 increased recombinant protein secretion titer via the type III secretion system. *Microb. Cell
553 Factories* **20**, 44 (2021).

554 10. Marlovits, T. C. *et al.* Structural Insights into the Assembly of the Type III Secretion Needle
555 Complex. *Science* **306**, 1040–1042 (2004).

556 11. Bank, R. P. D. RCSB PDB - 6DWB: Structure of the *Salmonella* SPI-1 type III secretion
557 injectisome needle filament. <https://www.rcsb.org/structure/6DWB>.

558 12. Büttner, D. Protein Export According to Schedule: Architecture, Assembly, and Regulation
559 of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria. *Microbiol. Mol.
560 Biol. Rev.* (2012) doi:10.1128/MMBR.05017-11.

561 13. Kubori, T. *et al.* Supramolecular Structure of the *Salmonella typhimurium* Type III Protein
562 Secretion System. *Science* **280**, 602–605 (1998).

563 14. Davis, A. J. & Mecsas, J. Mutations in the *Yersinia pseudotuberculosis* Type III Secretion
564 System Needle Protein, YscF, That Specifically Abrogate Effector Translocation into Host
565 Cells. *J. Bacteriol.* **189**, 83–97 (2007).

566 15. Kenjale, R. *et al.* The needle component of the type III secreton of *Shigella* regulates the
567 activity of the secretion apparatus. *J. Biol. Chem.* **280**, 42929–42937 (2005).

568 16. Glasgow, A. A., Wong, H. T. & Tullman-Ercek, D. A Secretion-Amplification Role for
569 *Salmonella enterica* Translocon Protein SipD. *ACS Synth. Biol.* **6**, 1006–1015 (2017).

570 17. Guo, E. Z. *et al.* A polymorphic helix of a *Salmonella* needle protein relays signals defining
571 distinct steps in type III secretion. *PLOS Biol.* **17**, e3000351 (2019).

572 18. Siloto, R. M. P. & Weselake, R. J. Site saturation mutagenesis: Methods and applications in
573 protein engineering. *Biocatal. Agric. Biotechnol.* **1**, 181–189 (2012).

574 19. Hartman, E. C. *et al.* Quantitative characterization of all single amino acid variants of a viral
575 capsid-based drug delivery vehicle. *Nat. Commun.* **9**, 1385 (2018).

576 20. Darboe, N., Kenjale, R., Picking, W. L., Picking, W. D. & Middaugh, C. R. Physical
577 characterization of MxiH and PrgI, the needle component of the type III secretion apparatus
578 from *Shigella* and *Salmonella*. *Protein Sci. Publ. Protein Soc.* **15**, 543–552 (2006).

579 21. Metcalf, K. J. *Engineering Heterologous Protein Secretion for Improved Production*.
580 (University of California, Berkeley, 2016).

581 22. Chatterjee, S., Chaudhury, S., McShan, A. C., Kaur, K. & De Guzman, R. N. Structure and
582 biophysics of Type III secretion in bacteria. *Biochemistry* (2013) doi:10.1021/bi400160a.

583 23. Kimbrough, T. G. & Miller, S. I. Contribution of *Salmonella typhimurium* type III secretion
584 components to needle complex formation. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 11008–11013
585 (2000).

586 24. Song, M. *et al.* Control of type III protein secretion using a minimal genetic system. *Nat.*
587 *Commun.* **8**, 14737 (2017).

588 25. Thomason, L. *et al.* Recombineering: Genetic Engineering in Bacteria Using Homologous
589 Recombination. in *Current Protocols in Molecular Biology* (John Wiley & Sons, Inc., 2001).

590 26. Widmaier, D. M. *et al.* Engineering the *Salmonella* type III secretion system to export spider
591 silk monomers. *Mol. Syst. Biol.* **5**, 309 (2009).

592 27. Metcalf, K. J. *et al.* Proteins adopt functionally active conformations after type III secretion.
593 *Microb. Cell Factories* **15**, 213 (2016).

594 28. Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
595 analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

596 29. Loquet, A. *et al.* Atomic model of the type III secretion system needle. *Nature* (2012)

597 doi:10.1038/nature11079.

598 30. Hu, J. *et al.* Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and

599 open secretin. *Nat. Commun.* **9**, 3840 (2018).

600 31. Gray, K. A. *et al.* Rapid Evolution of Reversible Denaturation and Elevated Melting

601 Temperature in a Microbial Haloalkane Dehalogenase. *Adv. Synth. Catal.* **343**, 607–617

602 (2001).

603 32. Schlumberger, M. C. *et al.* Real-time imaging of type III secretion: *Salmonella* SipA

604 injection into host cells. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 12548–12553 (2005).

605 33. Galán, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial Type III Secretion

606 Systems: Specialized Nanomachines for Protein Delivery into Target Cells. *Annu. Rev.*

607 *Microbiol.* **68**, 415–438 (2014).

608 34. Bakkes, P. J., Jenewein, S., Smits, S. H. J., Holland, I. B. & Schmitt, L. The Rate of Folding

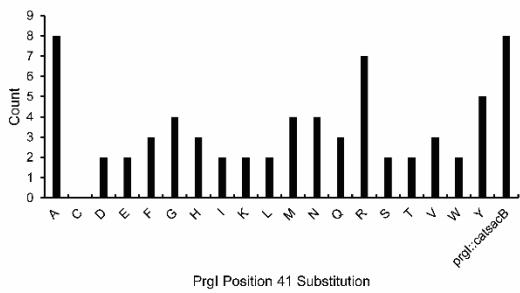
609 Dictates Substrate Secretion by the *Escherichia coli* Hemolysin Type 1 Secretion System. *J.*

610 *Biol. Chem.* **285**, 40573–40580 (2010).

611 35. Schwarz, C. K. W., Landsberg, C. D., Lenders, M. H. H., Smits, S. H. J. & Schmitt, L. Using

612 an *E. coli* Type 1 secretion system to secrete the mammalian, intracellular protein IFABP in

613 its active form. *J. Biotechnol.* **159**, 155–161 (2012).


614 36. González-Prieto, C. & Lesser, C. F. Rationale redesign of type III secretion systems: toward

615 the development of non-pathogenic *E. coli* for in vivo delivery of therapeutic payloads. *Curr.*

616 *Opin. Microbiol.* **41**, 1–7 (2018).

617 37. Rüssmann, H., Kubori, T., Sauer, J. & Galán, J. E. Molecular and functional analysis of the
618 type III secretion signal of the *Salmonella enterica* InvJ protein. *Mol. Microbiol.* **46**, 769–779
619 (2002).
620
621

622 **Supplementary Data**

623

624 **Supplementary Figure 1 – Recombineering results for the PrgI^{P41} library.** An equimolar pool
625 of all 20 fragments of the saturation mutagenesis library was introduced into an *sptP::sptP^{I-167}*-
626 *phoA prgI::catG-sacB* strain using a single λ Red recombineering event, and 68 of the resulting
627 clones were Sanger sequenced. On the left is the count of each PrgI allele in the 68 clones. On the
628 right are the results of conducting 5 separate recombineering events to produce individual PrgI
629 alleles.

630

631
632 **Supplementary Figure 2 – Clustering patterns of the PrgI SFL.** Structural elements tended to
633 cluster together (left), with the N-terminal helix being generally mutationally tolerant but not
634 producing many high secreting variants. The highest secreting variants (top left cluster, dark blue)
635 were surprisingly located in the interior N-terminal helix and were often large hydrophobic
636 residues. Trends in the ability of BSA and conservation to predict secretion score are shown on
637 the right.
638

639 **Supplementary Methods**

640 *Sample preparation for high-throughput sequencing*

641 The randomly arrayed glycerol stocks were inoculated in identical arrangements in fresh
642 media in sterile, flat-bottom 96-well plates using a Tecan Fluent and grown with lids in DigiLab
643 HiGro shaking stacks at 37°C, 200 rpm for 18 hours. Each clone was assigned a pool according to
644 its relative secretion titer. A Tecan Fluent was used to reformat clones and sort them into their
645 assigned pools. A VBA macro assigned pools according to relative secretion titer and assigned
646 clones to a new plate and well ID to provide instructions for the Tecan Fluent. 150 µL of the fresh
647 cell suspension was mixed with 50 µL 60% glycerol in a fresh sterile, round-bottom 96-well plate
648 (Corning). The Tecan Fluent failed after sorting pools F-J, so the remainder were done by hand
649 over the course of a week. Each well of the newly sorted glycerol stocks was sampled and pooled
650 according to **Table S4** for genomic DNA purification. Genomic DNA was purified from 1 mL of
651 each pool and 0.5 mL of the naïve library using the GenElute Bacterial Genomic DNA kit (Sigma).

652 PCR for library preparation was conducted with Phusion polymerase. The purified
653 genomes from the pool mixtures were amplified using the “Round 1” reaction recipe (**Table S5**)
654 and cycling conditions (**Table S6**) with primers oLAB278 and oLAB279 (**Table S3**) to attach
655 Illumina Nextera XT adapters. Reactions were purified using the Promega Wizard SV PCR
656 cleanup kit. For each pool, 8 x 25 µL reactions were performed and pooled after PCR cleanup to
657 minimize jackpot effects. A second round of PCR attached Nextera XT barcodes according to
658 **Table S4** using the “Round 2” reaction recipe and cycling conditions in **Table S5** and **Table S6**
659 with the pooled Round 1 reactions as templates.

660

661 *High-Throughput Sequencing Data Processing*

662 The code for data processing using the Linux command-line interface (bash) is given
663 following each explanation. Data were trimmed using Trimmomatic[1] with a 2-unit sliding
664 quality window of 30 and a minimum length of 30. Sequences were cropped to 243 bp.

665

666 `java -jar trimmomatic-0.36.jar SE input_forward-HTS001.fastq.gz HTS001_trimmed`
667 `SLIDINGWINDOW:2:30 MINLEN:30 CROP:243`

668

669 Reads were then aligned to the wild-type PrgI reference gene with Burrows–Wheeler Aligner
670 (BWA-MEM)[2] and piped into Samtools[3] to convert to a bam file.

671
672 *bwa mem -p Reference/ref.fasta HTS001_trimmed.fastq | samtools view -bT Reference/ref.fasta -*
673 *o HTS001.bam*

674
675 Reads that fully mapped to PrgI were kept for further analysis.

676
677 *samtools view HTS001.bam | grep “243M” | sort | less -S>HTS001.txt*
678
679 The trimmed reads were further processed to generate a secretion fitness landscape using code
680 written in-house (see below for details).

681 Secretion Titer Score Definitions

682
683 m : one of the 20 canonical amino acids.
684
685 P_i : pool of screened clones sorted by secretion titer relative to PrgI^{WT}. Nonfunctional
686 clones are in pool A , and pools $B - J$ contain functional clones with relative secretion
687 titer increasing from B to J .

$$P = [A, B, C, D, E, F, G, H, I, J]$$

688
689
690 s_{P_i} : a secretion titer score assigned to each pool P_i .
691 $s_P = [-1, 1, 2, 3, 4, 5, 6, 7, 8, 9]$
692

693 $A_{P_i, p, m}$: an abundance score in pool P_i , indexed by position p and mutation m .
694
695 $B_{P_i, p, m}$: a binary array recording presence (“1”) or absence (“0”) of a mutation m at
696 position p in pool P_i .
697
698 $PA_{P_i, p, m}$: a percent abundance score for each mutation m at position p in pool P_i .
699

700 $S_{P_i, p, m}$: a secretion titer score for each mutation m at position p in pool P_i .
701
702 $SS_{p, m}$: an array of secretion titer scores for mutation m at position p .
703
704 $PAW_{p, m}$: an array of percent abundances for mutation m at position p .
705
706 $w_{p, m}$: an array of weighted percent abundances for mutation m at position p .
707
708 $WS_{p, m}$: a weighted average secretion titer score for each mutation m at position p in
709 pool P_i .
710
711 $\overline{WS_p}$: average secretion titer score per residue
712
713 Secretion Titer Score Calculations
714
715 Sequences were trimmed and aligned using code written in-house. Following the data processing
716 described above, a text file was produced containing one sequencing read per line. The text file
717 was read into Python, and only lines starting with “ATG” and ending with “TAA” were kept.
718
719 A second quality control step was implemented in Python: sequences with read counts < 20 ,
720 sequences that matched the wild-type PrgI sequence, and sequences that contained more than one
721 mutation were discarded.
722
723 Sequences that survived the more stringent quality control step were translated, and two matrices
724 were populated: an abundance array A with read counts for each mutation at each position, and a
725 binary array B containing a “1” for a mutation present at a position and a “0” for a mutation not
726 present at a position.
727
728 Percent abundance for each mutation at each position was generated by dividing by the total
729 number of read counts:
730

731

$$PA_{P_i,p,m} = \frac{A_{P_i,p,m}}{\sum A_{P_i,p,m}}$$

732

733 A secretion titer score was assigned for $B_{P_i,p,m} = 1$ to generate a new matrix for each pool with
734 the appropriate secretion titer score at mutations that were present in that pool:

735

736

$$S_{P_i,p,m} = B_{P_i,p,m} * S_{P_i}$$

737

738 A weighted average secretion score was calculated using $PA_{P_i,p,m}$ to compensate for the
739 appearance of mutations in multiple pools. Secretion titer scores and percent abundances from all
740 pools were collected into arrays for each mutation m at position p :

741

742

$$SS_{p,m_i} = S_{P_i,p,m}$$

743

$$PAW_{p,m_i} = PA_{P_i,p,m}$$

744

745 An array of weights was generated from the percent abundances and multiplied by the list of
746 secretion scores to calculate a weighted average secretion titer score:

747

748

$$w_{p,m_i} = \frac{PAW_{p,m_i}}{\sum PAW_{p,m_i}}$$

749

$$WS_{p,m} = SS_{p,m} \cdot w_{p,m}^T$$

750

751 $WS_{p,m}$ is plotted in **Fig 4**. The average secretion score per residue was calculated by averaging
752 $WS_{p,m}$ for each p , ignoring missing values:

753

754

$$\overline{WS_p} = \frac{\sum WS_{p,m}}{19 - \sum(\# NaN)_p}$$

755

756 **Supplementary Tables**

Strain	Genotype	Reference
ASTE13	LT2-derived lab strain similar to DW01	This study; DW01 [4]
ASTE13 $\Delta prgI$	$\Delta prgI$	[5]
ASTE13 $prgI::catsacB$	$prgI::catsacB$	[6]
DTE509	ASTE13 $prgI::prgI^{L9A}$	[6]
DTE510	ASTE13 $prgI::prgI^{Q48A}$	[6]
DTE511	ASTE13 $prgI::prgI^{Y54A}$	[6]
DTE512	ASTE13 $prgI::prgI^{D70A}$	[6]
DTE513	ASTE13 $prgI::prgI^{P41A}$	[6]
DTE514	ASTE13 $prgI::prgI^{P41C}$	This study
DTE515	ASTE13 $prgI::prgI^{P41D}$	This study
DTE516	ASTE13 $prgI::prgI^{P41E}$	This study
DTE517	ASTE13 $prgI::prgI^{P41F}$	This study
DTE518	ASTE13 $prgI::prgI^{P41G}$	This study
DTE519	ASTE13 $prgI::prgI^{P41H}$	This study
DTE520	ASTE13 $prgI::prgI^{P41I}$	This study
DTE521	ASTE13 $prgI::prgI^{P41K}$	This study
DTE522	ASTE13 $prgI::prgI^{P41L}$	This study
DTE523	ASTE13 $prgI::prgI^{P41M}$	This study
DTE524	ASTE13 $prgI::prgI^{P41N}$	This study
DTE525	ASTE13 $prgI::prgI^{P41Q}$	This study
DTE526	ASTE13 $prgI::prgI^{P41R}$	This study
DTE527	ASTE13 $prgI::prgI^{P41S}$	This study
DTE528	ASTE13 $prgI::prgI^{P41T}$	This study
DTE529	ASTE13 $prgI::prgI^{P41V}$	This study
DTE530	ASTE13 $prgI::prgI^{P41W}$	This study
DTE531	ASTE13 $prgI::prgI^{P41Y}$	This study
sLAB190	ASTE13 $sptP::sptP^{(l-167)}-phoA-2xFLAG-6xHis$	This study
sLAB191	ASTE13 $sptP::sptP^{(l-167)}-phoA-2xFLAG-6xHis prgI::catsacB$	This study
sLAB192	ASTE13 $sptP::sptP^{(l-167)}-phoA-2xFLAG-6xHis prgI::prgIP41A$	This study
sLAB193	ASTE13 $sptP::sptP^{(l-167)}-phoA-2xFLAG-6xHis prgI::prgIP41C$	This study
sLAB194	ASTE13 $sptP::sptP^{(l-167)}-phoA-2xFLAG-6xHis prgI::prgIP41M$	This study
sLAB195	ASTE13 $sptP::sptP^{(l-167)}-phoA-2xFLAG-6xHis prgI::prgIP41T$	This study
sLAB196	ASTE13 $sptP::sptP^{(l-167)}-phoA-2xFLAG-6xHis prgI::prgIP41V$	This study
sLAB203	ASTE13 $sptP::sptP^{(l-167)}-phoA-2xFLAG-6xHis prgI::prgIP41D$	This study

Strain	Genotype	Reference
sLAB204	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IE}</i>	This study
sLAB205	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IF}</i>	This study
sLAB206	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IG}</i>	This study
sLAB207	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IH}</i>	This study
sLAB208	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4II}</i>	This study
sLAB209	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IK}</i>	This study
sLAB210	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IL}</i>	This study
sLAB211	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IN}</i>	This study
sLAB212	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IQ}</i>	This study
sLAB213	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IR}</i>	This study
sLAB214	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IS}</i>	This study
sLAB215	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IW}</i>	This study
sLAB216	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis prgI::prgIP^{4IY}</i>	This study
sLAB305	ASTE13 <i>sptP::sptP^{I-167}-phoA-2xFLAG-6xHis ΔinvA</i>	This study

757

Table S1 – Strains used in this study.

758

Plasmid Name	ORFs under inducible control	ORI	ab ^R	Reference	
P _{sic} DH	<i>sicP</i>	<i>sptP-DH-2xFLAG-6xHis</i>	colE1	cam	[5]
P _{sic} AP	<i>sicP</i>	<i>sptP-phoA-2xFLAG-6xHis</i>	colE1	cam	[7]
P _{lacUV5} <i>hilA</i>	<i>hilA</i>	p15a	kan	[5]	
<i>pSIM6</i>	<i>gam, beta, exo</i>	pSC101	cb	[8]	
P _{lacUV5} <i>P41A</i>	<i>prgIP^{41A}</i>	colE1	kan	[6]	
P _{lacUV5} <i>P41C</i>	<i>prgIP^{41C}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41D</i>	<i>prgIP^{41D}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41E</i>	<i>prgIP^{41E}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41F</i>	<i>prgIP^{41F}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41G</i>	<i>prgIP^{41G}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41H</i>	<i>prgIP^{41H}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41I</i>	<i>prgIP^{41I}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41K</i>	<i>prgIP^{41K}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41L</i>	<i>prgIP^{41L}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41M</i>	<i>prgIP^{41M}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41N</i>	<i>prgIP^{41N}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41Q</i>	<i>prgIP^{41Q}</i>	colE1	kan	This study	
P _{lacUV5} <i>P41R</i>	<i>prgIP^{41R}</i>	colE1	kan	This study	

Plasmid Name	ORFs under inducible control	ORI	ab ^R	Reference
P _{lacUV5} P41S	prgI ^{P41S}	colE1	kan	This study
P _{lacUV5} P41T	prgI ^{P41T}	colE1	kan	This study
P _{lacUV5} P41V	prgI ^{P41V}	colE1	kan	This study
P _{lacUV5} P41W	prgI ^{P41W}	colE1	kan	This study
P _{lacUV5} P41Y	prgI ^{P41Y}	colE1	kan	This study

759 **Table S2 – Plasmids used in this study.**

760

Sequence	Amplicon	Used to Construct
GCAGCAAAACCCTCCGATTGTGCGCTAC TGGCGCGTATC	prgI ^{P41C} QC	P _{lacUV5} P41C
GATACGCCGCCAGTAGCGCACAAATCGG AGGGTTTGCTGC	prgI ^{P41C} QC	P _{lacUV5} P41C
GCAGCAAAACCCTCCGATGATCGCTACT GGCGCGTATC	prgI ^{P41D} QC	P _{lacUV5} P41D
GATACGCCGCCAGTAGCGCATCATCGG AGGGTTTGCTGC	prgI ^{P41D} QC	P _{lacUV5} P41D
GCAGCAAAACCCTCCGATGAAGCGCTA CTGGCGCGTATC	prgI ^{P41E} QC	P _{lacUV5} P41E
GATACGCCGCCAGTAGCGCTTCATCGGA GGGTTTGCTGC	prgI ^{P41E} QC	P _{lacUV5} P41E
CAAAACCCTCCGATTTGCGCTACTGGC GGCG	prgI ^{P41F} QC	P _{lacUV5} P41F
CGCCGCCAGTAGCGCAAAATCGGAGGG TTTG	prgI ^{P41F} QC	P _{lacUV5} P41F
CAAAACCCTCCGATGGAGCGCTACTGG CGGC	prgI ^{P41G} QC	P _{lacUV5} P41G
GCCGCCAGTAGCGCTCCATCGGAGGGTT TTG	prgI ^{P41G} QC	P _{lacUV5} P41G
CAGCAAAACCCTCCGATCATGCGCTACT GGCGCGTATC	prgI ^{P41H} QC	P _{lacUV5} P41H
GATACGCCGCCAGTAGCGCATGATCGG AGGGTTTGCTG	prgI ^{P41H} QC	P _{lacUV5} P41H
CAAAACCCTCCGATATAGCGCTACTGGC GGCG	prgI ^{P41I} QC	P _{lacUV5} P41I

Sequence	Amplicon	Used to Construct
CGCCGCCAGTAGCGCTATATCGGAGGG TTTG	<i>prgI</i> ^{P4II} QC	P _{lacUV5} P4II
CAAAACCCCTCCGATAAGGCCTACTGG CG	<i>prgI</i> ^{P4IK} QC	P _{lacUV5} P4IK
CGCCAGTAGCGCCTATCGGAGGGTTT G	<i>prgI</i> ^{P4IK} QC	P _{lacUV5} P4IK
CAAAACCCCTCCGATTGGCGCTACTGGC G	<i>prgI</i> ^{P4IL} QC	P _{lacUV5} P4IL
CGCCAGTAGCGCCAAATCGGAGGGTTT G	<i>prgI</i> ^{P4IL} QC	P _{lacUV5} P4IL
CAAAACCCCTCCGATATGGCGCTACTGGC GGCG	<i>prgI</i> ^{P4IM} QC	P _{lacUV5} P4IM
CGCCGCCAGTAGCGCCATATCGGAGGG TTTG	<i>prgI</i> ^{P4IM} QC	P _{lacUV5} P4IM
CAAAACCCCTCCGATAATCGCCTACTGGC GGCG	<i>prgI</i> ^{P4IN} QC	P _{lacUV5} P4IN
CGCCGCCAGTAGCGCATTATCGGAGGG TTTG	<i>prgI</i> ^{P4IN} QC	P _{lacUV5} P4IN
CAGCAAAACCCCTCCGATCAAGCGCTACT GGCGCGTATC	<i>prgI</i> ^{P4IQ} QC	P _{lacUV5} P4IQ
GATACGCCGCCAGTAGCGCTTGATCGG AGGGTTTGCTG	<i>prgI</i> ^{P4IQ} QC	P _{lacUV5} P4IQ
GCAGCAAAACCCCTCCGATAAGAGCGCTA CTGGCGCGTATC	<i>prgI</i> ^{P4IR} QC	P _{lacUV5} P4IR
GATACGCCGCCAGTAGCGCTCTATCGGA GGGTTTGCTGC	<i>prgI</i> ^{P4IR} QC	P _{lacUV5} P4IR
GCAGCAAAACCCCTCCGATAAGTGCCTA CTGGCGCGTATC	<i>prgI</i> ^{P4IS} QC	P _{lacUV5} P4IS
GATACGCCGCCAGTAGCGCACTATCGG AGGGTTTGCTGC	<i>prgI</i> ^{P4IS} QC	P _{lacUV5} P4IS
GCAGCAAAACCCCTCCGATACAGCGCTA CTGGCGCGTATC	<i>prgI</i> ^{P4IT} QC	P _{lacUV5} P4IT
GATACGCCGCCAGTAGCGCTGTATCGG AGGGTTTGCTGC	<i>prgI</i> ^{P4IT} QC	P _{lacUV5} P4IT
GCAGCAAAACCCCTCCGATGTAGCGCTA CTGGCGCGTATC	<i>prgI</i> ^{P4IV} QC	P _{lacUV5} P4IV

Sequence	Amplicon	Used to Construct
GATACGCCGCCAGTAGCGCTACATCGG AGGGTTTGCTGC	<i>prgI</i> ^{P41V} QC	P _{lacUV5} P41V
CAAAACCTCCGATTGGCGCTACTGGC GGCG	<i>prgI</i> ^{P41W} QC	P _{lacUV5} P41W
CGCCGCCAGTAGCGCCAAATCGGAGGG TTTG	<i>prgI</i> ^{P41W} QC	P _{lacUV5} P41W
CAAAACCTCCGATTATGCGCTACTGGC GGCG	<i>prgI</i> ^{P41Y} QC	P _{lacUV5} P41Y
CGCCGCCAGTAGCGCATAATCGGAGGG TTTG	<i>prgI</i> ^{P41Y} QC	P _{lacUV5} P41Y
AACATACTGCAGGAATATGCTAAAGTA TGAGGAGAGAAAA tgtgaeggaagatcactcg	<i>cat-sacB</i>	ASTE13 sptP::catsacB
GCTTACTTTAGATAGTTCTAAAAGTAA GCTATGTTTTA atcaaaggaaaactgtccatat	<i>cat-sacB</i>	ASTE13 sptP::catsacB
CTTGAGTCATTGTGAATCAGCAGGAAG CGCTAAAAACATACTGCAGGAATATG CTAAAGTATGAGGAGAGAAAA	<i>sptP</i> ^(l-167) - <i>phoA</i> -2xFLAG-6xHis	ASTE13 sptP::sptP ^(l-167) - <i>phoA</i> -2xFLAG-6xHis
ttgataattacgtgtcttcg ACTTTCTATCGCGCAAACAAATAATT TACAGAAATAGCTTACTTTAGATAGTT CTAAAGTAAAGCTATGTTTTA	<i>sptP</i> ^(l-167) - <i>phoA</i> -2xFLAG-6xHis	ASTE13 sptP::sptP ^(l-167) - <i>phoA</i> -2xFLAG-6xHis
ttagggatggatgatgc CCCAAGCCCACTTAACGTAAT AAGGAAGTCATT atggcaacacctggcagg	<i>prgI</i>	All ASTE13 <i>prgI</i> variants
GGACAATAGTTGCAATCGACATAATCC ACCTTATAACTGA ttaacggaagttctgaataatggc	<i>prgI</i>	All ASTE13 <i>prgI</i> variants
CTATAGTGCTGCTTCTACTAACAG TGCTCGTTACG tgtgaeggaagatcactcg	<i>cat-sacB</i>	ASTE13 sptP::sptP ^(l-167) - <i>phoA</i> -2xFLAG-6xHis ΔinvA
GCCCTTATATTGTTTTATAAACATTCACT GACTTGCTAT atcaaaggaaaactgtccat	<i>cat-sacB</i>	ASTE13 sptP::sptP ^(l-167) - <i>phoA</i> -2xFLAG-6xHis ΔinvA
TTATATTGTTTTATAACATTCACTGACT TGCTATCGTAAACGAGCACTGTTAAGTA GAGAAAGCAGCAC	N/A	ASTE13 sptP::sptP ^(l-167) - <i>phoA</i> -2xFLAG-6xHis ΔinvA
TCGTCGGCAGCGTCAGATGTGTATAAGA GACAG atggcaacacctggcagg	<i>prgI</i>	PrgI library for NGS – PCR step 1

Sequence	Amplicon	Used to Construct
GTCTCGTGGCTCGGAGATGTGTATAAG AGACAG ttaacggaagttctgaataatggc	<i>prgI</i>	PrgI library for NGS – PCR step 1

761 **Table S3 – Primers used in this study.**

762

Pool	Relative Secretion Titer	Number of Clones	Sample Volume for Mixture (µL)	Nextera XT Primer i5	Nextera XT Primer i7
A	0.01-0.6	2015	5	N707	S502
B	0.6-0.8	575	10	N710	S502
C	0.8-1.0	691	10	N711	S502
D	1.0-1.2	480	20	N712	S502
E	1.2-1.4	236	20	N714	S502
F	1.4-1.6	151	20	N705	S503
G	1.6-1.8	77	30	N706	S503
H	1.8-2.0	75	30	N707	S503
I	2.0-2.5	70	30	N710	S503
J	>2.5	36	50	N711	S503

763 **Table S4 – Pools for high throughput sequencing according to relative secretion titer.**

764

Component	Round 1 (25 µL x 8 per pool)	Round 2 (50 µL x 1 per pool)
5X HF Buffer (NEB)	5 µL	10 µL
10 mM dNTPs (NEB)	0.5 µL	1 µL
10 µM FWD primer	1.25 µL	2.5 µL
10 µM REV primer	1.25 µL	2.5 µL
Template DNA	2.5 µL of 5 ng/µL gDNA	5 µL purified and combined Round 1 reaction
Phusion (NEB)	0.25 µL	0.5 µL
H ₂ O	14.25 µL	28.5 µL

765 **Table S5 – PCR reactions for high throughput sequencing library preparation.**

766

Step	Round 1 (25 µL x 8 per pool)		Round 2 (50 µL x 1 per pool)	
	T (°C)	Time (sec)	T (°C)	Time (sec)
Initial Denaturation	98	60	98	30

Amplification	98	10	98	10
(Round 1 – 22 cycles)	62	15	61	15
(Round 2 – 8 cycles)	72	30	72	30
Elongation	72	300	72	300
Hold	4	indefinite	4	indefinite

767

Table S6 – PCR cycling conditions for high throughput sequencing library preparation.

768 **Supplementary references**

769 [1] Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence
770 data. *Bioinformatics* 30, 2114–2120 (2014).

771 [2] Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
772 transform. *Bioinformatics* 25, 1754–1760 (2009).

773 [3] Li, H. et al. The sequence alignment/map format and SAMtools. *Bioinformatics* 25, 2078–2079
774 (2009).

775 [4] Song M, Sukovich DJ, Ciccarelli L, Mayr J, Fernandez-Rodriguez J, Mirsky EA, et al. Control
776 of type III protein secretion using a minimal genetic system. *Nature Communications*.
777 2017;8:14737.

778 [5] Metcalf KJ, Finnerty C, Azam A, Valdivia E, Tullman-Ercek D. Using Transcriptional Control
779 To Increase Titers of Secreted Heterologous Proteins by the Type III Secretion System. *Applied
780 and Environmental Microbiology*. 2014;80:5927–34.

781 [6] Metcalf KJ. Engineering heterologous protein secretion for improved production. University
782 of California, Berkeley; 2016.

783 [7] Metcalf KJ, Bevington JL, Rosales SL, Burdette LA, Valdivia E, Tullman-Ercek D. Proteins
784 adopt functionally active conformations after type III secretion. *Microbial Cell Factories*.
785 2016;15:213.

786 [8] Thomason LC, Sawitzke JA, Li X, Costantino N, Court DL. Recombineering: Genetic
787 Engineering in Bacteria Using Homologous Recombination. *Current Protocols in Molecular
788 Biology*. 2014;106:1.16.1-1.16.39.