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Traditional biomedical artificial intelligence (Al) models, designed for specific
tasks or modalities, often exhibit limited flexibility in real-world deployment
and struggle to utilize holistic information. Generalist Al holds the potential
to address these limitations due to its versatility in interpreting different data

types and generating tailored outputs for diverse needs. However, existing
biomedical generalist Al solutions are typically heavyweight and closed
sourcetoresearchers, practitioners and patients. Here, we describe
BiomedGPT, the first open-source and lightweight vision-language
foundation model, designed as a generalist capable of performing various
biomedical tasks. BiomedGPT achieved state-of-the-art resultsin 16 out of 25
experiments while maintaining a computing-friendly model scale. We also
conducted human evaluations to assess the capabilities of BiomedGPT in
radiology visual question answering, report generation and summarization.
BiomedGPT exhibits robust prediction ability with alow error rate of 3.8%in
question answering, satisfactory performance with an error rate of 8.3%in
writing complex radiology reports, and competitive summarization ability
with anearly equivalent preference score to human experts. Our method
demonstrates that effective training with diverse data can lead to more
practical biomedical Al forimproving diagnosis and workflow efficiency.

Altechniques, especially transformer-based foundation models, have
demonstrated their power insolving awide range of biomedical tasks,
including radiology interpretation, clinical-information summarization
and precise disease diagnostics'. However, most of today’s biomedical
models actas specialist systems, tailored to specific tasks and modali-
ties?. Such specialization comes with substantial challenges in model
deployment, especially with the growing interest in using Al for preci-
sion medicine and patient-centered care, which require the integra-
tion and analysis of diverse data types and patient-specific details>*.
Furthermore, the hyper-specialization of Alin narrow disciplines often
fails to provide the comprehensive insights necessary to assist doctors
inreal-world settings, where the flow of information can be slow and

sporadic®’. A generalist biomedical Al has the potential to overcome
these limitations by using versatile models that can be applied to
different tasks and are robust enough to handle the intricacies of
medical data effectively®®.

The emergence of general-purpose foundation models”® offers
a prototype for the development of biomedical generalist Al. These
advanced models serialize diverse datasets, regardless of their modali-
ties, tasks or domains, into a uniform sequence of tokens, which are
then processed using a transformer neural network’. Unlike large lan-
guage models'®", which are primarily designed for processing textual
data, generalist models can handle both textual and visual information
simultaneously. This capability is pivotal for complex biomedical
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applications, in which the integration of diverse data types—such as
clinical text and radiographic imaging—is crucial for accurate analysis
and decision-making. Furthermore, generalist models exhibit impres-
sive multitasking capabilities, greatly simplifying the deployment and
management of Al systems by reducing the need to maintain numerous
narrowly focused specialist models.

Inthis paper, we introduce BiomedGPT, a prototype for ageneral-
ist vision-language foundation model designed to perform diverse
biomedical tasks across modalities using natural-language instructions
(Fig.1). Unlike multimodal biomedical Al systems that are specialized
for a single task'?, focused solely on one discipline” or not publicly
accessible®, BiomedGPT is trained with cross-disciplinary data and
evaluated on a wide range of tasks. BiomedGPT is fully transparent,
open-source and lightweight (for example, it is 3,088 times smaller
than the commercial generalist biomedical Al model Med-PaLM M,
which has 562 billion parameters®), thereby facilitating broader imple-
mentation. To empower the generalist capabilities of BliomedGPT,
we curated a large-scale pretraining corpus comprising 592,567
images, approximately 183 million text sentences, 46,408 object—
label pairs and 271,804 image-text pairs (Fig. 2c,d). Furthermore, to
enhanceits ability to follow instructions, we developed a variant called
Instruct-BiomedGPT with specifically curated instruction-tuning data
(Supplementary Fig.1).

To our knowledge, BiomedGPT is the first fully transparent
generalist medical Almodel that has been comprehensively evaluated
onpublicly accessible datasets and by medical professionals. This study
first highlights the transfer-learning capabilities of BiomedGPT, dem-
onstrating how the model uses knowledge from pretraining to special-
ize effectively across 25 datasets through fine-tuning (Extended Data
Tables1and2and Supplementary Table 7). We used recognized metrics
from the literature to benchmark our model against state-of-the-art
(SOTA) results. Additionally, BiomedGPT is a zero-shot learner that
can answer multimodal medical questions without further training
for adaptation, and its performance is comparable to that of leading
Alsystems. Furthermore, doctors evaluated BiomedGPT in tasks such
as visual question answering (VQA), report generation and summari-
zationwithinthe radiology domain, and it demonstrated satisfactory
performance. Although our results highlight BiomedGPT’s potential
in medical applications, they also indicate that substantial enhance-
ments are required to make it usable in the clinic. Critical evaluations
for BiomedGPT are particularly needed inthe areas of safety, equity and
bias. Our findings underscore the challenges that must be addressed
before these models can be deployed effectively in clinical settings. We
outline these limitations and suggest directions for future research.

Results

Pretraining using large and diverse datasets

BiomedGPT uses pretraining techniques including masked modeling
and supervised learning, aiming to establish robust and general data
representations by learning from extensive datasets across diverse
tasks (Extended Data Table 3). To maximize the generalization of
BiomedGPT, we sourced the pretraining data from 14 freely available
datasets, ensuring the diversity of modalities (Figs. 1a and 2c,d and
Extended Data Fig. 1a). In addition, to investigate how BiomedGPT
performs across scales, we specifically introduced three versions of
the model: BiomedGPT-S, BiomedGPT-M and BiomedGPT-B, which
correspond to small, medium and base sizes, respectively (Fig.2aand
Extended Data Figs. 2 and 3).

Fine-tuning for downstream tasks

Multitasking is fundamental to ageneralist Al. Following previous bio-
medical research' ' and aiming for sufficiently effective performance,
we primarily fine-tuned our model to adapt to various biomedical tasks
(Fig. 1b,c). Our selection of downstream tasks stemmed from their
potential real-world applications: medical-image classification can

aid in disease diagnostics and lesion recognition; text understanding
and summarization can streamline clinic operations, such as easing
doctors’ note-writing burden. Furthermore, image captioning and
VQA lay the groundwork for future healthcare chatbots, addressing
challenges in which common language might be ambiguous but medi-
cal terminology is too complex for most people to understand. The
complete statistics of downstream datasets used in this article are
shownin Extended Data Figure 1b.

BiomedGPT is lightweight but competitive in multimodal
tasks

Wefine-tuned BiomedGPT on two primary multimodal tasks, VQA and
image captioning, each using three downstream datasets. The VQA
datasetsincluded radiology data covering five anatomies (VQA-RAD"
and Semantically-Labeled Knowledge-Enhanced Dataset (SLAKE)'®),
in addition to pathology data that captures both anatomical and
tissue-specific details (PathVQA'). For captioning, we incorporated
chest X-ray (CXR) datasets (IU X-ray*’ and Medical Information Mart
for Intensive Care IlI-CXR (MIMIC-CXR)*) as well as clinical photo-
graphs from Peir Gross™. For comparison, we benchmarked BiomedGPT
against leading models for each dataset™* >,

We evaluated our model’s VQA performance by comparing gene-
rated answers with the ground truths. The overall accuracy of our
BiomedGPT model is detailed in Extended Data Table 1. Notably,
BiomedGPT achieved an 86.1% overall accuracy on the SLAKE data-
set, surpassing the previous state-of-the-art (SOTA) performance of
85.4%, set by BiomedCLIP". Additionally, we dissected the accuracy of
both‘closed ended’ and ‘openended’ question-answer pairs (Fig. 3a).
Our model recorded promising closed-ended accuracies: 88.0% on
PathVQA, up by 1.0% compared with the performance of the current
SOTA model®. Onthe SLAKE dataset, BiomedGPT-B achieved an 89.9%
closed-ended accuracy, down by 1.1% compared with the M2I12 model’s
performance®. In open-ended scenarios, our model excelled with an
84.3% accuracy, surpassing M212’s 74.7%. However, for the VQA-RAD
and PathVQA datasets, BiomedGPT'’s performance on open-ended
queries was less competitive, recording accuracies of 60.9% and 28.0%,
respectively.

In addition, we compared BiomedGPT-B with Med-PaLM M
(12 billion parameters) using the weighted F, score, as reported in
the paper®. Other metrics could not be calculated owing to the
closed-source nature of Med-PaLM M. Remarkably, despite its much
smaller size, BiomedGPT-B achieved impressive results (Fig. 2b). On
the VQA-RAD and SLAKE datasets, BiomedGPT-B attained scores of
73.2% and 85.2%, respectively, which represent a substantial increase
0f 22.5% on VQA-RAD and a slight improvement of 0.02% on SLAKE.
Additionally, on the PathVQA dataset, BiomedGPT-B had a weighted
F;score of 56.9%, only 0.4% lower than Med-PaLM M, while utilizing a
model with 98.5% fewer parameters.

To evaluate the model’s image-captioning ability (Fig. 3b), we
meticulously assessed the quality of machine-generated text using
three metrics: recall-oriented understudy for gisting evaluation-longest
common subsequence (ROUGE-L)*, metric for evaluation of transla-
tion with explicit ordering (METEOR)? and consensus-based image
description evaluation (CIDEr)*. We compared the performance of
BiomedGPT to that of established models™*’~*, These evaluation
metrics are useful for assessing the similarity and consensus between
the generated text and the reference text written by medical experts.
They havealso shownsomealignmentwith ratings given by physicians®.
Consequently, models that score higher on these natural-language
processing (NLP) metrics can be selected as candidates for further
human evaluation®. On the Peir Gross dataset, our BiomedGPT model
surpassed the existing SOTA benchmark?®, demonstrating improve-
ments of 8.1 percentage points in ROUGE-L and 0.5 points in METEOR,
and a substantial gain of 89.8 points in the CIDEr metric. Conversely,
on the IU X-ray dataset, BiomedGPT achieved a leading CIDEr score

Nature Medicine


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-024-03185-2

Treatment

Multimodal data |_h6 @ @

Report =]
Mortality suggestion summarization =0
— dict =)
prediction =]
P A
Conversation
Clinical-trial Text Text L

matching  understanding ~ summarization

VQA Captioning
K EE
.

Pathology and Image —
radv‘ootxgy classification generation

a Tel
\J
Text Publications Literature Clinical notes (S

Disease Lesion
diagnosis detection
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1,4 Q:What s seen at this stage, associated with regeneration and repair?

#  A: Numerous reactive type Il pneumocytes.

Q: Are bite cells like this one in the smear associated with regeneration and repair at this stage?
A: No.

|
Q: What disease does this :
image depict? |
|
|
|

|
|
|
|
| A: Breast cancer.
|

Q: What skin lesion does this

|

Q: What are the findings based on the image? :
image depict? |
|

|

A: The nasogastric tube is in adequate position, and there is a resolution of the gastric distention.

There is still mild bibasilar atelectasis. There are no pneumothorax no pleural effusion. A: Melanoma.

Conversation summarization

i Al
Chief complaint: Dyspnea, abdominal distention | |
Present illness: 78-year-old female with multiple medical problems; | @ What symptoms are you experiencing? |
pertinently including CAD status post CABG, hypertension and type 2 diabetes | |
tgie:;:taels ?Z)st;\)?;;;i)ryc??bfé:lt:s post CABG [Reg#] (2) Hypertension (3). Type 2 | T have been suffering from headache and general @ |
Allergies: Patient recorded as having no knowrn allergies to drugs : weakness and have been diagnosed with typhoid fevel€ |
Physical exam: BP 107/68, HR 70s, RR 28, 90% on NRB | @ What treatments have you undergone in the past? :
Q: What is the predicted outcome for the patient before discharge? : T was put on siprofloxacin for ten days. One week after ® |
A: Deceased. | I completed the course, I started having the same problems. :
: It seems you are having relapse of typhoid fever. Up o 10% |
of patients develop mild relapse. You need more tests to check |
: for other causes, including liver tests, because your urine is |
D Age Sex Race T;T:r eﬂﬁfed ER Status PR Status | dark, and hepatitis can sometimes happen with typhoid fever. |
- - - |
001 54 Female  White 25 14 Negative  Negative : Q: What is the summary of conversation? |
00 e o Wi 5 Rl osijivel A: Suggest remedy for recurred symptoms of typhoid after treatment. |
003 47  Mde  White 22 3 Positive Positive | |
004 89  Female White 17 1 Negative Positive Report summarization |
005 59  Female  White 36 19 Positive Negative | There is no evidence of hemorrhage, masses, mass effect or shift of |
normally midline structures. The ventricles and sulci are mildly |
The patient is a 44-year-old white female. She has one malignant tumor and | prominent, compatible with age-appropriate involutional changes. There |
five regional lymph nodes that tested positive. The tumor measures 23 | is hypoattenuation along the right caudate head and periventricular |
mm. Estrogen and progesterone receptor tests are positive. A total of | frontal white matter, unchanged, compatible with small vessel ischemic
34 regional nodes were removed. | disease. |
Q: Please provide treatment suggestion given the patient's information. | Q: What is summary based on the given report? :
A: Recommend using beam radiation, suggesting that the sequence for radiation | A: 1. No acute intracranial process. |
should be post-surgery. Furthermore, chemotherapy should indeed be considered. Il 2. Small vessel ischemic disease. |
Patient information Clinical trial information
A 19-year-old male came to the clinic with some sexual concerns. On Description: Evaluate the safety and efficacy of Androxal.
physical examination; there are some poorly developed secondary sexual
characteristics. Ultrasound reveals a testes volume of 1-2 ml. The Inclusion criteria: Total serum testosterone concentrations < 300 ngdl .
hormonal evaluation showed a serum testosterone level of 65 ng d1™ with low Male patients over the age of 18.
g b gt
levels of GnRH. Exclusion criteria: Elevated PSA > 3.5 ngml .
Q: Please determine the patient’s eligibility by comparing the given patient note and trial details.
A: The patient is eligible for the clinical trial.
Fig.1|BiomedGPT can process diverse modalities and perform versatile which the input consists of both image and text or only text; the model responds
tasks. a, BiomedGPT focuses primarily on visual and textual inputs, but can also to queries (Q) by generating responses (A). Thanks to its unified framework
process tabular data through serialization. CT, computed tomography; EHR, design and comprehensive pretraining on biomedical data, BiomedGPT is
electronic health records; EKG, electrocardiogram; MRI, magnetic resonance highly adaptable and can be applied to a variety of downstream tasks. BP, blood
imaging. b, Examples of the supported downstream visual-language tasks of pressure; CABG, coronary artery bypass graft surgery; CAD, coronary artery
BiomedGPT demonstrate its versatility. Additional tasks can be incorporated disease; ER, estrogen receptor; GnRH, gonadotropin-releasing hormone;
to meet further clinical needs through lightweight, task-specific fine-tuning. HR, heartrate; NRB, non-rebreather mask; PR, progesterone receptor;
¢, Examples of clinically relevant use-cases for BiomedGPT include tasks in RR, respiratory rate; Reg#, de-identified ‘Medical Record Number".
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Fig.2|Anoverview of BiomedGPT: workflow, performance and pretraining
datasets. a, Illustration of how BiomedGPT handles multimodal inputs
and performs diverse downstream tasks. The expected form of output for
each taskis determined by feeding the specific instruction to the model.
2D, two-dimensional. b, Comparative performance analysis contrasting the
achievements of BiomedGPT with prior SOTA results and Med-PaLM M (12 billion
parameters). The evaluation metrics include accuracy forimage classification,
medical language inference and VQA (benchmarked against SOTA results); CIDEr
forimage captioning; ROUGE-L for text summarization; weighted F; scores
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for VQA (in comparison with Med-PaLM M); and F-macro for breast mass and
calcification classification (also in comparison with Med-PaLM M). ¢, Distribution
of pretraining datasets including image captioning and VQA as vision and
language datasets, object-detection datasets and image-only datasets for
masked image modeling. d, Density plot of the number of words per sentence in
the text-only pretraining datasets. e, Acomparison of scale-related performance.
BiomedGPT exhibits superior performance on the SLAKE VQA dataset, although
it has considerably fewer parameters than its counterparts. B, billion; M, million.
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a Medical VQA performance
VQA-RAD accuracy SLAKE accuracy PathVQA accuracy
Model Parameters
Closed-ended Open-ended Closed-ended Open-ended Closed-ended Open-ended
BiomedGPT-S (ours) 33M (0.2x) 57.8 (23.5V) 13.4 (47.5V) 73.3(16.61) 66.5 (17.81) 84.2(3.8V) 10.7 (17.31)
BiomedGPT-M (ours) 93M (0.5x) 79.8 (1.51) 53.6 (7.31) 86.8 (3.1)) 78.3 (6.01) 85.7 (2.31) 12.5 (15.51)
M2I12 252M (1.4x) 81.6 (0.31) 61.8 (0.91) 91.1(0.21) 74.7 (9.61) 88.0 36.3(8.31)
BiomedCLIP 422M (2.3x) 79.8 (1.51) 67.6 (6.71) 89.7 (0.21) 82.5(1.81) - -
CLIP-VIT with GPT2-XL 1.6B (8.8x) - 82.1(7.8V) 84.3 87.0 (1.01) 40.0 (12.01)
MedVInT-TD 7.0B (38.5%) 86.8 (5.51) 73.7 (12.81) 86.3 (3.61) 84.5(0.21) - -
BiomedGPT-B (ours) 182M 81.3 60.9 89.9 84.3 88.0 28.0
b Image captioning performance
U X-ray Peir Gross MIMIC-CXR
BiomedGPT-S 26.8 1.0 ‘ 29.6 25.8 12.0 22.0 - 13.0 12.8
BiomedGPT-M 28.0 1.0 24.0 14.7 25.8 - 13.0 12.9
BiomedGPT-B 28.5 12.9 36.0 15.4 122.7 - 15.9 -
SOTAs - 18.7 27.9 14.9 32.9 - 14.2 14.7
ROUGE-L METEOR CIDEr ROUGE-L METEOR CIDEr ROUGE-L METEOR CIDEr
C Image classification on MedMNIST-raw dataset
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Fig.3|BiomedGPT performs fine-tuning for vision-language and medical-
image-classification downstream tasks. a, Medical VQA performance of
BiomedGPT and the leading models, in terms of closed-ended and open-ended
accuracies. The information in parentheses indicates the performance change
compared to BiomedGPT-B. x denotes the multiple of the parameter size of
other models relative to that of our model. ¥ denotes the performance decrease
compared to our model. * denotes the performance increase compared to our
model. For example, 0.5¢ means that the corresponding model has 0.5 lower
accuracy than BiomedGPT-B. b, Image-captioning performance of BiomedGPT

and SOTA platforms on IU X-ray, Peir Gross and MIMIC-CXR data. The evaluation
metrics are ROUGE-L, METEOR and CIDEr. ¢, Evaluation of image classification
onthe MedMNIST-Raw dataset for each domain type. d, Image-classification
performance with accuracy across two super-resolution image datasets.

e, Image-classification performance as assessed by the F-macro on the CBIS-
DDSM dataset. f, Accuracies across nine datasets with different resolutions
(shown onthe graph, in pixels) vary with model scale. In general, larger models
tend to perform better.
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of 40.1, marking a 5.0-point improvement over the SOTA model™.
Onthe MIMIC-CXR dataset, in terms of METEOR, our model recorded
ascore 0f15.9%, surpassing the previous leading result®°.

BiomedGPT enables accurate medical-image classification

For the medical-image-classification task, we curated a biomedical
image dataset, named MedMNIST-Raw, encompassing seven modali-
ties following ref. 37: (1) colon pathology with nine tissue types;
(2) dermoscopy images of seven typical pigmented skin lesions;
(3) breast ultrasound (normal, benign and malignant); (4) retinal
optical coherence tomography (OCT) categorized into four types of
retinal diseases; (5) CXRimages for binary-class classification of pneu-
monia against normal; (6) blood cell microscope showcasing eight
kinds of normal cells; and (7) abdominal computed tomography (CT)
with11body organs across the coronal view. Additionally, we tested the
model ontwo super-resolution pulmonary disease datasets, with aspe-
cificfocus on pulmonary tuberculosis (TB), which has alimited number
of samples: (8) the Montgomery County CXR set (MC-CXR), with dimen-
sionsof either 4,020 x 4,892 or 4,892 x 4,020 pixels; and (9) the Shenz-
hen CXR set (SZ-CXR), with approximate dimensions of 3,000 x 3,000
pixels. To be consistent with prior works, we used accuracy for evalu-
ation. As shown in Figure 3c-e, BiomedGPT outperformed previous
SOTA systems on seven of the nine biomedicalimage-classification
datasets after five-epoch fine-tuning.

Notably, on the SZ-CXR and MC-CXR datasets’® (binary classi-
fication), BiomedGPT had accuracies of 97.0% and 89.7%, reflecting
improvements of 6.0% and 0.8%, respectively, over the previously
leading model, Light TBNet* (Fig. 3d). For MedMNIST-Raw, we selected
two top-performing approaches on biomedical imaging analysis,
MedViT (Large)*° and BiomedCLIP", as benchmarks for compari-
son. For BiomedCLIP, we added a decision layer and fine-tuned the
entire model. BiomedGPT achieved 5 out of 7 best accuracies on
MedMNIST-Raw (Fig. 3¢): for example, on the dermoscopy dataset,
BiomedGPT surpassed the two baseline models by more than14%. On
average, BiomedGPT achieved performance improvements of 6.1% and
3.3% over MedViT and BiomedCLIP, respectively.

BiomedGPT exhibits performance enhancements as its scale
increases (Fig. 3f). Specifically, on the MC-CXR dataset, the small model
had anaccuracy of 75.9%. By contrast, the medium model had ascore of
82.8%, whichis 6.9% higher thanits smaller counterpart’s performance.
Thebase model continued this upward trajectory, with ascore of 89.7%,
surpassing the medium model by 6.9%. However, we also observed
performance saturation on several datasets, such as SZ-CXR. We also
tested the extreme situationinwhich theimages wereresizedtoavery
smallscale and found that performance saturation became much more
pronounced (Supplementary Table 1).

Additionally, we benchmarked BiomedGPT against Med-PaLM M
onthe Curated Breast Imaging Subset of Digital Database for Screening
Mammography (CBIS-DDSM) dataset* for both three-class lesion-level
mass classification and calcification classification. Using the
macro-averaged F; score (F;-macro) as the evaluation metric, consist-
entwith how Med-PaLM M was evaluated, we found that BiomedGPT-B
outperformsall versions of Med-PaLM M, spanning 12 billion, 84 billion
and 584 billion parameters (Fig. 3e and Extended Data Fig. 4a).
These findings underscore the impressive efficiency and efficacy of
BiomedGPT, even relative to models with larger scales.

BiomedGPT understands and summarizes clinical text

We assessed BiomedGPT'’s proficiency inunderstanding and condens-
ing complex medical narratives that hold potential for addressing
real-world clinical needs: (1) medical natural-language inference, using
the MedNLIdataset*?, which tests the model’s comprehensionin deduc-
ing hypotheses from provided premises; (2) treatment suggestions
for radiation therapy and chemotherapy based on the Surveillance,
Epidemiology, and End Results (SEER) dataset*; (3) in-hospital mortality

prediction onthe basis of admission notes; and (4) clinical-trial match-
ing thatidentifies lists of candidate clinical trials suitable forindividuals.
Moreover, we explored BiomedGPT’s performance in medical-text
summarization, which was applied to datasets of doctor-patient
dialogues (MedQSum** and HealthCareMagic*) as well as radiology
reports (MIMIC-CXR* and MIMIC-111*®).

While evaluating the MedNLI dataset for three-class classifica-
tion (entailment, contradiction or neutral), we used accuracy as our
evaluation metric, consistent with prior research (Fig. 4e). Notably,
when compared with the SOTA performance of SciFive-Large'® at 86.6%
accuracy, BiomedGPT-B, which has merely a quarter of SciFive-Large’s
parameter count, exhibited a declineinaccuracy of only 2.8%.

For the treatment-suggestion task, we adopted the preprocess-
ing steps as described in prior work®’. An example output is: ‘Recom-
mend using beam radiation, suggesting that the sequence for radiation
should be post-surgery. Furthermore, chemotherapy should indeed
be considered. Toevaluate the effectiveness of three variantsin treat-
ment suggestions, we used a tenfold cross-validation method and
compared current open-source SOTA methods, including BioGPT* and
LLaVA-Med" (Fig. 4a), which have 347 millionand 7 billion parameters,
respectively—approximately 11and 212 times larger, respectively, than
BiomedGPT-S. BiomedGPT-B achieved a mean accuracy of 50.0% +
5.3%, outperforming BioGPT and LLaVA-Med, which had accuracies
of 45.9% + 4.8% and 41.5% + 7.1%, respectively. Considering the com-
plexity involved with six types of radiation therapy, seven radiation
sequences and two types of chemotherapy*, which together imply a
random-guess accuracy of 1.2%, both BiomedGPTs and the baseline
models have much higher accuracies than this baseline.

For the clinical-trial matching task, we collected a dataset from
Text Retrieval Conference (TREC) 2022*, categorized into three
groups: eligible, irrelevant and ineligible. We randomly chose 80% of
the data from each group as the training set and the remaining 20%
asthetest set, and reported the average results across 10 repetitions.
Again, all three versions of BiomedGPT outperformed the baselines
(Fig. 4b). In particular, BiomedGPT-B achieved a mean accuracy of
85.2% +1.5%, substantially outperforming BioGPT and LLaVA-Med,
which had accuracies 0f42.0 % +1.8% and 48.7% + 2.4%, respectively.

To assess BiomedGPT’s performance in predicting in-hospital
mortality, we used admission notes extracted from the MIMIC-Ill data-
base, following ref. 49, with the official test set. Figure 4c presents the
prediction-accuracy results for five models, demonstrating that all
three versions of BiomedGPT outperformed BioGPT and LLaVA-Med.
Notably, BiomedGPT-B achieved an accuracy improvement of more
than 15% compared with these two baselines.

We used the ROUGE-L metric to assess BiomedGPT-B’s
text-summarization performance across four benchmark data-
sets (Fig. 4d). BiomedGPT-B demonstrated its ability to summarize
doctor-patient dialogues on the MedQSum and HealthCareMagic
datasets, achieving ROUGE-L scores of 52.3% and 42%, respectively.
Leading models®, with 400 million parameters (at least twice as large
as BiomedGPT-B), recorded ROUGE-L scores of 53.2% and 44.7%,
BiomedGPT-B showed only minor performance drops of 0.9% and
2.7%.Additionally, insummarizing radiology reports, and specifically
in generating impressions from radiologists’ findings, BiomedGPT-B
achieved a ROUGE-L score of 44.4% on the MIMIC-CXR dataset. This
resultis closely aligned with the performance of the SOTA model, trail-
ingbyamere 0.1% from the top score 0f 44.5%". In the MIMIC-lll dataset,
BiomedGPT-B’s performance stood out witha ROUGE-L score of 30.7%,
surpassing Med-PaLM M (12 billion parameter), which scored 29.5%.

BiomedGPT can perform zero-shot prediction on new data

We focused on evaluating the zero-shot capabilities of BiomedGPT
in VQA, highlighting its ability to answer biomedical questionsina
freeform manner at scale, without requiring retraining. This contrasts
sharply with earlier biomedical Almodels, such as bidirectional encoder

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03185-2

a Treatment-suggestion performance M b Clinical-trial matching performance
ax 90 + Max
Mean £ s.d.: 75% T 75%
60 4 90:0£53 Mean +s.d.: Median Mean£+sd Median
. 46.4:6.0 Mean +s.d.: 25% 80 1 o 25%
Mean *s.d.: 85.2+15
Mean *s.d.: .
49.0+4.8 Nosas 571 _ E Min
> . o““'ef X 70 Mean +s.d.: o Outlier
o =
g %01 > 754219 Mean #s.d.:
3 e 7.6£2.3
o S 604
< 8 Mean *s.d.:
0 < 48.7:2.4
7 50 | Mean # s.d.:
PR
w0 ==
30 j ! ' T T T T T
s '\ b
2 < 3 R & > 2l S >
Q Q 5] [©) W K < K 5] )
© ©) O 2 Q < ] K9 N
eb ebo 06 N rb&?‘ bC’) E}Q 60 %\0 RS
.S S O N ¢ < @ P
oy N 89 &° &° &° A%
C In-hospital mortality d Clinical text-summarization performance Model €  Medical language
prediction performance MeQSum - ) BiomedGPT-B inference performance
Accuracy ® BiomedGPT-M BiomedGPT-S
. HealthCare-magic o BiomedGPT-S
BiomedGPT-8 895 BioBART-L (400M) == BiomedGPT-M
) 75.8
BiomedGPT-M 89.2 MIMIC-CXR 4 RadAdapt (738M) R ‘
i ® MedPalM M (12B) BiomedGPT-B
BiomedGPT-S 77.8
. i Parameters
BioGPT 74.2 MIMIC-1ll e 33M 86.6 SciFive
[}
LLaVA-Med 72.8 17228'\&
. . . . . , o 30 40 50 60 70 80 90
30 25 35 40 45 50 55 Accuracy (%)
ROUGEL-L
. Average zero-shot accuracy (%) across seven question types
Example: What type of imaging does this not represent? bi o v q P
Unrelated { IS€8S€ 1509 435 35.4 452 32.8 53.9 521 32.6 42.0 345
Answer: Chest diagnosis ‘
Imaging technical ‘ ‘
100 4 99.5 98.2 details 41.0 19.9 19.5 20.9 68.8 68.0 58.1 67.6 20.4
X 95.0 : f
< 92.8 Lesion and abnormality g6 375 387 412 455 495 529 459 40.6 40.6
3 904 detection
£ 86.4 86.4 ) e —
5 628 Modality . 68.7 596 427 43.4 .i 55.5 55.0
o 3 81.8 recognition | i
© B 79.2 i I
z % Size 456 39.7 59.4 37.8 42.9 44.6 65.3 39.5 68.6 44.6
g assessment I |
c Spatial
g 70 4 68.4 relationships 47.7 144 21.8 ‘ 95 23.6 44.0 31.8 27.6 35.4 28.2
_, Structural gy 5 413 28.8 32.4 307 431 352 37.0 410 40.0
60 ; ; ; : : ; identification
3 2 s e & QA B ,@ 2 & & &
PRI M M 2 Q«‘“ S Q«% w“z > PACANE AR Q’\V\ Q’\ < N
o @ob S &e.b & bo S \«\ebo A O &L & \“029 \°e O ebo &
. . . & & .S
& & ° PO Q»’\o@ 4 & ¢ Q}o& & &
h Overall zero-shot learning performance "
lax
Mean +s.d.: 75%
Néesa[n):ssté: 54.7£57 Mean +s.d.: Median
524:55 Mean + s.d.: 25%
601 Mean + s.d.: 439471 Min
8 41.5+5.9 « Outlier
> Mean £ s.d.: Mean £ s.d.:
© Mean ts.d.: 37.0+4.8 35.7+5.7
5 Mean +s.d.: Mean +s.d.:
3 0 4 388220 33.0%4.0 32.0% 4.4
D B L =L
20 T T T T T T T T T T
N B4 N & & & & & > &
Q«y (32/\ é{\ é{\ & G}@Q,\% c},\o/\,@ (5\0‘2«9 < &
©) @?‘b S @Qé o<<‘?~ NS & bc,ji Y ,b\\v O“v
) & O @ @ @ g
R &° > < QA)\o‘(\ %\o‘(\

Fig. 4 |BiomedGPT performs few-epoch transfer learning for clinical-text
understanding and summarization and generates aresponse through zero-
shot transfer learning. a, Evaluation of models for the treatment-suggestion
taskin terms of accuracy using tenfold cross-validation (n = 4,680 data samples).
b, Comparison of performance, assessed using accuracy, on the patient-trial
matching dataset, derived from the TREC 2022 dataset, using tenfold cross-
validation (n=7079 datasamples). ¢, Accuracy across three BiomedGPT
variants and two SOTA models, BioGPT and LLaVA-Med, for in-hospital mortality

prediction. d, ROUGE-L scores across four text-summarization datasets, relative
to model scale. e, Medical language inference performance on the MedNLI
dataset. f, Comparison of zero-shot question-alignment accuracy among Instruct-
BiomedGPTs (base, medium, small), BiomedGPTs, OFAs (large, huge), LLaVA-Med
and GPT-4V. An exampleillustrating amismatch between the generated answer
and the question is shown. g, Average zero-shot accuracy across seven question
types onthe VQA-RAD dataset. h, Overall zero-shot learning performance on the
VQA-RAD dataset over 50 repeated samplings (n = 39 data samples).

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03185-2

representations from transformers (BERT)-based or vision transformer
(ViT)-based models*®, which are incapable of zero-shot prediction,
or contrast language-image pretraining (CLIP)-based models®,
whichrequire predefined answers (Extended Data Fig. 5a). Unlike these
models, BiomedGPT can generate answers by simply processing the
input data, offering more flexible and dynamic Al-driven solutions for
biomedical inquiries. In addition to medical VQA, BiomedGPT show-
cased zero-shot capabilitiesin disease diagnosis and X-ray report gen-
eration, matching the performance of Med-PaLM M and LLaVA-Med
(Extended DataFig. 5b,c).

We used the VQA-RAD dataset'® (which was absent from the pre-
training data) for evaluation, through 50 random samplings. Our eval-
uation of BiomedGPT’s performance centered on two key metrics:
(1) the accuracy of the model in providing correct answers, and (2) its
ability tounderstand the questions and respond ina contextually rele-
vant way, measured as alignment accuracy. We noted low alignment
accuracy, indicating poor question comprehension, by our pretrained
models (Fig. 4f). To address this, we developed Instruct-BiomedGPT
which was fine-tuned using instruction-tuning data (Supplementary
Fig.1). We assessed this model against current SOTA models, including
GPT-4V*°, LLaVA-Med (7B)"?, OFA-Huge (930 million parameters) and
OFA-Large (470 million parameters)* in a zero-shot setting, analyz-
ing various question types (Extended Data Table 4). Specifically,
Instruct-BiomedGPT-B achieved azero-shot accuracy of 54.7% + 5.7%,
surpassing GPT-4V’s 53.0% + 6.7% (Fig. 4h). Despite thisimprovement
inunderstanding medical questions, neither model reached clinically
acceptable performance. For example, the current top-performing
medical vision-language model, LLaVA-Med, achieved accuracies
of only 42.0% and 40.6% in disease diagnosis and lesion detection,
respectively (Fig. 4g). Although Instruct-BiomedGPT-B showed amore
than 10% improvement over LLaVA-Med, accuracies remained under
60%. These results highlight the complexity of diagnosis and the need
for ongoing fine-tuning in the development of visual-language bio-
medical Al

Regarding alignment accuracy, GPT-4V and LLaVA-Med out-
performedthe other models (Fig. 4f); specifically, they achieved impres-
sivescores 0f99.5%+1.1%and 98.2% +2.0%, respectively, likely owing to the
advanced large language models onwhich they are built'®". The marked
improvement in alignment accuracy between Instruct-BiomedGPT
and the pretrained BiomedGPT exemplifies the effectiveness of
instruction tuning in enhancing the model’s capability to follow
instructions accurately. For instance, BiomedGPT-B achieved a mean
alignmentaccuracy of 79.2%, but Instruct-BiomedGPT-B reached 95%.

Human evaluation of BiomedGPT for radiology tasks

To evaluate the clinical applicability and deployment challenges of
BiomedGPT, we conducted a series of analyses through radiologist
evaluations of the model’s generated responses to a wide range of
tasks, including VQA, report generation and report summarization
in radiology. Examples of human evaluation on these three tasks in
terms of response factuality, omissions and severity of the errors are
showninFigure 5a. The detailed evaluation procedure and performance
analysis are as follows.

Radiology VQA. To clinically evaluate the correctness of BlomedGPT’s
responses, we randomly selected 52 question-answer samples from
16 images in the official test set of MIMIC-Diff-VQA* over 6 catego-
ries (Supplementary Table 2): abnormality, presence, location, type,
view and severity level. For a fair comparison, we collected the
answers generated by BiomedGPT, LLaVA-Med after fine-tuning
and GPT-4V (zero-shot). The generated answers were presented to a
seasoned radiologist at Massachusetts General Hospital for scoring
(Fig. 5b,c). The answers were categorized as correct, partially cor-
rect, incorrect or unrelated, and were assigned scores of2,1,0 and -1,
respectively. Additionally, the original radiology reports were provided

totheradiologist toserve as areference, potentially facilitatingamore
precise evaluation.

BiomedGPT achieved an average score of 1.75 across all 52 sam-
ples, accumulating a total score of 91. In comparison, GPT-4V and
LLaVA-Med attained average scores of 1.17 and 1.4, resulting in total
scores of 61and 73, respectively. BiomedGPT demonstrated superior
performancein four out of five question categories. In addition, despite
theradiologistidentifying some errorsin the sampled gold labels from
MIMIC-Diff-VQA, we conducted a comparison using an exact match
score based onthese labels across the test set with non-difference ques-
tions. In this evaluation, BiomedGPT-B showed the best performance
(Supplementary Table 3).

Radiology report generation. This task’s complexity arises from
the need for long-form outputs that provide detailed descriptions of
various aspects, such as the presence, location and severity of abnor-
malities. Inthis study, we randomly selected 30 sampleimage-report
pairs from the MIMIC-CXR dataset?. We then applied BiomedGPT-B
and BiomedGPT-M to generate the ‘findings’ section of the radiology
report based on the input CXR image. The radiologist assessed the
quality of the generated text by addressing several aspects. First, they
identified any disagreements with the generated report, suchasincor-
rect finding locations, incorrect severity levels, references to views
not present or mentions of prior studies that do not exist. Second, the
radiologist determined whether the errors in the generated report
are critical, with the options being critical, noncritical or N/A if more
information is needed. Third, they pinpointed any omissions in the
generated text. Finally, the radiologist judged whether the omissions
are clinically critical.

In the evaluation, we focused on finding-level metrics, in which
the generated text would be splitinto individual findings. For instance,
thereport ‘PA and lateral views of the chest provided. Cardiomegaly is
again noted with mild pulmonary edema. No large effusion or pneumo-
thorax. consists of three findings. To clearly demonstrate the quality
ofthe generated findings, we quantified the error rates and omission
rates (Fig. 5d). Inthe analysis 0f 192 generated findings, BiomedGPT-B
achieved a rate of ‘critical error’ of 8.3%, whereas BiomedGPT-M
exhibited a rate of 11.0% (excluding one case that required additional
information for acomprehensiveimpact assessment). These rates are
comparable to the human observer variabilities on the MIMIC-CXR,
which has an error rate of approximately 6%**. We also reported the
rate of ‘harmless error’; BiomedGPT-B and BiomedGPT-M achieved
5.2% and 11.5%, respectively. Our observations included an analysis of
254 findings from the reference report to calculate the omissionrates.
The total omission rates for BiomedGPT-B and BiomedGPT-M were
23.3% and 23.5%, respectively. Because not all findings described in
the reference are clinically necessary, our analysis primarily focused
on critical omissions; BiomedGPT-B and BiomedGPT-M had similar
rates, of 7.0% and 6.9%, respectively.

Radiology report summarization. We evaluated 100 summaries gener-
ated by BiomedGPT-B based on findings from MIMIC-CXR data®, along-
side the ‘Impression’ sections of corresponding reference reports.
Our evaluation focused on completeness, correctness and potential
medically adverse effects due to any omissions or incorrect interpreta-
tions (Fig.5a). Completenessis rated from1(veryincomplete) to 5 (very
complete), with 3 representing a borderline (neutral) encapsulation.
Accuracy is assessed by how well the content reflects the clinical impli-
cations for the patient, rated from 1 (veryincorrect) to 5 (very correct).
The potential for medically adverse effects from errors is classified as
‘no harm’, ‘mild’ or ‘severe’, on the basis of their clinical impact. Finally,
we compared which summary, generated or referenced, better encap-
sulated all clinically relevantinformation, providing acomprehensive
comparison of Al-generated summaries with traditional radiology
reportsinterms of relevance, accuracy and safety.
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Reference report

compressive atelectasis.

There is a right pleural effusion, the size of which is difficult to
ascertain. There is unchanged bilateral lower lobe and right
middle lobe collapse. The small left pleural effusion is unchanged.
There is no pulmonary vascular congestion or pneumothorax. The
cardiac and mediastinal contours are not well visualized.

A large right pleural effusion is increased from with associated
The left lung is clear. The heart and mediastinum cannot

be accurately assessed on this projection. (No mention of changes
in lobe collapse or new findings of congestion and pneumothorax.)

Report summarization
_______________ )

| Right pleural effusion, no pulmonary congestion or |
| pneumothorax, unclear cardiac and mediastinal outlines.:

Completeness Correctness

Score 4 5

Radiology VQA

} Q: What abnormalities are seen in the image?

,,,,,,,,,,,,,,,,,, .

|
| A: Pleural effusion, bilateral lower lobe collapse, right |
| middle lobe collapse, unclear cardiac and mediastinal }
l outlines. |
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Fig. 5| Human evaluation of the VQA, text-summarization and captioning
tasks. a, Examples of human evaluation for three tasks in terms of response
factuality, omissions and severity of the errors. In the given X-ray image,
Lindicates the left side of the patient’s body; the ‘O’ is not a letter but the imaging
of aforeign object either inside or outside the subject’s body. b, Comparison of
performance between three models across six question categories for radiology
VQA.c, Average answer score for radiology VQA. d, Error and omission rates of

BiomedGPT-B and BiomedGPT-Min the generated radiology report. e, Human
evaluation of report summarization considers three attributes: completeness,
correctness and potential harm, with the radiologist’s preference. Specifically,
inall comparison pairs (reference summary from the medical expert and the
BiomedGPT-generated summary, the radiologist evaluator prefer the reference
summary in 52% of cases. For the remaining 48% of the cases, the evaluator think
the BiomedGPT-generated summary is better.).

BiomedGPT-generated summaries generally exhibit higher com-
pleteness (Fig.Se), achieving average completeness (score >3) in 81.0%
of cases, 15.0% higher than the reference summaries. Additionally, only

5% of BiomedGPT-generated summaries are considered incomplete
(score < 3), compared with 4% for the reference summaries. Despite
these findings, the average completeness score for BiomedGPT is
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Fig. 6 | Results of the ablation study on the impact of diversity of pretraining
datasets and tasks and a graphical demonstration of BiomedGPT’s

design. a, Performance comparison excluding the specific task. The metrics
used are accuracy for radiology VQA, medical language inference and image
classification; CIDEr for radiology captioning; and ROUGE-L for medical-
question summarization. Pretraining without using masked image modeling,
w/o MIM; without using masked language modeling, w/o MLM; without using
object detection, w/o OD. b, Cross-domain transferability of BiomedGPT across
four datasets. RadGPT is a variant of BlomedGPT but was pretrained with
radiology-only data. SLAKE-MRI and SLAKE-CT are the modality-specific subsets

of the SLAKE data. ¢, In-domain transferability of BiomedGPT across three
radiology modalities and datasets. d, Description of the unified vocabulary used
in BiomedGPT for pretraining and inference. Tokenization of bounding boxes
and text was achieved using Pix2Seq and byte-pair encoding (BPE), respectively.
There are three types of tokens: location tokens, text tokens and image tokens
from frozen pretrained tokenizers, such as VQ-GAN. Anillustration of masked
image modeling in pretraining, which involves learning representations by
reconstructing masked patches, is also shown. [S] and [M] indicate the starting
token and masked patch embedding, respectively.

slightly lower at 3.9, versus 4.0 for reference summaries, with no sig-
nificant difference (P> 0.05). BiomedGPT also had a higher correctness
rate, with 90.0% of its summaries scoring above 3, compared with 86.0%

for the reference impressions. The Wilcoxon rank-sum test showed no
significant difference (P> 0.05) inaverage correctness scores between
BiomedGPT and the reference summaries, both averaging 4.4 out of 5.
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In addition, our analysis found that 6.0% of BiomedGPT-generated
summaries contained medically adverse items, categorized as either
‘mild’ or ‘severe’, which is identical to the rate observed in the refer-
ence impressions. This indicates that BiomedGPT has comparable
performance to human experts in summarizing radiology reports,
particularly in terms of assessing medical safety. Notably, there was
one instance of a ‘severe’ adverse effect identified in the reference
impressions, with no such cases found in the BiomedGPT-generated
summaries. The overall score of summaries generated by BiomedGPT
closely matches the score of those produced by the reference, with
preference scores of 48% for BiomedGPT and 52% for the reference
(Fig. 5e). The results of the Sign test (P> 0.05) indicate that there is
no significant preference for either system, suggesting comparable
performanceindelivering quality and safety in medical summarization.

Discussion

Inthis study, we have shown that BiomedGPT can achieve competitive
transfer-learning performance across vision, language and multimodal
domains by integrating diverse biomedical modalities and tasks within
aunified pretraining framework. However, the experimental results
alsorevealed limitations, offering insights for potentialimprovement.

The development of Al critically depends on the availability
of high-quality, annotated data. This requirement poses a unique
challenge in the biomedical domain, in which data annotation is
expensive, time-consuming and demands extensive domain exper-
tise**. Consequently, Al researchers often resort to public datasets,
which can compromise data quality. When dealing with multimodal
biomedical datasets, particularly image-text pairs, issues become
more pronounced: (1) most existing datasets focus primarily on radi-
ology, leading to a substantial modality imbalance; and (2) the scale
ofimages with detailed annotation s still imited in comparison with
unlabeled or weakly-labeled biomedical images and accessible bio-
medical articles from PubMed or PubMed Central. In our study, we
considered diverse modalities and ensured that the data scale is suf-
ficient to train high-performance models. Asmore biomedical dataare
curated and made open source, we can obtain better visual-semantic
mappings (Fig. 6).

Evaluating the quality of generated text presents considerable
challenges. Although metrics such as CIDEr and ROUGE-L can meas-
ure the agreement between generated content and a gold standard,
and are commonly used for model selection to further assess clini-
cal applicability®, ensuring the factual accuracy of these outputs
remains a concern. To address this, recent research has introduced
the F;-RadGraph score®, which qualitatively assesses the factual cor-
rectness and completeness of generated reports. In other domains,
such as pathology, similar evaluation metrics are not yet prevalent.
We anticipate the emergence of analogous metrics for these domains
that draw inspiration from factual-concerned metrics developed in
radiology**. These would further enhance our ability to measure the
factual integrity and overall quality of Al-generated medical content
across various biomedical fields.

BiomedGPT is currently adept in processing images and text,
and its capabilities could potentially be extended to other types of
biomedical data, such as video and time-series or sequential data.
For instance, we demonstrated how BiomedGPT can be extended
to handle three-dimensional (3D) images by introducing a 3D image
encoderintothe framework (Extended Data Table 5and Supplemen-
tary Table 4). Nevertheless, these expansions raise concerns about
negative transfer, in which learning from additional modalities might
inadvertently hamper performance on certain tasks. For instance,
our ablation study revealed that excluding image data during pre-
training improves performance onlanguage-only downstream tasks
(Fig. 6a), highlighting the risk of negative transfer. To mitigate this,
we propose exploring controllable learning strategies, such as the
mixture of experts®’.

Evidence from our comprehensive analysis (Figs.3a,b,fand 4a-e,h)
indicates a direct correlation between increased model scale and
enhanced performance, applicable toboth zero-shot predictions and
post-fine-tuning. However, scaling brings its own set of challenges, par-
ticularly concerning fine-tuning efficiency, training speed and memory
requirements. We have tried to address the efficiency challenges of
BiomedGPT by exploring prompt tuning, which adds small-scale para-
meters to condition-frozen models*. However, this method incurred
large performance degradation (Extended Data Fig. 4b).

Our zero-shot transfer-learning tests (Fig. 4f-h) indicated that
BiomedGPT’s text-comprehension capabilities, especially in compari-
son with those of GPT-4V, are not fully established. Two main factors
contribute to this limitation: first, the current scale of BiomedGPT,
particularly the language backbone, is limited by available resources,
althoughitis expandable. Our preliminary observations indicate that,
even if amodel has seven billion parameters and effective training,
achieving robust zero-shot in-context or text understanding remains
challenging in complex medical applications. However, fine-tuning,
even with a smaller-scale model such as BiomedGPT, proves to be a
promising approach to mitigate risks (Supplementary Fig. 3). Second,
the use of a single encoder that handles multiple input types compli-
cates the separation of diverse modality representations, requiring
more refined training strategies.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

BiomedGPTisatransformer-based architecture specifically designed
for thebiomedicalfield, built on the success of existing unified models
for general data. We follow the fundamental principles of a unified
model’": (1) modality-agnostic, (2) task-agnostic and (3) modality
and task comprehensiveness. By discretizing data into patches or
tokens, we achieve input-output unification usingideas from ViT** and
language models'*",

BiomedGPT architecture

There are three principal architectures among pretrained founda-
tion models: encoder-only, decoder-only and encoder-decoder.
Encoder-only models, such as BERT and its variants®’, primarily use
the transformer’s encoder to learn representations of input data, and
require additional modules, such classification heads or task-specific
decoders, during fine-tuning. This architecture may struggle with align-
inginputs and outputs across distinctly different modalities, limiting
its capability in complex zero-shot prediction or generation tasks.
Conversely, decoder-only models, exemplified by GPT', rely solely on
the transformer’s decoder to process raw textinputs. Although profi-
cientintext-based tasks, their architectureis notinherently equipped
to handle multiple modalities, often leading to challenges in learning
jointrepresentations across diverse data types. This can diminish flex-
ibility and performance in multimodal tasks, particularly inbiomedical
applications. Therefore, we selected the encoder-decoder architecture
todesign BiomedGPT, whichis more adept at mapping various modali-
ties into a unified semantic representation space, thereby enhancing
task handling across abroader spectrum.

BiomedGPT is implemented with a BERT-style encoder® over
corrupted text and a GPT-style left-to-right autoregressive decoder™.
All these models rely on the transformer with the popular multi-head
attention mechanism (Extended Data Fig.3a), which allows the model
to jointly attend to the information from different representation
sub-spaces®’. To improve the convergence efficiency and stability in
the pretraining, we added three normalization operations to each layer:
a post-attention Layer Norm (LN)®, post-first-FFN LN and head-wise
scaling within self-attention (Extended DataFig.2b), following ref. 62.
Toencode positionalinformation, we incorporated two sets of absolute
position embeddings for both text and images. Rather than merely
combining these embeddings with token and patch embeddings, we
implemented a decoupling method to separate position correlation
(Extended Data Fig. 3b), which could bring unnecessary randomness
in the attention and further limit the expressiveness of the model®.
Furthermore, we also incorporated one-dimensional relative posi-
tion bias for text and 2D relative position bias for image (Extended
Data Fig. 3c), as described in previous works®***, To investigate the
performance of BiomedGPT for tasks at different scales, we explicitly
designed three scaling models, thatis, BiomedGPT-S (33 million param-
eters), BiomedGPT-M (93 million parameters) and BiomedGPT-B (182
million parameters). The configurations for each model are detailed
in Extended Data Figure 2a.

Unifying input-output

To handle diverse modalities without relying on task-specific output
structures, we represented them as tokens drawn from a unified and
finite vocabulary (Fig. 6d). To achieve this, we used frozen image quan-
tization® and object descriptor®® to discretize images and objects,
respectively, on the target side. We encoded text outputs, including
object labels and summarizations, using BPE tokens®’. Specifically,
animage with aresolution 0of256 x 256 pixelsis sparsely encoded into
asequence of 16 x 16 pixels, which correlates strongly with the cor-
responding patch and can effectively reduce the sequence length of
the image representation. The bounding boxes of objects in
an image are expressed as sequences of location tokens in the
format of integers. We thereby built a unified vocabulary for all

tokens of multimodal outputs. The total vocabulary size is 59,457
tokens, including 50,265 language tokens, 1,000 location tokens and
8,192 vision tokens. The number of vision tokens was determined by
the variant of the pretrained VQ-GAN models used in BiomedGPT;
specifically, we used the variant with a patch size of 8 and vocabulary
size of 8,192. During training, we randomly subsampled 196 image
patches for pretraining. The maximum model input length is trun-
catedto512.

Ablation study on modality comprehensiveness. Additional evalu-
ationswere conducted to address the query: ‘Can the proposed model
handle unseen data modalities (for example, images from a new dif-
ferent imaging device like an ultrasound)?’ To investigate this, we
adjusted our dataset selection for both pretraining and downstream
tasks (Supplementary Fig. 2b). Specifically, we used all 3,489 and
6,461 CXR image-text pairs from the SLAKE and IU X-ray datasets,
respectively. Additionally, we randomly selected 7,452 images from
CheXpert while disabling MLM and OD during pretraining for sim-
plification (Supplementary Fig. 2a). The pretrained BiomedGPT on
X-ray modality, denoted as RadGPT-{size}, was then fine-tuned on
radiology datasets: CXR, breast ultrasound and liver CT (coronal view).
As acomparative baseline, we selected ResNet-50 (ref. 68), which was
trained fromscratch onthese three datasets. We observed impressive
in-domain transferability of BiomedGPT from the outcome (Fig. 6¢):
RadGPT-B outperformed the baseline, achieving 93.0% classification
accuracy on the CXR images, a 7.6% improvement. However, for liver
CT scans, we had to scale up the model to attain comparable results
to the baseline. This highlights the challenges in domain adaptation
for medical applications when the pretrained model does not learn
diverse medical knowledge.

We further explored the aspect of cross-domain transferability
(Fig. 6b). Specifically, we fine-tuned the aforementioned pretrained
model, RadGPT, using datasets from other domains, such as blood
cell microscopy and dermoscopy, for image classification. Addition-
ally, we selected MRI-only and CT-only image-text pairs from SLAKE
and conducted VQA fine-tuning. The results were compared with the
benchmark (the original BiomedGPT-B pretrained with allmodalities)
and were measured in terms of accuracy. We found that cross-modality
transfer with our model is feasible, albeit with potentially substantial
performance degradation. For example, RadGPT-B exhibited a notable
decreaseinaccuracy compared with the baseline on both the DermaM-
NIST dataset (dermoscopy), with an 8.1% drop, and the SLAKE-CT VQA
dataset, with amore substantial reduction of 15.2%. Notably, we had to
double the training epochs as compared with the previous fine-tuning
with a pretrained model encompassing all modalities (100 versus 50).
Therefore, we conclude that modality comprehensiveness is essential
for ageneralist biomedical Al model to facilitate efficient knowledge
transfer.

Natural language as a task instructor

Multitasking is a key attribute of a unified and generalist model. Fol-
lowing the literature on language models using prompt and instruc-
tion learning'®**’° and existing unified frameworks to eliminate
task-specific modules, we defined each task with a custom instruc-
tion, excluding VQA tasks, which are fully specified by their text
inputs. BiomedGPT supports abstractions of several tasks, including
vision-only, text-only and vision-language, to achieve task comprehen-
siveness. We provide details of the pretraining tasks and fine-tuning
andinferencetasks, as well as their corresponding instructions, in the
following sections.

Pretraining tasks. We considered two vision-only tasksin the pretrain-
ing process: for MIM as well asimage infilling, we borrowed the idea of
block-wise masking” and let the model recover the masked patchesin
the middle part by generating the corresponding codes (see Fig. 6d).
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The correspondinginstructionis ‘Whatis theimageinthe middle part?’.
For object detection, the model learns to generate the bounding box
of an object with the instruction ‘What are the objects in the image?”.
For the text-only task, we adopted the commonly used MLM), whose
logicis similar to MIMbut theinstructionis ‘What is the complete text of
‘{Text}'?. Two types of multimodal tasks were selected, including image
captioning with the instruction of ‘What does the image describe?’
and VQA with the instruction of ‘{Question}. The addition of OD for
pretraining BiomedGPT serves to enhance visual learning, inspired
by ref. 72. The mixture of pretraining tasks is effective, especially for
processing multimodal inputs (Fig. 6a).

Fine-tuning and downstream tasks. Besides image captioning and
VQA used in pretraining, we covered one more vision-only task and
two more text-only tasks. Specifically, we used the instruction ‘What
does theimage describe?’ to differentiate image classification. ‘What
is the summary of text ‘{Text}'?’ and ‘Can textl ‘{Text1l} imply text2
‘{Text2}'?’ were exploited for text summarization and natural-language
inference, respectively.Notably, BiomedGPT is extendable, allowing for
customization of instructions for specific downstream tasks (Fig. 1c
and Supplementary Figs. 4-9).

Ablation study on task comprehensiveness. To gain a deeper
understanding of the impact of individual pretraining tasks on down-
stream performance, weimplemented anablation study that excludes
either image-only or text-only tasks during pretraining, followed by
fine-tuning of the resultant models on five downstream tasks. To
ensure afair comparison, we utilized downstream datasets that were
excluded from the pretraining phase: (1) PneumoniaMNIST** for image
classification; (2) ROCO (https://github.com/razorx89/roco-dataset)
for image captioning; (3) VQA-RAD for VQA; (4) MeQSum for text
summarization; and (5) MedNLI for text understanding. Moreover,
each model was fine-tuned using consistent training receipts across
the same datasets.

Owing to the limited computing resources, we performed this
study using only BiomedGPT-S. Referring to Supplementary Figure 2c,
we used the BiomedGPT-S model, pretrained with all tasks, as the
baseline. We observed several empirical phenomena in this ablation
study (Fig. 6a): (1) excluding the MIM component resulted in decreased
performance in image-centric and multimodal tasks, such as image
classification and VQA accuracy. Conversely, text-centric tasks showed
improvement. These outcomes indicate that MIM is not crucial for
text-only tasks, potentially explaining the enhancementsin those areas.
(2) When MLM was excluded during pretraining, performance declined
acrossalltasks in downstream evaluation. Text-centric tasks were sub-
stantiallyimpacted. These findings underscore theimportance of MLM
for unified models, even for image-only tasks that require text-token
dictionaries for label generation. (3) Excluding object detection dur-
ing pretraining led to notable performance reductions in tasks such
as image classification and radiology captioning. However, changes
in performance for other datasets were relatively minor, likely owing
to the limited number of object-detection samples and the weak con-
nection to language-only tasks. In summary, our study highlights the
importance of task diversity in pretraining for the unified medical Al.
Although the exclusion of image-specific tasks might benefit perfor-
mance on text-only tasks downstream, a varied task regime is essential
for maintaining generalization across both unimodal and multimodal
applications.

Model pretraining

We adopted sequence-to-sequence (seq2seq) learning”, which is
a commonly used approach for large language models, to train our
BiomedGPT. Formally, suppose we are given a sequence of tokens
X;p as input, where i =1, -,/ indexes the tokens in a data sample
and b =1,---,B indexes a sample in a training batch. Let a model be

parametrized by 6. Then we autoregressively train the model by mini-
mizing theloss function L

Lo(Xy1,+, X;5)

B I B 1
== Y log [T Po(Xip|Xyps s Xizrp) = = 25 2. 108 Po(X;p|X<1,0)-
bo1 sl b=1i=1

In the context of BiomedGPT, x could refer to both linguistic and
visualtokensin the pretraining tasks, including subwords, image codes
and location tokens. Specifically, subwords were extracted by a BPE
tokenizer, and we masked 15% of the tokens of the subwords in input
in the MLM task, because these medical words show relatively high
degrees of overlap. For the object-detection task, location tokens are
generated following Pix2Seq°®®, conditioned on the observed pixel
inputs. Data preprocessing was required for quantizing biomedi-
cal images using VQ-GAN® owing to trivial semantics such as black
backgrounds and the need to meet specific input size requirements.
Therefore, we first removed the trivial background and cropped the
image to the bounding box of the object of interest. We then resized
the cropped image to 256 x 256 pixels and fed the center part, with a
resolution of 128 x 128 pixels, into the pretrained VQ-GAN to generate
the corresponding sparse image codes, which were the target output
in masked image modeling task. Vision-language tasks followed the
same tokenization flow. For fine-tuning, we also applied seq2seqlearn-
ing using different datasets and tasks.

To pretrain our BiomedGPT, we used the AdamW™ optimizer with
exponential decay rates for the firstand second momentum estimates
B,=0.9,8,=0.999, respectively, and asmall constant e =1x 10 added
to the denominator to improve numerical stability. The peak learning
rate is set to 1 x 107*, and we applied a linear decay scheduler with a
warmup ratio of 0.01 to control the learning rate. For regularization,
we set the dropout to 0.1 and used a weight decay of 0.01. To enhance
thetraining process, we used stochastic depth with arate of 0.1, which
was applied tothe encoder and decoder, except for convolution blocks.
Furthermore, we used a diversified approach in mixingall pretraining
data within each batch. This included an assortment of multimodal,
text-only, vision-only and object-detection samples. These were used
in an 8:2:1:1 ratio to emphasize learning and enhance the interaction
between vision and language. In addition, to address the potential
feature shift caused by the inherent modality imbalance within the
pretraining data, we adopted modality sampling strategies in each
pretraining batch to ensure balance. The models were pretrained with
10 NVIDIA A5000 GPUs and mixed precision”. Pretraining of the base,
medium and small models took approximately 87,32 and 9 h, respec-
tively. We initialized BiomedGPT with the pretrained OFA model* and
adapted it to the biomedical domain using our curated multimodal
biomedical dataset. Specifically, we continued training from OFA’s
pretrained checkpoints to align biomedical concepts using diverse
modality datathrough masked modeling, OD and image-text matching
(Extended Data Table 3). This approach could reduce computational
efficiency as the continued training incorporates general-domain
knowledge from OFA, including language-understanding capabilities
that are beneficial for question-answering tasks.

Model fine-tuning and inference

Fine-tuning, aformof transfer learning, involves adapting a pretrained
model’s weights to new data. The practice of fine-tuning pretrained
models, a widely acknowledged and highly effective approach in
natural-language processing and computer vision, has also found
important application in medical AI’*”. Unlike most previous bio-
medical models that necessitate the addition and training of extra
components, suchasalinear outputlayer oradecoder, our BiomedGPT
model relies solely on fine-tuning the existing structure. The specific
instructions used for this fine-tuning procedure mirror those in the
pretraining workflow, thereby maintaining consistency and efficiency
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inmodeladaptation. We observed that, in tasks requiring long-context
outputs, such as image captioning, the model’s performance is influ-
enced by hyperparameters, specifically beam search size and output
length constraints (Supplementary Table 6). These findings informed
our selection of hyperparameters for fine-tuning, which should be
based on data statistics from the training set, such as the maximum
length of the target text (Supplementary Table 7). For datasets with
an official split, we selected the checkpoint that achieved the highest
metric on the validation data for inference during model evaluation
(Supplementary Table 7). For datasets lacking an official split, we
employed k-fold cross-validation, used the checkpoint from the last
epoch forinference and reported the meanands.d.

Similar to existing large language models and multimodal mod-
els®, ininference, we used decoding strategies such asbeam search to
improve generation quality. However, this approach poses challenges
for classification tasks, including unnecessary searching of the entire
vocabulary and the possibility of generating invalid labels beyond
the closed label set. To tackle these issues, we applied a beam search
strategy incorporating a prefix tree (also knownas atrie), limiting the
number of candidate tokens and resulting in more efficient and accu-
rate decoding. Extended Data Figure 3d demonstrates an example of
trie-based beam search; along the path across ‘Lipid’and ‘breakdown’,
BiomedGPT sets logits for all invalid tokens (‘mechanism” and ‘path-
way’) to —~ while computing log-probabilities for the target token ‘in".
Itis worth noting that trie-based search was also applied during the
validation phase of the fine-tuning stage for acceleration (approxi-
mately 16x increase in speed in our experiments).

Modelinstruction-tuning and zero-shot prediction
Instruction-tuning was developed to improve the question-
understanding capabilities of the pretrained BiomedGPT. Following
the data-curation method used for LLaVA-Med", we diverged from
the traditional VQA approach, in which a pre-built answer set is used
duringboth training andinference. Instead, in our instruction-tuning
method, an open-vocabulary setting is used, allowing the model to
operate without a predefined set of answers and thereby enabling it
to independently determine the most appropriate response during
boththe training and inference phases.

We summarized experimental settings for each zero-shot trial as
follows. In the VQA-RAD zero-shot experiment (Fig. 4), we used the
original questions from the dataset as prompts or instructions. For
the disease-diagnosis zero-shot experiments (Extended Data Fig. 5b),
we used acommon prompt template: ‘Does the patient have <disease>
given theimage?’. The evaluation datasets were curated on the basis of
the RSNA Pneumonia Detection Challenge (2018) (https://www.rsna.
org/rsnai/ai-image-challenge/rsna-pneumonia-detection-challenge-2
018) and MedMNIST v2 (images with aresolution of 224 x 224 pixels)*®.
Specific evaluations were conducted across different medical data-
sets: (1) pneumonia detection involved 1,000 randomly sampled
cases from RSNA, including 548 pneumonia and 452 normal cases.
(2) Malignant tumor detection used the BreastMNIST dataset, com-
prising 114 normal or benign cases and 42 malignant cases. (3) Mela-
noma recognition was based on a subset of DermaMNIST with 223
positive melanoma cases. (4) Drusen recognition utilized a subset of
OCTMNIST, featuring 250 positive drusen cases. (5) Cancer tissue iden-
tification was assessed on a PathMNIST subset, which included 1,233
colorectal adenocarcinoma epithelium cases, 421 cancer-associated
stroma cases, 339 debris cases and 741 normal colon mucosa cases. In
TB detection and report generation using two-view CXRs (Extended
Data Fig. 5¢), we replicated the experimental settings and prompt
templates used by Med-PaLM M. Additionally, we incorporated the
MIMIC-CXR training set, which includes single-view image-caption
pairs, during continual pretraining to ensure a fair comparison with
Med-PaLM M. For report generation, we utilized common NLP metrics
to align with Med-PaLM M.

Furthermore, we conducted preliminary zero-shot studies on
two instruction-tuned large language models, aiming to explore the
upper bounds of in-context learning performance using advanced
language backbones. We considered the potential integration of these
elementsinto BiomedGPT to enhance reasoning capabilities. However,
these models exhibited notable discrepancies when compared with
fine-tuned models (Supplementary Fig. 3). These findings suggest
that future academicresearch in medical Alshould focus onimproving
in-context learning abilities and text comprehension, which are crucial
for real-world clinical tasks.

Model extension

BiomedGPT was initially developed to process visual (specifically 2D
images) and text data. However, the prototype’s capabilities could be
extended to encompass additional tasks and modalities. For example,
we have extended BiomedGPT toinclude 3D medical imaging classifica-
tion (Extended Data Table 5and Supplementary Table 4). This extension
involved implementing both pretraining and fine-tuning stages. It
requires only integrating a pretrained 3D VQ-GAN for tokenizing 3D
images in masked image modeling and adding a learnable 3D visual
encoderinto the pipeline (Fig. 2a). To further extend the model’s capa-
bilities, especially for non-text generation tasks, such as segmentation,
introducing additional decoders, suchasamask decoder, is appropriate.

Computing hardware and software

We used Python (version 3.7.4) for all experiments and analyses in the
study, which canbereplicated using open-source libraries as outlined
below. For pretraining, we used ten 24-GB NVIDIA A5000 GPUs con-
figured for multi-GPU training using DistributedDataParallel (DDP)
as implemented by the framework PyTorch (version1.8.1, CUDA 12.2)
with the sequence-to-sequence toolkit - fairseq (version 1.0.0). For
masked image modeling, we first cropped the middle part of theimage
and convertedittoasequence of visual tokens based on the pretrained
VQ-GAN model (https://heibox.uni-heidelberg.de/d/2e5662443a6b43
07b470/).Pillowlibrary (version 9.0.1) was used to read images, which
were then converted to the base64 string format using Python. Timm
library (version 0.6.12), torchvision (version 0.9.1) and opencv-python
(version4.6.0) were applied forimage processing and loading during
training. We used the ftfy library (version 6.0.3) to fix potentially broken
Unicode for text processing and loading. Einops library (version 0.6.0)
was applied for tensor operationsin modeling. For model evaluation,
we used pycocotools (version 2.0.4) and pycocoevalcap (version1.2) to
calculate the NLP metrics such as ROUGE-L and CIDEr. Other metrics,
calculated on the basis of torchmetrics (version 0.11.0). Numpy (ver-
sion 1.21.5) and Pandas (version 1.3.5), were used in data collection,
preprocessing and data analysis.

Evaluation metrics

We used several evaluation metrics to thoroughly assess the capabilities
of our BiomedGPT model across different tasks. Accuracy is a primary
metric used for evaluating the performance in medical-image classifica-
tion, VQA and natural-language inference. In addition to accuracy, we
alsoused the F; score for the tasks in which classimbalance was consid-
ered. The F;scoreis derived as the harmonic mean of precision and recall:

_ 2 x precision x recall

F1 —
precision + recall

Foramore convenient comparison with SOTA approaches, we used
the weighted F; score for VQA. This measure is computed by averaging
the F,scores across each class, withthe individual class scores weighted
according to their frequency of occurrence:

N
Weighted F1 =

)
—-
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where n; is the number of instances in class i, N is the total number
of instances across all classes and F;; is the F, score for class i.
Furthermore, we applied the macro-average F, score (F;-macro) in
image-classification tasks on the CBIS-DDSM dataset. The F;-macro
score is calculated by determining the F, score for each class inde-
pendently and then averaging these scores across all classes. This
approach does not account for class imbalances, treating each class
with equalimportance:

=

I
—

X Fl,

==

F1—macro =
L

The higher the accuracy and F, score (either weighted- or
maro-average), the better performance the model achieves.

ROUGE-L* was used to evaluate the quality of the generated text
on the image-captioning and text-summarization tasks. Given the
candidate Cand reference R, let LCS(C, R) be the length of the longest
common subsequence, which is determined by using dynamic pro-
gramming, it can be expressed as:

(1+B?)RicsPics

ROUGE - L = s
Rics + B2Pics

where R;¢s = L8R

, Rics = &CCR) and g= l'% ¢ and r represent

LCS

the length of the candidate and reference. A higher ROUGE-L score
means that the generated text shares more of the same sequences of
words as the reference text, which typically indicates better quality
in terms of capturing the salient points of the reference. It suggests
that the generated text is more similar to the reference summaries
thatitisbeing compared with, whichis usually desirable insummariza-

tion tasks.
In addition to ROUGE-L, we also used METEOR” and CIDEr?* to
obtain a more comprehensive evaluation of captioning generation
m

quality. For METEOR, we represented precision and recall as P= =

c

andR = ? where mis the number of common words in the candidate

Candthereference Rwith the number of words of cand r, respectively.
METEOR s calculated as follows:

PR

where p is the penalty factor and is denoted as p = y(%)g, chisthe
number of chunks, where a chunk is defined as a set'of unigrams
that are adjacent in the candidate and reference. a, 8 and y are
hyperparameters that are set as 0.1, 3 and 0.5, respectively, in our
calculation.

CIDErisspecifically designed to evaluate the quality ofimage cap-
tions. The CIDEr score s calculated using n-gram matching, considering
both precision (how many n-gramsin the generated captionarealsoin
thereference captions) and recall (how many n-gramsin thereference
captionsarealsoin the generated caption). It also weighs the n-grams
based ontheirsaliency (importanceindescribing theimage) and rarity
(uncommonness in the dataset), which helps toemphasize theimpor-
tance of capturing the most relevant aspects of theimage in the caption.
CIDEr is obtained by averaging the similarity of different lengths:

1< g8%0)-8"S)
CIDER(€.9) = 5 2. gl - lgr ol
where cisacandidate caption, Sis set of reference captions, Mdenotes
the number of reference captions and g"(-) is an n-gram-based
term frequency-inverse document frequency vector. A higher CIDEr
score suggests that the generated caption is more accurate and descrip-
tive of the image content, aligning well with human judgments of what

theimage represents. CIDEr can range from 0 to 100. Typically, human
captionstend to score near 90 (ref. 28).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datain this study are publicly available and can be accessed from:
IU X-ray and Peir Gross (https://github.com/nlpaueb/bioCaption),
MedICat (https://github.com/allenai/medicat), PathVQA (https://
huggingface.co/datasets/flaviagiammarino/path-vqa), SLAKE 1.0
(https://www.med-vqa.com/slake/), DeepLesion (https://nihcc.app.
box.com/v/DeepLesion), OIA-DDR (https://github.com/nkicsl/OIA),
CheXpert-v1.0-small (https://www.kaggle.com/datasets/willarevalo/
chexpert-vl0-small), CytolmageNet (https://www.kaggle.com/
datasets/stanleyhua/cytoimagenet), ISIC 2020 (https://challenge2020.
isic-archive.com), Retinal Fundus (https://www.kaggle.com/c/
diabetic-retinopathy-detection), MIMIC-III Clinic Notes (https://papers-
withcode.com/dataset/hospital-admission-notes-from-mimic-iii),
NCBI BioNLP (https://www.ncbi.nlm.nih.gov/research/bionlp/
Data/), PubMed abstracts derived from the BLUE benchmark (https://
github.com/ncbi-nlp/BLUE_Benchmark), VQA-RAD (https://osf.
io/89kps/), CBIS-DDSM (https://www.kaggle.com/datasets/awsaf49/
cbis-ddsm-breast-cancer-image-dataset), SZ-CXR and MC-CXR
(access can be requested via the contact at http://archive.nlm.nih.
gov/repos/chestlmages.php), MIMIC-CXR (https://physionet.org/
content/mimic-cxr-jpg/2.1.0/), MedNLI (https://physionet.org/content/
mednli/1.0.0/), TREC2022 (https://www.trec-cds.org/2022.html), SEER
(https://seer.cancer.gov), MIMIC-III (https://physionet.org/content/
mimiciii/1.4/), HealthcareMagic (https://huggingface.co/datasets/
UCSD26/medical_dialog), MeQSum (https://huggingface.co/datasets/
sumedh/MeQSum), MedMNIST v2 (https://medmnist.com) and ROCO
(https://github.com/razorx89/roco-dataset). A randomly sampled
subset of RSNA Pneumonia Detection Challenge (2018) was used for
zero-shot prediction (https://www.rsna.org/rsnai/ai-image-challenge/
rsna-pneumonia-detection-challenge-2018). The MedMNIST-Raw is
curated using multiple sources, including NCT-CRC-HE-100K (colon
pathology) (https://zenodo.org/records/1214456), HAM1000O (der-
moscopy) (https://github.com/ptschandl/HAM10000_dataset), OCT
and Chest X-ray (https://data.mendeley.com/datasets/rscbjbr9sj/3),
breast ultrasound (https://scholar.cu.edu.eg/Dataset_BUSI.zip), blood
cell microscopy (https://data.mendeley.com/datasets/snkd93bnjr/1)
and Liver Tumor Segmentation Benchmark (LiTS) (https://competi-
tions.codalab.org/competitions/17094). The VQA data for human
evaluation are derived from Medical-Diff-VQA (https://physionet.
org/content/medical-diff-vqa/1.0.0/), with the exclusion of questions
related to differences, as these require a two-image input. Report
generation and summarization samples for human evaluations are
extracted from MIMIC-CXR. The instruction-following data used in this
article are derived from Pubmed (https://pubmed.ncbi.nlm.nih.gov)
following the LLaVA-Med approach (https://github.com/microsoft/
LLaVA-Med/blob/main/download_data.sh) and are combined with
training sets from PathVQA and SLAKE. We also provided the table with
more details of the major datasets in Extended Data Table 2.

Code availability

The pretrained and fine-tuned models, as well as source code for train-
ing, inference and data preprocessing, can be accessed at https://
github.com/taokz/BiomedGPT.
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Extended Data Fig. 1| Statistics of pretraining and fine-tuning datasets.
(a) Modality distribution of pretraining data used in BiomedGPT. (b) For the
training and testing splits of datasets used in downstream fine-tuning, we

typically follow the format of number of training samples/number of validation
samples/number of test samples to detail each dataset. More details of the data
splitare described in Supplementary Table 7.
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a
Image projection Representation size Transformer block
Model scale #Parameters
Input size Visual encoder Hidden Intermediate Att. head #Enc. layer  #Dec. layer
BiomedGPT-S 33 million 256 x 256 ResNet-50 256 1024 4 4 4
BiomedGPT-M 93 million 256 x 256 ResNet-101 512 2048 8 4 4
BiomedGPT-B 182 million 256 x 256 ResNet-101 768 3072 12 6 6
b .
- Prolected1 outputs
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I

Concatenate text & visual embeddings

with position embeddings

Extended Data Fig. 2| Overview of BiomedGPT’s model configuration

and architecture. (a) Detailed model configuration of BiomedGPT. Here, ‘#’
indicates number of.‘Att., ‘Enc. and ‘Dec. indicate Attention, Encoder and
Decoder, respectively. The hidden size is the size of the embeddings and the size
ofthe output of each self-attention and feed-forward layer. The first layer of FFN
expands the hidden size to the intermediate size, and the second layer contracts
itback to the hidden size. This expansion and contraction allow the network

to create more complex representations. During the pretraining phase, image

Output embeddings

processing involves resizing and cropping the images to varying resolutions,
corresponding to the input sizes listed in the table. It should be noted that
during fine-tuning and inference stages, the input resolution of BiomedGPT can
be flexibly adjusted according to the specific requirements of the task.

(b) The neural network architecture of BiomedGPT, which includes bidirectional
encoder blocks and autoregressive decoder blocks. The number of blocks varies

for different model scales.
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Extended Data Fig. 3 | See next page for caption.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03185-2

Extended Data Fig. 3| The graphical illustrations of the key componentsin
BiomedGPT. (a) Head-scale multi-head attention module in BiomedGPT. The
trainable parameters y, is applied prior to the output projection for each head.
(b) Instead of adding the absolute positional embedding P;to the input
embedding/; (left), we compute the positional correlation and input correlation
separately with different projection matrices and add them together in the
self-attention module (right). (c) Graphicalillustration of relative position bias.
Such aninductive bias B;,is learnable parameter and can be viewed as the

embedding of the relative positionj—i, which isinjected into the Query-Key
product: % UWPWK) + B;_;, and shared inall layers. (d) An example of

trie-based beam search: along the path across ‘Lipid’ and ‘breakdown’,
BiomedGPT sets logits for all invalid tokens (‘mechanism’ and ‘pathway’) to -«
when computing log-probabilities for the target token ‘in’. It is worth noting that
trie-based searchis also applied during the validation phase of the fine-tuning
stage for acceleration (approximately 16 x increase in speed in our experiments).
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Extended Data Fig. 4 | Comparative Performance of BiomedGPT and
Med-PaLM M and the prompt tuning results in Image classification.

(a) Comparison between BiomedGPT-B and Med-PaLM M on CBIS-DDSM dataset.

(b) The experimental results of prompt tuning BiomedGPT-B on three image
classification datasets. Prompt tuning learns ‘soft prompts’ or extra model
parameters for each task instead of making a task-specific copy of the entire
pretrained model for each downstream task and inference must be performed in
separate batches. We must mention that the addition of soft promptsis contrary
to the design principle of the generalist model. We injected two prompt layers
into the encoder and decoder, and varied the prompt length {20, 40, 60, 80,100,

0.6

Accuracy
o
>

—il— Colon pathology
—@®— Chest X-ray

—&— Blood cell microscope

0.2
20 40 60 80 100 120

Prompt length
120} to investigate the performance comparison against full-model fine-tuning.
The preliminary results of ‘Colon pathology’, ‘Blood cell microscope’, and ‘Chest
X-ray’ were obtained after 100, 512, and 55 training epochs respectively, all witha
consistent batch size of 512. We observed that as the prompt length increases, the
model performance tends to improve. However, despite an increased number of
tuning epochs compared with fine-tuning on the original BiomedGPT (Fig. 3¢),
the performance after prompt tuning notably lags behind that of model fine-
tuning. Specifically, considering only the best results in prompt tuning, there
are substantial accuracy reductions of 32.3%, 54.6%, and 32.6% on these three
datasets, respectively.
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CLIP-style zero-shot prediction

ViT with a trainable linear classifier

BiomedGPT-style zero-shot learning
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C
Zero-shot Fine-tuned
Metri .
Task M BiomedGPT LLaVA-Med Med-PaLMM Med-PalMM BiomedGPT g o
(182 M) (8 B) (12 B) (562 B) (182 M)
TB detection Accuracy 78.3 341 87.0 87.7 89.7 88.9
ROUGE-L 24.4 17.3 27.8 28.5 28.7 29.6
BLEU-4 9.9 4.0 1.5 12,5 15.4 13.3
Report generation
F1-RadGraph  22.5 9.5 26.7 27.3 28.0 24.4
CIDEr 23.4 0.0 27.6 29.8 55.2 49.5

Extended DataFig. 5| Additional zero-shot results of BiomedGPT.

(a) Graphicalillustration of zero-shot classification using CLIP-style models,
linear probing transfer learning using VIT or BERT-style models, and zero-shot
generation of BiomedGPT. Notably, our model can generate the response
without providing additional components such as the label candidates for
CLIP or linear classifier requiring training for ViT. (b) Zero-shot performance
on five disease diagnosis tasks. (c) BiomedGPT shows competitive zero-shot
performance compared with Med-PaLM M with a much smaller model scale.
The SOTA fine-tuned model for TB detection is TBLightNet. Note that no single

model consistently outperforms the others across all four metrics used in report
generation. Here, SOTAs represent the best performance achieved in each
specific metric. We fine-tuned our pretrained BiomedGPT-B on MultiMedBench,
which Med-PaLM M proposed and used for fine-tuning based on the pretrained
PaLM-E. We also attempted to fine-tune LLaVA-Med; however, the time and
computational costs were prohibitive due to the large scale of the model and
data. Therefore, we reported the results using the pretrained checkpoint of
LLaVA-Med.
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Extended Data Table 1| Fine-tuned experimental results of BiomedGPT on 25 diverse experiments

SOTA BiomedGPT
Task Dataset Domain / Modality Metric
Model Result Small Medium Base
NCT-CRC-HE-100K Colon pathology BiomedCLIP 91.0 94.4 95.8 95.6
HAM10000 Dermatoscopy MedViT-L 72.3 66.9 67.6 86.6
Retinal OCT MedViT-L 89.1 84.3 92.9 90.9
Zhang Lab Data
Chest X-Ray BiomedCLIP 93.0 62.5 94.9 94.9
Breast Ultrasound Breast ultrasound Accuracy BiomedCLIP 82.2 73.1 73.1 79.5
Im.e.age. B.IOOd Cell Blood cell microscope BiomedCLIP 97.9 82.7 98.5 98.7
classification Microscope
LiTS Coronal abdominal CT BiomedCLIP 92.5 56.1 90.6 91.0
MC-CXR Chest X-Ray 88.9 75.9 82.8 89.7
LightTBNet
SZ-CXR Chest X-Ray 91.0 83.5 97.0 96.2
Med-PaLM M
Mass (562B) 51.1 - 18.7 57.2
CBIS-DDSM F1-Macro Mod-PaLM M
- ed-Pal
Calcification (12B) 67.9 - 18.9 72.8
Text - -
. MedNLI Clinic notes Accuracy SciFive 85.6 75.8 80.8 83.8
understanding
Clinical-Trial TREC 2022 Clinical trials and patient's | o a0y | LLaVA-Med 48.7 71.6 75.4 85.2
Matching medical records
Treatment SEER Radiation and chemotherapy | auoracy BioGPT 45.9 46.4 49.0 50.0
suggestions records
Mortality -
- MIMIC-IlI ICU admission notes Accuracy UMLS-BERT 87.3 77.8 89.2 89.0
prediction
MeQSum Doctor-patient dialogues ROUGEL-L BioBART-L 53.2 42.2 51.3 52.3
HealthCareMagic Doctor-patient dialogues ROUGEL-L BART-L 44.7 39.8 41.99 42.0
ROUGEL-L RadAdapt 445 - - 44.4
S Text MIMC-CXR Radiology report =
ummarization N - -
RadGraph RadAdapt 41.8 451
ROUGEL-L Mefszz'é“)" M 32.0 - - 307
MIMIC-IlI Radiology report
F1- MedPalLM M 347 } : 312
RadGraph (562B) . :
CLIP-ViT w/
PathVQA Pathology GPT2 63.6 47.6 49.2 58.1
Visual question .
answering VQA-RAD Radiology Accuracy | MedVInT-TD 81.6 40.1 69.4 73.2
SLAKE Radiology BiomedCLIP 85.4 69.2 81.6 86.1
U X-RAY Chest X-Ray PPKED 35.1 29.6 31.3 40..1
Image captioning PEIR GROSS Digital camera CIDEr CoAttention 329 22.0 25.8 122.7
. MedPalLM M
MIMIC-CXR Radiology (84B) 26.2 - - 14.7
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Extended Data Table 2 | Datasets used in BiomedGPT for pretraining, fine-tuning, evaluation with details

https://competitions.codalab.org/competitions/17094

Task Dataset Availability Description
1U X-ray https://github.com/nlpaueb/bioCaption A set of chest X-ray images paired with diagnostic reports.
MediCat https://github.com/allenai/medicat IA dataset of medical images, captions, and textual references
Vision & Language PathVQA https://huggingface.co/datasets/flaviagiammarino/path-vga A dataset of question-answer pairs on pathology images.
PEIR GROSS https://github.com/nlpaueb/bioCaption A set of pathology image-caption pairs from PEIR digital library.
SLAKE https://www.med-vga.com/slake/ IAn English-Chinese bilingual dataset of question-answer pairs.
Object Detection Deeplesion https://nihcc.app.box.com/v/Deeplesion A dataset with annotated lesions identified on CT images.
) OIA-DDR https://github.com/nkicsl/OIA A dataset with annotated fundus images.
Pre-training CheXpert https://www.kaggle.com/datasets/willarevalo/chexpert-v10-small |A set of chest X-ray images with both frontal and lateral views.
Masked Image CytolmageNet  |https://www.kaggle.com/datasets/stanleyhua/cytoimagenet 2:?:5:;?\;?;1:?:? of openly-sourced and weakly-labeled
Modeling 1SIC https://challenge2020.isic-archive.com/ Dermoscopic images of unique benign and malignant skin lesions.
Retinal Fundus https://www.kaggle.com/c/diabetic-retinopathy-detection A large set of high-resolution retina images.
- : D! i . /hospital- ission-| - . . o
MIMIC-III Clinic Notes https //_pa- e_r__SWIthCOde com/dataset/hospital-admission-notes IA dataset of simulated patient admission notes from MIMIC-III.
Masked Language [from-mimic-iii
Modeling NCBI BioNLP https://www.ncbi.nlm.nih.gov/research/bionlp/Data/ [The corpus contains of annotated PubMed articles.
PubMed Abstract  |https://github.com/ncbi-nlp/BLUE Benchmark [The corpus consists of annotated PubMed abstracts.
PathVQA https://huggingface.co/datasets/flaviagiammarino/path-vqa IA dataset of question-answer pairs on pathology images.
Medical VQA SLAKE https://www.med-vga.com/slake/ IAn English-Chinese bilingual dataset of question-answer pairs.
VQA-RAD https://osf.io/89kps/ IA dataset of question-answer pairs on radiology images.
CBIS-DDSM https: ‘www4ka le.com/datasets/awsaf49/chis-ddsm-breast- IA database of scanned film mammography studies.
cancer-image-dataset
MC-CXR http://archive.nlm.nih.gov/repos/chestimages.php IA dataset of postero-anterior (PA) chest X-rays.
SZ-CXR http://archive.nlm.nih.gov/repos/chestimages.php IA dataset of postero-anterior (PA) chest X-rays.
IThe MedMNIST-Raw is based on multiple datasets:
Colon Pathology (NCT-CRC-HE-100K) Colon Pathology (NCT-CRC-HE-100K): A set of distinct stained
https://zenodo.org/records/1214456 . L
histological images patches.
bermatoscopy (HAM10000) HAM10000: A dataset of dermatoscopic images
Image Classification https://github.com/ptschandl/HAM10000_dataset . P ges.
- Dermatoscopy (HAM10000): A large dataset of labeled OCT and
Retinal OCT & Chest X-ray Chest X-ray Images
MedMNIST-Raw  |https://data.mendeley.com/datasets/rschibrosi/3 Breast Ultrasound: A dataset of breast ultrasound images.
Breast Ultrasound Blood Cell Microscopy: A dataset of microscopic peripheral blood
https://scholar.cu.edu.eg/Dataset BUSI.zip cell images py: pic perip
Blood Cell Microscopy o . . )
) ) Coronal Abdominal CT (LiTS): Liver Tumor Segmentation
https'//data'me.ndaev'cc.)m/dmdggbn”/l Benchmark. A dataset of enhanced abdominal CT scans.
Fine-tuning Coronal Abdominal CT (LiTS)

U X-ray https://github.com/nlpaueb/bioCaption A set of chest X-ray images paired with diagnostic reports.
Image Captionin MIMIC-CXR https://physionet.org/content/mimic-cxr-jpg/2.0.0/ IA database of chest X-ray images with free-text reports.
8 P e PEIR GROSS https://github.com/nlpaueb/bioCaption A set of pathology image-caption pairs from PEIR digital library.
ROCO https://github.com/razorx89/roco-dataset A large-scale medical and multimodal imaging dataset.
MedNLI httos://ohysionet.org/content/mednli/1.0.0/ A'détaset of sentence Palrs created py physicians from MIMIC-III
clinical notes. For medical language inference.
TREC2022 https://www.trec-cds.org/2022.html A'détaset of Physmlaf\-curateé sentence pairs from MIMIC-IIl
. clinical. For clinical trial matching.
Text Understanding " - "
SEER https://seer.cancer.gov IA dataset includes cancer information and treatment plans for
ps:, . -8 . X
more than 10,000 patients. For treatment suggestion
MIMIC-III https://physionet.org/content/mimiciii/L.4, rAelcaorrgdes, de-identified and publicly-available collection of medical
. . . . IAn English-Chinese bilingual dataset of conversations between
: /
HealthCareMagic  |https://huggingface.co/datasets/UCSD26/medical dialog doctors and patients.
Text Summarization MedQSum https://huggingface.co/datasets/sumedh/MeQSum A dataset of summarized consumer health questions.
MIMIC-CXR https://physionet.org/content/mimic-cxr-jpg/2.0.0/ A database of chest X-ray images with free-text reports.
MIMICI https://physionet.org/content/mimiciii/L.4 A large, de-identified and publicly-available collection of medical

records.

Human Evaluation

Medical-Diff-VQA

https://physionet.org/content/medical-diff-vga/1.0.0/

IA dataset for difference visual question answering on chest X-ray
images.

MIMIC-HII

https://physionet.org/content/mimiciii/1.4/

A large, de-identified and publicly-available collection of medical
records.

Instruction-following

PubMed articles

https://pubmed.ncbi.nlm.nih.gov

PubMed is a free resource supporting the search and retrieval of
biomedical and life sciences literature with the aim of improving
health—both globally and personally.

PathVQA https://huggingface.co/datasets/flaviagiammarino/path-vga A dataset of question-answer pairs on pathology images.
SLAKE https://www.med-vga.com/slake/ IAn English-Chinese bilingual dataset of question-answer pairs.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03185-2

Extended Data Table 3 | Instructions for pretraining tasks along with the corresponding format of the output

Task

Instructions

The example of output

Masked image modeling

Masked language modeling

Object detection

Image captioning

Visual question answering

What is the image in the middle part?

What is the complete text of “Effect of <mask> on
cultured fibroblasts” ?

What are the objects in the image?

What does the image describe?

{Question}

<img111> <img222> <img333> ... <img999>

Effect of chloroquine on cultured fibroblasts

<loc111> <123> <loc789> <loc567> chest
<loc222> <333> <loc666> <l0c999> kidney

Interval placement of endotracheal tube and
nasogastric tube in standard position.

{Answer}

Here, <img> represents the image token derived from VQ-GAN's vocabulary. <loc> represents the location token. The instruction for the VQA task is the question itself from the dataset.
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Extended Data Table 4 | Description of the question types for human evaluation

Type

Explanation

Modality recognition

Structural identification

Lesion & abnormality detection

Disease diagnosis

Size & extent assessment

Spatial relationships

Image technical details

The specific imaging modality, such as CT, MRI, or others.

The specific anatomical landmarks or structures within the captured images.

The identification of anomalous patterns or aberrations

Specific disease or medical conditions based on imaging manifestations

The dimensions and spread of a lesion or abnormality.

The relative positioning or orientation of imaged structures.

The nuances of the imaging process itself, such as contrast utilization or image
orientation

Description of the question types in the selected VQA-RAD data samples, which are used for the evaluation of zero-shot learning performance.
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Extended Data Table 5 | 3D medical image classification performance

AIBL MIRIAD LIDC
Model Par ters
Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro

BiomedGPT-B-3D 182 M 88.6 77.8 84.7 83.0 92.9 92.1
BiomedGPT-M-3D 93 M 84.7 721 80.0 77.5 89.9 88.9
MedicalNet-101 99 M 81.8 66.8 70.6 65.5 89.9 88.5
MedicalNet-152 152 M 85.7 72.6 78.2 75.9 90.9 89.5
COVID-ViT 78 M 64.4 51.0 33.8 33.3 91.9 90.8
Uni4Eye 340 M 69.7 55.8 64.7 59.5 84.9 82.8

3D medical image classification performance in terms of accuracy and F1-Macro. (Details of data and training are described in Supplementary Table 4).
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MedNLI (https://physionet.org/content/mednli/1.0.0/), TREC2022 (https://www.trec-cds.org/2022.html), SEER (https://seer.cancer.gov), MIMIC-III (https://
physionet.org/content/mimiciii/1.4/), HealthcareMagic (https://github.com/UCSD-Al4H/Medical-Dialogue-System), MeQSum (https://huggingface.co/datasets/
sumedh/MeQSum), MedMNIST v2 (https://medmnist.com), ROCO (https://github.com/razorx89/roco-dataset), a randomly sampled subset of RSNA Pneumonia
Detection Challenge (2018) used for zero-shot prediction (https://www.rsna.org/rsnai/ai-image-challenge/rsna-pneumonia-detection-challenge-2018). The
MedMNIST-Raw is curated based on multiple sources including NCT-CRC-HE-100K (colon pathology) (https://zenodo.org/records/1214456), HAM10000
(dermatoscope) (https://github.com/ptschandl/HAM10000_dataset), OCT & Chest X-ray (https://data.mendeley.com/datasets/rschjbrdsj/3), breast ultrasound
(https://scholar.cu.edu.eg/Dataset_BUSI.zip), blood cell microscopy (https://data.mendeley.com/datasets/snkd93bnjr/1), Liver Tumor Segmentation Benchmark
(LiTS) (https://competitions.codalab.org/competitions/17094). The VQA data for human evaluation are derived from Medical-Diff-VQA (https://physionet.org/
content/medical-diff-vga/1.0.0/), with the exclusion of questions related to differences, as these require a two-image input. Report generation and summarization
samples for human evaluations are extracted from MIMIC-CXR. The instruction-following data used in this article is derived from Pubmed (https://
pubmed.ncbi.nim.nih.gov) following LLaVA-Med (https://github.com/microsoft/LLaVA-Med/blob/main/download_data.sh) and is combined with training sets from
PathVQA and SLAKE.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For pre-training, 237,621 medical images paired with natural language, 13,673 diabetic retinopathy images with object bounding boxes,
32,735 CT images with object bounding boxes, 5,126 retinal fundus images, 33,126 skin lesion images, 224,315 chest radiology images, and
300,000 microscopy images, and about 182 million sentences from medical articles and clinical notes were used in this study to ensure an
adequate representation of medical data under investigation. We did not strategically select specific numbers of samples for each modality.
Initially, we sought to gather as much data as possible and subsequently aimed to cover a wide range of modalities and tasks (especially for
captioning, object detection and VQA, which require limited labeled data). Our approach was primarily driven by the availability of data,
focusing on achieving extensive coverage to enhance the model’s versatility within our resource constraints.
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Data exclusions  For pre-training data curation, we excluded approximately 590K cases from CytolmageNet and retained 300K cases. This exclusion was
performed to prevent the dominance of microscopy images in the pre-training data, which could hinder the model’s ability to learn
representations of other modalities.

Replication We confirm that all experimental findings can be reproduced with our source code provided.

Randomization For treatment suggestion and clinical trial matching tasks, we employed 10-fold cross validation method, while for each fold 80% cases were
randomly sampled as the training data, the remaining 20% as the test data. For other datasets, we adhered to the official training/validation/
test splits provided by the data owners. These official splits are widely adopted by the research community, allowing us to easily compare our
model’s performance with others. This approach avoids the need to rerun all experiments of baselines, particularly when some models are
not accessible for producing results with covariance.

Blinding In our human evaluations (VQA and report summarization), the rater were blind to the source of the response (model or gold standard from
phycisian).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
[] clinical data

[] pual use research of concern

[] Plants
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Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A
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