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ARTICLE INFO ABSTRACT
Keywords: Objective: Accurate diagnoses and personalized treatments in medicine rely on identifying causality. However,
Causal discovery existing causal discovery algorithms often yield inconsistent results due to distinct learning mechanisms. To

Causal network synthesis
Network cycle-breaking
Acute kidney injury

Risk factor identification

address this challenge, we introduce MINDMerge, a multi-causal investigation and discovery framework
designed to synthesize causal graphs from various algorithms.

Methods: MINDMerge integrates five causal models to reconcile inconsistencies arising from different algorithms.
Employing credibility weighting and a novel cycle-breaking mechanism in causal networks, we initially devel-
oped and tested MINDMerge using three synthetic networks. Subsequently, we validated its effectiveness in
discovering risk factors and predicting acute kidney injury (AKI) using two electronic medical records (EMR)
datasets, eICU Collaborative Research Database and MIMIC-III Database. Causal reasoning was employed to
analyze the relationships between risk factors and AKI. The identified causal risk factors of AKI were used in
building a prediction model, and the prediction model was evaluated using the area under the receiver operating
characteristics curve (AUC) and recall.

Results: Synthetic data experiments demonstrated that our model outperformed significantly in capturing ground-
truth network structure compared to other causal models. Application of MINDMerge on real-world data
revealed direct connections of pulmonary disease, hypertension, diabetes, x-ray assessment, and BUN with AKI.
With the identified variables, AKI risk can be inferred at the individual level based on established BNs and prior
information. Compared against existing benchmark models, MINDMerge maintained a higher AUC for AKI
prediction in both internal (AUC: 0.832) and external network validations (AUC: 0.861).

Conclusion: MINDMerge can identify causal risk factors of AKI, serving as a valuable diagnostic tool for clinical
decision-making and facilitating effective intervention.

1. Introduction specific groups to infer potential causes and consequences. However,
establishing definitive causality from an association between exposure
Epidemiologic studies aim to scrutinize disease patterns within risk factors and a disease is challenging as correlations do not imply
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causation. Solely relying on correlations identified through statistical or
machine learning (ML) approaches is inadequate for informed decision
making in healthcare. Causal discovery holds promise in uncovering
crucial insights for medical diagnosis [1], and its growing relevance
within healthcare presents a transformative pathway for advancing
precision medicine and personalized diagnosis. Bayesian networks
(BNs), providing a formal probabilistic framework to model and infer
causal relationships among variables [2], offer a robust approach for
classification. BNs have widespread utility across scientific domains,
including biomedicine [3,4], and their application in healthcare could
revolutionize medical decision-making by fostering a deeper under-
standing of causal relationships.

Causal discovery using electronic medical records (EMRs) is chal-
lenging due to the inherent complexity and limitations of observational
data. Over the years, various causal discovery methods have shown
promise and can be classified into three types: constraint-based [5,6],
score-based [7], and hybrid algorithms [8,9]. Constraint-based algo-
rithms assess network structures through conditional independence tests
(e.g., chi-squared tests or mutual information tests). However, their
computational complexity exponentially increases as the number of
nodes, leading to reduced efficiency and reliability. Score-based algo-
rithms employ scoring functions (e.g., BIC, BDeu, K2) and search
methods (e.g., hill-climbing (HC) or tabu search algorithms) to identify
underlying network structures. Yet, obtaining an optimal network
structure within a large structural space remains challenging. Hybrid
approaches, such as H2PC [9] and MMHC [10], combine the strengths of
constraint-based and score-based algorithms. However, the selection of
an appropriate causal algorithm remains an ongoing challenge.
Comparative assessments of different BNs’ accuracy and efficiency are
presented by Scutari et al [11] and Hussung et al [12]. The general
consensus of these studies is that no single causal method exhibits
significantly superior performance in structure reconstruction. More-
over, individual causal algorithms often suffer from local optimality and
limited generalization. Applying different causal algorithms to the same
dataset frequently yields different results, contributing to inconsistent
knowledge.

To improve the accuracy and efficiency of causal structure search,
several scholars have adopted intelligent optimization and ensemble
methods. Evolutionary algorithms (e.g., ant colony [13,14], particle
swarm [15-17], genetic algorithm [18,19]) and combinatorial optimi-
zation algorithms (e.g., Information Flow (IF) Theory [20,21], Breeding
Swarm [16], Glowworm swarm optimization algorithm [22], Greedy
Equivalence Search [23]) have been proposed for learning BNs. How-
ever, limitations are also evident. Firstly, most of these methods rely on a
single causal discovery method, potentially compromising the accuracy
of discovered knowledge due to algorithmic bias. Secondly,
optimization-based methods often suffer from reduced applicability
owing to algorithm complexity and extensive search time. Some
ensemble learning approaches for causal discovery (e.g., MIC (maximum
information coefficient) [24], perturbed features [25], causal IF theory
[26], causal strength scoring matrix [27], and weighted adjacency ma-
trix of local data slices [28]) may overlook algorithm bias and the impact
of data perturbation on causal algorithms. Most importantly, the po-
tential existence of cyclic structures is often disregarded when synthe-
sizing network knowledge acquired from different sources. This
oversight may result in erroneous inferences.

In summary, data-driven causal discovery faces two critical chal-
lenges: 1) the diversity of causal discovery algorithms, and 2) the
presence of cyclic structures in synthesized causal networks. To address
these challenges, we propose MINDMerge, a multi-causal investigation
and discovery framework aimed at harmonizing networks derived from
multiple causal discovery algorithms to enhance accuracy, robustness,
and generalization. Our evaluation of this framework spans synthetic
and real-world datasets, investigating causal relationships among clin-
ical variables and acute kidney injury (AKI). AKI is a prevalent
complication among critically ill patients [29,30], associated with
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significantly high mortality and morbidity rates [31]. Globally, an
estimated 13.3 million individuals suffer from AKI annually, with 85 %
in developing countries [32], and over 70 % of cases undiagnosed within
3 days [33]. Additionally, AKI is prevalent among patients hospitalized
for COVID-19 [34,35]. However, etiology of AKI is complex, posing
challenges in prediction and risk factor discovery. Some studies employ
machine learning algorithms, such as [36-38], to analyze electronic
health record (EHR) data and uncover patterns related to AKI occur-
rence. While the methodologies employed in these studies provide
valuable insights into AKI risk prediction and factor discovery, they may
be limited by their reliance on correlation-based analyses and not
establish causal relationships. A robust causal network model, such as
MINDMerge, can elucidate potential AKI risk factors, supporting clinical
decisions and enabling effective interventions.

2. Material and methods

The proposed MINDMerge framework was initially tuned and eval-
uated using synthetic data before its application to EMR data for causal
relationship discovery and AKI risk prediction. In this study, BN learning
from observational data operated on the following assumptions:

o Strong causality between variables without symmetry.

e Data completeness -If the dataset is complete and the observations
correctly reflect the true state of the variables, the causal network
learned from the data will accurately reflect the true causal
relationship.

e Causal sufficiency — It was assumed that all relevant variables were
observed without any hidden variables.

These assumptions aimed to simplify the reasoning and interpreta-
tion of the BN model. Deviations from these assumptions could poten-
tially complicate the establishment of causality.

2.1. Synthetic data

Synthetic data plays an important role in evaluating the efficacy of
methods. We developed and evaluated the proposed MINDMerge
framework using three widely used synthetic datasets — Cancer [39],
Child [40], Alarm [41] - representing varying sizes and distinct struc-
tures for BN structure learning. Experiments were conducted on each
dataset under different settings with sample sizes ranging from 500 to
5000. The Cancer dataset comprises 5 nodes, 4 arcs, and 10 parameters,
representing a small network used in clinical diagnosis. The Child
dataset, designed for referrals of newborn babies with congenital heart
disease in London, comprises 20 nodes, 25 arcs, and 230 parameters,
making it a medium-sized network. On the other hand, the Alarm
dataset, based on an alarm message system for emergency patient
monitoring, includes 37 nodes, 46 arcs, and 509 parameters, repre-
senting a large network. Synthetic data in the form of RDA files was
downloaded from the Bayesian network Repository and the ‘rbn’ function
was used to generate samples of desired sizes. Source data is available at
https://www.bnlearn.com/bnrepository.

2.2. Real-world data

The proposed MINDMerge framework was also validated using two
de-identified EMR datasets, both of which comply with the Health In-
surance Portability and Accountability Act (HIPAA) Privacy Rule, a US
federal law designed to protect patient health information. Access per-
missions were obtained for research purposes after the researchers
completed the MIT CITI training modules, which are specifically
designed for the secondary use of de-identified data.

o The eICU Collaborative Research Database (eICU) is a large multi-
center critical care database made available by Philips Healthcare in
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partnership with the MIT Laboratory for Computational Physiology
[42]. It contains over 200,000 distinct ICU admissions between 2014
and 2015 across 208 US hospitals. We collected 92 variables from
elCU dataset, encompassing demographic information, vital signs,
laboratory tests, comorbidities and procedures, based on clinician
recommendations.

The Medical Information Mart for Intensive Care III (MIMIC-III)
comprises of deidentified health-related data associated with over
40,000 patients admitted to critical care units of the Beth Israel
Deaconess Medical Center between 2001 and 2012. For our analysis,
we collected 66 variables from MIMIC-III dataset, guided by clinician
recommendations. The dataset served as an independent external
validation set.

2.2.1. Description of study cohort

The study included adult patients (age > 18) admitted to the hospital
for a minimum of 2 days. AKI was defined using the KDIGO (Kidney
Disease Improving Global Outcomes) guidelines, which was determined
by:

e An increase in serum creatinine (SCr) levels by > 0.3 mg/dL (26.5
umol/L) within 48 h OR

e An increase of > 1.5 times the baseline SCr level within seven days
OR

e Urine output below 0.5 mL/kg/h for more than 6 h.

2.2.2. Data processing

For each patient, we collected information on clinical variables up to
48 h before the prediction point (Supplementary Fig. S1A). For patients
with AKI, the prediction point was 48 h before onset. For non-AKI pa-
tients, we set the prediction point to 48 h before the last SCr measure-
ment. For clinical variables with longitudinal measures, we only used
their most recent value. SCr and eGFR were not included as variables
because they were used to determine AKI occurrence. Data extraction
flowchart can be found in Supplementary Fig. S1B.

We processed datasets from four hospitals in the eICU database,
forming a final cohort of 9688 patients: eICU-1 (2,477 patients; AKI
incidence of 27.6 %), eICU-2 (4,280 patients; AKI incidence of 29.06 %),
eICU-3 (1,630 patients; AKI incidence of 33.37 %), and eICU-4 (1,301
patients; AKI incidence of 32.2 %). Additionally, a cohort from the
MIMIC-III database was extracted and processed, comprising 15,298
patients with an AKI incidence rate of 30.76 %. For experiments, eICU-1
served as the derivation cohort, while eICU-2 served as the external
validation cohort. The remaining cohorts — eICU-3, eICU-4, and MIMIC-
III - were utilized for external geographical validation to assess
generalizability.

We adopted Li et al.’s approach [43] for handling missing data.
Among vital signs and laboratory tests, variables with missing rate
exceeding 75 % were excluded, while the remaining variables were
imputed using the predictive mean matching (pmm) method with
multiple imputation by Chained Equations (MICE). Although other
methods such as KNN and Random Forest were considered, the pmm
method showed the least discrepancy between distributions of the
original and the imputed data by the Kolmogorov-Smirnov test (Sup-
plementary Table S1 and Fig. S2).

Continuous variables were discretized, and discretization thresholds
were chosen based on existing knowledge (MSD MANUAL Professional
Version). The continuous features were divided into different categories
as shown in Supplementary Table S2. We took the interaction of three
feature selection methods, including the Chi-square (Chi2) method with
a significance level p < 0.05, Boruta, and Random Forest, were applied
to exclude irrelevant variables, resulting in 26 variables (Supplemen-
tary Fig. S3 and Table S3). And generate a causal network structure
based on these features. Baseline descriptive characteristics of other
cohorts are shown in Supplementary Table S4-S7.
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2.3. Mindmerge framework

2.3.1. Causal Bayesian network

The constraint-based methods have been discarded due to the pres-
ence of undirected edges within the structure. We employed five causal
discovery algorithms: three score-based algorithms (BIC [44,45], BDeu
[46,47] and BDla [48,49]) with tabu-search, and two hybrid algorithms
(MMHC [8,10] and H2PC [9,50]). Detailed descriptions of each method
can be found in Supplementary method 1, and their key properties are
summarized in Table 1. These algorithms excel in identifying specific
data pattern, ensuring efficiency and ease of implementation while
achieving a balanced trade-off between model fitting and complexity.
However, they ignore the diverse knowledge inherent in the data. By
combining different causal algorithms, we can mitigate reliance on a
single method and capture different information from data, resulting in
more robust knowledge.

Algorithm ensemble can be approached in two ways. Homogeneous
ensembles utilize similar models, but may not capture the diverse and
complex relationships in data, thus limiting generalizability.
Conversely, heterogeneous ensembles leverage multiple algorithms to
capture patterns from diverse perspectives to enhance robustness.
However, interpreting results from such a diverse set of models pose
challenges due to their complexity. In this study, we sought to leverage
the strengths of both homogeneous and heterogeneous ensembles within
a hybrid framework for harmonizing causal networks. This approach
allows synthesis of the best aspects of each method to attain a more
comprehensive understanding of causal relationships.

2.3.2. Network fusion strategy

We designed a credibility-weighted fusion strategy, CW, to evaluate
the final credibility score of each edge. A higher the score denotes higher
the credibility, indicating a greater likelihood of the edge’s existence.
Subsequently, edges with weak credibility were filtered out based on the
threshold @ to derive a transition matrix. The credibility weights are
defined as follows:

_ n Nnode Z?:lMi
CW= Zi:l N; M © n

Table 1
Description of the key properties of baseline model.

Structure Learning Description

Score- BIC Overfitting can be avoided by selecting models based on
based their log-likelihood and a penalty term for model
complexity

BDeu It is assumed that the prior of the parameters obeying
Dirichlet distribution, and it is used as the basis to find the
optimal structure, which does not need to obtain the node
order in advance. The key properties of BDeu arise from its
uniform prior over the parameters of each local distribution
in the network, which makes structure learning
computationally efficient; it does not require the elicitation
of prior knowledge from experts; and it satisfies score
equivalence.

BDla BDla can avoid the need to set free parameters and produce
better results when the parameter space of the model is
complex (a mix of uniform and skewed parameter
distributions).

Hybrid- MMHC  MMHC is capable of dealing with thousands of nodes in
based reasonable time. Firstly, the MMPC (max-min parents and
children) algorithm was used to determine the parent and
child node sets of each node, so as to construct the network
structure framework. Then the frame of the obtained
network structure is searched and scored according to the
K2 search strategy to obtain the optimal network structure.

H2PC It first reconstructs the skeleton of a Bayesian network by
integrating multiple PC algorithms to identify the parents
and children set of each variable, and then performs a
greedy hill-climbing search to filter and orient the edges.
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where n is number of causal algorithms involved in the ensemble,
N,oqe refers to the number of nodes in the dataset, N; refers to the
numbers of arcs of causal algorithm i, the larger the value of Npog /N;, the
larger the weight, and the more significant the causality of arcs, M; is an
0-1 adjacency matrix of BN structure, ® is Hadamard product.

When merging causal networks, a circular structure can emerge,
causing causal conflicts. Since BNs are DAGs, it is crucial to derive an
acyclic weighted adjacency matrix W that approximates the cyclic ma-
trix Wy. However, manual deletion in large-scale dataset is infeasible. To
solve this problem, we referred to the NOTEARS algorithm introduced
by Zheng et al [51]. NOTEARS works by converting the standard
combinatorial optimization problem into a continuous regularization
problem on matrices, and then solving it using a numerical optimization
algorithm. Thus

o axaF(W)
subjectto G(W) € DAGs.
< WenaaF(W)

subjecttoh(W) = 0 @

where F(W) is a score function on R4 G(W) is a directed acyclic
graph generated by the weighted adjacency matrix W. Zheng et al
confirmed the existence of such a smooth function h: A matrix W € R%¢
is a DAG if and only if h(W) = tr(e"®") —d = 0, where d is the dimen-
sion of matrix W, tr(.) is trace of matrix, ® is Hadamard product and e" is
the matrix exponential of W.

Given that the loss function of NOTEARS is designed for linear
structural equation models (SEM), it’s essential to redefine the loss
function appropriately in light of the distinct context of our study. So, we
proposed a novel cycle-breaking algorithm termed CBAMN (Cycle-
Breaking Algorithm based on Modified NOTEARS). CBAMN aims to
identify acyclic solutions that closely resemble the cyclic solutions ob-
tained through an iterative optimization process. we redefined a loss
function:

A
F(W) = gll\WrWHi + 42| W,

subjecttoh(W) = 0, ()]

where F is Frobenius norm, W, is matrix with a cycle, W is the final
ideal acyclic matrix. The primary modification involves the incorpora-
tion of a cyclicity penalty term, which penalizes cyclic structures within
the learned causal graph. This penalty incentivizes the algorithm to
prioritize acyclic solutions while discouraging the formation of cyclic
dependencies. Additionally, we introduce a regularization term to pro-
mote sparsity in the learned graph, facilitating simpler and more inter-
pretable causal models. |Wo—W]|? corresponds to the least squares loss
of matrix differences, adjusting the degree of approximation between
two matrices via the parameter 1; > 0. The second term is the penalty
term. To obtain an ideal matrix, the sum of all weights must be mini-
mized. The sparsity of matrix can be adjusted by penalty parameter
A2 > 0. Similar to NOTEARS, we utilized the augmented Lagrange al-
gorithm [51,52] to solve equation (2) by converting the objective
function into a dual problem, based on the given the objective function
and constraint conditions:

_ - p 2
L(W. ) = arg min d{F(W) +EIR(W) [+ ah(W) } 3)

where a is Lagrange multiplier, p is penalty parameter. Therefore, we
can perform dual gradient ascent to optimize @ = a + ph(W"), where W
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is the local minimizer matrix of this iteration. The optimization process
of CBAMN is shown in Algorithm 1.

Algorithm 1: CBAMN Algorithm

Input: degree of decay c¢ € (0, 1), growth rate of penalty
r > 1, constraint term coefficient @o , optimize error rate ¢ > 0, dual
function:I” (W, )
Output: A directed acyclic graph W

fort=0,1,2,...,00 do:
Wt+1=argminWLp(W,at) if h(W¢1) > ¢ x h(W;) then
p=rp
continue
end if
at+1=at+ph(Wt+1)if h(Wy1) < € then
break
end if
end for
Output W*

2.3.3. Experimental framework

To evaluate the proposed MINDMerge framework, we employed
eleven baseline algorithms. These included 5 single-cause discovery al-
gorithms (BDeu, BDla, BIC, H2PC, MMHC), their corresponding ho-
mogeneous ensemble versions (BDeu-en, BDla-en, BIC-en, H2PC-en,
MMHC-en), and a heterogeneous ensemble algorithm combing all five
causal algorithms (Het-en). Additionally, we compared MINDMerge
against a voting-based network fusion strategy (Voting-N), which picks
edges identified by majority of the algorithms. Fig. 1 provides an over-
view of the MINDMerge framework. Training data was extracted via
bootstrapping from the original dataset. Phase 1 involved causal dis-
covery on these bootstrapped samples to generate Phase 1 ensemble
results. Phase 2 ensemble processing consolidated the Phase 1 results
into a final output. Finally, given that the final output may be a cyclic
graph, it is converted into an acyclic graph using CBAMN (Algorithm
1). Supplementary Fig.S4 provides an example shows the algorithm.

The overall dataset was split into training, internal validation (20 %
patients), and external validation (include network validation and
geographic validation). Bootstrapping (N = 50) was performed on the
training data. Following this, each causal discovery method was applied
across all bootstrap samples. We investigated credibility-weighted
ensemble methods, generating weighted matrices EBN1-EBN50
derived from five different causal discovery methods on each boot-
strap sample.

Subsequently, multiple BN structures were integrated using credi-
bility weighting, and edges with weak reliability was filtered based on a
predetermined threshold, resulting in a transition matrix. Finally, a
cycle-breaking algorithm was applied to the transition matrix to obtain
the adjacency matrix of DAG.

For parameter optimization, we performed parameter tuning on
synthetic data before deploying MINDMerge with the identified optimal
parameters on real-world EMR data for AKI risk prediction. The final
learned network structure was externally validated. Additionally, to
assess the portability of MINDMerge, we performed external geographic
validation.

2.3.4. Model evaluation

Using synthetic data, we directly compared the learned network with
the ground-truth network using Recall and Fl-score. TP refers to the
number of edges that exist in both the ground-truth and the learned
networks, FP refers to the number of edges that exist in the learned
network but not in the ground-truth network, and FN refers to the
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Fig. 1. Overview of the MINDMerge framework. MINDMerge (Multi-Causal Investigation and Discovery Framework for Knowledge Harmonization), CBAMN (novel

cycle-breaking algorithm based on modify NOTEARS).

number of edges that exist in the ground-truth network but not in the
learned network. We repeated the experiment 10 times and reported the
average performance. Achieving comparable prediction accuracy in-
dicates the model’s ability to capture the causal relationships between
variables.

TP

Recall = TP+ N

P

Precision — ——
ecision TP 1 FP

2*Recall*Precision

Fl—-score = ————————.
Recall + Precision

In the real-world data application, we compared the prediction
performance of various classification models — CART, C5.0, Random
Forest (RF), XGBoost, Logistic Regression (LR), Support Vector Machine

(SVM), ANN, and Naive Bayes (NB) — using the area under the receiver
operating characteristic curve (AUC) and Recall metrics. The perfor-
mance evaluation involved 5-fold cross-validation, and we determined
the optimal threshold using the Youden index.

3. Results
3.1. Experiments on synthetic datasets

To strike a balance between achieving a network closer to the
ground-truth (i.e., high Recall) and maintaining optimal sparsity, we set
hyperparameters 4; = 1,1, = 0.5, and the threshold § = 0.85. Sup-
plementary Fig. S5 and Table S8 provide an in-depth sensitivity
analysis of these parameters.

Across various datasets — Cancer, Child, and Alarm — we conducted
comparisons among different causal algorithms using MINDMerge with



M. Zhang et al. International Journal of Medical Informatics 191 (2024) 105588
Table 2
Structure learning results of MINDMerge ensemble algorithm and other algorithms under different dataset sizes (best performances are highlighted in bold).
Method Recall F1 Recall F1 Recall F1 Recall F1
Cancer 500 Cancer 1 K Cancer 2 K Cancer 5 K
BDeu 0.6(0.129) 0.732(0.09) 0.7(0.158) 0.804(0.112) 0.775(0.142) 0.814(0.115) 0.925(0.169) 0.925(0.169)
BDla 0.25(0.289) 0.276(0.311) 0.425(0.237) 0.485(0.285) 0.275(0.079) 0.297(0.099) 0.8(0.329) 0.797(0.334)
BIC 0.325(0.169) 0.508(0.131) 0.6(0.175) 0.729(0.168) 0.65(0.129) 0.744(0.136) 0.9(0.129) 0.932(0.093)
H2PC 0.35(0.129) 0.495(0.152) 0.625(0.177) 0.748(0.171) 0.65(0.129) 0.725(0.153) 0.925(0.121) 0.936(0.108)
MMHC 0.35(0.129) 0.5(0.145) 0.575(0.169) 0.729(0.168) 0.65(0.129) 0.735(0.145) 0.875(0.132) 0.896(0.116)
BDeu-en 0.75(0.204) 0.753(0.135) 0.8(0.197) 0.793(0.192) 0.8(0.197) 0.807(0.177) 0.95(0.158) 0.95(0.158)
BDla-en 0.425(0.265) 0.425(0.279) 0.6(0.269) 0.577(0.245) 0.4(0.175) 0.395(0.172) 0.75(0.264) 0.721(0.267)
BIC-en 0.6(0.175) 0.677(0.157) 0.75(0.167) 0.786(0.127) 0.825(0.121) 0.835(0.102) 0.975(0.079) 0.964(0.083)
H2PC-en 0.6(0.211) 0.656(0.183) 0.7(0.105) 0.758(0.101) 0.775(0.142) 0.814(0.115) 0.975(0.079) 0.975(0.079)
MMHC-en 0.6(0.175) 0.662(0.15) 0.675(0.121) 0.731(0.1) 0.8(0.158) 0.828(0.129) 0.975(0.079) 0.975(0.079)
Het-en 0.45(0.158) 0.596(0.152) 0.625(0.177) 0.748(0.171) 0.675(0.121) 0.721(0.13) 0.925(0.121) 0.946(0.091)
Voting-N 0.3(0.197) 0.533(0.143) 0.5(0.236) 0.701(0.146) 0.675(0.121) 0.78(0.108) 0.875(0.132) 0.929(0.075)
MINDMerge 0.825(0.169) 0.66(0.149) 0.825(0.121) 0.727(0.077) 0.85(0.129) 0.781(0.063) 1(0) 0.954(0.071)
Child 500 Child 1 K Child 2 K Child 5 K
BDeu 0.676(0.072) 0.746(0.079) 0.74(0.047) 0.782(0.044) 0.748(0.092) 0.765(0.092) 0.784(0.087) 0.793(0.096)
BDla 0.6(0.105) 0.653(0.119) 0.708(0.057) 0.733(0.059) 0.82(0.087) 0.824(0.091) 0.808(0.045) 0.790(0.056)
BIC 0.66(0.069) 0.738(0.072) 0.736(0.054) 0.784(0.051) 0.748(0.073) 0.757(0.077) 0.788(0.09) 0.793(0.096)
H2PC 0.584(0.057) 0.679(0.06) 0.7(0.043) 0.764(0.043) 0.736(0.054) 0.784(0.044) 0.86(0.028) 0.869(0.021)
MMHC 0.496(0.051) 0.608(0.059) 0.592(0.037) 0.7(0.041) 0.628(0.038) 0.728(0.034) 0.6(0.044) 0.695(0.051)
BDeu-en 0.74(0.043) 0.754(0.051) 0.764(0.058) 0.769(0.063) 0.82(0.078) 0.805(0.086) 0.776(0.063) 0.761(0.068)
BDla-en 0.724(0.051) 0.689(0.051) 0.788(0.078) 0.774(0.069) 0.84(0.027) 0.806(0.028) 0.848(0.032) 0.824(0.038)
BIC-en 0.692(0.063) 0.729(0.065) 0.788(0.05) 0.797(0.061) 0.824(0.078) 0.803(0.079) 0.788(0.065) 0.778(0.07)
H2PC-en 0.608(0.082) 0.682(0.082) 0.692(0.046) 0.76(0.047) 0.732(0.042) 0.758(0.041) 0.824(0.021) 0.841(0.02)
MMHC-en 0.528(0.059) 0.634(0.065) 0.616(0.043) 0.713(0.051) 0.66(0.043) 0.75(0.047) 0.628(0.05) 0.702(0.053)
Het-en 0.64(0.068) 0.709(0.073) 0.692(0.038) 0.769(0.038) 0.792(0.067) 0.822(0.069) 0.836(0.048) 0.853(0.049)
Voting-N 0.652(0.053) 0.759(0.05) 0.736(0.034) 0.825(0.033) 0.876(0.035) 0.908(0.026) 0.928(0.017) 0.943(0.009)
MINDMerge 0.824(0.034) 0.79(0.038) 0.86(0.051) 0.83(0.061) 0.948(0.019) 0.917(0.033) 0.96(0) 0.958(0.006)
Alarm 500 Alarm 1 K Alarm 2 K Alarm 5 K
BDeu 0.641(0.106) 0.602(0.111) 0.661(0.067) 0.639(0.065) 0.696(0.047) 0.659(0.047) 0.717(0.067) 0.686(0.077)
BDla 0.646(0.057) 0.587(0.063) 0.685(0.048) 0.65(0.057) 0.698(0.093) 0.656(0.093) 0.761(0.086) 0.728(0.088)
BIC 0.5(0.066) 0.543(0.072) 0.55(0.032) 0.574(0.038) 0.635(0.054) 0.643(0.064) 0.693(0.042) 0.698(0.046)
H2PC 0.393(0.046) 0.519(0.051) 0.459(0.075) 0.574(0.082) 0.554(0.043) 0.662(0.052) 0.663(0.06) 0.738(0.068)
MMHC 0.354(0.053) 0.484(0.066) 0.487(0.068) 0.606(0.077) 0.524(0.022) 0.644(0.029) 0.635(0.034) 0.726(0.04)
BDeu-en 0.65(0.11) 0.548(0.102) 0.722(0.061) 0.633(0.054) 0.713(0.06) 0.633(0.065) 0.752(0.059) 0.689(0.068)
BDla-en 0.62(0.076) 0.511(0.065) 0.652(0.072) 0.568(0.06) 0.661(0.045) 0.567(0.047) 0.693(0.076) 0.621(0.072)
BIC-en 0.502(0.045) 0.511(0.044) 0.602(0.047) 0.594(0.04) 0.643(0.031) 0.628(0.034) 0.665(0.034) 0.641(0.033)
H2PC-en 0.502(0.071) 0.615(0.076) 0.537(0.051) 0.631(0.056) 0.589(0.042) 0.68(0.044) 0.676(0.042) 0.737(0.05)
MMHC-en 0.459(0.068) 0.573(0.072) 0.515(0.045) 0.617(0.047) 0.574(0.055) 0.677(0.061) 0.641(0.029) 0.721(0.033)
Het-en 0.517(0.062) 0.619(0.066) 0.7(0.05) 0.698(0.052) 0.724(0.053) 0.712(0.06) 0.77(0.044) 0.807(0.048)
Voting-N 0.507(0.047) 0.625(0.051) 0.635(0.032) 0.712(0.031) 0.663(0.031) 0.731(0.04) 0.729(0.051) 0.799(0.053)
MINDMerge 0.691(0.059) 0.632(0.053) 0.735(0.025) 0.675(0.019) 0.746(0.041) 0.674(0.046) 0.811(0.051) 0.762(0.056)

varying sample sizes (500, 1 k, 2 k, 5 k). Table 2 presents the outcomes,
highlighting that distinct causal methods yield varied learning accu-
racies for the same dataset. Ensemble algorithms exhibited superior
performance compared to single causal algorithms, with MINDMerge
consistently demonstrating better results than other ensemble ap-
proaches. Moreover, our observations indicate that learning efficiency is
constrained with smaller sample sizes, and progressively improved as
the sample size increases. The significance analysis is shown in Sup-
plementary Fig. S6-S9. Fig. 2 illustrates the cosine similarity and Recall
metrics for networks at a sample size of 5000. Notably, algorithmic bias
is evident among different causal methods (Fig. 2A-C). MINDMerge
exhibits the highest Recall (1, 0.96, 0.807 for Cancer, Child and Alarm
datasets respectively) (Fig. 2D).

To evaluate the performance of the proposed cycle-breaking algo-
rithm CBAMN in the MINDMerge framework, we compared it to other
cycle removing algorithms like colored-DFS[15,53] and MIGGA [54]
(Supplementary Table S9). As network size increases, CBAMN exhibited
a more pronounced cycle-breaking effect, maintaining higher Recall and
F1 compared to other methods.

3.2. Experiments on real-world datasets

Table 3 summarizes the characteristics of the real-world study
cohort. In Fig. 3, the AKI incidence and crude odds ratio (cOR) for varied
Age, Sex and BMI are illustrated in both the derivation and external
network validation cohorts from the eICU database. When dividing age

into five bins, the AKI incidence increased with age and plateauing
thereafter. Similarly, the division of BMI into four bins revealed a pos-
itive correlation with AKI, demonstrating a significant increase from
19.5 % to 31.8 % and 20.3 % to 34.2 % in the derivation and validation
cohorts, respectively. Male patients exhibited a relatively higher AKI
risk (28.5 % vs. 26.6 % and 31.1 % vs 26.2 %). Further details regarding
AKI incidence and cOR in the geographical validation cohort can be
found in Supplementary Fig. S10.

When applying MINDMerge to real-world EMR data, we imposed
constraints based on domain knowledge and temporal considerations to
ensure reliability of the derived causal network. For instance, no vari-
ables can be the cause of demographic variables like age, sex, and race.
Consequently, all edges originating from any variable to “age” or “sex”
or “race” were removed. Additionally, AKI as an outcome variable
cannot be a cause of any variable. Following the experimental setup,
causal network was learned using a training dataset (80 % of patients)
and is presented in Fig. 4. Here, clinical variables serve as nodes, and
directed edges represent causal relationships. The causal graph high-
lights pulmonary disease, hypertension, diabetes, and BUN as direct
parent nodes contributing to AKI, representing direct relationships.
Other variables such as age, sex, Paco2, Hco3, coronary artery disease,
and stroke were identified as indirect risk factors associated with AKI,
consistent with previous reports [29,33,55,56]. We have also explained
the corresponding dependency (Supplementary Tables SA).

AKI risk can be inferred using the BNs (Fig. 4). The probabilistic
dependencies between AKI and its risk factors are illustrated in
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Fig. 2. The similarity and Recall of between different causal network. A, B, C shows the similarity of different causal discovery methods on the three datasets (i.

e., Cancer, Child, and Alarm), D shows the Recall on the three datasets.

Supplementary Fig. S11A. Leveraging Bayes’ theorem can allow the
design of an intervention plan based on these inferred probabilities.
Consider a hospitalized patient at age 68, without hypertension or dia-
betes, and has a normal BUN (blood urea nitrogen) level, the initial
probability of this patient in developing AKI within 48 h stands at 33 %.
However, upon monitoring, if the BUN level increases beyond the
normal range, the patient’s probability of developing AKI significantly
increases from 33 % to 51 %. Moreover, before encountering abnormal
BUN levels, the detection of urinary tract obstruction and the identifi-
cation and treatment of potential AKI-associated factors through X-ray
and CT scanners can significantly reduce the AKI risk from 33 % to 10 %
as demonstrated in Supplementary Fig. S11B-D. This reasoning sug-
gests that diagnosing AKI solely based on creatinine or urine volume
might have a time lag.

BN not only enables causal inference but also facilitates accurate
prediction of AKI risk. Leveraging MINDMerge, we constructed an AKI
prediction model using Bayesian causal network classification (Sup-
plementary method 2). Fig. 5 illustrates the average performance and
confidence intervals from 5-fold cross-validation on the test dataset.
Notably, MINDMerge achieved the highest AUC compared to other

models. To assess statistical differences between performances, Scott-
KnottESD [57,58] statistical rank test (SK-test) was used. As shown in
Supplementary Fig. S12, MINDMerge exhibited significant difference
in AUC compared to single causal algorithms, but not to other ensemble
algorithms. Moreover, no statistically significant difference was
observed in Recall. In contrast to other machine learning models,
MINDMerge showed statistically significant improvements in both AUC
and Recall. MINDMerge and XGBoost achieved the highest AUC and
Recall, performing equally well. Furthermore, we selected the top-5
models to conduct a comprehensive analysis using the test set. Supple-
mentary Table S10 and Fig. S13 present additional performance in-
dicators such as Precision, Recall and AUPRC, decision curves, and
calibration curves.

To assess the robustness of the causal network, eICU-2 was used as
an external validation dataset. Supplementary Table S11 provides the
AUCs and other performance indices for the top-5 models. In terms of
AUC, the eICU-1 (AUC is 0.861) model is 0.007 lower than the optimal
XGBoost model, with a Recall of 0.744. When applying MINDMerge to
eICU-2, it achieved an AUC of 0.848 and a Recall of 0.748. These results
demonstrate that MINDMerge has excellent predictive performance on
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Table 3
Patient characteristics of the derivation cohort and external validation cohort.

International Journal of Medical Informatics 191 (2024) 105588

Derivation cohort

Externalnetwork validation

External geographical validation

Characteristics
elCU-1
2477(27.6 %)

elCU-2

Number of samples(%AKI) 4280 (29.06 % )

Age (AKI%)

18-35 45 (6.6 %) 47 (3.8 %)
36-50 88 (12.9 %) 125 (10.0 %)
51-65 231 (33.8 %) 407 (32.7 %)
66-80 228 (33.3 %) 461 (37.1 %)
>80 92 (13.5 %) 204 (16.4 %)
Male (%) 376 (55.0 %) 773 (62.1 %)
Race (%)

Caucasian 453 (66.2 %) 1139 (91.6 %)
African American 226 (33.0 %) 72 (5.8 %)
Hispanic NA 2 (0.2 %)
Asian 5 (0.7 %) 28 (2.3 %)
Native American NA 3(0.2 %)
BMI (%)

<18.5 22 (3.2 %) 35 (2.8 %)
18.5-24.9 176 (25.7 %) 327 (26.3 %)
25-29.9 187 (27.3 %) 348 (28.0 %)
>29.9 299 (43.7 %) 534 (42.9 %)

eICU-3
1630(33.37 %)

elCU-4
1301(32.2 %)

MIMIC-IIT
15298(30.76 %)

19 (3.5 %) 14 (3.3 %) 145 (3.1 %)
43 (7.9 %) 38 (9.1 %) 490 (10.4 %)
142 (26.1 %) 124 (29.6 %) 1294 (27.5 %)
212 (39.0 %) 178 (42.5 %) 1836 (39.0 %)

128 (23.5 %)
326 (59.9 %)

65 (15.5 %)
248 (59.2 %)

941 (20.0 %)
2769 (58.8 %)

117 (21.5 %)
86 (15.8 %)

301 (71.8 %)
114 (27.2 %)

3839 (81.6 %)
436 (9.3 %)

335 (61.6 %) 2 (0.5 %) 152 (3.2 %)
6 (1.1 %) 2 (0.5 %) 279 (5.9 %)
NA NA NA

15 (2.8 %) 11 (2.6 %) 85 (1.8 %)

170 (31.3 %)
169 (31.1 %)
190 (34.9 %)

93 (22.2 %)
119 (28.4 %)
196 (46.8 %)

1318 (28.0 %)
1593 (33.9 %)
1710 (36.3 %)
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Fig. 3. AKI incidence and cOR with varied Age, Sex and BMI in derivation cohort and external network validation cohort. agel:18-35, age2:36-50,
age3:51-65, age4:66-80, age5:>80; BMI: body mass index, bmil:<18.5, bmi2:18.5-24.9, bmi3:25-29.9, bmi4:>29.9; sex1: male, sex2: female. * with statistical

significancep < 0.05.

the external validation dataset. To further verify the portability of
MINDMerge, external geographical validation was performed on data-
sets of different sizes (eICU-3:1630, eICU-4:1301, MIMIC-III:15298).
Supplementary Table S12, Table S13 and Fig. S14 showed that
MINDMerge has superior AUC (0.842, 0.810, 0.730 respectively)
compared to other causal and machine learning models. Supplementary
Table S14, Fig. S15, Fig. 516 and Fig. S17 present additional perfor-
mance indicators such as Precision, Recall and AUPRC as well as deci-
sion curves and calibration curves.

4. Discussion

Causal learning is crucial in healthcare for unveiling the underlying
relationships and mechanisms that drive medical conditions and treat-
ment outcomes. However, singular causal models may not fully capture
the complexity of relevant factors. The integration of multiple models
through BN fusion offers a more comprehensive approach to causal
inference, which is essential for informed and effective decision-making.
Despite the efficiency of existing BN fusion methods (e.g., Puerta’s [23]
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Fig. 4. The causal structure of AKI using MINDMerge ensemble learning. Purple nodes refer to demographic information and vital signs, red node refer to AKI onset
(No/Yes), cyan, yellow, blue nodes refer to laboratory tests, comorbidities and procedures, respectively. BMI: body mass index, CAD: coronary artery disease, BUN:
Blood Urea Nitrogen, AF: Atrial Fibrillation, HD: Heart Disease, TC: Tissue culture, RDW: Red cell Distribution Width, T_Bilirubin: Total Bilirubin. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Forest plot of the prediction performance of different models.

and others’[24-28]), they face challenges such as algorithm diversity,
local optima, and cyclic structures. To mitigate these issues, we devel-
oped MINDMerge, a novel causal network fusion framework that har-
monizes knowledge across algorithms. MINDMerge integrates learning
results from different causal discovery algorithms, facilitating the con-
struction of more accurate network structures across varying sample
sizes. Experimental results on both synthetic and real-world data
demonstrate that MINDMerge outperforms other causal algorithms and

effectively captures true causal relationships between variables. It also
has significant advantages over conventional machine learning by
revealing the causality underlying complex diseases and facilitating new
risk factor discoveries.

Although knowledge mining methods are adept at revealing factors
with high predictive power, their identification does not necessarily
imply causal influence [36]. In our work, five critical risk factors have
been identified that are directly related to AKI, namely pulmonary dis-
ease, hypertension, diabetes, X-ray, and BUN. Significant interactions
between the kidneys and lungs exist in both physiological and patho-
logical conditions. Clinical observations have revealed kidney involve-
ment in chronic respiratory disease. Studies have reported that the
incidence of renal failure is higher in patients with concomitant pul-
monary disease, especially in chronic obstructive pulmonary disease
(COPD) [59]. Additionally, pulmonary infections, inflammatory re-
sponses, and certain treatment modalities such as mechanical ventila-
tion can also contribute to AKI [60]. Lun et al [61] and Cai et al [55]
confirmed hypertension as an independent risk factor of AKI through
meta-analysis. Persistent hypertension can increase glomerular capsule
pressure, leading to glomerular fibrosis and renal arteriosclerosis, which
can cause ischemia of the renal parenchyma and renal failure [62].
Similarly, patients with diabetes are more likely to develop AKI than
those without diabetes, demonstrated in multiple studies that dia-
betes was an independent risk factor of AKI [55,63,64]. In the diabetic
states, glucose metabolism mainly takes place in the kidneys, which
increases the glycemic load on the kidneys that may cause kidney
damage. Elevated BUN levels can signal early AKI, preceding increases
in serum creatinine, offering an initial alert for renal impairment [65].
Therefore, monitoring BUN aids in timely AKI detection and interven-
tion, potentially enhancing patient outcomes. However, BUN has limi-
tations as a diagnostic tool due to influences from other factors, leading
to potential false positives or negatives. Thus, integrating additional
biomarkers can refine and expedite AKI diagnosis[66]. Moreover, the
use of X-ray [67] and CT imaging offers unique insights into intrarenal
hemodynamics and function [68]. These imaging modalities, often
employed for assessing abdominal region issues and lung infections,
provide crucial diagnostic information potentially associated with kid-
ney damage.

While machine learning models like Extreme Gradient Boosting
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(XGB) excel in outcome prediction, they lack inherent insights into
causal mechanisms. Our BN fusion approach, in contrast, uncovers
causal relationships between variables, enabling the identification of
modifiable risk factors and potential intervention targets. This provides
invaluable clinical interpretability and enhances the efficacy of clinical
interventions by tailoring them to specific patient populations. The risk
factors identified in our study can provide actionable strategies for the
prevention and management of AKI. Recognizing these risk factors al-
lows clinicians to identify high-risk patients, monitor them more closely,
and implement preventive strategies earlier. For instance, patients with
pulmonary disease, hypertension, or diabetes could benefit from more
rigorous control of their underlying conditions to potentially reduce the
risk of AKI. Additionally, early detection and prompt intervention are
critical for patients exposed to X-ray or with elevated BUN levels to
prevent further kidney damage. Finally, educating patients about the
signs and symptoms of AKI empowers them to seek medical attention
promptly.

Fig. 4 illustrates BUN’s direct and indirect effect on AKI with the
chain “Age — BUN—AKI". AKI risk increases with age [37], Urea is the
metabolic product of protein decomposition in human body, the in-
crease of BUN levels can be caused by various factors, including age.
Generally, BUN levels tend to increase with age, which is often attrib-
uted to a gradual decline in kidney function with age, leading to
abnormal renal function [29], subsequently elevating the risk of AKI.
The causal chain “PaCO2 — HCO3 — Pulmonary Disease — AKI” in-
volves Paco2 and Hco3, which are mainly used to assess the acid-base
balance in the body and respiratory function, and they are closely
associated with pulmonary disease. Avoiding acid-base disturbances
may be beneficial for the management of lung disease and kidney
function [69], which may help reduce the risk of AKI. We also observed
that pulmonary disease may cause multiple complications that may
indirectly or directly contribute to AKI. Studies have indicated a higher
prevalence of comorbidities such as diabetes (12.2 % vs.4.6 %), heart
disease (15.0 % vs.7.7 %) and hypertension (38.8 % vs. 22.8 %) in in-
dividuals with abnormal lung conditions [70]. Participants with
restrictive or obstructive lung function had 1.49 and 1.42-fold higher
atrial fibrillation risks, respectively [71]. Conditions like asthma, char-
acterized by impaired lung function [72], have emerged as potential
biomarkers for lung cancer development [73]. Therefore, good cardio-
pulmonary function stands as a cornerstone of human health, supporting
the normal functioning of all bodily organs and, in some instances,
reducing the risk of AKI.

Limitations of the study exist. Firstly, to reduce data complexity,
mitigate influence of outliers, and enhance model interpretability, we
discretized the continuous variables. Employing different data imputa-
tion methods and discretization methods for continuous data might
potentially impact the obtained results. Secondly, setting the threshold
for the causal discovery phase is difficult; an inappropriate threshold can
significantly impact the accuracy of structure learning. Achieving a
balance between network complexity and accuracy required parameter
selection based on experiential knowledge. Thirdly, our study was based
on cross-sectional data, whereas in realistic healthcare setting, data
collection is time-series in nature. Incorporating time-series data ne-
cessitates alternative causal analysis methods, such as Granger causality.
Fourthly, our BN fusion approach, aimed at enhancing model accuracy
and robustness, lacks a direct comparison with existing BN fusion
methods due to the varied assumptions and applicability of different
techniques. Lastly, the limited scope of clinical data variables, particu-
larly the lack of medication factors, represents a significant limitation of
this study. Medications, including nephrotoxic agents, play a crucial role
in the development of AKI and their omission could influence the results
of the model, potentially underestimating the true complexity of the
causal pathways involved.

Nonetheless, this study holds significant implications. Firstly, the
developed causal network harmonization framework presents a novel
approach to structural learning, offering potential adaptation in
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knowledge fusion across diverse datasets like in a federated learning
setting. Secondly, MINDMerge has stronger generalizability and can
maintain higher accuracy for different datasets regardless of the sample
size compared to individual or ensemble causal discovery algorithms.
Thirdly, distinct from conventional machine learning algorithms,
MINDMerge not only achieves high performance but also provides
inference and interpretation.

5. Conclusion

This study introduces a novel causal network harmonization frame-
work that effectively integrates causal graphs from different causal
discovery algorithms. To address the cyclic structure problem in causal
network fusion, we developed a novel cycle breaking algorithm.
Experimental results showed that our model significantly outperformed
baseline models on both synthetic data and real-world data. The model
has the potential to guide the development of personalized treatment
strategies.

6. Summary Table

Problem or Issue What is Already Known What this Paper Adds

The diversity of causal
discovery algorithms

No single causal method
exhibits significantly

We proposed a novel
network harmonization

and the presence of
cyclic structures in
synthesized causal
networks.

superior performance in
structure reconstruction.
The existence of cyclic
structures is often
disregarded when
synthesizing network
knowledge from different
sources, which may result
in erroneous inferences.

framework that
effectively integrates
causal graphs from
different causal
algorithms. To address the
cyclic structure in
network fusion, we
developed a novel cycle-
breaking algorithm.

Experimental results
showed that our model
significantly
outperformed baseline
models on both synthetic
data and real-world data.
The model has the
potential to guide the
development of
personalized treatment
strategies.
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