
Efficient Approaches for GEMM Acceleration on
Leading AI-Optimized FPGAs

Endri Taka†§, Dimitrios Gourounas†§, Andreas Gerstlauer†, Diana Marculescu†, Aman Arora‡
†The University of Texas at Austin, USA, ‡Arizona State University, USA
{endri.taka, dimitrisgrn, gerstl, dianam}@utexas.edu, aman.kbm@asu.edu

Abstract—FPGAs are a promising platform for accelerating
Deep Learning (DL) applications, due to their high performance,
low power consumption, and reconfigurability. Recently, the
leading FPGA vendors have enhanced their architectures to more
efficiently support the computational demands of DL workloads.
However, the two most prominent AI-optimized FPGAs, i.e.,
AMD/Xilinx Versal ACAP and Intel Stratix 10 NX, employ sig-
nificantly different architectural approaches. This paper presents
novel systematic frameworks to optimize the performance of
General Matrix Multiplication (GEMM), a fundamental oper-
ation in DL workloads, by exploiting the unique and distinct
architectural characteristics of each FPGA. Our evaluation on
GEMM workloads for int8 precision shows up to 77 and 68
TOPs (int8) throughput, with up to 0.94 and 1.35 TOPs/W energy
efficiency for Versal VC1902 and Stratix 10 NX, respectively. This
work provides insights and guidelines for optimizing GEMM-
based applications on both platforms, while also delving into
their programmability trade-offs and associated challenges.

Index Terms—Versal, Stratix, FPGA, AI Engine, AI Tensor
Blocks, ACAP, GEMM, Hardware Acceleration, Deep Learning

I. INTRODUCTION

The explosion of computational demands in Deep Learn-
ing (DL) workloads [1], [2], has resulted in the emergence
of AI-optimized hardware solutions, including GPUs [3]–[5]
and ASICs [6]–[9]. In addition, several AI-optimized FPGA
solutions have also been proposed, both in industry [10]–[14]
and academia [15]–[20]. The two major FPGA vendors have
adopted different directions in optimizing their FPGAs for DL.
AMD/Xilinx introduced the Versal Adaptive Compute Accel-
eration Platform (ACAP) [21], [22], comprising the novel AI
Engine (AIE), along with reconfigurable logic (FPGA) and
scalar processors (CPUs). In contrast, Intel released the Stratix
10 NX [10], maintaining the existing FPGA architecture, but
replacing legacy DSP blocks with new AI Tensor Blocks
(TBs). The AIE is an out-of-fabric solution consisting of pro-
grammable vector processors that operate at high frequency.
In contrast, TBs are in-fabric blocks comprising multiple dot-
product engines, operating at lower FPGA fabric frequencies.

The two hardware platforms employ substantially different
architectural attributes to incorporate DL support. In this work,
we present systematic methodologies and novel optimiza-
tion techniques to map General Matrix-Matrix Multiplica-
tion (GEMM) workloads on the aforementioned AI-optimized
FPGAs, highlighting the distinct architecture-specific design
approaches required for each device. We propose frameworks

§Authors contributed equally to this work.

TABLE I: Hardware platform characteristics.

Device Versal VC1902 Stratix 10 NX 2100

FP
G

A

Logic Elements/Cells 1968K 2073K
On-chip Memory 20.5 MB 16.75 MB

DSP Slices 1968 –
Tensor Blocks – 3960

AIE Cores 400 –
AIE Memory 12.5 MB –

Processing System ARM A72 + R5F –
DRAM Technology DDR4 HBM2
Peak DRAM BW 102.4 GB/s 512 GB/s

Theor. Peak TOPs (int8)* 135 TOPs 143 TOPs
Peak Power 165 W 125 W

Process 7nm TSMC 14nm Intel

* Versal’s throughput is primarily attributed to the AIE, providing a peak
of 128 TOPs at 1.25 GHz. DSPs present only 7 TOPs at 600 MHz, hence
are not considered in this work. Stratix 10 NX peak throughput is reported
in [26], for operation at 600MHz.

that aim to maximize the throughput and energy efficiency
of GEMM on Versal and Stratix FPGAs, leading to maximal
resource utilization. This study focuses on GEMM, since
it constitutes the core operation in many DL workloads,
occupying up to 90% of the total execution time [23], [24].

Table I presents the characteristics of the two exemplar
devices, where we showcase our proposed methods; the Versal
VC1902 and Stratix 10 NX 2100. Both are large chips with
roughly equal number of logic elements/cells, and similar on-
chip memory capacity. Additionally, both devices have nearly
equal theoretical peak throughput (int8) capabilities, under
similar power envelopes (135 vs. 143 TOPs, and 165 vs. 125
W, for Versal [25] and Stratix [10], respectively).

Besides their distinct architectures, the two devices also
present differences in their DRAM technology and the man-
ufacturing nodes (Table I). Versal has 5× lower bandwidth
(BW) than Stratix. Moreover, Versal is manufactured in a 7nm
TSMC process, while Stratix uses 14nm Intel. The main focus
of this paper is to provide a comprehensive evaluation of vari-
ous aspects in GEMM optimization, emphasizing architecture-
specific methodologies, which are largely agnostic to DRAM
and manufacturing technology. Thus, we perform experiments
on designs that operate within on-chip memory. However,
to enable a complete and thorough analysis we extensively
examine off-chip memory considerations and requirements for
both devices. Our main contributions are summarized below:

• For Versal, we leverage the state-of-the-art MaxEVA
framework [27], and extend it to incorporate an additional
memory hierarchy level utilizing the Versal FPGA’s on-

chip resources. We maximize performance via design
space exploration (DSE) and analytical modeling, and we
propose a novel RAM optimization scheme to overcome
severe limitations of Vitis High-Level Synthesis (HLS).

• For Stratix, we develop a novel framework to design,
map and optimize a configurable GEMM accelerator by
exploiting the device’s in-fabric TBs. Our framework
involves extensive DSE and analytical modeling to max-
imize GEMM performance.

• Demonstration of our frameworks on various GEMM
workloads for int8 precision, showing throughput up to
77 and 68 TOPs with 100% AIE and 91% TB utilization
for Versal and Stratix, respectively. We achieve up to 0.94
and 1.35 TOPs/W energy efficiency, with 88% and 94%
on-chip memory for Versal and Stratix, respectively.

• We provide notable insights and guidelines for GEMM
optimization, programmability aspects, architectural at-
tributes, and limitations on both AI-optimized FPGAs.

II. RELATED WORK

Several prior works leverage the Versal ACAP architecture
across multiple application domains. In particular, CHARM
[28], [29] automates the process of GEMM acceleration on
Versal ACAP. Their experimental results on the VC1902
exhibit higher energy efficiency of up to 7.2× and 1.7×
compared to traditional FPGAs (AMD/Xilinx U250) and
GPUs (NVIDIA A100), respectively. MaxEVA [27] is another
framework that accelerates GEMM on Versal AIE, while
achieving up to 2.19× higher throughput and 20.4% higher en-
ergy efficiency compared to CHARM. Additional research on
Versal focuses on accelerating specific DL workloads, such as
Convolutional Neural Networks (CNNs) [30], [31], and Graph
Neural Networks (GNNs) [32], [33]. Other works include AIE
compilers [34], arbitrary precision integer multiplication [35],
as well as acceleration of atmospheric simulations [36], [37].
Considering all prior work, MaxEVA is the state-of-the-art
GEMM implementation, although only targeting small matrix
sizes that fit within the Versal AIE. In this work, we extend
MaxEVA to support arbitrary GEMM sizes, by implementing
an additional level of memory hierarchy on Versal’s FPGA.

The NX architecture was introduced in [10], including
a discussion of the TB operating modes and design trade-
offs. This work also presents a TB design used for General
Matrix-Vector (GEMV) and GEMM operations. Multiple other
works have targeted the Stratix 10 NX for DL. In [38], a
GEMV accelerator is mapped on AI TBs and incorporated
into an enhanced Brainwave NPU overlay [39]. They show a
speedup of up to 3.5× compared to all prior works on FPGA-
based acceleration of Recurrent Neural Networks (RNN) [40]–
[42], as well as the baseline NPU with legacy DSPs [43].
Additionally, in [44], NX was utilized to enhance the CNN
HPIPE accelerator [45]. They demonstrate a 4× speedup
over prior FPGA accelerators for CNN. In [46], a method to
assemble higher than int8 precision multipliers is presented
on the NX. Finally, in [47], a speech-generation model is
implemented on Stratix 10 NX, substantially outperforming

AIE-PL Tile

AIE
Core

M
em

o
ry

Switch

AIE
Core

M
em

o
ry

Switch

AIE
Core

M
em

o
ry

Switch Switch

AIE
Core

M
em

o
ry

Switch

Switch

AIE
Core

M
em

o
ry

Switch

AIE
Core

M
em

o
ry

Switch

AIE
Core

M
em

o
ry

Switch

. . .

. . .

. . .

. . .

. . .

. . .

. . .

AI Engine Array

AIE
Core

M
em

o
ry

AIE
Core

M
em

o
ry

.

AXI4-Stream AIE Shared Memory Access

AIE-PL Tile

Programmable
Logic (PL)

LUTsFFs

DSPs

BRAMs

URAMs

AIE-PL Tile

Processor
System
(ARM)

. . .

. . .

Fig. 1: Versal ACAP architecture.

a V100 GPU implementation. In this work, we develop a
framework, which includes a detailed, systematic approach for
automatically generating a configurable GEMM accelerator on
Stratix 10 NX. Furthermore, we perform an extensive DSE and
we explore various trade-offs in GEMM design, which are not
thoroughly examined in prior work targeting the NX device.

III. FPGA ARCHITECTURES OVERVIEW

A. Versal ACAP Architecture

The architecture of the Versal ACAP is depicted in Fig. 1.
The Versal ACAP comprises the Processor System (PS), the
Programmable Logic (PL), as well as the novel AIE array
[48]. The PS consists of scalar ARM processors, while the PL
includes the traditional FPGA resources, e.g., LUTs, FFs, DSP
slices, and on-chip memory resources (BRAMs/URAMs).

The Versal AIE is a 2D array consisting of identical AIE
tiles. Each tile includes an AIE core, a memory unit and
an interconnect (switch) [49]. The AIE cores are architected
as VLIW programmable processors featuring vector (SIMD)
units. The AIE array provides three levels of parallelism. First,
instruction-level parallelism is realized by executing up to 7
instructions every clock cycle (7-way VLIW). Second, data-
level parallelism is achieved through vector operations, where
multiple data can be processed each clock cycle (SIMD).
Third, spatial-level parallelism is attained via the concurrent
execution of multiple AIE cores (up to 400). Communication
between different AIE cores is achieved by local memory
sharing access for neighboring cores, or by programmable
switches for distant cores (Fig. 1). The switches can be
configured statically (at compile time) for circuit-switching, or
dynamically for packet-switching. Circuit-switching is more
efficient, ensuring deterministic latency, as opposed to non-
deterministic latency associated with packet-switching [49].

The AIE array communicates efficiently with the PL via the
dedicated AIE-PL tiles, located on the last row of the AIE, as
shown in Fig. 1. These tiles provide AXI4-Streaming interface
with the PL, while also supporting clock domain crossing
between the AIE and the PL. The Versal ACAP additionally

casc_data_in [79:0]

d
at

a_
in

 [
79

:0
]

casc_data_out [79:0] casc_accum_out [2:0] [31:0]

casc_accum_in [2:0] [31:0]

TB2
Dot 10

Dot 10

Dot 10

TB1

TB0

TB17

d
at

a_
o

ut
 [2

:0
]

[2
3

:0
]

Tensor Blocks

M20K Blocks

ALMs

36

bank 0 bank 1

...

...

Fig. 2: Architecture of Stratix 10 NX Tensor Blocks.

includes a Network-on-Chip (NoC) (not shown in Fig. 1), to
enable flexible communication throughout the entire chip.

An AIE kernel running on a single AIE core can be
programmed in high-level C/C++ [50], or low-level SIMD
intrinsics [51]. The mapping of multiple kernels on the AIE
array is realized through the Adaptive Data Flow (ADF) graph
modeling. The nodes in the ADF correspond to AIE kernels
and the edges represent connections between them [52]. The
PL can be programmed in C/C++ using Vitis HLS [53] or
low-level RTL. Finally, AMD/Xilinx provides the Vitis V++
tool [54] to integrate the AIE graph system and the PL kernels.

B. Stratix 10 NX Architecture

The Intel Stratix 10 NX 2100 device’s PL comprises ALMs,
FFs, M20K blocks (Intel’s BRAMs, 20Kbit in size [55]) and
the AI-optimized TBs. TBs replace the traditional variable-
precision DSP blocks (Fig. 2), by dropping many of their
legacy, high-precision operating modes and replacing them
with scalar, vector, and tensor operating modes for several
DL-optimized data types. The TB maintains the interface
of the legacy DSP. In this work, we focus on the Tensor
int8 mode, which supports three 10-element 8×8 signed dot-
product operations and three 32-bit additions for accumulation
on partial products. TBs in an FPGA column are physically
grouped in chains, each consisting of 36 TBs. The TBs within
a chain are cascaded using dedicated wires to propagate
operands and accumulated products. Neighboring chains are
not cascaded. Within a chain, TBs can be logically grouped
in independent arrays of configurable length.

Fig. 2 illustrates an example of an array of 18 TBs that
lies within a TB chain, as well as a simplified block diagram
of the TB operating in the int8 mode. Each TB contains two
banks of three ping-pong registers for storing operands (bank
0, 1), where each register holds ten 8-bit values. Moreover,
it includes three 10-element dot-product engines (Dot 10).
The first input to each dot-product engine comes from its
corresponding register, while the second input is broadcast
from the 80-bit wide data in port to all three engines. Finally,
three independent 32-bit fixed-point adders are responsible for
adding the generated dot-products to the cascade input from
the previous TB. As shown in Fig. 2, accumulation results are
propagated along the TB array through cascade connections

between a block’s casc accum out port and the following
block’s casc accum in port. The latency of the dot-product
calculation plus the cascade accumulation is equal to two
cycles. The array’s final TB outputs are exposed through three
24-bit wide data out ports.

There are three methods for loading operands in an array’s
TB registers: (i) parallel load mode, (ii) side load mode and
(iii) cascade mode. In this work, we focus on the cascade
mode, since it leads to less routing congestion, as mentioned
in [10]. We refer the reader to [10] for a detailed description of
the other modes and their trade-off analysis. In cascade mode,
TB0 (Fig. 2) performs no computation and acts only as a
loading port, where operands enter the array through its 80-
bit data in port. These operands are then propagated to sub-
sequent TBs (TB1–TB17 in Fig. 2) from the casc data out
port of one TB to the next’s casc data in port and eventually
stored in the TB registers. This requires three cycles per TB,
leading to longer loading latencies as the array grows in size.
However, computation can occur concurrently due to the ping-
pong registers, allowing to hide the loading latency.

While the TBs support many modes of operation, there is no
available support for programming them using Intel HLS [56]
or other high-level tools. Hence, the developer is responsible
for generating a TB-based design exclusively in RTL.

IV. GEMM DESIGN & OPTIMIZATION

A. GEMM Implementation on Versal ACAP

We leverage the MaxEVA open-source code [57], and
extend it to include on-chip buffers in the PL, tiling logic,
as well as Load/Store units to communicate with DDR. The
PL is designed using Vitis HLS, as extensively used in prior
works on Versal to enhance productivity [28], [31], [32], [37].
Optimization of the PL design is attained through analytical
modeling for maximization of on-chip data reuse (to reduce
DDR BW requirements, as VC1902 has limited BW, Table
I). Moreover, this method effectively resolves severe memory
over-utilization issues caused by Vitis HLS. In the following
sections, we provide a brief overview of the MaxEVA AIE
design, and we elaborate on the PL design and optimization.

1) GEMM Multi-Level Tiling Scheme: Fig. 3 illustrates
the tiling scheme used in MaxEVA for the AIE, as well as
our tiling method on PL. Each AIE core executes a Matrix
Multiplication (MatMul) kernel of M×K×N size (first tiling
level). The parameters X,Y, Z determine the multiple MatMul
kernels running on the entire AIE array, as discussed in the
next section (second tiling level). We incorporate an additional
level of buffering in the PL, introducing three new parame-
ters: U, V,W (third tiling level). The AIE-specific parameters
(X,Y, Z,M,K,N) are optimized by utilizing the MaxEVA
framework, while the PL-specific parameters (U, V,W) are
optimized using our proposed PL optimization procedure
(introduced in Sec. IV-A4). All the aforementioned parameters
determine the A, B and C matrix sizes supported out of on-
chip memory in the PL, as depicted in Fig. 3. Therefore, we
define two GEMM sizes. First, the compute GEMM size, i.e.,
(X ·M)×(Y ·K)×(Z ·N), running on the AIE array. Second,

× M
K

K

N

= M
N

X·M

Y·K

Y·K×

Z·N

=

Buffer A Buffer B Buffer C

Z·N

U·(X·M)

V·(Y·K)

×

V·(Y·K)

W·(Z·N)

U·(X·M)=

AIE Array Single AIE Kernel

Multiple AIE
Kernels

W·(Z·N)PL

X·M

Fig. 3: Multi-level tiling scheme for GEMM on Versal ACAP.

the native buffer size, i.e., (U ·X ·M)×(V ·Y ·K)×(W ·Z ·N),
of the data stored in the on-chip buffers inside the PL.

2) GEMM Mapping on AIE Array: The limited number of
AIE-PL tiles on Versal devices (notably VC1902 has only 39
AIE-PL tiles out of 50 columns in the AIE [58]), is one of the
main challenges in GEMM design. To overcome the limited
PL Input/Output (PLIO) bottleneck, MaxEVA utilizes the
following two techniques [27]. First, the number of input PLIO
ports is reduced by broadcasting input data to multiple AIEs.
Second, the output PLIO ports are decreased by performing
adder tree reduction (via Add kernels) on the AIE. This
approach exploits only the most efficient circuit-switching AIE
mechanism, as opposed to packet-switching used in [28], [29].

In the upper part of Fig. 4 (AIE array), we present a
high-level diagram of MatMul and Add kernels on the AIE.
Notice the groups of Y MatMul kernels along with their
corresponding adder trees (Y − 1 Add kernels). There exist
X · Z such groups, all executing in parallel. Each MatMul
kernel is mapped to a separate AIE core. All Add kernels of a
group (adder tree) are mapped to a single AIE core. A total of
X ·Y ·Z AIE cores execute the MatMul kernels, and X ·Z AIE
cores execute the Add kernels. Regarding the PLIOs, X · Y
and Y · Z input ports are required for matrices A and B,
respectively, in addition to X · Z output ports for matrix C.

MaxEVA proposes two AIE kernel placement patterns,
referred to as P1 and P2, to leverage the most efficient local
data sharing mechanism of the AIE (Fig. 1), and thus, avoid
routing congestion. P1 denotes a closely-located placement of
each group of Y = 4 MatMul kernels and their corresponding
adder trees (Fig. 4). Similarly, P2 denotes a pattern for Y = 3
(refer to [27] for more details on these placement patterns).

3) PL Implementation: The lower part of Fig. 4 (PL) shows
a high-level block diagram of the PL design. The A, B and
C matrices are stored in on-chip buffers, exploiting the PL
BRAM and URAM resources. To provide sufficient bandwidth
to/from the AIE, each buffer is partitioned (HLS pragma
array partition), to exactly match the corresponding AIE
PLIO ports. Although not shown in Fig. 4 for simplicity,
we employ double-buffering to effectively overlap GEMM
computation with external off-chip DDR communication.

We set the PLIO width to 128-bits to ensure rate matching
between AIE and PL without performance loss [27], [51]. In

. . .

AIE Array

×
+

×

×
+

. . . +

PL

. . .

. . .

. . .

. . .

. . .

. . .

. . .

X·Y ports Y·Z ports X·Z ports

+
+
+
+

+
+
+
+

. . .

. . .

Adepth Bdepth Cdepth

× MatMul kernel of M×K×N size + Add kernel of M×N size

AIE Core+ 32-bit adder128-bit PLIOs Broadcasting

. . .

×
+

×

×
+

. . . +

Group of Y MatMul kernels
and Y-1 Add kernels

Fig. 4: GEMM accelerator design on Versal AIE and PL.

addition, while the data type of the A and B buffers is int8, all
accumulations are performed in 32-bits. Thus, when sending
data from the A and B buffers to the AIE, we concatenate 16
8-bit values for each input PLIO to form a 128-bit vector. In
contrast, when receiving data from the output PLIOs of the
AIE, we pack 4 32-bit values and store them in the C buffer.
The logical size of the PL buffers is shown in Fig. 3. However,
in the physical implementation, the buffers have a width of
128-bits to match the PLIO width, and are partitioned into
smaller buffers (Fig. 4). The partition factors ({A,B,C}part)
and depths ({A,B,C}depth) of the buffers are expressed as:

Apart = 2 ·X · Y, Adepth = U · V ·M ·K/16 (1)
Bpart = 2 · Y · Z, Bdepth = V ·W ·K ·N/16 (2)
Cpart = 2 ·X · Z, Cdepth = U ·W ·M ·N/4 (3)

We multiply the partition factor by 2 for double-buffering. We
also divide the depth by 16 and 4 to match the 128-bit packing.

Partial results from the AIE are accumulated in the PL to
handle the reduction across tiles in the V · Y · K dimension
in Fig. 3, or for larger matrices if needed. As depicted in
Fig. 4, we implement 4 32-bit adders in soft logic for each
partitioned C buffer (4 ·X ·Z adders in total, all executing in
parallel). Each new partial result from every PLIO port (AXI4-
Stream interface) is accumulated to its corresponding C buffer
address every clock cycle. This PL logic is pipelined (pragma
pipeline) with an Initiation Interval (II) of 1, such that in
every clock cycle a new partial result can be accumulated.
To this end, one load (for the current PLIO values) and one
store operation (for the previous PLIO values) is required for
every partitioned C buffer. Thus, we configure the C buffers
in simple dual-port mode [53], [59] (pragma bind storage).
This ensures a stall-free PL implementation that does not
introduce any throughput degradation in the entire design.

In contrast, the input buffers A, B are configured in single-
port mode, since either only a load (send data to AIE) or store
operation (receive data from DDR) is required in each cycle for
double-buffering. Moreover, Load/Store units are implemented
in the PL (not shown in Fig. 4) to communicate with DDR.
Finally, it is important to note that our implementation is

1024

36 bits

128 bits

(a) 1K×36 blocks

1024

1024

18 bits

. . .

126 bits

. . .

2 bits

(b) 2 independent 1K×18 blocks

Fig. 5: BRAM configurations example and proposed modeling.

symmetric in terms of the first and last dimensions in both
the compute GEMM size and the native buffer size (see Sec.
IV-A1 for definitions and Sec. V-A2 for evaluation).

4) Memory Optimization Strategy: To maximize the data
reuse of the on-chip buffers, we propose an optimization
methodology based on analytical modeling. Our model utilizes
the multiple configurations of BRAMs and URAMs to identify
the optimal values of the U, V,W parameters, as well as
the buffer mapping to BRAMs and URAMs. Although Vitis
HLS includes the capability to automatically map buffers to
memory resources (impl=AUTO in pragma bind storage),
we found that it fails to find an operational mapping in several
cases (Sec. V-A1). This automatic mapping generated by Vitis
HLS leads to severe over-utilization of memory resources,
and thus, failure to Place and Route (PnR). To the best of
our knowledge, this HLS limitation has not been identified in
any prior work. Several works have focused on optimizing the
logical-to-physical memory mapping during the synthesis/PnR
phases [60]–[62], while others [63] propose tools to assist
designers at the user-level with automatic memory mapping
targeting BRAMs, but not URAMs. Our approach focuses
on overcoming this HLS limitation by identifying an optimal
mapping to both BRAMs and URAMs, and subsequently
guiding the HLS tool according to this mapping (through
impl={BRAM/URAM} in pragma bind storage).

The inputs of our model include a MaxEVA solution
(X,Y, Z,M,K,N parameters), and PL-specific parameters,
i.e., BRAM, URAM configurations supported in Versal devices
[59] and the available on-chip memory resources. The model
produces as outputs the optimal U, V,W parameters, as well
as the A, B and C buffer mapping to BRAMs/URAMs.

Besides the optimal parameter finding and mapping to mem-
ory resources, our model also estimates the BRAM/URAM
utilization with 100% accuracy in all cases (Sec. V-A1). First,
we model the BRAM/URAM utilization based on the depth of
each partitioned buffer (all buffers have 128-bits width and are
highly partitioned; Section IV-A3). Fig. 5a shows an example
of our modeling when 512 < depth ≤ 1K. In this case,
BRAMs are configured as 1K×36 and 4 36K BRAMs are
needed to construct the 128-bitwidth buffer. Observe that a
portion of the rightmost BRAM in Fig. 5a is not utilized in
this situation. To this end, we define BRAM/URAM efficiency
as the fraction of the logical buffer size to the total size of
memory blocks used. For instance, when assuming that all 1K
entries are used in Fig. 5a, the BRAM efficiency is determined
by the utilized width, i.e., 128/(36·4) = 88.89%.

In Fig. 5b, we show another example when 1K < depth ≤

2K. In this case, BRAMs are configured as 2 indepen-
dent 1K×18 blocks. With 7 2K×18 blocks, 126-bits can be
mapped. The remaining 2-bits can be efficiently mapped by
packing 2K×2-bits on a single 1K×18 block. This is possible
since 2K×2-bits can be logically viewed as 1K×4-bits, where
additional multiplexing logic is needed to determine the corre-
sponding 2-bits, based on the address. Thus, 7.5 36K BRAMs
(or 15 18K blocks) are required in total. The remaining 18K
BRAM (outlined in orange in Fig. 5b), can be used for other
purposes, since it is physically independent.

Similarly, we also model the cases when depth ≤ 512 (2
36K BRAMs), and 2K < depth ≤ 4K (15 36K BRAMs)
[59]. In addition, since URAMs support one configuration
(4K×72), 2 URAMs are required for depth ≤ 4K. In eq. 4
and 5, we summarize the number of BRAMs (fB) and URAMs
(fU), respectively, as functions of the buffer depth.

fB(depth) =


2, if depth ≤ 512

4, if 512 < depth ≤ 1K

7.5, if 1K < depth ≤ 2K

15, if 2K < depth ≤ 4K

(4)

fU (depth) = 2, if depth ≤ 4K (5)

Afterwards, we establish a constraint that limits each
buffer’s depth to 4K (eq. 6), since all buffers are highly
partitioned with a relatively small depth. This constraint allows
a very high BRAM, URAM efficiency, as shown in Sec. V-A2.

{Adepth, Bdepth, Cdepth} ≤ 4K (6)

Finally, we impose constraints to ensure that the total number
of utilized BRAMs and URAMs does not exceed the device’s
available resources (B36K and U288K). Eq. 7 and 8 show
an example of the constraints for BRAMs and URAMs,
respectively. In this example, the buffers A, B have been
mapped to BRAMs, while C is mapped to URAMs.

Apart · fB(Adepth) +Bpart · fB(Bdepth) ≤ B36K (7)
Cpart · fU (Cdepth) ≤ U288K (8)

Constraints similar to 7, 8 are applied for all permutations of
mapping buffers A, B and C to BRAMs and URAMs.

The solution of U, V,W and buffer mapping to BRAMs,
URAMs can be formulated as an integer programming (IP)
optimization problem with the aforementioned constraints.
We solve the IP exhaustively by setting the maximization
of on-chip data reuse as the objective. The data reuse of all
buffers is encapsulated in the product of U ·V ·W . Notice from
Fig. 3 that buffers A and B are reused W and U times in
GEMM, respectively, while C is reused and updated (during
accumulation) V times. In addition, note that maximizing data
reuse also leads to maximization of the PL buffer sizes, under
the resource constraints. We report, implement and explore the
trade-offs of multiple top-ranked solutions in Sec. V-A.

B. GEMM Implementation on Stratix 10 NX

We implement a configurable MatMul accelerator consisting
of a control logic and a 2D TB layout on the Stratix 10 NX

architecture. The accelerator’s TBs operate out of local, on-
chip memory consisting of A, B and C buffers (Fig. 2) of size
M ′·K ′, K ′·N ′ and M ′·N ′, respectively. The M ′×K ′×N ′

MatMul size is defined as the native buffer size, similar
to Versal. We conduct a DSE to optimize for accelerator
throughput and employ analytical modeling to optimize for
on-chip data reuse. Below we delineate the TB layout, the
dataflow, the memory architecture, optimization strategies and
the automatic code generation tool we developed.

1) TB Layout: We utilize groups of TB arrays of config-
urable length that run in parallel and operate in the cascade
loading mode. An array’s first TB (colored white in Fig. 6)
serves as its point of entry for A data (Fig. 6), performing
no computation. Subsequent TBs in the array receive their A
data (and store them in their registers) via their casc data in
port and their B data through their data in port (Fig. 2). The
latency of loading A blocks is three cycles per TB, but can be
hidden when overlapped with dot-product operations. While
bank 0 (Fig. 2) is being multiplied with a set of B blocks,
bank 1 can be loaded and vice-versa. An array’s accumulated
outputs are exposed through the data out port of its final TB.
We define four architecture parameters for the TB layout:

a) Parameter TBlen: Length of a TB array, equal to four
in Fig. 6. This length can be less than or equal to 36.

b) Parameter Kp: Set of arrays that work in parallel
across the K ′ dimension, which we refer to as a reduction
group (Kp equal to two in Fig. 6). The data out outputs of all
the arrays in a reduction group are fed into its corresponding
adder tree, the output of which is accumulated at the C buffer
(Fig. 6). These adders are implemented in soft logic.

c) Parameter Np: Set of reduction groups that contain
the same A blocks, but get multiplied with different B blocks
(equal to two in Fig. 6). Np allows exploiting parallelism across
N ′. We refer to this set of reduction groups as an Np block.

d) Parameter Mp: Number of Np blocks that allow par-
allelism across M ′, equal to three in Fig. 6. Each Np block
uses different A blocks, but the same B blocks.

2) Dataflow: Each TB holds a 3×10 block of A in its
registers, represented by a shape in Fig. 6, and it multiplies
it with a 10×1 block of B in each clock cycle. This B
block belongs to a set of N ′/Np 10×1 blocks, represented
by a color in the B Buffer (Fig. 6). The TB will sequentially
multiply its A block with all B blocks in the colored set. Given
enough B blocks in this set (i.e., a large enough N ′), the TB’s
register loading latency can be fully hidden. Different TBs of
the same array hold separate A blocks (shapes) and process
different sets of B blocks (colors). Partial dot-products are
propagated along an array through cascade connections and
added to the next dot-products on-the-fly. This process takes
two clock cycles per TB (Sec. III-B). Therefore, a TB starts
processing data two cycles after its previous TB. Finally, an
array’s accumulated dot-products are exposed at its last TB.

Different arrays in the same reduction group hold separate
blocks of A (shapes) and process separate sets of B blocks
(colors) in parallel, each generating a new output every clock
cycle. Reduction groups of the same Np block hold the same

TBTB

TB

TB

TB

TB

TB

TB

TB

B buffer

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

TB

A buffer

C buffer

TB
TB

TB

Np
block

Reduction
group

TB
Array

10

3

10

1

...

Mˊ

Kˊ

DKˊ

Nˊ

DKˊ

DM'

Kˊ

DNˊ

...

...

...

...

...

Fig. 6: 2D TB layout and GEMM dataflow on Stratix 10 NX.

A blocks (shapes), but get multiplied with different sets of
B blocks (colors) in parallel, allowing parallelism across N ′.
Finally, different Np blocks contain different sets of A blocks
(shapes), but they all get multiplied with the same B blocks
(colors) in parallel, allowing parallelism across M ′.

The total number of utilized TBs is TBlen · Kp · Np · Mp.
We define the compute GEMM size as (Mp · 3)×([TBlen − 1] ·
Kp ·10)×(Np). The multiplication by 3 and 10 accounts for the
size of the A, B blocks. We subtract by 1 for the wasted TB of
each array and we multiply by Kp for all arrays in a reduction
group. We refer to this GEMM size as DM ′×DK′×DN ′ .
This is the size of the blocks the accelerator processes at the
lowest memory hierarchy level. Due to tiling over the compute
GEMM size, M ′, K ′ and N ′ need to be multiples of DM ′ ,
DK′ and DN ′ , respectively. Moreover, N ′ must be sufficiently
large to allow hiding the TB register loading latency.

3) Architectural Considerations: Below we elaborate on
architectural considerations related to the four architecture
parameters, along with the constraints they introduce.

a) Parameter TBlen: As mentioned, the TB chain gran-
ularity is equal to 36. Hence, as multiple arrays may fit in
a chain, the array length TBlen must be a factor of 36 to
avoid fragmentation during placement of a design with a large
number of TBs. Sound values for TBlen are 36, 18, 12 and 9.
Low TBlen leads to more wasted TBs (first TB in every array).
Meanwhile, this imcreases flexibility in executing different
matrix sizes, as they do not require a high reduction dimension
(K ′). Large TBlen leads to longer latency for loading A, but
also results in higher peak throughput. A TBlen of 36 has a
loading latency of 36·3=108 cycles. However, because each A
block is multiplied with a set of B blocks, if this set contains at
least 108 blocks, depending on N ′, this latency can be hidden.

b) Parameter Kp: A TB array processes (TBlen−1)·10
elements across the reduction dimension (K ′) each cycle. Kp

increases the parallelism across K ′ (i.e., DK′), while keeping
the signal fan-out low. However, if DK′ is large, but K ′ is

small, some TBs in a reduction group will be under-utilized.
c) Parameter Np: In order to utilize more TBs, par-

allelism across N ′ and M ′ is also essential. Np requires
broadcasting A blocks across all reduction groups in an Np

block, while Mp requires broadcasting B blocks across all Np

blocks (Fig. 6). However, each array has only one input for
A data (at its initial TB), but a considerably larger amount of
inputs for B data (equal to TBlen−1). As a result, Mp increases
the fanout of a lot more signals than Np does, which increases
FPGA routing congestion. Finally, a higher Np leads to a larger
minimum required value of N ′ to hide the TB loading latency.

d) Parameter Mp: Mp enables parallelism across M ′, but
also increases the fan-out of B blocks, which, as mentioned,
can lead to significant routing congestion in the FPGA, ad-
versely affecting attainable clock frequency and performance.

4) Memory Architecture: Evidently, when a large number
of TBs are used, high BRAM bandwidth is needed to feed
them blocks of A and B. We employ a memory architecture
that is designed to (i) enable high compute throughput and
(ii) to maximize data reuse, which will amortize off-chip BW
requirements. In a similar manner to Versal, we maintain
separate buffers for A, B and C and we utilize double-
buffering. The Load/Store units perform read-only operations
on C buffers and write-only operations on A and B buffers.
The compute logic performs read and write operations on
C and read-only operations on A and B. M20K blocks
configured in simple dual-port mode are used to implement
all buffers. For A and B, the compute and Load/Store units
have their own port for reading and writing, respectively. For
double-buffering, we double the depth of A and B, and split
C to two equal-sized buffers. A more detailed description of
the architecture of buffers A, B and C is provided below.

a) Buffers A, B: As illustrated in Fig. 6, a separate
A block must be fed to each array of a reduction group
and across different Np blocks. Additionally, each TB in an
array (except for TB0), receives separate B blocks every
cycle. Similarly, all arrays in all reduction groups of an Np

block require different blocks of B each clock cycle. Also,
the bitwidth of the A and B ports is 80-bits. Therefore, the
partition factors Apart, Bpart of A, B and the depth Adepth,
Bdepth of each smaller partitioned buffer of A, B are:

Bpart = (TBlen − 1) · Kp · Np (9)
Bdepth = 2 ·K ′ ·N ′/(Bpart · 10) (10)

Apart = Mp · Kp, Adepth = 2 ·M ′ ·K ′/(Apart · 10) (11)

We multiply by 2 for double-buffering and we also multiply
by 10, because 80-bits is 10 bytes. The 80-bit width of these
buffers is implemented using M20Ks operating in the 512×40,
1024×20 or 2048×10 configurations [55]. We model the
number of M20Ks required to implement each buffer, fM80

,
as a function of the depth. For the A buffer, since Adepth is
sufficiently large, all M20K configurations lead to equivalent,
accurate solutions in our model. However, Bdepth was always
less than 1024. If depth ≤ 512, two M20Ks in 512×40 mode
can be used. If 512 < depth ≤ 1024, both 512×40 and

1024×20 configurations lead to a usage of four M20Ks. As a
result, in all our designs fM80 is estimated as:

fM80(depth) = 2 · ⌈depth/512⌉ (12)

The symbol ⌈ ⌉ denotes rounding up to the next integer.
b) Buffer C: A TB has three data out ports, so reduc-

tion groups generate three distinct C values each. The partition
factor Cpart and the depth Cdepth of each smaller buffer is:

Cpart = Mp · Np · 3 · 2, Cdepth = M ′ ·N ′ · 2/Cpart (13)

We multiply by 2 for double-buffering. The valid M20K con-
figurations for the 32-bitwidth of the C buffers are 2048×8,
1024×16 or 512×32. The number of M20Ks, fM32 , required
for C buffers is also modeled as a function of the depth.
Since the depth of the C buffers is sufficiently large, all above
M20K configurations led to equivalent, accurate solutions in
our model, estimated by:

fM32(depth) = ⌈depth/512⌉ (14)

5) Optimization Strategies: Similar to Versal, we formulate
the selection of M ′, K ′, N ′ for a given TB configuration as
an IP problem and solve it exhaustively to optimize for data
reuse, by maximizing the product M ′·K ′·N ′. We impose two
constraints on the IP. First, the utilized M20Ks must not exceed
the device’s available M20K blocks (BM20K). Second, N ′ is
set to be sufficiently large to hide TB register loading latency:

Apart · fM80(Adepth) +Bpart · fM80(Bdepth)

+ Cpart · fM32(Cdepth) ≤ BM20K (15)

N ′ ≥ TBlen · 3 · Np (16)

Since throughput is directly related to operating frequency,
we implement optimizations to shorten critical paths. These
include replication of control logic and insertion of a config-
urable number of pipeline stages along the data and address
datapaths. Additionally, we conduct an extensive exploration
on various TB architecture parameters, to find configurations
that maximize frequency, and thus, throughput (Sec. V-B).

In an effort to reduce signal fan-out, we also tried inserting
registers between Np blocks in a systolic fashion in order to
propagate B blocks, thus minimizing broadcasting. However,
our experiments showed no frequency improvements, while
greatly increasing ALM usage (up to ∼40%, as opposed to a
maximum of ∼19% with the proposed design, see Table IV).
Such a large number of soft-logic pipeline registers is undesir-
able, as it can reduce energy efficiency and also render logic
resources unavailable, as mentioned in [10]. Thus, the systolic
distribution approach was not considered in our final designs.

6) Automatic RTL Code Generation: We develop a Python-
based tool that automatically generates the aforementioned
architecture’s RTL code, including the control logic, TB layout
and memory. The input configurations of the tool are the four
architecture parameters, the M ′, K ′, N ′ dimensions, and the
number of pipeline stages for both address and data.

V. EVALUATION

A. Versal DSE Evaluation

For the AIE, we obtain the two most efficient solutions from
MaxEVA. As found in [27], solution P1 13×4×6 (X×Y×Z)
shows the highest throughput, while the P2 10×3×10
presents the highest energy efficiency. Both use a 32×128×32
(M×K×N) single AIE MatMul kernel with 95% throughput
efficiency. For the PL, we utilize our model (Sec. IV-A4),
which takes as input a MaxEVA solution (X,Y, Z,M,K,N
parameters) and produces the optimal values of U, V,W . We
perform DSE on the 5 top-ranked U×V×W solutions, for
each of the two MaxEVA solutions (10 designs in total).

We use the AMD/Xilinx Vitis 2022.1 version to implement
and compile our designs. The PL part is designed using Vitis
HLS, while AIE-PL linking is achieved via the V++ compiler.
Throughout all experiments, the AIE frequency is set to its
maximum value of 1.25 GHz, while the PL frequency ranges
from 275–300 MHz, depending on the PL configuration. To
calculate the throughput of our designs, we use hardware
emulation in Vitis, while power is estimated through the post-
implementation Vivado Power Analysis Tool [64].

1) Model Estimation: In Table II, we present 4 top-
ranked solutions of our PL optimization procedure (parameters
U×V×W and buffer mapping to BRAM/URAM resources).
First, we observe that our model estimates the BRAM/URAM
utilization with 100% accuracy in all cases. For example, for
solution 4×2×4 (P1), the model suggests (“Model Est.” col-
umn) that buffers {A,B,C} should be mapped to {B,U ,U},
where B, U denote BRAM, URAM, respectively. When we
guide the HLS tool to use this mapping, both our model
and HLS synthesis report identical BRAM/URAM utilization,
i.e., 780 (81%) / 408 (88%). Letting the HLS tool instead to
automatically map buffers (“HLS AUTO” column), results in a
severe over-utilization of URAMs (616 or 133%), without any
BRAM usage. Vivado PnR attempts to implement this HLS
AUTO solution by mapping the surplus URAMs to BRAMs.
However, it generates an error reporting a 119.4% BRAM
and 99.8% URAM utilization. A similar result is observed for
another solution, i.e., 4×2×4 (P2). However, for the other two
solutions shown in Table II, HLS AUTO is able to successfully
find an efficient mapping. In these cases, both our model
and HLS AUTO produce exactly the same BRAM/URAM
utilization, e.g., 416 (43%) / 408 (88%), for 2×2×8 (P1).
We note that HLS AUTO fails to implement 5 of the 10 top
solutions (Table III), justifying the necessity of our approach.

2) GEMM Performance: In Table III, we show various
metrics for our 10 top solutions. In all solutions, throughput is
calculated on their native buffer sizes (Sec. IV-A1) Overall, we
observe that all designs exhibit high throughput ranging from
75.4–77.01 TOPs. However, to maintain such high throughput,
several designs require higher DDR BW compared to the
VC1902’s BW (102.4 GB/s). We note that we calculate DDR
BW as the worst-case of concurrent loads for buffers A, B
and stores for C (all as 8-bits due to quantization in DL).
With more sophisticated data reuse techniques as in [30], this

TABLE II: Optimization model estimation for various solu-
tions and comparison with HLS AUTO mapping.

U×V×W Model Estimation HLS AUTO
(MaxEVA P.) {A, B, C} BRAMs URAMs BRAMs URAMs
4×2×4 (P1) {B,U ,U} 780 (81%) 408 (88%) 0 (0%) 616 (133%)
4×2×4 (P2) {B,B,U} 900 (93%) 400 (86%) 0 (0%) 640 (138%)
2×2×8 (P1) {B,U ,U} 416 (43%) 408 (88%) 416 (43%) 408 (88%)
2×8×2 (P2) {U ,U ,B} 800 (83%) 240 (52%) 800 (83%) 240 (52%)

requirement can be amortized. In this work, we consider the
worst-case BW scenario for the sake of generality. Therefore,
we only examine designs that stay within the BW of the
VC1902 device (highlighted in bold in Table III).

From these designs, 2×2×8 (P1) shows both the highest
throughput, i.e., 76.93 TOPs, and the best energy efficiency,
i.e., 0.938 TOPs/W. For all valid solutions, throughput ranges
from 75.40–76.93 TOPs, which is 58.9–60.1% of the theoreti-
cal peak throughput of VC1902, and the same as the state-of-
the-art MaxEVA [27]. Additionally, energy efficiency ranges
from 0.911–0.938 TOPS/W. In all cases, we notice a very
high resource utilization, up to 94% BRAMs, 88% URAMs,
and 100% AIE cores, with a small LUT usage of up to 11%.
Moreover, we observe high RAM efficiency of 75.7–90.2%, as
a direct result of our modeling and optimization methodology.
Finally, although not shown in Table III for brevity, the
swapping of the first and last GEMM dimensions results in
equivalent solutions (symmetrical design, see Sec. IV-A3). For
instance, solution 2×2×8 (P1) can be swapped to 8×2×2
(P1), resulting in a native buffer size of 1536×1024×832
(compute GEMM size becomes 192×512×416 in this case).

B. Stratix DSE Evaluation

We conducted a DSE on 100 designs with different TB ar-
chitecture parameters to optimize for performance and energy
efficiency. The TB utilization of all explored designs is 85%–
91%. The native buffer sizes (Sec. IV-B) were set based on our
IP solver. The RTL (Verilog) code was automatically generated
using our Python tool, and afterwards implemented on Intel
Quartus 2021.1 (with a patch for Stratix 10 NX support from
Intel). We use ModelSim [65] to calculate throughput and the
Quartus Power Analyzer to estimate power [66].

Table IV shows the evaluation of the top 10 designs.
Configurations are a combination of the 4 TB architecture
parameters (TBlen×Kp×Np×Mp). Designs are ranked based on
their throughput when running GEMM on their native buffer
sizes. Our solutions achieve high throughput, up to 68 TOPs,
which is 47.6% of the theoretical peak of the NX 2100 device.
We note that our throughput is directly related to our achieved
frequencies, which are similar to prior work [10], [38], [44].
The maximum achieved energy efficiency is 1.347 TOPS/W.
All designs present a small ALM (12-19%), but very high
BRAM (85–94%) and TB (87–91%) utilization. Moreover,
they present very high RAM efficiency (81.2–90%) and low
BW requirements (79.3–92.6 GB/s).

Overall, we notice that the top designs have a TBlen of
18, 12 or 9. Designs with a TBlen of 36 achieve lower

TABLE III: Evaluation of 10 top-ranked GEMM designs on Versal VC1902. AIE operates at 1.25 GHz.
U×V×W Compute Native LUTs BRAMs URAMs AIE PL Fq. Thrpt. Power En. Eff. RAM BW

(MaxEVA P.) GEMM size Buffer size cores (MHz) (TOPs) (W) (TOPs/W) Eff. (GB/s)
2×8×2 (P1) 416×512×192 832×4096×384 85K (9%) 630 (65%) 304 (66%) 390 (98%) 300 77.01 78.6 0.980 88.9% 145.2
2×2×8 (P1) 416×512×192 832×1024×1536 91K (10%) 422 (44%) 408 (88%) 390 (98%) 290 76.93 82.0 0.938 88.9% 101.4
3×2×5 (P1) 416×512×192 1248×1024×960 94K (10%) 792 (82%) 408 (88%) 390 (98%) 278 76.72 82.7 0.932 75.7% 100.7
4×2×4 (P1) 416×512×192 1664×1024×768 90K (10%) 792 (82%) 408 (88%) 390 (98%) 278 76.72 82.3 0.928 81.6% 101.9
2×4×4 (P1) 416×512×192 832×2048×768 97K (11%) 792 (82%) 408 (88%) 390 (98%) 278 76.72 82.8 0.927 62.6% 106.9
2×8×2 (P2) 320×384×320 640×3072×640 92K (10%) 806 (83%) 240 (52%) 400 (100%) 300 76.08 78.3 0.971 88.9% 122.2
2×7×2 (P2) 320×384×320 640×2688×640 92K (10%) 806 (83%) 240 (52%) 400 (100%) 300 76.08 77.8 0.977 81.0% 123.9
2×6×2 (P2) 320×384×320 640×2304×640 91K (10%) 806 (83%) 240 (52%) 400 (100%) 300 76.08 77.5 0.982 73.2% 126.1
4×2×4 (P2) 320×384×320 1280×768×1280 100K (11%) 912 (94%) 400 (86%) 400 (100%) 275 75.40 82.8 0.911 90.2% 100.6
4×2×3 (P2) 320×384×320 1280×768×960 100K (11%) 912 (94%) 400 (86%) 400 (100%) 275 75.40 82.0 0.919 70.2% 109.7

TABLE IV: Evaluation of 10 top-ranked GEMM designs on Stratix 10 NX.

TB config. Compute Native ALMs BRAMs TBs Freq. Thrpt. Power En. Eff. RAM BW
GEMM size Buffer size (MHz) (TOPs) (W) (TOPs/W) Eff. (GB/s)

18×16×4×3 9×2720×4 639×2720×1008 124K (18%) 6304 (92%) 3456 (87%) 349 68.00 51.1 1.331 88.0% 92.6
18×8×8×3 9×1360×8 675×2720×928 123K (17%) 6064 (89%) 3456 (87%) 345 67.21 50.2 1.340 87.7% 91.6
9×16×5×5 15×1280×5 900×1280×1000 127K (18%) 5840 (85%) 3600 (91%) 350 66.94 52.5 1.275 81.2% 90.2
12×8×6×6 18×880×6 1152×1760×756 100K (14%) 6144 (90%) 3456 (87%) 338 64.00 48.6 1.317 86.7% 82.2
18×16×3×4 12×2720×3 850×2720×750 108K (15%) 6272 (92%) 3456 (87%) 327 63.71 47.3 1.347 85.9% 85.4
9×16×6×4 12×1280×6 912×2560×756 131K (19%) 6464 (94%) 3456 (87%) 342 62.88 50.7 1.241 85.1% 82.3
18×8×3×8 24×1360×3 1600×1360×550 81K (12%) 6064 (89%) 3456 (87%) 321 62.40 46.5 1.342 83.1% 92.4
9×8×10×5 15×640×10 900×1280×1000 124K (18%) 5840 (85%) 3600 (91%) 320 61.21 48.7 1.257 81.2% 82.4
18×8×5×5 15×1360×5 1020×2720×630 101K (14%) 6150 (90%) 3600 (91%) 301 61.08 45.4 1.346 90.0% 83.5
18×4×8×6 18×680×8 1152×1360×832 91K (13%) 6080 (89%) 3456 (87%) 312 60.69 46.2 1.315 84.3% 79.3

frequency and require a longer time for PnR, as they have less
flexibility during placement. Note that design 9×16×5×5 has
a lower throughput than 18×16×4×3, despite having higher
TB utilization and operating at a higher frequency. This is
attributed to a smaller TBlen, and therefore more wasted TBs
operating in parallel load mode. Notice also how designs
18×16×4×3 and 18×8×8×3 perform better than designs
18×16×3×4 and 18×8×3×8, respectively. They achieve a
higher frequency, due to a lower Mp, which leads to lower
overall signal fan-out and FPGA routing congestion.

C. Insights & Discussion
1) FPGA Frequency: We examine the reliance of our solutions
on the attainable FPGA frequency. While Versal’s AIE array
operates at a fixed frequency (1.25 GHz), the PL (FPGA)
frequency varies from 275-300 MHz across all top solutions
(Table III). Despite the PL frequency variation, we observe a
stable performance (∼2%) for Versal. We further depict the
impact of PL frequency on throughput in Fig. 7a for design
2×2×8 (P1). We notice a negligible throughput decrease
(<1.5%) for a wide frequency range (290 to 250 MHz).
This is ascribed to higher AIE computation time compared
to communication with PL, illustrating the weak dependence
of performance on a wide PL frequency range. However, for
frequencies lower than 250 MHz performance degrades more
severely (∼16% from 250 to 200 MHz).

Conversely, for Stratix, we observed a higher performance
range (∼12%) across all solutions in Table IV. This is at-
tributed to the direct relationship of performance to frequency,
illustrating the strong dependence of NX on PL frequency.
2) GEMM Scalability: Furthermore, we explore the scalability
of our solutions when altering the matrix dimensions. For
Versal, in Fig. 7b, we present the throughput of the best

overall design 2×2×8 (P1), for square matrices (powers-of-2)
ranging from 512 to 32K. Zero-padding is applied to align to
the compute GEMM size (Table III). We notice that our design
scales effectively, leading to almost its native peak throughput
for dimensions ∼2K and higher. We note here that native peak
refers to the achieved throughput of our designs when running
GEMM on their native buffer sizes (Tables III, IV).

Similarly, for Stratix, we show the scalability of the two
bolded designs in Table IV. The first (Fig. 8a) has a high
DK′ , and presents one of the highest throughput among all
top solutions. The second (Fig. 8b) has the lowest DK′ . As
DK′ is much higher than DM ′ and DN ′ (Table IV), designs
with flexible (small) DK′ require less zero-padding along the
reduction dimension (K ′) and scale better. We observe that,
while the design in Fig. 8a has higher native peak throughput,
the design in Fig. 8b scales better, due to lower DK′ . Overall,
GEMM scalability on both devices directly depends on the
compute GEMM size. By properly adjusting this size, our
methods can be exploited in straightforward fashion to target
specific matrix dimensions e.g., long and narrow matrices.
However, for the sake of generality, we demonstrate GEMM
scalability on square matrices, without targeting specific sizes.

3) Achieved Performance: As mentioned, Versal achieves
∼60% of its theoretical peak throughput. This can be ascribed
to multiple reasons. First, the non-ideal (95%) efficiency [27],
[28] of the AIE MatMul kernels. Second, the necessity to
introduce Add kernels on the AIE, which do not contribute to
throughput, but occupy some of the cores (Sec. IV-A2). Third,
the inevitable stalls caused by memory conflicts on the AIE
array [52]. In contrast, Stratix achieves ∼47% of its theoretical
peak throughput. This is because the theoretical peak assumes
100% TB utilization with no wasted TBs in cascade mode, and

(a) (b)

Fig. 7: Performance vs. PL frequency (a), and square matrix
dimensions (b) of 2×2×8 (P1) on Versal VC1902.

a very high operating frequency of 600MHz [10], which are
infeasible to attain in practice.

Our results in Tables III, IV indicate that, on average, Versal
attains 19.8% higher throughput, while Stratix presents 41.6%
higher energy efficiency on GEMM workloads. However, we
note that the focus of this study strays from a competitive
comparison among the two AI-optimized FPGA architectures.
Instead, we emphasize the distinct design methods required for
each device, due to their considerably different architecture
styles (out-of-fabric vs. in-fabric). A broader set of full AI-
workloads would be needed to explore complicated trade-offs
between the two architectures, which we leave as future work.
4) Programmability Trade-Offs: The two technologies require
completely different programming methods. In particular, Ver-
sal utilizes high-level C/C++ software for programming the
AIE array. Efficient, high-level programming constructs can
enable high performance of the AIE array’s SIMD processors
on vectorizable workloads (with 95% AIE kernel efficiency).
For productivity purposes, the PL part is typically programmed
in HLS. However, HLS inefficiencies can lead to performance
degradation, which can be mitigated by exploiting sophisti-
cated methods (Sec. IV-A4). Finally, AMD/Xilinx provides
automation tools, such as Vitis V++, to reduce the complexity
of integrating the entire system.

On the contrary, no high-level tools are available for pro-
gramming Stratix 10 NX. In particular, Intel HLS [56] has no
support for TBs, thus requiring exclusive coding in RTL for
design, verification, and full-system integration. This resulted
in ∼40× higher number of lines of code in Stratix compared to
Versal. Nonetheless, our Python-based generator significantly
reduced this complexity. Moreover, because the performance
of Stratix is directly analogous to frequency, unlike Versal,
more programming effort is required to meet timing goals,
and an extensive DSE is needed to identify high-throughput
designs. In our case, this led to ∼5× higher total tool compila-
tion time for Stratix compared to Versal. While each individual
design required 3–6 hours to compile on both devices, the
extensive exploration on Stratix greatly increased the design
space. Finally, based on our estimations, it might be 1.5–
2× more productive to program Versal due to the increased
programming effort required by Stratix. However, we note that
design productivity is highly dependent on designer skills.
5) GEMM Optimization Insights: Both devices exhibit design

(a) (b)

Fig. 8: Performance vs. square matrix dimensions of designs
9×16×5×5 (a) and 9×8×10×5 (b) on Stratix 10 NX.

challenges due to their high complexity. To address complex-
ity, systematic methodologies, e.g., analytical modeling, are
essential for optimization of GEMM-based applications.

Versal AIE is a novel architecture that introduces several
new design challenges. A comprehensive exploitation of AIE
architectural attributes, e.g., local memory sharing and circuit
switching, is crucial to optimize performance in GEMM [27].
Moreover, challenges, such as the reduced number of AIE-PL
tiles and AIE routing congestion, require refined techniques
to prevent performance degradation (Sec. IV-A2). Finally, the
limited DRAM BW of Versal devices introduces additional
challenges in maintaining the high throughput of the AIEs.

In contrast, Stratix 10 NX preserves a traditional FPGA
architecture, while introducing TBs embedded in the PL. The
inherent complexity of TBs necessitates the consideration of
multiple operating modes to effectively map GEMM work-
loads (Sec. IV-B). Moreover, as throughput is directly related
to frequency, performance depends on both low-level RTL
optimizations and the intricacies of the FPGA architecture.
RTL techniques, e.g., replication of control logic and insertion
of pipeline stages, are essential in shortening critical paths.

VI. CONCLUSION

In this work, we propose novel methodologies/frameworks
to optimize GEMM-based applications targeting the two lead-
ing AI-optimized FPGA architectures. We present a thorough
evaluation of several aspects in GEMM design, by efficiently
leveraging the unique and substantially different architectural
attributes of the AMD/Xilinx Versal ACAP and Intel Stratix
10 NX devices. Our experimental results show that our frame-
works achieve up to 77 and 68 TOPs throughput on GEMM
workloads for Versal and Stratix, respectively. This study
provides fundamental insights regarding the architectural char-
acteristics, programmability trade-offs, challenges and limita-
tions inherent in both Versal and Stratix AI-optimized FPGAs.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
feedback, which improved the quality of the paper. This work
was supported in part by the National Science Foundation CCF
Grant No. 2107085, ExxonMobil Technology and Engineering
Company, agreement no. EM10480.36, iMAGiNE - the Intel-
ligent Machine Engineering Consortium at UT Austin, and a
UT Cockrell School of Engineering Doctoral Fellowship.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, and
et al., “In-Datacenter Performance Analysis of a Tensor Processing
Unit,” SIGARCH Comput. Archit. News, vol. 45, no. 2, p. 1–12, jun
2017. [Online]. Available: https://doi.org/10.1145/3140659.3080246

[2] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, D. Y. Fu, Z. Xie,
B. Chen, C. Barrett, J. E. Gonzalez, P. Liang, C. Ré, I. Stoica, and
C. Zhang, “FlexGen: High-Throughput Generative Inference of Large
Language Models with a Single GPU,” 2023.

[3] “NVIDIA A100 Tensor Core GPU Architecture,” https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf, 2020.

[4] “Confidential Compute on NVIDIA Hopper H100,” https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-
Whitepaper-v1.0.pdf, 2023.

[5] “AMD CDNA 3 Architecture,” https://www.amd.com/content/dam/
amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-
paper.pdf, 2023.

[6] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil,
S. Prasad, C. Young, Z. Zhou, and D. Patterson, “Ten Lessons From
Three Generations Shaped Google’s TPUv4i : Industrial Product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 1–14.

[7] A. Firoozshahian, J. Coburn, R. Levenstein, R. Nattoji, A. Kamath,
O. Wu, G. Grewal, H. Aepala, B. Jakka, B. Dreyer, A. Hutchin, U. Diril,
K. Nair, E. K. Aredestani, M. Schatz, Y. Hao, R. Komuravelli, K. Ho,
S. Abu Asal, and et al., “MTIA: First Generation Silicon Targeting
Meta’s Recommendation Systems,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, ser. ISCA ’23.
New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3579371.3589348

[8] “Goya Inference Platform White Paper,” https://habana.ai/wp-content/
uploads/pdf/habana labs goya whitepaper.pdf, 2019.

[9] “Introducing Amazon EC2 Inf2 Instances Featuring AWS Inferen-
tia2,” https://d1.awsstatic.com/events/Summits/reinvent2022/CMP334
22986.pdf, 2022.

[10] M. Langhammer, E. Nurvitadhi, B. Pasca, and S. Gribok, “Stratix 10 NX
architecture and applications,” in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2021, pp. 57–67.

[11] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx Adaptive
Compute Acceleration Platform: Versal Architecture,” ser. FPGA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
84–93. [Online]. Available: https://doi.org/10.1145/3289602.3293906

[12] E. Nurvitadhi, J. Cook, A. Mishra, D. Marr, K. Nealis, P. Colangelo,
A. Ling, D. Capalija, U. Aydonat, A. Dasu, and S. Shumarayev, “In-
Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case
Study of Accelerating Deep Learning Using TensorTile ASIC,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 106–1064.

[13] E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson,
H. Sumbul, G. Chen, P. Knag, R. Kumar, R. Krishnamurthy, S. Gribok,
B. Pasca, M. Langhammer, D. Marr, and A. Dasu, “Why Compete
When You Can Work Together: FPGA-ASIC Integration for Persistent
RNNs,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 199–
207.

[14] A. Cairncross, B. Henry, C. Chalmers, D. Reid, J. Shipton, J. Fowler,
L. Corrigan, and M. Ashby, “AI Benchmarking on Achronix Speedster®
7t FPGAs,” 2023.

[15] A. Arora, S. Mehta, V. Betz, and L. K. John, “Tensor Slices to
the Rescue: Supercharging ML Acceleration on FPGAs,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 23–33. [Online]. Available:
https://doi.org/10.1145/3431920.3439282

[16] A. Arora, M. Ghosh, S. Mehta, V. Betz, and L. K. John, “Tensor
Slices: FPGA Building Blocks For The Deep Learning Era,” ACM
Trans. Reconfigurable Technol. Syst., vol. 15, no. 4, aug 2022. [Online].
Available: https://doi.org/10.1145/3529650

[17] A. Arora, A. Bhamburkar, A. Borda, T. Anand, R. Sehgal, B. Hanindhito,
P.-E. Gaillardon, J. Kulkarni, and L. K. John, “CoMeFa: Deploying
Compute-in-Memory on FPGAs for Deep Learning Acceleration,” ACM
Transactions on Reconfigurable Technology and Systems, 2023.

[18] A. Boutros, M. Eldafrawy, S. Yazdanshenas, and V. Betz, “Math
Doesn’t Have to Be Hard: Logic Block Architectures to Enhance
Low-Precision Multiply-Accumulate on FPGAs,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 94–103. [Online]. Available:
https://doi.org/10.1145/3289602.3293912

[19] M. Eldafrawy, A. Boutros, S. Yazdanshenas, and V. Betz, “FPGA
Logic Block Architectures for Efficient Deep Learning Inference,”
ACM Trans. Reconfigurable Technol. Syst., vol. 13, no. 3, Jun. 2020.
[Online]. Available: https://doi.org/10.1145/3393668

[20] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing Diversity:
Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 35–357.

[21] S. Ahmad, S. Subramanian, V. Boppana, S. Lakka, F.-H. Ho, T. Knopp,
J. Noguera, G. Singh, and R. Wittig, “Xilinx First 7nm Device: Versal
AI Core (VC1902),” in 2019 IEEE Hot Chips 31 Symposium (HCS),
2019, pp. 1–28.

[22] G. Alok, “Architecture apocalypse dream architecture for deep learning
inference and compute-versal ai core,” in Embedded World Conference,
2020.

[23] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom:
Reference workloads for modern deep learning methods,” in 2016
IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2016, pp. 1–10.

[24] Y. E. Wang, C.-J. Wu, X. Wang, K. Hazelwood, and D. Brooks,
“Exploiting Parallelism Opportunities with Deep Learning Frameworks,”
ACM Trans. Archit. Code Optim., vol. 18, no. 1, Dec 2021. [Online].
Available: https://doi.org/10.1145/3431388

[25] “VCK5000 Data Center Acceleration Development Kit Hardware In-
stallation Guide (UG1531),” https://docs.xilinx.com/r/en-US/ug1531-
vck5000-install/Card-Features.

[26] M. Adhiwiyogo, R. D’Souza, S. Leibson, and R. Shah, “Pushing AI
boundaries with scalable compute-focused FPGAs,” Intel, White Paper,
2019.

[27] E. Taka, A. Arora, K. C. Wu, and D. Marculescu, “MaxEVA: Maxi-
mizing the Efficiency of Matrix Multiplication on Versal AI Engine,”
in 2023 International Conference on Field-Programmable Technology
(ICFPT), 2023, pp. 95–104.

[28] J. Zhuang, J. Lau, H. Ye, Z. Yang, Y. Du, J. Lo, K. Denolf,
S. Neuendorffer, A. Jones, J. Hu, D. Chen, J. Cong, and
P. Zhou, “CHARM: Composing Heterogeneous AcceleRators for
Matrix Multiply on Versal ACAP Architecture,” in Proceedings of the
2023 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 153–164. [Online]. Available:
https://doi.org/10.1145/3543622.3573210

[29] J. Zhuang, Z. Yang, and P. Zhou, “High Performance, Low Power Ma-
trix Multiply Design on ACAP: from Architecture, Design Challenges
and DSE Perspectives,” in 2023 60th ACM/IEEE Design Automation
Conference (DAC), 2023, pp. 1–6.

[30] X. Jia, Y. Zhang, G. Liu, X. Yang, T. Zhang, J. Zheng, D. Xu, H. Wang,
R. Zheng, S. Pareek, L. Tian, D. Xie, H. Luo, and Y. Shan, “XVDPU:
A High Performance CNN Accelerator on the Versal Platform Powered
by the AI Engine,” in 2022 32nd International Conference on Field-
Programmable Logic and Applications (FPL), 2022, pp. 01–09.

[31] T. Zhang, D. Li, H. Wang, Y. Li, X. Ma, W. Luo, Y. Wang, Y. Huang,
Y. Li, Y. Zhang, X. Yang, X. Jia, Q. Lin, L. Tian, F. Jiang, D. Xie,
H. Luo, and Y. Shan, “A-U3D: A Unified 2D/3D CNN Accelerator on
the Versal Platform for Disparity Estimation,” in 2022 32nd International
Conference on Field-Programmable Logic and Applications (FPL),
2022, pp. 123–129.

[32] C. Zhang, T. Geng, A. Guo, J. Tian, M. Herbordt, A. Li, and D. Tao, “H-
GCN: A graph convolutional network accelerator on versal ACAP archi-
tecture,” in 2022 32nd International Conference on Field-Programmable
Logic and Applications (FPL), 2022, pp. 200–208.

[33] P. Chen, P. Manjunath, S. Wijeratne, B. Zhang, and V. Prasanna,
“Exploiting On-chip Heterogeneity of Versal Architecture for GNN
Inference Acceleration,” 2023.

https://doi.org/10.1145/3140659.3080246
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://doi.org/10.1145/3579371.3589348
https://habana.ai/wp-content/uploads/pdf/habana_labs_goya_whitepaper.pdf
https://habana.ai/wp-content/uploads/pdf/habana_labs_goya_whitepaper.pdf
https://d1.awsstatic.com/events/Summits/reinvent2022/CMP334_22986.pdf
https://d1.awsstatic.com/events/Summits/reinvent2022/CMP334_22986.pdf
https://doi.org/10.1145/3289602.3293906
https://doi.org/10.1145/3431920.3439282
https://doi.org/10.1145/3529650
https://doi.org/10.1145/3289602.3293912
https://doi.org/10.1145/3393668
https://doi.org/10.1145/3431388
https://docs.xilinx.com/r/en-US/ug1531-vck5000-install/Card-Features
https://docs.xilinx.com/r/en-US/ug1531-vck5000-install/Card-Features
https://doi.org/10.1145/3543622.3573210

[34] P. Chatarasi, S. Neuendorffer, S. Bayliss, K. Vissers, and V. Sarkar,
“Vyasa: A High-Performance Vectorizing Compiler for Tensor Convolu-
tions on the Xilinx AI Engine,” in 2020 IEEE High Performance Extreme
Computing Conference (HPEC), 2020, pp. 1–10.

[35] Z. Yang, J. Zhuang, J. Yin, C. Yu, A. K. Jones, and P. Zhou, “AIM: Ac-
celerating Arbitrary-precision Integer Multiplication on Heterogeneous
Reconfigurable Computing Platform Versal ACAP,” 2023.

[36] G. Singh, A. Khodamoradi, K. Denolf, J. Lo, J. Gomez-Luna, J. Melber,
A. Bisca, H. Corporaal, and O. Mutlu, “SPARTA: Spatial Acceleration
for Efficient and Scalable Horizontal Diffusion Weather Stencil
Computation,” in Proceedings of the 37th International Conference
on Supercomputing, ser. ICS ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 463–476. [Online]. Available:
https://doi.org/10.1145/3577193.3593719

[37] N. Brown, “Exploring the Versal AI Engines for Accelerating Stencil-
Based Atmospheric Advection Simulation,” ser. FPGA ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 91–97.
[Online]. Available: https://doi.org/10.1145/3543622.3573047

[38] A. Boutros, E. Nurvitadhi, R. Ma, S. Gribok, Z. Zhao, J. C. Hoe, V. Betz,
and M. Langhammer, “Beyond peak performance: Comparing the real
performance of AI-optimized FPGAs and GPUs,” in 2020 International
Conference on Field-Programmable Technology (ICFPT). IEEE, 2020,
pp. 10–19.

[39] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger, “A Configurable Cloud-Scale
DNN Processor for Real-Time AI,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp.
1–14.

[40] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for
long short-term memory recurrent neural networks,” in 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC), 2017, pp.
629–634.

[41] V. Rybalkin, A. Pappalardo, M. M. Ghaffar, G. Gambardella, N. Wehn,
and M. Blott, “FINN-L: Library Extensions and Design Trade-Off
Analysis for Variable Precision LSTM Networks on FPGAs,” in 2018
28th International Conference on Field Programmable Logic and Ap-
plications (FPL), 2018, pp. 89–897.

[42] Z. Que, H. Nakahara, E. Nurvitadhi, H. Fan, C. Zeng, J. Meng,
X. Niu, and W. Luk, “Optimizing Reconfigurable Recurrent Neural
Networks,” in 2020 IEEE 28th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2020, pp.
10–18.

[43] E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson,
H. Sumbul, G. Chen, P. Knag, R. Kumar, R. Krishnamurthy, S. Gribok,
B. Pasca, M. Langhammer, D. Marr, and A. Dasu, “Why Compete
When You Can Work Together: FPGA-ASIC Integration for Persistent
RNNs,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 199–
207.

[44] M. Stan, M. Hall, M. Ibrahim, and V. Betz, “HPIPE NX: Boosting cnn
inference acceleration performance with ai-optimized FPGAs,” in 2022
International Conference on Field-Programmable Technology (ICFPT),
2022, pp. 1–9.

[45] M. Hall and V. Betz, “From TensorFlow Graphs to LUTs and Wires:
Automated Sparse and Physically Aware CNN Hardware Generation,”
in 2020 International Conference on Field-Programmable Technology
(ICFPT), 2020, pp. 56–65.

[46] M. Langhammer, S. Finn, S. Gribok, and B. Pasca, “Dense FPGA Com-
pute Using Signed Byte Tuples,” in 2021 31st International Conference
on Field-Programmable Logic and Applications (FPL), 2021, pp. 130–
138.

[47] J. Shipton, J. Fowler, C. Chalmers, S. Davis, S. Gooch, and G. Coccia,
“Implementing WaveNet Using Intel® Stratix® 10 NX FPGA for
Real-Time Speech Synthesis,” https://www.intel.de/content/dam/www/
central-libraries/us/en/documents/wp-01304-implementing-wavenet-
using-intel-stratix10-nx-fpga-for-real-time-speech-synthesis.pdf, 2021.

[48] “Versal ACAP Design Guide (UG1273),” https://docs.xilinx.com/r/
2022.1-English/ug1273-versal-acap-design, 2022.

[49] “Versal ACAP AI Engine Architecture Manual (AM009),” https://
docs.xilinx.com/r/en-US/am009-versal-ai-engine, 2023.

[50] “AI Engine API User Guide,” https://www.xilinx.com/htmldocs/
xilinx2022 1/aiengine api/aie api/doc/index.html, 2022.

[51] “AI Engine Kernel and Graph Programming Guide (UG1079),”
https://docs.xilinx.com/r/2022.2-English/ug1079-ai-engine-kernel-
coding/Overview?tocId=OerrcATBJkz9SuXKjosb1w, 2022.

[52] “Versal ACAP AI Engine Programming Environment User Guide
(UG1076),” https://docs.xilinx.com/r/2022.1-English/ug1076-ai-
engine-environment/Overview, 2022.

[53] “Vitis High-Level Synthesis User Guide (UG1399),” https:
//docs.xilinx.com/r/2022.1-English/ug1399-vitis-hls, 2022.

[54] “Vitis Unified Software Platform Documentation: Application Accelera-
tion Development (UG1393),” https://docs.xilinx.com/r/2022.1-English/
ug1393-vitis-application-acceleration, 2022.

[55] “Intel Stratix 10 Embedded Memory User Guide,” https:
//www.intel.com/content/www/us/en/docs/programmable/683423/
23-2/embedded-memory-configurations.html, 2023.

[56] “Intel High Level Synthesis Compiler Pro Edition: Reference Manual,”
https://www.intel.com/content/www/us/en/docs/programmable/683349/
23-4/pro-edition-reference-manual.html, 2023.

[57] “MaxEVA,” https://github.com/enyac-group/MaxEVA, 2023.
[58] “Versal AI Core Series Data Sheet: DC and AC Switching Characteris-

tics (DS957),” https://docs.xilinx.com/r/en-US/ds957-versal-ai-core/AI-
Engine-Switching-Characteristics, 2023.

[59] “Versal ACAP Memory Resources Architecture Manual (AM007),”
https://docs.xilinx.com/r/en-US/am007-versal-memory, 2020.

[60] N. Voss, P. Quintana, O. Mencer, W. Luk, and G. Gaydadjiev, “Memory
Mapping for Multi-die FPGAs,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2019, pp. 78–86.

[61] D. Karchmer and J. Rose, “Definition And Solution Of The Memory
Packing Problem For Field-programmable Systems,” in IEEE/ACM
International Conference on Computer-Aided Design, 1994, pp. 20–26.

[62] R. Tessier, V. Betz, D. Neto, A. Egier, and T. Gopalsamy, “Power-
Efficient RAM Mapping Algorithms for FPGA Embedded Memory
Blocks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 2, pp. 278–290, 2007.

[63] J. Vasiljevic and P. Chow, “Using buffer-to-BRAM mapping approaches
to trade-off throughput vs. memory use,” in 2014 24th International
Conference on Field Programmable Logic and Applications (FPL),
2014, pp. 1–8.

[64] “Vivado Design Suite User Guide: Power Analysis and Opti-
mization (UG907),” https://docs.xilinx.com/v/u/2019.1-English/ug907-
vivado-power-analysis-optimization, 2022.

[65] “ModelSim User’s Manual,” https://www.microsemi.com/document-
portal/doc view/131619-modelsim-user, 2023.

[66] “Intel Quartus Prime Standard Edition User Guide: Power Analy-
sis and Optimization,” https://www.intel.com/content/www/us/en/docs/
programmable/683506/18-1/power-analysis.html, 2018.

https://doi.org/10.1145/3577193.3593719
https://doi.org/10.1145/3543622.3573047
https://www.intel.de/content/dam/www/central-libraries/us/en/documents/wp-01304-implementing-wavenet-using-intel-stratix10-nx-fpga-for-real-time-speech-synthesis.pdf
https://www.intel.de/content/dam/www/central-libraries/us/en/documents/wp-01304-implementing-wavenet-using-intel-stratix10-nx-fpga-for-real-time-speech-synthesis.pdf
https://www.intel.de/content/dam/www/central-libraries/us/en/documents/wp-01304-implementing-wavenet-using-intel-stratix10-nx-fpga-for-real-time-speech-synthesis.pdf
https://docs.xilinx.com/r/2022.1-English/ug1273-versal-acap-design
https://docs.xilinx.com/r/2022.1-English/ug1273-versal-acap-design
https://docs.xilinx.com/r/en-US/am009-versal-ai-engine
https://docs.xilinx.com/r/en-US/am009-versal-ai-engine
https://www.xilinx.com/htmldocs/xilinx2022_1/aiengine_api/aie_api/doc/index.html
https://www.xilinx.com/htmldocs/xilinx2022_1/aiengine_api/aie_api/doc/index.html
https://docs.xilinx.com/r/2022.2-English/ug1079-ai-engine-kernel-coding/Overview?tocId=OerrcATBJkz9SuXKjosb1w
https://docs.xilinx.com/r/2022.2-English/ug1079-ai-engine-kernel-coding/Overview?tocId=OerrcATBJkz9SuXKjosb1w
https://docs.xilinx.com/r/2022.1-English/ug1076-ai-engine-environment/Overview
https://docs.xilinx.com/r/2022.1-English/ug1076-ai-engine-environment/Overview
https://docs.xilinx.com/r/2022.1-English/ug1399-vitis-hls
https://docs.xilinx.com/r/2022.1-English/ug1399-vitis-hls
https://docs.xilinx.com/r/2022.1-English/ug1393-vitis-application-acceleration
https://docs.xilinx.com/r/2022.1-English/ug1393-vitis-application-acceleration
https://www.intel.com/content/www/us/en/docs/programmable/683423/23-2/embedded-memory-configurations.html
https://www.intel.com/content/www/us/en/docs/programmable/683423/23-2/embedded-memory-configurations.html
https://www.intel.com/content/www/us/en/docs/programmable/683423/23-2/embedded-memory-configurations.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/23-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/23-4/pro-edition-reference-manual.html
https://github.com/enyac-group/MaxEVA
https://docs.xilinx.com/r/en-US/ds957-versal-ai-core/AI-Engine-Switching-Characteristics
https://docs.xilinx.com/r/en-US/ds957-versal-ai-core/AI-Engine-Switching-Characteristics
https://docs.xilinx.com/r/en-US/am007-versal-memory
https://docs.xilinx.com/v/u/2019.1-English/ug907-vivado-power-analysis-optimization
https://docs.xilinx.com/v/u/2019.1-English/ug907-vivado-power-analysis-optimization
https://www.microsemi.com/document-portal/doc_view/131619-modelsim-user
https://www.microsemi.com/document-portal/doc_view/131619-modelsim-user
https://www.intel.com/content/www/us/en/docs/programmable/683506/18-1/power-analysis.html
https://www.intel.com/content/www/us/en/docs/programmable/683506/18-1/power-analysis.html

	Introduction
	Related Work
	FPGA Architectures Overview
	Versal ACAP Architecture
	Stratix 10 NX Architecture

	GEMM Design & Optimization
	GEMM Implementation on Versal ACAP
	GEMM Multi-Level Tiling Scheme
	GEMM Mapping on AIE Array
	PL Implementation
	Memory Optimization Strategy

	GEMM Implementation on Stratix 10 NX
	TB Layout
	Dataflow
	Architectural Considerations
	Memory Architecture
	Optimization Strategies
	Automatic RTL Code Generation

	Evaluation
	Versal DSE Evaluation
	Model Estimation
	GEMM Performance

	Stratix DSE Evaluation
	Insights & Discussion

	Conclusion
	References

